1  /*
2   * Kernel Debugger Architecture Independent Support Functions
3   *
4   * This file is subject to the terms and conditions of the GNU General Public
5   * License.  See the file "COPYING" in the main directory of this archive
6   * for more details.
7   *
8   * Copyright (c) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9   * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
10   * 03/02/13    added new 2.5 kallsyms <xavier.bru@bull.net>
11   */
12  
13  #include <linux/types.h>
14  #include <linux/sched.h>
15  #include <linux/mm.h>
16  #include <linux/kallsyms.h>
17  #include <linux/stddef.h>
18  #include <linux/vmalloc.h>
19  #include <linux/ptrace.h>
20  #include <linux/highmem.h>
21  #include <linux/hardirq.h>
22  #include <linux/delay.h>
23  #include <linux/uaccess.h>
24  #include <linux/kdb.h>
25  #include <linux/slab.h>
26  #include <linux/ctype.h>
27  #include "kdb_private.h"
28  
29  /*
30   * kdbgetsymval - Return the address of the given symbol.
31   *
32   * Parameters:
33   *	symname	Character string containing symbol name
34   *      symtab  Structure to receive results
35   * Returns:
36   *	0	Symbol not found, symtab zero filled
37   *	1	Symbol mapped to module/symbol/section, data in symtab
38   */
kdbgetsymval(const char * symname,kdb_symtab_t * symtab)39  int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
40  {
41  	kdb_dbg_printf(AR, "symname=%s, symtab=%px\n", symname, symtab);
42  	memset(symtab, 0, sizeof(*symtab));
43  	symtab->sym_start = kallsyms_lookup_name(symname);
44  	if (symtab->sym_start) {
45  		kdb_dbg_printf(AR, "returns 1, symtab->sym_start=0x%lx\n",
46  			       symtab->sym_start);
47  		return 1;
48  	}
49  	kdb_dbg_printf(AR, "returns 0\n");
50  	return 0;
51  }
52  EXPORT_SYMBOL(kdbgetsymval);
53  
54  /**
55   * kdbnearsym() - Return the name of the symbol with the nearest address
56   *                less than @addr.
57   * @addr: Address to check for near symbol
58   * @symtab: Structure to receive results
59   *
60   * WARNING: This function may return a pointer to a single statically
61   * allocated buffer (namebuf). kdb's unusual calling context (single
62   * threaded, all other CPUs halted) provides us sufficient locking for
63   * this to be safe. The only constraint imposed by the static buffer is
64   * that the caller must consume any previous reply prior to another call
65   * to lookup a new symbol.
66   *
67   * Note that, strictly speaking, some architectures may re-enter the kdb
68   * trap if the system turns out to be very badly damaged and this breaks
69   * the single-threaded assumption above. In these circumstances successful
70   * continuation and exit from the inner trap is unlikely to work and any
71   * user attempting this receives a prominent warning before being allowed
72   * to progress. In these circumstances we remain memory safe because
73   * namebuf[KSYM_NAME_LEN-1] will never change from '\0' although we do
74   * tolerate the possibility of garbled symbol display from the outer kdb
75   * trap.
76   *
77   * Return:
78   * * 0 - No sections contain this address, symtab zero filled
79   * * 1 - Address mapped to module/symbol/section, data in symtab
80   */
kdbnearsym(unsigned long addr,kdb_symtab_t * symtab)81  int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
82  {
83  	int ret = 0;
84  	unsigned long symbolsize = 0;
85  	unsigned long offset = 0;
86  	static char namebuf[KSYM_NAME_LEN];
87  
88  	kdb_dbg_printf(AR, "addr=0x%lx, symtab=%px\n", addr, symtab);
89  	memset(symtab, 0, sizeof(*symtab));
90  
91  	if (addr < 4096)
92  		goto out;
93  
94  	symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
95  				(char **)(&symtab->mod_name), namebuf);
96  	if (offset > 8*1024*1024) {
97  		symtab->sym_name = NULL;
98  		addr = offset = symbolsize = 0;
99  	}
100  	symtab->sym_start = addr - offset;
101  	symtab->sym_end = symtab->sym_start + symbolsize;
102  	ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
103  
104  	if (symtab->mod_name == NULL)
105  		symtab->mod_name = "kernel";
106  	kdb_dbg_printf(AR, "returns %d symtab->sym_start=0x%lx, symtab->mod_name=%px, symtab->sym_name=%px (%s)\n",
107  		       ret, symtab->sym_start, symtab->mod_name, symtab->sym_name, symtab->sym_name);
108  out:
109  	return ret;
110  }
111  
112  static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
113  
114  /*
115   * kallsyms_symbol_complete
116   *
117   * Parameters:
118   *	prefix_name	prefix of a symbol name to lookup
119   *	max_len		maximum length that can be returned
120   * Returns:
121   *	Number of symbols which match the given prefix.
122   * Notes:
123   *	prefix_name is changed to contain the longest unique prefix that
124   *	starts with this prefix (tab completion).
125   */
kallsyms_symbol_complete(char * prefix_name,int max_len)126  int kallsyms_symbol_complete(char *prefix_name, int max_len)
127  {
128  	loff_t pos = 0;
129  	int prefix_len = strlen(prefix_name), prev_len = 0;
130  	int i, number = 0;
131  	const char *name;
132  
133  	while ((name = kdb_walk_kallsyms(&pos))) {
134  		if (strncmp(name, prefix_name, prefix_len) == 0) {
135  			strscpy(ks_namebuf, name, sizeof(ks_namebuf));
136  			/* Work out the longest name that matches the prefix */
137  			if (++number == 1) {
138  				prev_len = min_t(int, max_len-1,
139  						 strlen(ks_namebuf));
140  				memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
141  				ks_namebuf_prev[prev_len] = '\0';
142  				continue;
143  			}
144  			for (i = 0; i < prev_len; i++) {
145  				if (ks_namebuf[i] != ks_namebuf_prev[i]) {
146  					prev_len = i;
147  					ks_namebuf_prev[i] = '\0';
148  					break;
149  				}
150  			}
151  		}
152  	}
153  	if (prev_len > prefix_len)
154  		memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
155  	return number;
156  }
157  
158  /*
159   * kallsyms_symbol_next
160   *
161   * Parameters:
162   *	prefix_name	prefix of a symbol name to lookup
163   *	flag	0 means search from the head, 1 means continue search.
164   *	buf_size	maximum length that can be written to prefix_name
165   *			buffer
166   * Returns:
167   *	1 if a symbol matches the given prefix.
168   *	0 if no string found
169   */
kallsyms_symbol_next(char * prefix_name,int flag,int buf_size)170  int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size)
171  {
172  	int prefix_len = strlen(prefix_name);
173  	static loff_t pos;
174  	const char *name;
175  
176  	if (!flag)
177  		pos = 0;
178  
179  	while ((name = kdb_walk_kallsyms(&pos))) {
180  		if (!strncmp(name, prefix_name, prefix_len))
181  			return strscpy(prefix_name, name, buf_size);
182  	}
183  	return 0;
184  }
185  
186  /*
187   * kdb_symbol_print - Standard method for printing a symbol name and offset.
188   * Inputs:
189   *	addr	Address to be printed.
190   *	symtab	Address of symbol data, if NULL this routine does its
191   *		own lookup.
192   *	punc	Punctuation for string, bit field.
193   * Remarks:
194   *	The string and its punctuation is only printed if the address
195   *	is inside the kernel, except that the value is always printed
196   *	when requested.
197   */
kdb_symbol_print(unsigned long addr,const kdb_symtab_t * symtab_p,unsigned int punc)198  void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
199  		      unsigned int punc)
200  {
201  	kdb_symtab_t symtab, *symtab_p2;
202  	if (symtab_p) {
203  		symtab_p2 = (kdb_symtab_t *)symtab_p;
204  	} else {
205  		symtab_p2 = &symtab;
206  		kdbnearsym(addr, symtab_p2);
207  	}
208  	if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
209  		return;
210  	if (punc & KDB_SP_SPACEB)
211  		kdb_printf(" ");
212  	if (punc & KDB_SP_VALUE)
213  		kdb_printf(kdb_machreg_fmt0, addr);
214  	if (symtab_p2->sym_name) {
215  		if (punc & KDB_SP_VALUE)
216  			kdb_printf(" ");
217  		if (punc & KDB_SP_PAREN)
218  			kdb_printf("(");
219  		if (strcmp(symtab_p2->mod_name, "kernel"))
220  			kdb_printf("[%s]", symtab_p2->mod_name);
221  		kdb_printf("%s", symtab_p2->sym_name);
222  		if (addr != symtab_p2->sym_start)
223  			kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
224  		if (punc & KDB_SP_SYMSIZE)
225  			kdb_printf("/0x%lx",
226  				   symtab_p2->sym_end - symtab_p2->sym_start);
227  		if (punc & KDB_SP_PAREN)
228  			kdb_printf(")");
229  	}
230  	if (punc & KDB_SP_SPACEA)
231  		kdb_printf(" ");
232  	if (punc & KDB_SP_NEWLINE)
233  		kdb_printf("\n");
234  }
235  
236  /*
237   * kdb_strdup - kdb equivalent of strdup, for disasm code.
238   * Inputs:
239   *	str	The string to duplicate.
240   *	type	Flags to kmalloc for the new string.
241   * Returns:
242   *	Address of the new string, NULL if storage could not be allocated.
243   * Remarks:
244   *	This is not in lib/string.c because it uses kmalloc which is not
245   *	available when string.o is used in boot loaders.
246   */
kdb_strdup(const char * str,gfp_t type)247  char *kdb_strdup(const char *str, gfp_t type)
248  {
249  	int n = strlen(str)+1;
250  	char *s = kmalloc(n, type);
251  	if (!s)
252  		return NULL;
253  	return strcpy(s, str);
254  }
255  
256  /*
257   * kdb_getarea_size - Read an area of data.  The kdb equivalent of
258   *	copy_from_user, with kdb messages for invalid addresses.
259   * Inputs:
260   *	res	Pointer to the area to receive the result.
261   *	addr	Address of the area to copy.
262   *	size	Size of the area.
263   * Returns:
264   *	0 for success, < 0 for error.
265   */
kdb_getarea_size(void * res,unsigned long addr,size_t size)266  int kdb_getarea_size(void *res, unsigned long addr, size_t size)
267  {
268  	int ret = copy_from_kernel_nofault((char *)res, (char *)addr, size);
269  	if (ret) {
270  		if (!KDB_STATE(SUPPRESS)) {
271  			kdb_func_printf("Bad address 0x%lx\n", addr);
272  			KDB_STATE_SET(SUPPRESS);
273  		}
274  		ret = KDB_BADADDR;
275  	} else {
276  		KDB_STATE_CLEAR(SUPPRESS);
277  	}
278  	return ret;
279  }
280  
281  /*
282   * kdb_putarea_size - Write an area of data.  The kdb equivalent of
283   *	copy_to_user, with kdb messages for invalid addresses.
284   * Inputs:
285   *	addr	Address of the area to write to.
286   *	res	Pointer to the area holding the data.
287   *	size	Size of the area.
288   * Returns:
289   *	0 for success, < 0 for error.
290   */
kdb_putarea_size(unsigned long addr,void * res,size_t size)291  int kdb_putarea_size(unsigned long addr, void *res, size_t size)
292  {
293  	int ret = copy_to_kernel_nofault((char *)addr, (char *)res, size);
294  	if (ret) {
295  		if (!KDB_STATE(SUPPRESS)) {
296  			kdb_func_printf("Bad address 0x%lx\n", addr);
297  			KDB_STATE_SET(SUPPRESS);
298  		}
299  		ret = KDB_BADADDR;
300  	} else {
301  		KDB_STATE_CLEAR(SUPPRESS);
302  	}
303  	return ret;
304  }
305  
306  /*
307   * kdb_getphys - Read data from a physical address. Validate the
308   * 	address is in range, use kmap_atomic() to get data
309   * 	similar to kdb_getarea() - but for phys addresses
310   * Inputs:
311   * 	res	Pointer to the word to receive the result
312   * 	addr	Physical address of the area to copy
313   * 	size	Size of the area
314   * Returns:
315   *	0 for success, < 0 for error.
316   */
kdb_getphys(void * res,unsigned long addr,size_t size)317  static int kdb_getphys(void *res, unsigned long addr, size_t size)
318  {
319  	unsigned long pfn;
320  	void *vaddr;
321  	struct page *page;
322  
323  	pfn = (addr >> PAGE_SHIFT);
324  	if (!pfn_valid(pfn))
325  		return 1;
326  	page = pfn_to_page(pfn);
327  	vaddr = kmap_atomic(page);
328  	memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
329  	kunmap_atomic(vaddr);
330  
331  	return 0;
332  }
333  
334  /*
335   * kdb_getphysword
336   * Inputs:
337   *	word	Pointer to the word to receive the result.
338   *	addr	Address of the area to copy.
339   *	size	Size of the area.
340   * Returns:
341   *	0 for success, < 0 for error.
342   */
kdb_getphysword(unsigned long * word,unsigned long addr,size_t size)343  int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
344  {
345  	int diag;
346  	__u8  w1;
347  	__u16 w2;
348  	__u32 w4;
349  	__u64 w8;
350  	*word = 0;	/* Default value if addr or size is invalid */
351  
352  	switch (size) {
353  	case 1:
354  		diag = kdb_getphys(&w1, addr, sizeof(w1));
355  		if (!diag)
356  			*word = w1;
357  		break;
358  	case 2:
359  		diag = kdb_getphys(&w2, addr, sizeof(w2));
360  		if (!diag)
361  			*word = w2;
362  		break;
363  	case 4:
364  		diag = kdb_getphys(&w4, addr, sizeof(w4));
365  		if (!diag)
366  			*word = w4;
367  		break;
368  	case 8:
369  		if (size <= sizeof(*word)) {
370  			diag = kdb_getphys(&w8, addr, sizeof(w8));
371  			if (!diag)
372  				*word = w8;
373  			break;
374  		}
375  		fallthrough;
376  	default:
377  		diag = KDB_BADWIDTH;
378  		kdb_func_printf("bad width %zu\n", size);
379  	}
380  	return diag;
381  }
382  
383  /*
384   * kdb_getword - Read a binary value.  Unlike kdb_getarea, this treats
385   *	data as numbers.
386   * Inputs:
387   *	word	Pointer to the word to receive the result.
388   *	addr	Address of the area to copy.
389   *	size	Size of the area.
390   * Returns:
391   *	0 for success, < 0 for error.
392   */
kdb_getword(unsigned long * word,unsigned long addr,size_t size)393  int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
394  {
395  	int diag;
396  	__u8  w1;
397  	__u16 w2;
398  	__u32 w4;
399  	__u64 w8;
400  	*word = 0;	/* Default value if addr or size is invalid */
401  	switch (size) {
402  	case 1:
403  		diag = kdb_getarea(w1, addr);
404  		if (!diag)
405  			*word = w1;
406  		break;
407  	case 2:
408  		diag = kdb_getarea(w2, addr);
409  		if (!diag)
410  			*word = w2;
411  		break;
412  	case 4:
413  		diag = kdb_getarea(w4, addr);
414  		if (!diag)
415  			*word = w4;
416  		break;
417  	case 8:
418  		if (size <= sizeof(*word)) {
419  			diag = kdb_getarea(w8, addr);
420  			if (!diag)
421  				*word = w8;
422  			break;
423  		}
424  		fallthrough;
425  	default:
426  		diag = KDB_BADWIDTH;
427  		kdb_func_printf("bad width %zu\n", size);
428  	}
429  	return diag;
430  }
431  
432  /*
433   * kdb_putword - Write a binary value.  Unlike kdb_putarea, this
434   *	treats data as numbers.
435   * Inputs:
436   *	addr	Address of the area to write to..
437   *	word	The value to set.
438   *	size	Size of the area.
439   * Returns:
440   *	0 for success, < 0 for error.
441   */
kdb_putword(unsigned long addr,unsigned long word,size_t size)442  int kdb_putword(unsigned long addr, unsigned long word, size_t size)
443  {
444  	int diag;
445  	__u8  w1;
446  	__u16 w2;
447  	__u32 w4;
448  	__u64 w8;
449  	switch (size) {
450  	case 1:
451  		w1 = word;
452  		diag = kdb_putarea(addr, w1);
453  		break;
454  	case 2:
455  		w2 = word;
456  		diag = kdb_putarea(addr, w2);
457  		break;
458  	case 4:
459  		w4 = word;
460  		diag = kdb_putarea(addr, w4);
461  		break;
462  	case 8:
463  		if (size <= sizeof(word)) {
464  			w8 = word;
465  			diag = kdb_putarea(addr, w8);
466  			break;
467  		}
468  		fallthrough;
469  	default:
470  		diag = KDB_BADWIDTH;
471  		kdb_func_printf("bad width %zu\n", size);
472  	}
473  	return diag;
474  }
475  
476  
477  
478  /*
479   * kdb_task_state_char - Return the character that represents the task state.
480   * Inputs:
481   *	p	struct task for the process
482   * Returns:
483   *	One character to represent the task state.
484   */
kdb_task_state_char(const struct task_struct * p)485  char kdb_task_state_char (const struct task_struct *p)
486  {
487  	unsigned long tmp;
488  	char state;
489  	int cpu;
490  
491  	if (!p ||
492  	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
493  		return 'E';
494  
495  	state = task_state_to_char((struct task_struct *) p);
496  
497  	if (is_idle_task(p)) {
498  		/* Idle task.  Is it really idle, apart from the kdb
499  		 * interrupt? */
500  		cpu = kdb_process_cpu(p);
501  		if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
502  			if (cpu != kdb_initial_cpu)
503  				state = '-';	/* idle task */
504  		}
505  	} else if (!p->mm && strchr("IMS", state)) {
506  		state = tolower(state);		/* sleeping system daemon */
507  	}
508  	return state;
509  }
510  
511  /*
512   * kdb_task_state - Return true if a process has the desired state
513   *	given by the mask.
514   * Inputs:
515   *	p	struct task for the process
516   *	mask	set of characters used to select processes; both NULL
517   *	        and the empty string mean adopt a default filter, which
518   *	        is to suppress sleeping system daemons and the idle tasks
519   * Returns:
520   *	True if the process matches at least one criteria defined by the mask.
521   */
kdb_task_state(const struct task_struct * p,const char * mask)522  bool kdb_task_state(const struct task_struct *p, const char *mask)
523  {
524  	char state = kdb_task_state_char(p);
525  
526  	/* If there is no mask, then we will filter code that runs when the
527  	 * scheduler is idling and any system daemons that are currently
528  	 * sleeping.
529  	 */
530  	if (!mask || mask[0] == '\0')
531  		return !strchr("-ims", state);
532  
533  	/* A is a special case that matches all states */
534  	if (strchr(mask, 'A'))
535  		return true;
536  
537  	return strchr(mask, state);
538  }
539  
540  /* Maintain a small stack of kdb_flags to allow recursion without disturbing
541   * the global kdb state.
542   */
543  
544  static int kdb_flags_stack[4], kdb_flags_index;
545  
kdb_save_flags(void)546  void kdb_save_flags(void)
547  {
548  	BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
549  	kdb_flags_stack[kdb_flags_index++] = kdb_flags;
550  }
551  
kdb_restore_flags(void)552  void kdb_restore_flags(void)
553  {
554  	BUG_ON(kdb_flags_index <= 0);
555  	kdb_flags = kdb_flags_stack[--kdb_flags_index];
556  }
557