1  // SPDX-License-Identifier: MIT
2  /*
3   * Copyright © 2020 Intel Corporation
4   */
5  
6  #include "xe_migrate.h"
7  
8  #include <linux/bitfield.h>
9  #include <linux/sizes.h>
10  
11  #include <drm/drm_managed.h>
12  #include <drm/ttm/ttm_tt.h>
13  #include <uapi/drm/xe_drm.h>
14  
15  #include <generated/xe_wa_oob.h>
16  
17  #include "instructions/xe_gpu_commands.h"
18  #include "instructions/xe_mi_commands.h"
19  #include "regs/xe_gtt_defs.h"
20  #include "tests/xe_test.h"
21  #include "xe_assert.h"
22  #include "xe_bb.h"
23  #include "xe_bo.h"
24  #include "xe_exec_queue.h"
25  #include "xe_ggtt.h"
26  #include "xe_gt.h"
27  #include "xe_hw_engine.h"
28  #include "xe_lrc.h"
29  #include "xe_map.h"
30  #include "xe_mocs.h"
31  #include "xe_pt.h"
32  #include "xe_res_cursor.h"
33  #include "xe_sched_job.h"
34  #include "xe_sync.h"
35  #include "xe_trace_bo.h"
36  #include "xe_vm.h"
37  
38  /**
39   * struct xe_migrate - migrate context.
40   */
41  struct xe_migrate {
42  	/** @q: Default exec queue used for migration */
43  	struct xe_exec_queue *q;
44  	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
45  	struct xe_tile *tile;
46  	/** @job_mutex: Timeline mutex for @eng. */
47  	struct mutex job_mutex;
48  	/** @pt_bo: Page-table buffer object. */
49  	struct xe_bo *pt_bo;
50  	/** @batch_base_ofs: VM offset of the migration batch buffer */
51  	u64 batch_base_ofs;
52  	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
53  	u64 usm_batch_base_ofs;
54  	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
55  	u64 cleared_mem_ofs;
56  	/**
57  	 * @fence: dma-fence representing the last migration job batch.
58  	 * Protected by @job_mutex.
59  	 */
60  	struct dma_fence *fence;
61  	/**
62  	 * @vm_update_sa: For integrated, used to suballocate page-tables
63  	 * out of the pt_bo.
64  	 */
65  	struct drm_suballoc_manager vm_update_sa;
66  	/** @min_chunk_size: For dgfx, Minimum chunk size */
67  	u64 min_chunk_size;
68  };
69  
70  #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
71  #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
72  #define NUM_KERNEL_PDE 15
73  #define NUM_PT_SLOTS 32
74  #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
75  #define MAX_NUM_PTE 512
76  #define IDENTITY_OFFSET 256ULL
77  
78  /*
79   * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
80   * legal value accepted.  Since that instruction field is always stored in
81   * (val-2) format, this translates to 0x400 dwords for the true maximum length
82   * of the instruction.  Subtracting the instruction header (1 dword) and
83   * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
84   */
85  #define MAX_PTE_PER_SDI 0x1FE
86  
87  /**
88   * xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue.
89   * @tile: The tile.
90   *
91   * Returns the default migrate exec queue of this tile.
92   *
93   * Return: The default migrate exec queue
94   */
xe_tile_migrate_exec_queue(struct xe_tile * tile)95  struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile)
96  {
97  	return tile->migrate->q;
98  }
99  
xe_migrate_fini(struct drm_device * dev,void * arg)100  static void xe_migrate_fini(struct drm_device *dev, void *arg)
101  {
102  	struct xe_migrate *m = arg;
103  
104  	xe_vm_lock(m->q->vm, false);
105  	xe_bo_unpin(m->pt_bo);
106  	xe_vm_unlock(m->q->vm);
107  
108  	dma_fence_put(m->fence);
109  	xe_bo_put(m->pt_bo);
110  	drm_suballoc_manager_fini(&m->vm_update_sa);
111  	mutex_destroy(&m->job_mutex);
112  	xe_vm_close_and_put(m->q->vm);
113  	xe_exec_queue_put(m->q);
114  }
115  
xe_migrate_vm_addr(u64 slot,u32 level)116  static u64 xe_migrate_vm_addr(u64 slot, u32 level)
117  {
118  	XE_WARN_ON(slot >= NUM_PT_SLOTS);
119  
120  	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
121  	return (slot + 1ULL) << xe_pt_shift(level + 1);
122  }
123  
xe_migrate_vram_ofs(struct xe_device * xe,u64 addr,bool is_comp_pte)124  static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
125  {
126  	/*
127  	 * Remove the DPA to get a correct offset into identity table for the
128  	 * migrate offset
129  	 */
130  	u64 identity_offset = IDENTITY_OFFSET;
131  
132  	if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
133  		identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
134  
135  	addr -= xe->mem.vram.dpa_base;
136  	return addr + (identity_offset << xe_pt_shift(2));
137  }
138  
xe_migrate_program_identity(struct xe_device * xe,struct xe_vm * vm,struct xe_bo * bo,u64 map_ofs,u64 vram_offset,u16 pat_index,u64 pt_2m_ofs)139  static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
140  					u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
141  {
142  	u64 pos, ofs, flags;
143  	u64 entry;
144  	/* XXX: Unclear if this should be usable_size? */
145  	u64 vram_limit =  xe->mem.vram.actual_physical_size +
146  		xe->mem.vram.dpa_base;
147  	u32 level = 2;
148  
149  	ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
150  	flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
151  					    true, 0);
152  
153  	xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M));
154  
155  	/*
156  	 * Use 1GB pages when possible, last chunk always use 2M
157  	 * pages as mixing reserved memory (stolen, WOCPM) with a single
158  	 * mapping is not allowed on certain platforms.
159  	 */
160  	for (pos = xe->mem.vram.dpa_base; pos < vram_limit;
161  	     pos += SZ_1G, ofs += 8) {
162  		if (pos + SZ_1G >= vram_limit) {
163  			entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs,
164  							  pat_index);
165  			xe_map_wr(xe, &bo->vmap, ofs, u64, entry);
166  
167  			flags = vm->pt_ops->pte_encode_addr(xe, 0,
168  							    pat_index,
169  							    level - 1,
170  							    true, 0);
171  
172  			for (ofs = pt_2m_ofs; pos < vram_limit;
173  			     pos += SZ_2M, ofs += 8)
174  				xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
175  			break;	/* Ensure pos == vram_limit assert correct */
176  		}
177  
178  		xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
179  	}
180  
181  	xe_assert(xe, pos == vram_limit);
182  }
183  
xe_migrate_prepare_vm(struct xe_tile * tile,struct xe_migrate * m,struct xe_vm * vm)184  static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
185  				 struct xe_vm *vm)
186  {
187  	struct xe_device *xe = tile_to_xe(tile);
188  	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
189  	u8 id = tile->id;
190  	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
191  #define VRAM_IDENTITY_MAP_COUNT	2
192  	u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
193  #undef VRAM_IDENTITY_MAP_COUNT
194  	u32 map_ofs, level, i;
195  	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
196  	u64 entry, pt29_ofs;
197  
198  	/* Can't bump NUM_PT_SLOTS too high */
199  	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
200  	/* Must be a multiple of 64K to support all platforms */
201  	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
202  	/* And one slot reserved for the 4KiB page table updates */
203  	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
204  
205  	/* Need to be sure everything fits in the first PT, or create more */
206  	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
207  
208  	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
209  				  num_entries * XE_PAGE_SIZE,
210  				  ttm_bo_type_kernel,
211  				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
212  				  XE_BO_FLAG_PINNED);
213  	if (IS_ERR(bo))
214  		return PTR_ERR(bo);
215  
216  	/* PT30 & PT31 reserved for 2M identity map */
217  	pt29_ofs = bo->size - 3 * XE_PAGE_SIZE;
218  	entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index);
219  	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
220  
221  	map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;
222  
223  	/* Map the entire BO in our level 0 pt */
224  	for (i = 0, level = 0; i < num_entries; level++) {
225  		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
226  						  pat_index, 0);
227  
228  		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
229  
230  		if (vm->flags & XE_VM_FLAG_64K)
231  			i += 16;
232  		else
233  			i += 1;
234  	}
235  
236  	if (!IS_DGFX(xe)) {
237  		/* Write out batch too */
238  		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
239  		for (i = 0; i < batch->size;
240  		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
241  		     XE_PAGE_SIZE) {
242  			entry = vm->pt_ops->pte_encode_bo(batch, i,
243  							  pat_index, 0);
244  
245  			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
246  				  entry);
247  			level++;
248  		}
249  		if (xe->info.has_usm) {
250  			xe_tile_assert(tile, batch->size == SZ_1M);
251  
252  			batch = tile->primary_gt->usm.bb_pool->bo;
253  			m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
254  			xe_tile_assert(tile, batch->size == SZ_512K);
255  
256  			for (i = 0; i < batch->size;
257  			     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
258  			     XE_PAGE_SIZE) {
259  				entry = vm->pt_ops->pte_encode_bo(batch, i,
260  								  pat_index, 0);
261  
262  				xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
263  					  entry);
264  				level++;
265  			}
266  		}
267  	} else {
268  		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
269  
270  		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
271  
272  		if (xe->info.has_usm) {
273  			batch = tile->primary_gt->usm.bb_pool->bo;
274  			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
275  			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
276  		}
277  	}
278  
279  	for (level = 1; level < num_level; level++) {
280  		u32 flags = 0;
281  
282  		if (vm->flags & XE_VM_FLAG_64K && level == 1)
283  			flags = XE_PDE_64K;
284  
285  		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
286  						  XE_PAGE_SIZE, pat_index);
287  		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
288  			  entry | flags);
289  	}
290  
291  	/* Write PDE's that point to our BO. */
292  	for (i = 0; i < map_ofs / PAGE_SIZE; i++) {
293  		entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
294  						  pat_index);
295  
296  		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
297  			  (i + 1) * 8, u64, entry);
298  	}
299  
300  	/* Set up a 1GiB NULL mapping at 255GiB offset. */
301  	level = 2;
302  	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
303  		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
304  		  | XE_PTE_NULL);
305  	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
306  
307  	/* Identity map the entire vram at 256GiB offset */
308  	if (IS_DGFX(xe)) {
309  		u64 pt30_ofs = bo->size - 2 * XE_PAGE_SIZE;
310  
311  		xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
312  					    pat_index, pt30_ofs);
313  		xe_assert(xe, xe->mem.vram.actual_physical_size <=
314  					(MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);
315  
316  		/*
317  		 * Identity map the entire vram for compressed pat_index for xe2+
318  		 * if flat ccs is enabled.
319  		 */
320  		if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
321  			u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
322  			u64 vram_offset = IDENTITY_OFFSET +
323  				DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
324  			u64 pt31_ofs = bo->size - XE_PAGE_SIZE;
325  
326  			xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE -
327  						IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G);
328  			xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
329  						    comp_pat_index, pt31_ofs);
330  		}
331  	}
332  
333  	/*
334  	 * Example layout created above, with root level = 3:
335  	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
336  	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
337  	 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
338  	 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
339  	 *
340  	 * This makes the lowest part of the VM point to the pagetables.
341  	 * Hence the lowest 2M in the vm should point to itself, with a few writes
342  	 * and flushes, other parts of the VM can be used either for copying and
343  	 * clearing.
344  	 *
345  	 * For performance, the kernel reserves PDE's, so about 20 are left
346  	 * for async VM updates.
347  	 *
348  	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
349  	 * everywhere, this allows lockless updates to scratch pages by using
350  	 * the different addresses in VM.
351  	 */
352  #define NUM_VMUSA_UNIT_PER_PAGE	32
353  #define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
354  #define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
355  	drm_suballoc_manager_init(&m->vm_update_sa,
356  				  (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
357  				  NUM_VMUSA_UNIT_PER_PAGE, 0);
358  
359  	m->pt_bo = bo;
360  	return 0;
361  }
362  
363  /*
364   * Including the reserved copy engine is required to avoid deadlocks due to
365   * migrate jobs servicing the faults gets stuck behind the job that faulted.
366   */
xe_migrate_usm_logical_mask(struct xe_gt * gt)367  static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
368  {
369  	u32 logical_mask = 0;
370  	struct xe_hw_engine *hwe;
371  	enum xe_hw_engine_id id;
372  
373  	for_each_hw_engine(hwe, gt, id) {
374  		if (hwe->class != XE_ENGINE_CLASS_COPY)
375  			continue;
376  
377  		if (xe_gt_is_usm_hwe(gt, hwe))
378  			logical_mask |= BIT(hwe->logical_instance);
379  	}
380  
381  	return logical_mask;
382  }
383  
xe_migrate_needs_ccs_emit(struct xe_device * xe)384  static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
385  {
386  	return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
387  }
388  
389  /**
390   * xe_migrate_init() - Initialize a migrate context
391   * @tile: Back-pointer to the tile we're initializing for.
392   *
393   * Return: Pointer to a migrate context on success. Error pointer on error.
394   */
xe_migrate_init(struct xe_tile * tile)395  struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
396  {
397  	struct xe_device *xe = tile_to_xe(tile);
398  	struct xe_gt *primary_gt = tile->primary_gt;
399  	struct xe_migrate *m;
400  	struct xe_vm *vm;
401  	int err;
402  
403  	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
404  	if (!m)
405  		return ERR_PTR(-ENOMEM);
406  
407  	m->tile = tile;
408  
409  	/* Special layout, prepared below.. */
410  	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
411  			  XE_VM_FLAG_SET_TILE_ID(tile));
412  	if (IS_ERR(vm))
413  		return ERR_CAST(vm);
414  
415  	xe_vm_lock(vm, false);
416  	err = xe_migrate_prepare_vm(tile, m, vm);
417  	xe_vm_unlock(vm);
418  	if (err) {
419  		xe_vm_close_and_put(vm);
420  		return ERR_PTR(err);
421  	}
422  
423  	if (xe->info.has_usm) {
424  		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
425  							   XE_ENGINE_CLASS_COPY,
426  							   primary_gt->usm.reserved_bcs_instance,
427  							   false);
428  		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
429  
430  		if (!hwe || !logical_mask)
431  			return ERR_PTR(-EINVAL);
432  
433  		/*
434  		 * XXX: Currently only reserving 1 (likely slow) BCS instance on
435  		 * PVC, may want to revisit if performance is needed.
436  		 */
437  		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
438  					    EXEC_QUEUE_FLAG_KERNEL |
439  					    EXEC_QUEUE_FLAG_PERMANENT |
440  					    EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
441  	} else {
442  		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
443  						  XE_ENGINE_CLASS_COPY,
444  						  EXEC_QUEUE_FLAG_KERNEL |
445  						  EXEC_QUEUE_FLAG_PERMANENT, 0);
446  	}
447  	if (IS_ERR(m->q)) {
448  		xe_vm_close_and_put(vm);
449  		return ERR_CAST(m->q);
450  	}
451  
452  	mutex_init(&m->job_mutex);
453  	fs_reclaim_acquire(GFP_KERNEL);
454  	might_lock(&m->job_mutex);
455  	fs_reclaim_release(GFP_KERNEL);
456  
457  	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
458  	if (err)
459  		return ERR_PTR(err);
460  
461  	if (IS_DGFX(xe)) {
462  		if (xe_migrate_needs_ccs_emit(xe))
463  			/* min chunk size corresponds to 4K of CCS Metadata */
464  			m->min_chunk_size = SZ_4K * SZ_64K /
465  				xe_device_ccs_bytes(xe, SZ_64K);
466  		else
467  			/* Somewhat arbitrary to avoid a huge amount of blits */
468  			m->min_chunk_size = SZ_64K;
469  		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
470  		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
471  			(unsigned long long)m->min_chunk_size);
472  	}
473  
474  	return m;
475  }
476  
max_mem_transfer_per_pass(struct xe_device * xe)477  static u64 max_mem_transfer_per_pass(struct xe_device *xe)
478  {
479  	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
480  		return MAX_CCS_LIMITED_TRANSFER;
481  
482  	return MAX_PREEMPTDISABLE_TRANSFER;
483  }
484  
xe_migrate_res_sizes(struct xe_migrate * m,struct xe_res_cursor * cur)485  static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
486  {
487  	struct xe_device *xe = tile_to_xe(m->tile);
488  	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
489  
490  	if (mem_type_is_vram(cur->mem_type)) {
491  		/*
492  		 * VRAM we want to blit in chunks with sizes aligned to
493  		 * min_chunk_size in order for the offset to CCS metadata to be
494  		 * page-aligned. If it's the last chunk it may be smaller.
495  		 *
496  		 * Another constraint is that we need to limit the blit to
497  		 * the VRAM block size, unless size is smaller than
498  		 * min_chunk_size.
499  		 */
500  		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
501  
502  		size = min_t(u64, size, chunk);
503  		if (size > m->min_chunk_size)
504  			size = round_down(size, m->min_chunk_size);
505  	}
506  
507  	return size;
508  }
509  
xe_migrate_allow_identity(u64 size,const struct xe_res_cursor * cur)510  static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
511  {
512  	/* If the chunk is not fragmented, allow identity map. */
513  	return cur->size >= size;
514  }
515  
516  #define PTE_UPDATE_FLAG_IS_VRAM		BIT(0)
517  #define PTE_UPDATE_FLAG_IS_COMP_PTE	BIT(1)
518  
pte_update_size(struct xe_migrate * m,u32 flags,struct ttm_resource * res,struct xe_res_cursor * cur,u64 * L0,u64 * L0_ofs,u32 * L0_pt,u32 cmd_size,u32 pt_ofs,u32 avail_pts)519  static u32 pte_update_size(struct xe_migrate *m,
520  			   u32 flags,
521  			   struct ttm_resource *res,
522  			   struct xe_res_cursor *cur,
523  			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
524  			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
525  {
526  	u32 cmds = 0;
527  	bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
528  	bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;
529  
530  	*L0_pt = pt_ofs;
531  	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
532  		/* Offset into identity map. */
533  		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
534  					      cur->start + vram_region_gpu_offset(res),
535  					      is_comp_pte);
536  		cmds += cmd_size;
537  	} else {
538  		/* Clip L0 to available size */
539  		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
540  		u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
541  
542  		*L0 = size;
543  		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
544  
545  		/* MI_STORE_DATA_IMM */
546  		cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
547  
548  		/* PDE qwords */
549  		cmds += num_4k_pages * 2;
550  
551  		/* Each chunk has a single blit command */
552  		cmds += cmd_size;
553  	}
554  
555  	return cmds;
556  }
557  
emit_pte(struct xe_migrate * m,struct xe_bb * bb,u32 at_pt,bool is_vram,bool is_comp_pte,struct xe_res_cursor * cur,u32 size,struct ttm_resource * res)558  static void emit_pte(struct xe_migrate *m,
559  		     struct xe_bb *bb, u32 at_pt,
560  		     bool is_vram, bool is_comp_pte,
561  		     struct xe_res_cursor *cur,
562  		     u32 size, struct ttm_resource *res)
563  {
564  	struct xe_device *xe = tile_to_xe(m->tile);
565  	struct xe_vm *vm = m->q->vm;
566  	u16 pat_index;
567  	u32 ptes;
568  	u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
569  	u64 cur_ofs;
570  
571  	/* Indirect access needs compression enabled uncached PAT index */
572  	if (GRAPHICS_VERx100(xe) >= 2000)
573  		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
574  					  xe->pat.idx[XE_CACHE_WB];
575  	else
576  		pat_index = xe->pat.idx[XE_CACHE_WB];
577  
578  	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
579  
580  	while (ptes) {
581  		u32 chunk = min(MAX_PTE_PER_SDI, ptes);
582  
583  		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
584  		bb->cs[bb->len++] = ofs;
585  		bb->cs[bb->len++] = 0;
586  
587  		cur_ofs = ofs;
588  		ofs += chunk * 8;
589  		ptes -= chunk;
590  
591  		while (chunk--) {
592  			u64 addr, flags = 0;
593  			bool devmem = false;
594  
595  			addr = xe_res_dma(cur) & PAGE_MASK;
596  			if (is_vram) {
597  				if (vm->flags & XE_VM_FLAG_64K) {
598  					u64 va = cur_ofs * XE_PAGE_SIZE / 8;
599  
600  					xe_assert(xe, (va & (SZ_64K - 1)) ==
601  						  (addr & (SZ_64K - 1)));
602  
603  					flags |= XE_PTE_PS64;
604  				}
605  
606  				addr += vram_region_gpu_offset(res);
607  				devmem = true;
608  			}
609  
610  			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
611  							   addr, pat_index,
612  							   0, devmem, flags);
613  			bb->cs[bb->len++] = lower_32_bits(addr);
614  			bb->cs[bb->len++] = upper_32_bits(addr);
615  
616  			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
617  			cur_ofs += 8;
618  		}
619  	}
620  }
621  
622  #define EMIT_COPY_CCS_DW 5
emit_copy_ccs(struct xe_gt * gt,struct xe_bb * bb,u64 dst_ofs,bool dst_is_indirect,u64 src_ofs,bool src_is_indirect,u32 size)623  static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
624  			  u64 dst_ofs, bool dst_is_indirect,
625  			  u64 src_ofs, bool src_is_indirect,
626  			  u32 size)
627  {
628  	struct xe_device *xe = gt_to_xe(gt);
629  	u32 *cs = bb->cs + bb->len;
630  	u32 num_ccs_blks;
631  	u32 num_pages;
632  	u32 ccs_copy_size;
633  	u32 mocs;
634  
635  	if (GRAPHICS_VERx100(xe) >= 2000) {
636  		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
637  		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
638  
639  		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
640  		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
641  
642  	} else {
643  		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
644  					    NUM_CCS_BYTES_PER_BLOCK);
645  		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
646  
647  		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
648  		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
649  	}
650  
651  	*cs++ = XY_CTRL_SURF_COPY_BLT |
652  		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
653  		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
654  		ccs_copy_size;
655  	*cs++ = lower_32_bits(src_ofs);
656  	*cs++ = upper_32_bits(src_ofs) | mocs;
657  	*cs++ = lower_32_bits(dst_ofs);
658  	*cs++ = upper_32_bits(dst_ofs) | mocs;
659  
660  	bb->len = cs - bb->cs;
661  }
662  
663  #define EMIT_COPY_DW 10
emit_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u64 dst_ofs,unsigned int size,unsigned int pitch)664  static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
665  		      u64 src_ofs, u64 dst_ofs, unsigned int size,
666  		      unsigned int pitch)
667  {
668  	struct xe_device *xe = gt_to_xe(gt);
669  	u32 mocs = 0;
670  	u32 tile_y = 0;
671  
672  	xe_gt_assert(gt, size / pitch <= S16_MAX);
673  	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
674  	xe_gt_assert(gt, pitch <= U16_MAX);
675  
676  	if (GRAPHICS_VER(xe) >= 20)
677  		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
678  
679  	if (GRAPHICS_VERx100(xe) >= 1250)
680  		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
681  
682  	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
683  	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
684  	bb->cs[bb->len++] = 0;
685  	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
686  	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
687  	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
688  	bb->cs[bb->len++] = 0;
689  	bb->cs[bb->len++] = pitch | mocs;
690  	bb->cs[bb->len++] = lower_32_bits(src_ofs);
691  	bb->cs[bb->len++] = upper_32_bits(src_ofs);
692  }
693  
xe_migrate_batch_base(struct xe_migrate * m,bool usm)694  static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
695  {
696  	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
697  }
698  
xe_migrate_ccs_copy(struct xe_migrate * m,struct xe_bb * bb,u64 src_ofs,bool src_is_indirect,u64 dst_ofs,bool dst_is_indirect,u32 dst_size,u64 ccs_ofs,bool copy_ccs)699  static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
700  			       struct xe_bb *bb,
701  			       u64 src_ofs, bool src_is_indirect,
702  			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
703  			       u64 ccs_ofs, bool copy_ccs)
704  {
705  	struct xe_gt *gt = m->tile->primary_gt;
706  	u32 flush_flags = 0;
707  
708  	if (!copy_ccs && dst_is_indirect) {
709  		/*
710  		 * If the src is already in vram, then it should already
711  		 * have been cleared by us, or has been populated by the
712  		 * user. Make sure we copy the CCS aux state as-is.
713  		 *
714  		 * Otherwise if the bo doesn't have any CCS metadata attached,
715  		 * we still need to clear it for security reasons.
716  		 */
717  		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
718  
719  		emit_copy_ccs(gt, bb,
720  			      dst_ofs, true,
721  			      ccs_src_ofs, src_is_indirect, dst_size);
722  
723  		flush_flags = MI_FLUSH_DW_CCS;
724  	} else if (copy_ccs) {
725  		if (!src_is_indirect)
726  			src_ofs = ccs_ofs;
727  		else if (!dst_is_indirect)
728  			dst_ofs = ccs_ofs;
729  
730  		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
731  
732  		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
733  			      src_is_indirect, dst_size);
734  		if (dst_is_indirect)
735  			flush_flags = MI_FLUSH_DW_CCS;
736  	}
737  
738  	return flush_flags;
739  }
740  
741  /**
742   * xe_migrate_copy() - Copy content of TTM resources.
743   * @m: The migration context.
744   * @src_bo: The buffer object @src is currently bound to.
745   * @dst_bo: If copying between resources created for the same bo, set this to
746   * the same value as @src_bo. If copying between buffer objects, set it to
747   * the buffer object @dst is currently bound to.
748   * @src: The source TTM resource.
749   * @dst: The dst TTM resource.
750   * @copy_only_ccs: If true copy only CCS metadata
751   *
752   * Copies the contents of @src to @dst: On flat CCS devices,
753   * the CCS metadata is copied as well if needed, or if not present,
754   * the CCS metadata of @dst is cleared for security reasons.
755   *
756   * Return: Pointer to a dma_fence representing the last copy batch, or
757   * an error pointer on failure. If there is a failure, any copy operation
758   * started by the function call has been synced.
759   */
xe_migrate_copy(struct xe_migrate * m,struct xe_bo * src_bo,struct xe_bo * dst_bo,struct ttm_resource * src,struct ttm_resource * dst,bool copy_only_ccs)760  struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
761  				  struct xe_bo *src_bo,
762  				  struct xe_bo *dst_bo,
763  				  struct ttm_resource *src,
764  				  struct ttm_resource *dst,
765  				  bool copy_only_ccs)
766  {
767  	struct xe_gt *gt = m->tile->primary_gt;
768  	struct xe_device *xe = gt_to_xe(gt);
769  	struct dma_fence *fence = NULL;
770  	u64 size = src_bo->size;
771  	struct xe_res_cursor src_it, dst_it, ccs_it;
772  	u64 src_L0_ofs, dst_L0_ofs;
773  	u32 src_L0_pt, dst_L0_pt;
774  	u64 src_L0, dst_L0;
775  	int pass = 0;
776  	int err;
777  	bool src_is_pltt = src->mem_type == XE_PL_TT;
778  	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
779  	bool src_is_vram = mem_type_is_vram(src->mem_type);
780  	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
781  	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
782  		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
783  	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
784  	bool use_comp_pat = xe_device_has_flat_ccs(xe) &&
785  		GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;
786  
787  	/* Copying CCS between two different BOs is not supported yet. */
788  	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
789  		return ERR_PTR(-EINVAL);
790  
791  	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
792  		return ERR_PTR(-EINVAL);
793  
794  	if (!src_is_vram)
795  		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
796  	else
797  		xe_res_first(src, 0, size, &src_it);
798  	if (!dst_is_vram)
799  		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
800  	else
801  		xe_res_first(dst, 0, size, &dst_it);
802  
803  	if (copy_system_ccs)
804  		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
805  				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
806  				&ccs_it);
807  
808  	while (size) {
809  		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
810  		struct xe_sched_job *job;
811  		struct xe_bb *bb;
812  		u32 flush_flags = 0;
813  		u32 update_idx;
814  		u64 ccs_ofs, ccs_size;
815  		u32 ccs_pt;
816  		u32 pte_flags;
817  
818  		bool usm = xe->info.has_usm;
819  		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
820  
821  		src_L0 = xe_migrate_res_sizes(m, &src_it);
822  		dst_L0 = xe_migrate_res_sizes(m, &dst_it);
823  
824  		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
825  			pass++, src_L0, dst_L0);
826  
827  		src_L0 = min(src_L0, dst_L0);
828  
829  		pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
830  		pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
831  		batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
832  					      &src_L0_ofs, &src_L0_pt, 0, 0,
833  					      avail_pts);
834  
835  		pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
836  		batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0,
837  					      &dst_L0_ofs, &dst_L0_pt, 0,
838  					      avail_pts, avail_pts);
839  
840  		if (copy_system_ccs) {
841  			ccs_size = xe_device_ccs_bytes(xe, src_L0);
842  			batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
843  						      &ccs_ofs, &ccs_pt, 0,
844  						      2 * avail_pts,
845  						      avail_pts);
846  			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
847  		}
848  
849  		/* Add copy commands size here */
850  		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
851  			((xe_migrate_needs_ccs_emit(xe) ? EMIT_COPY_CCS_DW : 0));
852  
853  		bb = xe_bb_new(gt, batch_size, usm);
854  		if (IS_ERR(bb)) {
855  			err = PTR_ERR(bb);
856  			goto err_sync;
857  		}
858  
859  		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
860  			xe_res_next(&src_it, src_L0);
861  		else
862  			emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
863  				 &src_it, src_L0, src);
864  
865  		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
866  			xe_res_next(&dst_it, src_L0);
867  		else
868  			emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
869  				 &dst_it, src_L0, dst);
870  
871  		if (copy_system_ccs)
872  			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
873  
874  		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
875  		update_idx = bb->len;
876  
877  		if (!copy_only_ccs)
878  			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
879  
880  		if (xe_migrate_needs_ccs_emit(xe))
881  			flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
882  							  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
883  							  dst_L0_ofs,
884  							  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
885  							  src_L0, ccs_ofs, copy_ccs);
886  
887  		job = xe_bb_create_migration_job(m->q, bb,
888  						 xe_migrate_batch_base(m, usm),
889  						 update_idx);
890  		if (IS_ERR(job)) {
891  			err = PTR_ERR(job);
892  			goto err;
893  		}
894  
895  		xe_sched_job_add_migrate_flush(job, flush_flags);
896  		if (!fence) {
897  			err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
898  						    DMA_RESV_USAGE_BOOKKEEP);
899  			if (!err && src_bo != dst_bo)
900  				err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
901  							    DMA_RESV_USAGE_BOOKKEEP);
902  			if (err)
903  				goto err_job;
904  		}
905  
906  		mutex_lock(&m->job_mutex);
907  		xe_sched_job_arm(job);
908  		dma_fence_put(fence);
909  		fence = dma_fence_get(&job->drm.s_fence->finished);
910  		xe_sched_job_push(job);
911  
912  		dma_fence_put(m->fence);
913  		m->fence = dma_fence_get(fence);
914  
915  		mutex_unlock(&m->job_mutex);
916  
917  		xe_bb_free(bb, fence);
918  		size -= src_L0;
919  		continue;
920  
921  err_job:
922  		xe_sched_job_put(job);
923  err:
924  		xe_bb_free(bb, NULL);
925  
926  err_sync:
927  		/* Sync partial copy if any. FIXME: under job_mutex? */
928  		if (fence) {
929  			dma_fence_wait(fence, false);
930  			dma_fence_put(fence);
931  		}
932  
933  		return ERR_PTR(err);
934  	}
935  
936  	return fence;
937  }
938  
emit_clear_link_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch)939  static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
940  				 u32 size, u32 pitch)
941  {
942  	struct xe_device *xe = gt_to_xe(gt);
943  	u32 *cs = bb->cs + bb->len;
944  	u32 len = PVC_MEM_SET_CMD_LEN_DW;
945  
946  	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
947  	*cs++ = pitch - 1;
948  	*cs++ = (size / pitch) - 1;
949  	*cs++ = pitch - 1;
950  	*cs++ = lower_32_bits(src_ofs);
951  	*cs++ = upper_32_bits(src_ofs);
952  	if (GRAPHICS_VERx100(xe) >= 2000)
953  		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
954  	else
955  		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
956  
957  	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
958  
959  	bb->len += len;
960  }
961  
emit_clear_main_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)962  static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
963  				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
964  {
965  	struct xe_device *xe = gt_to_xe(gt);
966  	u32 *cs = bb->cs + bb->len;
967  	u32 len = XY_FAST_COLOR_BLT_DW;
968  
969  	if (GRAPHICS_VERx100(xe) < 1250)
970  		len = 11;
971  
972  	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
973  		(len - 2);
974  	if (GRAPHICS_VERx100(xe) >= 2000)
975  		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
976  			(pitch - 1);
977  	else
978  		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
979  			(pitch - 1);
980  	*cs++ = 0;
981  	*cs++ = (size / pitch) << 16 | pitch / 4;
982  	*cs++ = lower_32_bits(src_ofs);
983  	*cs++ = upper_32_bits(src_ofs);
984  	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
985  	*cs++ = 0;
986  	*cs++ = 0;
987  	*cs++ = 0;
988  	*cs++ = 0;
989  
990  	if (len > 11) {
991  		*cs++ = 0;
992  		*cs++ = 0;
993  		*cs++ = 0;
994  		*cs++ = 0;
995  		*cs++ = 0;
996  	}
997  
998  	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
999  
1000  	bb->len += len;
1001  }
1002  
has_service_copy_support(struct xe_gt * gt)1003  static bool has_service_copy_support(struct xe_gt *gt)
1004  {
1005  	/*
1006  	 * What we care about is whether the architecture was designed with
1007  	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
1008  	 * instructions) so check the architectural engine list rather than the
1009  	 * actual list since these instructions are usable on BCS0 even if
1010  	 * all of the actual service copy engines (BCS1-BCS8) have been fused
1011  	 * off.
1012  	 */
1013  	return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
1014  					      XE_HW_ENGINE_BCS1);
1015  }
1016  
emit_clear_cmd_len(struct xe_gt * gt)1017  static u32 emit_clear_cmd_len(struct xe_gt *gt)
1018  {
1019  	if (has_service_copy_support(gt))
1020  		return PVC_MEM_SET_CMD_LEN_DW;
1021  	else
1022  		return XY_FAST_COLOR_BLT_DW;
1023  }
1024  
emit_clear(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)1025  static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
1026  		       u32 size, u32 pitch, bool is_vram)
1027  {
1028  	if (has_service_copy_support(gt))
1029  		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
1030  	else
1031  		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
1032  				     is_vram);
1033  }
1034  
1035  /**
1036   * xe_migrate_clear() - Copy content of TTM resources.
1037   * @m: The migration context.
1038   * @bo: The buffer object @dst is currently bound to.
1039   * @dst: The dst TTM resource to be cleared.
1040   * @clear_flags: flags to specify which data to clear: CCS, BO, or both.
1041   *
1042   * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set.
1043   * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA.
1044   * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata.
1045   * TODO: Eliminate the @bo argument.
1046   *
1047   * Return: Pointer to a dma_fence representing the last clear batch, or
1048   * an error pointer on failure. If there is a failure, any clear operation
1049   * started by the function call has been synced.
1050   */
xe_migrate_clear(struct xe_migrate * m,struct xe_bo * bo,struct ttm_resource * dst,u32 clear_flags)1051  struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
1052  				   struct xe_bo *bo,
1053  				   struct ttm_resource *dst,
1054  				   u32 clear_flags)
1055  {
1056  	bool clear_vram = mem_type_is_vram(dst->mem_type);
1057  	bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags;
1058  	bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags;
1059  	struct xe_gt *gt = m->tile->primary_gt;
1060  	struct xe_device *xe = gt_to_xe(gt);
1061  	bool clear_only_system_ccs = false;
1062  	struct dma_fence *fence = NULL;
1063  	u64 size = bo->size;
1064  	struct xe_res_cursor src_it;
1065  	struct ttm_resource *src = dst;
1066  	int err;
1067  
1068  	if (WARN_ON(!clear_bo_data && !clear_ccs))
1069  		return NULL;
1070  
1071  	if (!clear_bo_data && clear_ccs && !IS_DGFX(xe))
1072  		clear_only_system_ccs = true;
1073  
1074  	if (!clear_vram)
1075  		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
1076  	else
1077  		xe_res_first(src, 0, bo->size, &src_it);
1078  
1079  	while (size) {
1080  		u64 clear_L0_ofs;
1081  		u32 clear_L0_pt;
1082  		u32 flush_flags = 0;
1083  		u64 clear_L0;
1084  		struct xe_sched_job *job;
1085  		struct xe_bb *bb;
1086  		u32 batch_size, update_idx;
1087  		u32 pte_flags;
1088  
1089  		bool usm = xe->info.has_usm;
1090  		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1091  
1092  		clear_L0 = xe_migrate_res_sizes(m, &src_it);
1093  
1094  		/* Calculate final sizes and batch size.. */
1095  		pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
1096  		batch_size = 2 +
1097  			pte_update_size(m, pte_flags, src, &src_it,
1098  					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
1099  					clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0,
1100  					avail_pts);
1101  
1102  		if (xe_migrate_needs_ccs_emit(xe))
1103  			batch_size += EMIT_COPY_CCS_DW;
1104  
1105  		/* Clear commands */
1106  
1107  		if (WARN_ON_ONCE(!clear_L0))
1108  			break;
1109  
1110  		bb = xe_bb_new(gt, batch_size, usm);
1111  		if (IS_ERR(bb)) {
1112  			err = PTR_ERR(bb);
1113  			goto err_sync;
1114  		}
1115  
1116  		size -= clear_L0;
1117  		/* Preemption is enabled again by the ring ops. */
1118  		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1119  			xe_res_next(&src_it, clear_L0);
1120  		else
1121  			emit_pte(m, bb, clear_L0_pt, clear_vram, clear_only_system_ccs,
1122  				 &src_it, clear_L0, dst);
1123  
1124  		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1125  		update_idx = bb->len;
1126  
1127  		if (clear_bo_data)
1128  			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1129  
1130  		if (xe_migrate_needs_ccs_emit(xe)) {
1131  			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1132  				      m->cleared_mem_ofs, false, clear_L0);
1133  			flush_flags = MI_FLUSH_DW_CCS;
1134  		}
1135  
1136  		job = xe_bb_create_migration_job(m->q, bb,
1137  						 xe_migrate_batch_base(m, usm),
1138  						 update_idx);
1139  		if (IS_ERR(job)) {
1140  			err = PTR_ERR(job);
1141  			goto err;
1142  		}
1143  
1144  		xe_sched_job_add_migrate_flush(job, flush_flags);
1145  		if (!fence) {
1146  			/*
1147  			 * There can't be anything userspace related at this
1148  			 * point, so we just need to respect any potential move
1149  			 * fences, which are always tracked as
1150  			 * DMA_RESV_USAGE_KERNEL.
1151  			 */
1152  			err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
1153  						    DMA_RESV_USAGE_KERNEL);
1154  			if (err)
1155  				goto err_job;
1156  		}
1157  
1158  		mutex_lock(&m->job_mutex);
1159  		xe_sched_job_arm(job);
1160  		dma_fence_put(fence);
1161  		fence = dma_fence_get(&job->drm.s_fence->finished);
1162  		xe_sched_job_push(job);
1163  
1164  		dma_fence_put(m->fence);
1165  		m->fence = dma_fence_get(fence);
1166  
1167  		mutex_unlock(&m->job_mutex);
1168  
1169  		xe_bb_free(bb, fence);
1170  		continue;
1171  
1172  err_job:
1173  		xe_sched_job_put(job);
1174  err:
1175  		xe_bb_free(bb, NULL);
1176  err_sync:
1177  		/* Sync partial copies if any. FIXME: job_mutex? */
1178  		if (fence) {
1179  			dma_fence_wait(m->fence, false);
1180  			dma_fence_put(fence);
1181  		}
1182  
1183  		return ERR_PTR(err);
1184  	}
1185  
1186  	if (clear_ccs)
1187  		bo->ccs_cleared = true;
1188  
1189  	return fence;
1190  }
1191  
write_pgtable(struct xe_tile * tile,struct xe_bb * bb,u64 ppgtt_ofs,const struct xe_vm_pgtable_update_op * pt_op,const struct xe_vm_pgtable_update * update,struct xe_migrate_pt_update * pt_update)1192  static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1193  			  const struct xe_vm_pgtable_update_op *pt_op,
1194  			  const struct xe_vm_pgtable_update *update,
1195  			  struct xe_migrate_pt_update *pt_update)
1196  {
1197  	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1198  	u32 chunk;
1199  	u32 ofs = update->ofs, size = update->qwords;
1200  
1201  	/*
1202  	 * If we have 512 entries (max), we would populate it ourselves,
1203  	 * and update the PDE above it to the new pointer.
1204  	 * The only time this can only happen if we have to update the top
1205  	 * PDE. This requires a BO that is almost vm->size big.
1206  	 *
1207  	 * This shouldn't be possible in practice.. might change when 16K
1208  	 * pages are used. Hence the assert.
1209  	 */
1210  	xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1211  	if (!ppgtt_ofs)
1212  		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1213  						xe_bo_addr(update->pt_bo, 0,
1214  							   XE_PAGE_SIZE), false);
1215  
1216  	do {
1217  		u64 addr = ppgtt_ofs + ofs * 8;
1218  
1219  		chunk = min(size, MAX_PTE_PER_SDI);
1220  
1221  		/* Ensure populatefn can do memset64 by aligning bb->cs */
1222  		if (!(bb->len & 1))
1223  			bb->cs[bb->len++] = MI_NOOP;
1224  
1225  		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1226  		bb->cs[bb->len++] = lower_32_bits(addr);
1227  		bb->cs[bb->len++] = upper_32_bits(addr);
1228  		if (pt_op->bind)
1229  			ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
1230  				      ofs, chunk, update);
1231  		else
1232  			ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
1233  				   ofs, chunk, update);
1234  
1235  		bb->len += chunk * 2;
1236  		ofs += chunk;
1237  		size -= chunk;
1238  	} while (size);
1239  }
1240  
xe_migrate_get_vm(struct xe_migrate * m)1241  struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1242  {
1243  	return xe_vm_get(m->q->vm);
1244  }
1245  
1246  #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1247  struct migrate_test_params {
1248  	struct xe_test_priv base;
1249  	bool force_gpu;
1250  };
1251  
1252  #define to_migrate_test_params(_priv) \
1253  	container_of(_priv, struct migrate_test_params, base)
1254  #endif
1255  
1256  static struct dma_fence *
xe_migrate_update_pgtables_cpu(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1257  xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1258  			       struct xe_migrate_pt_update *pt_update)
1259  {
1260  	XE_TEST_DECLARE(struct migrate_test_params *test =
1261  			to_migrate_test_params
1262  			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1263  	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1264  	struct xe_vm *vm = pt_update->vops->vm;
1265  	struct xe_vm_pgtable_update_ops *pt_update_ops =
1266  		&pt_update->vops->pt_update_ops[pt_update->tile_id];
1267  	int err;
1268  	u32 i, j;
1269  
1270  	if (XE_TEST_ONLY(test && test->force_gpu))
1271  		return ERR_PTR(-ETIME);
1272  
1273  	if (ops->pre_commit) {
1274  		pt_update->job = NULL;
1275  		err = ops->pre_commit(pt_update);
1276  		if (err)
1277  			return ERR_PTR(err);
1278  	}
1279  
1280  	for (i = 0; i < pt_update_ops->num_ops; ++i) {
1281  		const struct xe_vm_pgtable_update_op *pt_op =
1282  			&pt_update_ops->ops[i];
1283  
1284  		for (j = 0; j < pt_op->num_entries; j++) {
1285  			const struct xe_vm_pgtable_update *update =
1286  				&pt_op->entries[j];
1287  
1288  			if (pt_op->bind)
1289  				ops->populate(pt_update, m->tile,
1290  					      &update->pt_bo->vmap, NULL,
1291  					      update->ofs, update->qwords,
1292  					      update);
1293  			else
1294  				ops->clear(pt_update, m->tile,
1295  					   &update->pt_bo->vmap, NULL,
1296  					   update->ofs, update->qwords, update);
1297  		}
1298  	}
1299  
1300  	trace_xe_vm_cpu_bind(vm);
1301  	xe_device_wmb(vm->xe);
1302  
1303  	return dma_fence_get_stub();
1304  }
1305  
1306  static struct dma_fence *
__xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update,struct xe_vm_pgtable_update_ops * pt_update_ops)1307  __xe_migrate_update_pgtables(struct xe_migrate *m,
1308  			     struct xe_migrate_pt_update *pt_update,
1309  			     struct xe_vm_pgtable_update_ops *pt_update_ops)
1310  {
1311  	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1312  	struct xe_tile *tile = m->tile;
1313  	struct xe_gt *gt = tile->primary_gt;
1314  	struct xe_device *xe = tile_to_xe(tile);
1315  	struct xe_sched_job *job;
1316  	struct dma_fence *fence;
1317  	struct drm_suballoc *sa_bo = NULL;
1318  	struct xe_bb *bb;
1319  	u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
1320  	u32 num_updates = 0, current_update = 0;
1321  	u64 addr;
1322  	int err = 0;
1323  	bool is_migrate = pt_update_ops->q == m->q;
1324  	bool usm = is_migrate && xe->info.has_usm;
1325  
1326  	for (i = 0; i < pt_update_ops->num_ops; ++i) {
1327  		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
1328  		struct xe_vm_pgtable_update *updates = pt_op->entries;
1329  
1330  		num_updates += pt_op->num_entries;
1331  		for (j = 0; j < pt_op->num_entries; ++j) {
1332  			u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
1333  						    MAX_PTE_PER_SDI);
1334  
1335  			/* align noop + MI_STORE_DATA_IMM cmd prefix */
1336  			batch_size += 4 * num_cmds + updates[j].qwords * 2;
1337  		}
1338  	}
1339  
1340  	/* fixed + PTE entries */
1341  	if (IS_DGFX(xe))
1342  		batch_size += 2;
1343  	else
1344  		batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
1345  			num_updates * 2;
1346  
1347  	bb = xe_bb_new(gt, batch_size, usm);
1348  	if (IS_ERR(bb))
1349  		return ERR_CAST(bb);
1350  
1351  	/* For sysmem PTE's, need to map them in our hole.. */
1352  	if (!IS_DGFX(xe)) {
1353  		u32 ptes, ofs;
1354  
1355  		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1356  		if (!is_migrate) {
1357  			u32 num_units = DIV_ROUND_UP(num_updates,
1358  						     NUM_VMUSA_WRITES_PER_UNIT);
1359  
1360  			if (num_units > m->vm_update_sa.size) {
1361  				err = -ENOBUFS;
1362  				goto err_bb;
1363  			}
1364  			sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
1365  						 GFP_KERNEL, true, 0);
1366  			if (IS_ERR(sa_bo)) {
1367  				err = PTR_ERR(sa_bo);
1368  				goto err_bb;
1369  			}
1370  
1371  			ppgtt_ofs = NUM_KERNEL_PDE +
1372  				(drm_suballoc_soffset(sa_bo) /
1373  				 NUM_VMUSA_UNIT_PER_PAGE);
1374  			page_ofs = (drm_suballoc_soffset(sa_bo) %
1375  				    NUM_VMUSA_UNIT_PER_PAGE) *
1376  				VM_SA_UPDATE_UNIT_SIZE;
1377  		}
1378  
1379  		/* Map our PT's to gtt */
1380  		i = 0;
1381  		j = 0;
1382  		ptes = num_updates;
1383  		ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1384  		while (ptes) {
1385  			u32 chunk = min(MAX_PTE_PER_SDI, ptes);
1386  			u32 idx = 0;
1387  
1388  			bb->cs[bb->len++] = MI_STORE_DATA_IMM |
1389  				MI_SDI_NUM_QW(chunk);
1390  			bb->cs[bb->len++] = ofs;
1391  			bb->cs[bb->len++] = 0; /* upper_32_bits */
1392  
1393  			for (; i < pt_update_ops->num_ops; ++i) {
1394  				struct xe_vm_pgtable_update_op *pt_op =
1395  					&pt_update_ops->ops[i];
1396  				struct xe_vm_pgtable_update *updates = pt_op->entries;
1397  
1398  				for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
1399  					struct xe_vm *vm = pt_update->vops->vm;
1400  					struct xe_bo *pt_bo = updates[j].pt_bo;
1401  
1402  					if (idx == chunk)
1403  						goto next_cmd;
1404  
1405  					xe_tile_assert(tile, pt_bo->size == SZ_4K);
1406  
1407  					/* Map a PT at most once */
1408  					if (pt_bo->update_index < 0)
1409  						pt_bo->update_index = current_update;
1410  
1411  					addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
1412  									 XE_CACHE_WB, 0);
1413  					bb->cs[bb->len++] = lower_32_bits(addr);
1414  					bb->cs[bb->len++] = upper_32_bits(addr);
1415  				}
1416  
1417  				j = 0;
1418  			}
1419  
1420  next_cmd:
1421  			ptes -= chunk;
1422  			ofs += chunk * sizeof(u64);
1423  		}
1424  
1425  		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1426  		update_idx = bb->len;
1427  
1428  		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1429  			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1430  		for (i = 0; i < pt_update_ops->num_ops; ++i) {
1431  			struct xe_vm_pgtable_update_op *pt_op =
1432  				&pt_update_ops->ops[i];
1433  			struct xe_vm_pgtable_update *updates = pt_op->entries;
1434  
1435  			for (j = 0; j < pt_op->num_entries; ++j) {
1436  				struct xe_bo *pt_bo = updates[j].pt_bo;
1437  
1438  				write_pgtable(tile, bb, addr +
1439  					      pt_bo->update_index * XE_PAGE_SIZE,
1440  					      pt_op, &updates[j], pt_update);
1441  			}
1442  		}
1443  	} else {
1444  		/* phys pages, no preamble required */
1445  		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1446  		update_idx = bb->len;
1447  
1448  		for (i = 0; i < pt_update_ops->num_ops; ++i) {
1449  			struct xe_vm_pgtable_update_op *pt_op =
1450  				&pt_update_ops->ops[i];
1451  			struct xe_vm_pgtable_update *updates = pt_op->entries;
1452  
1453  			for (j = 0; j < pt_op->num_entries; ++j)
1454  				write_pgtable(tile, bb, 0, pt_op, &updates[j],
1455  					      pt_update);
1456  		}
1457  	}
1458  
1459  	job = xe_bb_create_migration_job(pt_update_ops->q, bb,
1460  					 xe_migrate_batch_base(m, usm),
1461  					 update_idx);
1462  	if (IS_ERR(job)) {
1463  		err = PTR_ERR(job);
1464  		goto err_sa;
1465  	}
1466  
1467  	if (ops->pre_commit) {
1468  		pt_update->job = job;
1469  		err = ops->pre_commit(pt_update);
1470  		if (err)
1471  			goto err_job;
1472  	}
1473  	if (is_migrate)
1474  		mutex_lock(&m->job_mutex);
1475  
1476  	xe_sched_job_arm(job);
1477  	fence = dma_fence_get(&job->drm.s_fence->finished);
1478  	xe_sched_job_push(job);
1479  
1480  	if (is_migrate)
1481  		mutex_unlock(&m->job_mutex);
1482  
1483  	xe_bb_free(bb, fence);
1484  	drm_suballoc_free(sa_bo, fence);
1485  
1486  	return fence;
1487  
1488  err_job:
1489  	xe_sched_job_put(job);
1490  err_sa:
1491  	drm_suballoc_free(sa_bo, NULL);
1492  err_bb:
1493  	xe_bb_free(bb, NULL);
1494  	return ERR_PTR(err);
1495  }
1496  
1497  /**
1498   * xe_migrate_update_pgtables() - Pipelined page-table update
1499   * @m: The migrate context.
1500   * @pt_update: PT update arguments
1501   *
1502   * Perform a pipelined page-table update. The update descriptors are typically
1503   * built under the same lock critical section as a call to this function. If
1504   * using the default engine for the updates, they will be performed in the
1505   * order they grab the job_mutex. If different engines are used, external
1506   * synchronization is needed for overlapping updates to maintain page-table
1507   * consistency. Note that the meaing of "overlapping" is that the updates
1508   * touch the same page-table, which might be a higher-level page-directory.
1509   * If no pipelining is needed, then updates may be performed by the cpu.
1510   *
1511   * Return: A dma_fence that, when signaled, indicates the update completion.
1512   */
1513  struct dma_fence *
xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1514  xe_migrate_update_pgtables(struct xe_migrate *m,
1515  			   struct xe_migrate_pt_update *pt_update)
1516  
1517  {
1518  	struct xe_vm_pgtable_update_ops *pt_update_ops =
1519  		&pt_update->vops->pt_update_ops[pt_update->tile_id];
1520  	struct dma_fence *fence;
1521  
1522  	fence =  xe_migrate_update_pgtables_cpu(m, pt_update);
1523  
1524  	/* -ETIME indicates a job is needed, anything else is legit error */
1525  	if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
1526  		return fence;
1527  
1528  	return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
1529  }
1530  
1531  /**
1532   * xe_migrate_wait() - Complete all operations using the xe_migrate context
1533   * @m: Migrate context to wait for.
1534   *
1535   * Waits until the GPU no longer uses the migrate context's default engine
1536   * or its page-table objects. FIXME: What about separate page-table update
1537   * engines?
1538   */
xe_migrate_wait(struct xe_migrate * m)1539  void xe_migrate_wait(struct xe_migrate *m)
1540  {
1541  	if (m->fence)
1542  		dma_fence_wait(m->fence, false);
1543  }
1544  
1545  #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1546  #include "tests/xe_migrate.c"
1547  #endif
1548