1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 1999 - 2018 Intel Corporation. */
3  
4  #include "ixgbe.h"
5  #include <linux/ptp_classify.h>
6  #include <linux/clocksource.h>
7  
8  /*
9   * The 82599 and the X540 do not have true 64bit nanosecond scale
10   * counter registers. Instead, SYSTIME is defined by a fixed point
11   * system which allows the user to define the scale counter increment
12   * value at every level change of the oscillator driving the SYSTIME
13   * value. For both devices the TIMINCA:IV field defines this
14   * increment. On the X540 device, 31 bits are provided. However on the
15   * 82599 only provides 24 bits. The time unit is determined by the
16   * clock frequency of the oscillator in combination with the TIMINCA
17   * register. When these devices link at 10Gb the oscillator has a
18   * period of 6.4ns. In order to convert the scale counter into
19   * nanoseconds the cyclecounter and timecounter structures are
20   * used. The SYSTIME registers need to be converted to ns values by use
21   * of only a right shift (division by power of 2). The following math
22   * determines the largest incvalue that will fit into the available
23   * bits in the TIMINCA register.
24   *
25   * PeriodWidth: Number of bits to store the clock period
26   * MaxWidth: The maximum width value of the TIMINCA register
27   * Period: The clock period for the oscillator
28   * round(): discard the fractional portion of the calculation
29   *
30   * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31   *
32   * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33   * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34   *
35   * The period also changes based on the link speed:
36   * At 10Gb link or no link, the period remains the same.
37   * At 1Gb link, the period is multiplied by 10. (64ns)
38   * At 100Mb link, the period is multiplied by 100. (640ns)
39   *
40   * The calculated value allows us to right shift the SYSTIME register
41   * value in order to quickly convert it into a nanosecond clock,
42   * while allowing for the maximum possible adjustment value.
43   *
44   * These diagrams are only for the 10Gb link period
45   *
46   *           SYSTIMEH            SYSTIMEL
47   *       +--------------+  +--------------+
48   * X540  |      32      |  | 1 | 3 |  28  |
49   *       *--------------+  +--------------+
50   *        \________ 36 bits ______/  fract
51   *
52   *       +--------------+  +--------------+
53   * 82599 |      32      |  | 8 | 3 |  21  |
54   *       *--------------+  +--------------+
55   *        \________ 43 bits ______/  fract
56   *
57   * The 36 bit X540 SYSTIME overflows every
58   *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59   *
60   * The 43 bit 82599 SYSTIME overflows every
61   *   2^43 * 10^-9 / 3600 = 2.4 hours
62   */
63  #define IXGBE_INCVAL_10GB 0x66666666
64  #define IXGBE_INCVAL_1GB  0x40000000
65  #define IXGBE_INCVAL_100  0x50000000
66  
67  #define IXGBE_INCVAL_SHIFT_10GB  28
68  #define IXGBE_INCVAL_SHIFT_1GB   24
69  #define IXGBE_INCVAL_SHIFT_100   21
70  
71  #define IXGBE_INCVAL_SHIFT_82599 7
72  #define IXGBE_INCPER_SHIFT_82599 24
73  
74  #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75  #define IXGBE_PTP_TX_TIMEOUT     (HZ)
76  
77  /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78   * the value as a ULL to force precision when bit shifting.
79   */
80  #define NS_PER_SEC      1000000000ULL
81  #define NS_PER_HALF_SEC  500000000ULL
82  
83  /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84   * which contain measurements of seconds and nanoseconds respectively. This
85   * matches the standard linux representation of time in the kernel. In addition,
86   * the X550 also has a SYSTIMER register which represents residue, or
87   * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88   * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89   * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90   * high bit representing whether the adjustent is positive or negative. Every
91   * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92   * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93   * X550's clock for purposes of SYSTIME generation is constant and not dependent
94   * on the link speed.
95   *
96   *           SYSTIMEH           SYSTIMEL        SYSTIMER
97   *       +--------------+  +--------------+  +-------------+
98   * X550  |      32      |  |      32      |  |     32      |
99   *       *--------------+  +--------------+  +-------------+
100   *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101   *
102   * This results in a full 96 bits to represent the clock, with 32 bits for
103   * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104   * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105   * underflow of adjustments.
106   *
107   * The 32 bits of seconds for the X550 overflows every
108   *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109   *
110   * In order to adjust the clock frequency for the X550, the TIMINCA register is
111   * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112   * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113   * the sign bit. This register enables software to calculate frequency
114   * adjustments and apply them directly to the clock rate.
115   *
116   * The math for converting scaled_ppm into TIMINCA values is fairly
117   * straightforward.
118   *
119   *   TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120   *
121   * To avoid overflow, we simply use mul_u64_u64_div_u64.
122   *
123   * This assumes that scaled_ppm is never high enough to create a value bigger
124   * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125   * measured in parts per billion. Calculating this value is also simple.
126   *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127   *
128   * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129   * 12.5 nanoseconds. This means that the Max ppb is 39999999
130   *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
131   *         register can only hold slightly under 0.5 nanoseconds.
132   *
133   * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134   * into 2^-32 units, which is
135   *
136   *  12.5 * 2^32 = C80000000
137   *
138   * Some revisions of hardware have a faster base frequency than the registers
139   * were defined for. To fix this, we use a timecounter structure with the
140   * proper mult and shift to convert the cycles into nanoseconds of time.
141   */
142  #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143  #define INCVALUE_MASK	0x7FFFFFFF
144  #define ISGN		0x80000000
145  
146  /**
147   * ixgbe_ptp_setup_sdp_X540
148   * @adapter: private adapter structure
149   *
150   * this function enables or disables the clock out feature on SDP0 for
151   * the X540 device. It will create a 1 second periodic output that can
152   * be used as the PPS (via an interrupt).
153   *
154   * It calculates when the system time will be on an exact second, and then
155   * aligns the start of the PPS signal to that value.
156   *
157   * This works by using the cycle counter shift and mult values in reverse, and
158   * assumes that the values we're shifting will not overflow.
159   */
ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter * adapter)160  static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
161  {
162  	struct cyclecounter *cc = &adapter->hw_cc;
163  	struct ixgbe_hw *hw = &adapter->hw;
164  	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
165  	u64 ns = 0, clock_edge = 0, clock_period;
166  	unsigned long flags;
167  
168  	/* disable the pin first */
169  	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
170  	IXGBE_WRITE_FLUSH(hw);
171  
172  	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
173  		return;
174  
175  	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
176  
177  	/* enable the SDP0 pin as output, and connected to the
178  	 * native function for Timesync (ClockOut)
179  	 */
180  	esdp |= IXGBE_ESDP_SDP0_DIR |
181  		IXGBE_ESDP_SDP0_NATIVE;
182  
183  	/* enable the Clock Out feature on SDP0, and allow
184  	 * interrupts to occur when the pin changes
185  	 */
186  	tsauxc = (IXGBE_TSAUXC_EN_CLK |
187  		  IXGBE_TSAUXC_SYNCLK |
188  		  IXGBE_TSAUXC_SDP0_INT);
189  
190  	/* Determine the clock time period to use. This assumes that the
191  	 * cycle counter shift is small enough to avoid overflow.
192  	 */
193  	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
194  	clktiml = (u32)(clock_period);
195  	clktimh = (u32)(clock_period >> 32);
196  
197  	/* Read the current clock time, and save the cycle counter value */
198  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
199  	ns = timecounter_read(&adapter->hw_tc);
200  	clock_edge = adapter->hw_tc.cycle_last;
201  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
202  
203  	/* Figure out how many seconds to add in order to round up */
204  	div_u64_rem(ns, NS_PER_SEC, &rem);
205  
206  	/* Figure out how many nanoseconds to add to round the clock edge up
207  	 * to the next full second
208  	 */
209  	rem = (NS_PER_SEC - rem);
210  
211  	/* Adjust the clock edge to align with the next full second. */
212  	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
213  	trgttiml = (u32)clock_edge;
214  	trgttimh = (u32)(clock_edge >> 32);
215  
216  	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217  	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218  	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219  	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220  
221  	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222  	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223  
224  	IXGBE_WRITE_FLUSH(hw);
225  }
226  
227  /**
228   * ixgbe_ptp_setup_sdp_X550
229   * @adapter: private adapter structure
230   *
231   * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232   *
233   * Use the target time feature to align the output signal on the next full
234   * second.
235   *
236   * This works by using the cycle counter shift and mult values in reverse, and
237   * assumes that the values we're shifting will not overflow.
238   */
ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter * adapter)239  static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240  {
241  	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242  	struct cyclecounter *cc = &adapter->hw_cc;
243  	struct ixgbe_hw *hw = &adapter->hw;
244  	u64 ns = 0, clock_edge = 0;
245  	struct timespec64 ts;
246  	unsigned long flags;
247  
248  	/* disable the pin first */
249  	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250  	IXGBE_WRITE_FLUSH(hw);
251  
252  	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253  		return;
254  
255  	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256  
257  	/* enable the SDP0 pin as output, and connected to the
258  	 * native function for Timesync (ClockOut)
259  	 */
260  	esdp |= IXGBE_ESDP_SDP0_DIR |
261  		IXGBE_ESDP_SDP0_NATIVE;
262  
263  	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
264  	 * enable generation of interrupts on the clock change.
265  	 */
266  #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267  	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268  		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269  		  IXGBE_TSAUXC_DIS_TS_CLEAR);
270  
271  	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272  		 IXGBE_TSSDP_TS_SDP0_CLK0);
273  
274  	/* Determine the clock time period to use. This assumes that the
275  	 * cycle counter shift is small enough to avoid overflowing a 32bit
276  	 * value.
277  	 */
278  	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
279  
280  	/* Read the current clock time, and save the cycle counter value */
281  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
282  	ns = timecounter_read(&adapter->hw_tc);
283  	clock_edge = adapter->hw_tc.cycle_last;
284  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285  
286  	/* Figure out how far past the next second we are */
287  	div_u64_rem(ns, NS_PER_SEC, &rem);
288  
289  	/* Figure out how many nanoseconds to add to round the clock edge up
290  	 * to the next full second
291  	 */
292  	rem = (NS_PER_SEC - rem);
293  
294  	/* Adjust the clock edge to align with the next full second. */
295  	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
296  
297  	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
298  	 * 32bits of 'cycles'. There's no guarantee that cycles represents
299  	 * nanoseconds. However, we can use the math from a timespec64 to
300  	 * convert into the hardware representation.
301  	 *
302  	 * See ixgbe_ptp_read_X550() for more details.
303  	 */
304  	ts = ns_to_timespec64(clock_edge);
305  	trgttiml = (u32)ts.tv_nsec;
306  	trgttimh = (u32)ts.tv_sec;
307  
308  	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
309  	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
310  	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
311  
312  	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
313  	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
314  	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
315  
316  	IXGBE_WRITE_FLUSH(hw);
317  }
318  
319  /**
320   * ixgbe_ptp_read_X550 - read cycle counter value
321   * @cc: cyclecounter structure
322   *
323   * This function reads SYSTIME registers. It is called by the cyclecounter
324   * structure to convert from internal representation into nanoseconds. We need
325   * this for X550 since some skews do not have expected clock frequency and
326   * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
327   * "cycles", rather than seconds and nanoseconds.
328   */
ixgbe_ptp_read_X550(const struct cyclecounter * cc)329  static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
330  {
331  	struct ixgbe_adapter *adapter =
332  		container_of(cc, struct ixgbe_adapter, hw_cc);
333  	struct ixgbe_hw *hw = &adapter->hw;
334  	struct timespec64 ts;
335  
336  	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
337  	 * Some revisions of hardware run at a higher frequency and so the
338  	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
339  	 * here is used for its math/conversions but does not necessarily
340  	 * represent nominal time.
341  	 *
342  	 * It should be noted that this cyclecounter will overflow at a
343  	 * non-bitmask field since we have to convert our billions of cycles
344  	 * into an actual cycles count. This results in some possible weird
345  	 * situations at high cycle counter stamps. However given that 32 bits
346  	 * of "seconds" is ~138 years this isn't a problem. Even at the
347  	 * increased frequency of some revisions, this is still ~103 years.
348  	 * Since the SYSTIME values start at 0 and we never write them, it is
349  	 * highly unlikely for the cyclecounter to overflow in practice.
350  	 */
351  	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
352  	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
353  	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
354  
355  	return (u64)timespec64_to_ns(&ts);
356  }
357  
358  /**
359   * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
360   * @cc: the cyclecounter structure
361   *
362   * this function reads the cyclecounter registers and is called by the
363   * cyclecounter structure used to construct a ns counter from the
364   * arbitrary fixed point registers
365   */
ixgbe_ptp_read_82599(const struct cyclecounter * cc)366  static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
367  {
368  	struct ixgbe_adapter *adapter =
369  		container_of(cc, struct ixgbe_adapter, hw_cc);
370  	struct ixgbe_hw *hw = &adapter->hw;
371  	u64 stamp = 0;
372  
373  	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
374  	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
375  
376  	return stamp;
377  }
378  
379  /**
380   * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
381   * @adapter: private adapter structure
382   * @hwtstamp: stack timestamp structure
383   * @timestamp: unsigned 64bit system time value
384   *
385   * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
386   * which can be used by the stack's ptp functions.
387   *
388   * The lock is used to protect consistency of the cyclecounter and the SYSTIME
389   * registers. However, it does not need to protect against the Rx or Tx
390   * timestamp registers, as there can't be a new timestamp until the old one is
391   * unlatched by reading.
392   *
393   * In addition to the timestamp in hardware, some controllers need a software
394   * overflow cyclecounter, and this function takes this into account as well.
395   **/
ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter * adapter,struct skb_shared_hwtstamps * hwtstamp,u64 timestamp)396  static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
397  					  struct skb_shared_hwtstamps *hwtstamp,
398  					  u64 timestamp)
399  {
400  	unsigned long flags;
401  	struct timespec64 systime;
402  	u64 ns;
403  
404  	memset(hwtstamp, 0, sizeof(*hwtstamp));
405  
406  	switch (adapter->hw.mac.type) {
407  	/* X550 and later hardware supposedly represent time using a seconds
408  	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
409  	 * to convert the timestamp into cycles before it can be fed to the
410  	 * cyclecounter. We need an actual cyclecounter because some revisions
411  	 * of hardware run at a higher frequency and thus the counter does
412  	 * not represent seconds/nanoseconds. Instead it can be thought of as
413  	 * cycles and billions of cycles.
414  	 */
415  	case ixgbe_mac_X550:
416  	case ixgbe_mac_X550EM_x:
417  	case ixgbe_mac_x550em_a:
418  		/* Upper 32 bits represent billions of cycles, lower 32 bits
419  		 * represent cycles. However, we use timespec64_to_ns for the
420  		 * correct math even though the units haven't been corrected
421  		 * yet.
422  		 */
423  		systime.tv_sec = timestamp >> 32;
424  		systime.tv_nsec = timestamp & 0xFFFFFFFF;
425  
426  		timestamp = timespec64_to_ns(&systime);
427  		break;
428  	default:
429  		break;
430  	}
431  
432  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
433  	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
434  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
435  
436  	hwtstamp->hwtstamp = ns_to_ktime(ns);
437  }
438  
439  /**
440   * ixgbe_ptp_adjfine_82599
441   * @ptp: the ptp clock structure
442   * @scaled_ppm: scaled parts per million adjustment from base
443   *
444   * Adjust the frequency of the ptp cycle counter by the
445   * indicated scaled_ppm from the base frequency.
446   *
447   * Scaled parts per million is ppm with a 16-bit binary fractional field.
448   */
ixgbe_ptp_adjfine_82599(struct ptp_clock_info * ptp,long scaled_ppm)449  static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
450  {
451  	struct ixgbe_adapter *adapter =
452  		container_of(ptp, struct ixgbe_adapter, ptp_caps);
453  	struct ixgbe_hw *hw = &adapter->hw;
454  	u64 incval;
455  
456  	smp_mb();
457  	incval = READ_ONCE(adapter->base_incval);
458  	incval = adjust_by_scaled_ppm(incval, scaled_ppm);
459  
460  	switch (hw->mac.type) {
461  	case ixgbe_mac_X540:
462  		if (incval > 0xFFFFFFFFULL)
463  			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
464  		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
465  		break;
466  	case ixgbe_mac_82599EB:
467  		if (incval > 0x00FFFFFFULL)
468  			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
469  		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
470  				BIT(IXGBE_INCPER_SHIFT_82599) |
471  				((u32)incval & 0x00FFFFFFUL));
472  		break;
473  	default:
474  		break;
475  	}
476  
477  	return 0;
478  }
479  
480  /**
481   * ixgbe_ptp_adjfine_X550
482   * @ptp: the ptp clock structure
483   * @scaled_ppm: scaled parts per million adjustment from base
484   *
485   * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
486   * from base frequency.
487   *
488   * Scaled parts per million is ppm with a 16-bit binary fractional field.
489   */
ixgbe_ptp_adjfine_X550(struct ptp_clock_info * ptp,long scaled_ppm)490  static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
491  {
492  	struct ixgbe_adapter *adapter =
493  			container_of(ptp, struct ixgbe_adapter, ptp_caps);
494  	struct ixgbe_hw *hw = &adapter->hw;
495  	bool neg_adj;
496  	u64 rate;
497  	u32 inca;
498  
499  	neg_adj = diff_by_scaled_ppm(IXGBE_X550_BASE_PERIOD, scaled_ppm, &rate);
500  
501  	/* warn if rate is too large */
502  	if (rate >= INCVALUE_MASK)
503  		e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
504  
505  	inca = rate & INCVALUE_MASK;
506  	if (neg_adj)
507  		inca |= ISGN;
508  
509  	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
510  
511  	return 0;
512  }
513  
514  /**
515   * ixgbe_ptp_adjtime
516   * @ptp: the ptp clock structure
517   * @delta: offset to adjust the cycle counter by
518   *
519   * adjust the timer by resetting the timecounter structure.
520   */
ixgbe_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)521  static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
522  {
523  	struct ixgbe_adapter *adapter =
524  		container_of(ptp, struct ixgbe_adapter, ptp_caps);
525  	unsigned long flags;
526  
527  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
528  	timecounter_adjtime(&adapter->hw_tc, delta);
529  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
530  
531  	if (adapter->ptp_setup_sdp)
532  		adapter->ptp_setup_sdp(adapter);
533  
534  	return 0;
535  }
536  
537  /**
538   * ixgbe_ptp_gettimex
539   * @ptp: the ptp clock structure
540   * @ts: timespec to hold the PHC timestamp
541   * @sts: structure to hold the system time before and after reading the PHC
542   *
543   * read the timecounter and return the correct value on ns,
544   * after converting it into a struct timespec.
545   */
ixgbe_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)546  static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
547  			      struct timespec64 *ts,
548  			      struct ptp_system_timestamp *sts)
549  {
550  	struct ixgbe_adapter *adapter =
551  		container_of(ptp, struct ixgbe_adapter, ptp_caps);
552  	struct ixgbe_hw *hw = &adapter->hw;
553  	unsigned long flags;
554  	u64 ns, stamp;
555  
556  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
557  
558  	switch (adapter->hw.mac.type) {
559  	case ixgbe_mac_X550:
560  	case ixgbe_mac_X550EM_x:
561  	case ixgbe_mac_x550em_a:
562  		/* Upper 32 bits represent billions of cycles, lower 32 bits
563  		 * represent cycles. However, we use timespec64_to_ns for the
564  		 * correct math even though the units haven't been corrected
565  		 * yet.
566  		 */
567  		ptp_read_system_prets(sts);
568  		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
569  		ptp_read_system_postts(sts);
570  		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
571  		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
572  		stamp = timespec64_to_ns(ts);
573  		break;
574  	default:
575  		ptp_read_system_prets(sts);
576  		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
577  		ptp_read_system_postts(sts);
578  		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
579  		break;
580  	}
581  
582  	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
583  
584  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
585  
586  	*ts = ns_to_timespec64(ns);
587  
588  	return 0;
589  }
590  
591  /**
592   * ixgbe_ptp_settime
593   * @ptp: the ptp clock structure
594   * @ts: the timespec containing the new time for the cycle counter
595   *
596   * reset the timecounter to use a new base value instead of the kernel
597   * wall timer value.
598   */
ixgbe_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)599  static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
600  			     const struct timespec64 *ts)
601  {
602  	struct ixgbe_adapter *adapter =
603  		container_of(ptp, struct ixgbe_adapter, ptp_caps);
604  	unsigned long flags;
605  	u64 ns = timespec64_to_ns(ts);
606  
607  	/* reset the timecounter */
608  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
609  	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
610  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
611  
612  	if (adapter->ptp_setup_sdp)
613  		adapter->ptp_setup_sdp(adapter);
614  	return 0;
615  }
616  
617  /**
618   * ixgbe_ptp_feature_enable
619   * @ptp: the ptp clock structure
620   * @rq: the requested feature to change
621   * @on: whether to enable or disable the feature
622   *
623   * enable (or disable) ancillary features of the phc subsystem.
624   * our driver only supports the PPS feature on the X540
625   */
ixgbe_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)626  static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
627  				    struct ptp_clock_request *rq, int on)
628  {
629  	struct ixgbe_adapter *adapter =
630  		container_of(ptp, struct ixgbe_adapter, ptp_caps);
631  
632  	/**
633  	 * When PPS is enabled, unmask the interrupt for the ClockOut
634  	 * feature, so that the interrupt handler can send the PPS
635  	 * event when the clock SDP triggers. Clear mask when PPS is
636  	 * disabled
637  	 */
638  	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
639  		return -ENOTSUPP;
640  
641  	if (on)
642  		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
643  	else
644  		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
645  
646  	adapter->ptp_setup_sdp(adapter);
647  	return 0;
648  }
649  
650  /**
651   * ixgbe_ptp_check_pps_event
652   * @adapter: the private adapter structure
653   *
654   * This function is called by the interrupt routine when checking for
655   * interrupts. It will check and handle a pps event.
656   */
ixgbe_ptp_check_pps_event(struct ixgbe_adapter * adapter)657  void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
658  {
659  	struct ixgbe_hw *hw = &adapter->hw;
660  	struct ptp_clock_event event;
661  
662  	event.type = PTP_CLOCK_PPS;
663  
664  	/* this check is necessary in case the interrupt was enabled via some
665  	 * alternative means (ex. debug_fs). Better to check here than
666  	 * everywhere that calls this function.
667  	 */
668  	if (!adapter->ptp_clock)
669  		return;
670  
671  	switch (hw->mac.type) {
672  	case ixgbe_mac_X540:
673  		ptp_clock_event(adapter->ptp_clock, &event);
674  		break;
675  	default:
676  		break;
677  	}
678  }
679  
680  /**
681   * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
682   * @adapter: private adapter struct
683   *
684   * this watchdog task periodically reads the timecounter
685   * in order to prevent missing when the system time registers wrap
686   * around. This needs to be run approximately twice a minute.
687   */
ixgbe_ptp_overflow_check(struct ixgbe_adapter * adapter)688  void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
689  {
690  	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
691  					     IXGBE_OVERFLOW_PERIOD);
692  	unsigned long flags;
693  
694  	if (timeout) {
695  		/* Update the timecounter */
696  		spin_lock_irqsave(&adapter->tmreg_lock, flags);
697  		timecounter_read(&adapter->hw_tc);
698  		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
699  
700  		adapter->last_overflow_check = jiffies;
701  	}
702  }
703  
704  /**
705   * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
706   * @adapter: private network adapter structure
707   *
708   * this watchdog task is scheduled to detect error case where hardware has
709   * dropped an Rx packet that was timestamped when the ring is full. The
710   * particular error is rare but leaves the device in a state unable to timestamp
711   * any future packets.
712   */
ixgbe_ptp_rx_hang(struct ixgbe_adapter * adapter)713  void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
714  {
715  	struct ixgbe_hw *hw = &adapter->hw;
716  	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
717  	struct ixgbe_ring *rx_ring;
718  	unsigned long rx_event;
719  	int n;
720  
721  	/* if we don't have a valid timestamp in the registers, just update the
722  	 * timeout counter and exit
723  	 */
724  	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
725  		adapter->last_rx_ptp_check = jiffies;
726  		return;
727  	}
728  
729  	/* determine the most recent watchdog or rx_timestamp event */
730  	rx_event = adapter->last_rx_ptp_check;
731  	for (n = 0; n < adapter->num_rx_queues; n++) {
732  		rx_ring = adapter->rx_ring[n];
733  		if (time_after(rx_ring->last_rx_timestamp, rx_event))
734  			rx_event = rx_ring->last_rx_timestamp;
735  	}
736  
737  	/* only need to read the high RXSTMP register to clear the lock */
738  	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
739  		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
740  		adapter->last_rx_ptp_check = jiffies;
741  
742  		adapter->rx_hwtstamp_cleared++;
743  		e_warn(drv, "clearing RX Timestamp hang\n");
744  	}
745  }
746  
747  /**
748   * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
749   * @adapter: the private adapter structure
750   *
751   * This function should be called whenever the state related to a Tx timestamp
752   * needs to be cleared. This helps ensure that all related bits are reset for
753   * the next Tx timestamp event.
754   */
ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter * adapter)755  static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
756  {
757  	struct ixgbe_hw *hw = &adapter->hw;
758  
759  	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
760  	if (adapter->ptp_tx_skb) {
761  		dev_kfree_skb_any(adapter->ptp_tx_skb);
762  		adapter->ptp_tx_skb = NULL;
763  	}
764  	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
765  }
766  
767  /**
768   * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
769   * @adapter: private network adapter structure
770   */
ixgbe_ptp_tx_hang(struct ixgbe_adapter * adapter)771  void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
772  {
773  	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
774  					      IXGBE_PTP_TX_TIMEOUT);
775  
776  	if (!adapter->ptp_tx_skb)
777  		return;
778  
779  	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
780  		return;
781  
782  	/* If we haven't received a timestamp within the timeout, it is
783  	 * reasonable to assume that it will never occur, so we can unlock the
784  	 * timestamp bit when this occurs.
785  	 */
786  	if (timeout) {
787  		cancel_work_sync(&adapter->ptp_tx_work);
788  		ixgbe_ptp_clear_tx_timestamp(adapter);
789  		adapter->tx_hwtstamp_timeouts++;
790  		e_warn(drv, "clearing Tx timestamp hang\n");
791  	}
792  }
793  
794  /**
795   * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
796   * @adapter: the private adapter struct
797   *
798   * if the timestamp is valid, we convert it into the timecounter ns
799   * value, then store that result into the shhwtstamps structure which
800   * is passed up the network stack
801   */
ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter * adapter)802  static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
803  {
804  	struct sk_buff *skb = adapter->ptp_tx_skb;
805  	struct ixgbe_hw *hw = &adapter->hw;
806  	struct skb_shared_hwtstamps shhwtstamps;
807  	u64 regval = 0;
808  
809  	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
810  	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
811  	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
812  
813  	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
814  	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
815  	 * well behaved applications from attempting to timestamp again prior
816  	 * to the lock bit being clear.
817  	 */
818  	adapter->ptp_tx_skb = NULL;
819  	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
820  
821  	/* Notify the stack and then free the skb after we've unlocked */
822  	skb_tstamp_tx(skb, &shhwtstamps);
823  	dev_kfree_skb_any(skb);
824  }
825  
826  /**
827   * ixgbe_ptp_tx_hwtstamp_work
828   * @work: pointer to the work struct
829   *
830   * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
831   * timestamp has been taken for the current skb. It is necessary, because the
832   * descriptor's "done" bit does not correlate with the timestamp event.
833   */
ixgbe_ptp_tx_hwtstamp_work(struct work_struct * work)834  static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
835  {
836  	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
837  						     ptp_tx_work);
838  	struct ixgbe_hw *hw = &adapter->hw;
839  	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
840  					      IXGBE_PTP_TX_TIMEOUT);
841  	u32 tsynctxctl;
842  
843  	/* we have to have a valid skb to poll for a timestamp */
844  	if (!adapter->ptp_tx_skb) {
845  		ixgbe_ptp_clear_tx_timestamp(adapter);
846  		return;
847  	}
848  
849  	/* stop polling once we have a valid timestamp */
850  	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
851  	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
852  		ixgbe_ptp_tx_hwtstamp(adapter);
853  		return;
854  	}
855  
856  	if (timeout) {
857  		ixgbe_ptp_clear_tx_timestamp(adapter);
858  		adapter->tx_hwtstamp_timeouts++;
859  		e_warn(drv, "clearing Tx Timestamp hang\n");
860  	} else {
861  		/* reschedule to keep checking if it's not available yet */
862  		schedule_work(&adapter->ptp_tx_work);
863  	}
864  }
865  
866  /**
867   * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
868   * @q_vector: structure containing interrupt and ring information
869   * @skb: the packet
870   *
871   * This function will be called by the Rx routine of the timestamp for this
872   * packet is stored in the buffer. The value is stored in little endian format
873   * starting at the end of the packet data.
874   */
ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)875  void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
876  			   struct sk_buff *skb)
877  {
878  	__le64 regval;
879  
880  	/* copy the bits out of the skb, and then trim the skb length */
881  	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
882  		      IXGBE_TS_HDR_LEN);
883  	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
884  
885  	/* The timestamp is recorded in little endian format, and is stored at
886  	 * the end of the packet.
887  	 *
888  	 * DWORD: N              N + 1      N + 2
889  	 * Field: End of Packet  SYSTIMH    SYSTIML
890  	 */
891  	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
892  				      le64_to_cpu(regval));
893  }
894  
895  /**
896   * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
897   * @q_vector: structure containing interrupt and ring information
898   * @skb: particular skb to send timestamp with
899   *
900   * if the timestamp is valid, we convert it into the timecounter ns
901   * value, then store that result into the shhwtstamps structure which
902   * is passed up the network stack
903   */
ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)904  void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
905  			   struct sk_buff *skb)
906  {
907  	struct ixgbe_adapter *adapter;
908  	struct ixgbe_hw *hw;
909  	u64 regval = 0;
910  	u32 tsyncrxctl;
911  
912  	/* we cannot process timestamps on a ring without a q_vector */
913  	if (!q_vector || !q_vector->adapter)
914  		return;
915  
916  	adapter = q_vector->adapter;
917  	hw = &adapter->hw;
918  
919  	/* Read the tsyncrxctl register afterwards in order to prevent taking an
920  	 * I/O hit on every packet.
921  	 */
922  
923  	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
924  	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
925  		return;
926  
927  	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
928  	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
929  
930  	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
931  }
932  
933  /**
934   * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
935   * @adapter: pointer to adapter structure
936   * @ifr: ioctl data
937   *
938   * This function returns the current timestamping settings. Rather than
939   * attempt to deconstruct registers to fill in the values, simply keep a copy
940   * of the old settings around, and return a copy when requested.
941   */
ixgbe_ptp_get_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)942  int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
943  {
944  	struct hwtstamp_config *config = &adapter->tstamp_config;
945  
946  	return copy_to_user(ifr->ifr_data, config,
947  			    sizeof(*config)) ? -EFAULT : 0;
948  }
949  
950  /**
951   * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
952   * @adapter: the private ixgbe adapter structure
953   * @config: the hwtstamp configuration requested
954   *
955   * Outgoing time stamping can be enabled and disabled. Play nice and
956   * disable it when requested, although it shouldn't cause any overhead
957   * when no packet needs it. At most one packet in the queue may be
958   * marked for time stamping, otherwise it would be impossible to tell
959   * for sure to which packet the hardware time stamp belongs.
960   *
961   * Incoming time stamping has to be configured via the hardware
962   * filters. Not all combinations are supported, in particular event
963   * type has to be specified. Matching the kind of event packet is
964   * not supported, with the exception of "all V2 events regardless of
965   * level 2 or 4".
966   *
967   * Since hardware always timestamps Path delay packets when timestamping V2
968   * packets, regardless of the type specified in the register, only use V2
969   * Event mode. This more accurately tells the user what the hardware is going
970   * to do anyways.
971   *
972   * Note: this may modify the hwtstamp configuration towards a more general
973   * mode, if required to support the specifically requested mode.
974   */
ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter * adapter,struct hwtstamp_config * config)975  static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
976  				 struct hwtstamp_config *config)
977  {
978  	struct ixgbe_hw *hw = &adapter->hw;
979  	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
980  	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
981  	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
982  	u32 aflags = adapter->flags;
983  	bool is_l2 = false;
984  	u32 regval;
985  
986  	switch (config->tx_type) {
987  	case HWTSTAMP_TX_OFF:
988  		tsync_tx_ctl = 0;
989  		break;
990  	case HWTSTAMP_TX_ON:
991  		break;
992  	default:
993  		return -ERANGE;
994  	}
995  
996  	switch (config->rx_filter) {
997  	case HWTSTAMP_FILTER_NONE:
998  		tsync_rx_ctl = 0;
999  		tsync_rx_mtrl = 0;
1000  		aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1001  			    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1002  		break;
1003  	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1004  		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1005  		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1006  		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1007  			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1008  		break;
1009  	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010  		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1011  		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1012  		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1013  			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1014  		break;
1015  	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1016  	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1017  	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1018  	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1019  	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1020  	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1021  	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1022  	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1023  	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1024  		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1025  		is_l2 = true;
1026  		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1027  		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1028  			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1029  		break;
1030  	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1031  	case HWTSTAMP_FILTER_NTP_ALL:
1032  	case HWTSTAMP_FILTER_ALL:
1033  		/* The X550 controller is capable of timestamping all packets,
1034  		 * which allows it to accept any filter.
1035  		 */
1036  		if (hw->mac.type >= ixgbe_mac_X550) {
1037  			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1038  			config->rx_filter = HWTSTAMP_FILTER_ALL;
1039  			aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1040  			break;
1041  		}
1042  		fallthrough;
1043  	default:
1044  		/*
1045  		 * register RXMTRL must be set in order to do V1 packets,
1046  		 * therefore it is not possible to time stamp both V1 Sync and
1047  		 * Delay_Req messages and hardware does not support
1048  		 * timestamping all packets => return error
1049  		 */
1050  		config->rx_filter = HWTSTAMP_FILTER_NONE;
1051  		return -ERANGE;
1052  	}
1053  
1054  	if (hw->mac.type == ixgbe_mac_82598EB) {
1055  		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1056  				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1057  		if (tsync_rx_ctl | tsync_tx_ctl)
1058  			return -ERANGE;
1059  		return 0;
1060  	}
1061  
1062  	/* Per-packet timestamping only works if the filter is set to all
1063  	 * packets. Since this is desired, always timestamp all packets as long
1064  	 * as any Rx filter was configured.
1065  	 */
1066  	switch (hw->mac.type) {
1067  	case ixgbe_mac_X550:
1068  	case ixgbe_mac_X550EM_x:
1069  	case ixgbe_mac_x550em_a:
1070  		/* enable timestamping all packets only if at least some
1071  		 * packets were requested. Otherwise, play nice and disable
1072  		 * timestamping
1073  		 */
1074  		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1075  			break;
1076  
1077  		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1078  			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1079  			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1080  		config->rx_filter = HWTSTAMP_FILTER_ALL;
1081  		aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1082  		aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1083  		is_l2 = true;
1084  		break;
1085  	default:
1086  		break;
1087  	}
1088  
1089  	/* define ethertype filter for timestamping L2 packets */
1090  	if (is_l2)
1091  		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1092  				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1093  				 IXGBE_ETQF_1588 | /* enable timestamping */
1094  				 ETH_P_1588));     /* 1588 eth protocol type */
1095  	else
1096  		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1097  
1098  	/* enable/disable TX */
1099  	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1100  	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1101  	regval |= tsync_tx_ctl;
1102  	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1103  
1104  	/* enable/disable RX */
1105  	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1106  	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1107  	regval |= tsync_rx_ctl;
1108  	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1109  
1110  	/* define which PTP packets are time stamped */
1111  	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1112  
1113  	IXGBE_WRITE_FLUSH(hw);
1114  
1115  	/* configure adapter flags only when HW is actually configured */
1116  	adapter->flags = aflags;
1117  
1118  	/* clear TX/RX time stamp registers, just to be sure */
1119  	ixgbe_ptp_clear_tx_timestamp(adapter);
1120  	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1121  
1122  	return 0;
1123  }
1124  
1125  /**
1126   * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1127   * @adapter: pointer to adapter struct
1128   * @ifr: ioctl data
1129   *
1130   * Set hardware to requested mode. If unsupported, return an error with no
1131   * changes. Otherwise, store the mode for future reference.
1132   */
ixgbe_ptp_set_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)1133  int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1134  {
1135  	struct hwtstamp_config config;
1136  	int err;
1137  
1138  	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1139  		return -EFAULT;
1140  
1141  	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1142  	if (err)
1143  		return err;
1144  
1145  	/* save these settings for future reference */
1146  	memcpy(&adapter->tstamp_config, &config,
1147  	       sizeof(adapter->tstamp_config));
1148  
1149  	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1150  		-EFAULT : 0;
1151  }
1152  
ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter * adapter,u32 * shift,u32 * incval)1153  static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1154  					u32 *shift, u32 *incval)
1155  {
1156  	/**
1157  	 * Scale the NIC cycle counter by a large factor so that
1158  	 * relatively small corrections to the frequency can be added
1159  	 * or subtracted. The drawbacks of a large factor include
1160  	 * (a) the clock register overflows more quickly, (b) the cycle
1161  	 * counter structure must be able to convert the systime value
1162  	 * to nanoseconds using only a multiplier and a right-shift,
1163  	 * and (c) the value must fit within the timinca register space
1164  	 * => math based on internal DMA clock rate and available bits
1165  	 *
1166  	 * Note that when there is no link, internal DMA clock is same as when
1167  	 * link speed is 10Gb. Set the registers correctly even when link is
1168  	 * down to preserve the clock setting
1169  	 */
1170  	switch (adapter->link_speed) {
1171  	case IXGBE_LINK_SPEED_100_FULL:
1172  		*shift = IXGBE_INCVAL_SHIFT_100;
1173  		*incval = IXGBE_INCVAL_100;
1174  		break;
1175  	case IXGBE_LINK_SPEED_1GB_FULL:
1176  		*shift = IXGBE_INCVAL_SHIFT_1GB;
1177  		*incval = IXGBE_INCVAL_1GB;
1178  		break;
1179  	case IXGBE_LINK_SPEED_10GB_FULL:
1180  	default:
1181  		*shift = IXGBE_INCVAL_SHIFT_10GB;
1182  		*incval = IXGBE_INCVAL_10GB;
1183  		break;
1184  	}
1185  }
1186  
1187  /**
1188   * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1189   * @adapter: pointer to the adapter structure
1190   *
1191   * This function should be called to set the proper values for the TIMINCA
1192   * register and tell the cyclecounter structure what the tick rate of SYSTIME
1193   * is. It does not directly modify SYSTIME registers or the timecounter
1194   * structure. It should be called whenever a new TIMINCA value is necessary,
1195   * such as during initialization or when the link speed changes.
1196   */
ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter * adapter)1197  void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1198  {
1199  	struct ixgbe_hw *hw = &adapter->hw;
1200  	struct cyclecounter cc;
1201  	unsigned long flags;
1202  	u32 incval = 0;
1203  	u32 fuse0 = 0;
1204  
1205  	/* For some of the boards below this mask is technically incorrect.
1206  	 * The timestamp mask overflows at approximately 61bits. However the
1207  	 * particular hardware does not overflow on an even bitmask value.
1208  	 * Instead, it overflows due to conversion of upper 32bits billions of
1209  	 * cycles. Timecounters are not really intended for this purpose so
1210  	 * they do not properly function if the overflow point isn't 2^N-1.
1211  	 * However, the actual SYSTIME values in question take ~138 years to
1212  	 * overflow. In practice this means they won't actually overflow. A
1213  	 * proper fix to this problem would require modification of the
1214  	 * timecounter delta calculations.
1215  	 */
1216  	cc.mask = CLOCKSOURCE_MASK(64);
1217  	cc.mult = 1;
1218  	cc.shift = 0;
1219  
1220  	switch (hw->mac.type) {
1221  	case ixgbe_mac_X550EM_x:
1222  		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1223  		 * designed to represent seconds and nanoseconds when this is
1224  		 * the case. However, some revisions of hardware have a 400Mhz
1225  		 * clock and we have to compensate for this frequency
1226  		 * variation using corrected mult and shift values.
1227  		 */
1228  		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1229  		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1230  			cc.mult = 3;
1231  			cc.shift = 2;
1232  		}
1233  		fallthrough;
1234  	case ixgbe_mac_x550em_a:
1235  	case ixgbe_mac_X550:
1236  		cc.read = ixgbe_ptp_read_X550;
1237  		break;
1238  	case ixgbe_mac_X540:
1239  		cc.read = ixgbe_ptp_read_82599;
1240  
1241  		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1242  		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1243  		break;
1244  	case ixgbe_mac_82599EB:
1245  		cc.read = ixgbe_ptp_read_82599;
1246  
1247  		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1248  		incval >>= IXGBE_INCVAL_SHIFT_82599;
1249  		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1250  		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1251  				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1252  		break;
1253  	default:
1254  		/* other devices aren't supported */
1255  		return;
1256  	}
1257  
1258  	/* update the base incval used to calculate frequency adjustment */
1259  	WRITE_ONCE(adapter->base_incval, incval);
1260  	smp_mb();
1261  
1262  	/* need lock to prevent incorrect read while modifying cyclecounter */
1263  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264  	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1265  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1266  }
1267  
1268  /**
1269   * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1270   * @adapter: the ixgbe private board structure
1271   *
1272   * Initialize and start the SYSTIME registers.
1273   */
ixgbe_ptp_init_systime(struct ixgbe_adapter * adapter)1274  static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1275  {
1276  	struct ixgbe_hw *hw = &adapter->hw;
1277  	u32 tsauxc;
1278  
1279  	switch (hw->mac.type) {
1280  	case ixgbe_mac_X550EM_x:
1281  	case ixgbe_mac_x550em_a:
1282  	case ixgbe_mac_X550:
1283  		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1284  
1285  		/* Reset SYSTIME registers to 0 */
1286  		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1287  		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1288  		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1289  
1290  		/* Reset interrupt settings */
1291  		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1292  		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1293  
1294  		/* Activate the SYSTIME counter */
1295  		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1296  				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1297  		break;
1298  	case ixgbe_mac_X540:
1299  	case ixgbe_mac_82599EB:
1300  		/* Reset SYSTIME registers to 0 */
1301  		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1302  		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1303  		break;
1304  	default:
1305  		/* Other devices aren't supported */
1306  		return;
1307  	}
1308  
1309  	IXGBE_WRITE_FLUSH(hw);
1310  }
1311  
1312  /**
1313   * ixgbe_ptp_reset
1314   * @adapter: the ixgbe private board structure
1315   *
1316   * When the MAC resets, all the hardware bits for timesync are reset. This
1317   * function is used to re-enable the device for PTP based on current settings.
1318   * We do lose the current clock time, so just reset the cyclecounter to the
1319   * system real clock time.
1320   *
1321   * This function will maintain hwtstamp_config settings, and resets the SDP
1322   * output if it was enabled.
1323   */
ixgbe_ptp_reset(struct ixgbe_adapter * adapter)1324  void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1325  {
1326  	struct ixgbe_hw *hw = &adapter->hw;
1327  	unsigned long flags;
1328  
1329  	/* reset the hardware timestamping mode */
1330  	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1331  
1332  	/* 82598 does not support PTP */
1333  	if (hw->mac.type == ixgbe_mac_82598EB)
1334  		return;
1335  
1336  	ixgbe_ptp_start_cyclecounter(adapter);
1337  
1338  	ixgbe_ptp_init_systime(adapter);
1339  
1340  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1341  	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1342  			 ktime_to_ns(ktime_get_real()));
1343  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1344  
1345  	adapter->last_overflow_check = jiffies;
1346  
1347  	/* Now that the shift has been calculated and the systime
1348  	 * registers reset, (re-)enable the Clock out feature
1349  	 */
1350  	if (adapter->ptp_setup_sdp)
1351  		adapter->ptp_setup_sdp(adapter);
1352  }
1353  
1354  /**
1355   * ixgbe_ptp_create_clock
1356   * @adapter: the ixgbe private adapter structure
1357   *
1358   * This function performs setup of the user entry point function table and
1359   * initializes the PTP clock device, which is used to access the clock-like
1360   * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1361   * reuse a previously initialized clock (such as during a suspend/resume
1362   * cycle).
1363   */
ixgbe_ptp_create_clock(struct ixgbe_adapter * adapter)1364  static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1365  {
1366  	struct net_device *netdev = adapter->netdev;
1367  	long err;
1368  
1369  	/* do nothing if we already have a clock device */
1370  	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1371  		return 0;
1372  
1373  	switch (adapter->hw.mac.type) {
1374  	case ixgbe_mac_X540:
1375  		snprintf(adapter->ptp_caps.name,
1376  			 sizeof(adapter->ptp_caps.name),
1377  			 "%s", netdev->name);
1378  		adapter->ptp_caps.owner = THIS_MODULE;
1379  		adapter->ptp_caps.max_adj = 250000000;
1380  		adapter->ptp_caps.n_alarm = 0;
1381  		adapter->ptp_caps.n_ext_ts = 0;
1382  		adapter->ptp_caps.n_per_out = 0;
1383  		adapter->ptp_caps.pps = 1;
1384  		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1385  		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1386  		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1387  		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1388  		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1389  		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1390  		break;
1391  	case ixgbe_mac_82599EB:
1392  		snprintf(adapter->ptp_caps.name,
1393  			 sizeof(adapter->ptp_caps.name),
1394  			 "%s", netdev->name);
1395  		adapter->ptp_caps.owner = THIS_MODULE;
1396  		adapter->ptp_caps.max_adj = 250000000;
1397  		adapter->ptp_caps.n_alarm = 0;
1398  		adapter->ptp_caps.n_ext_ts = 0;
1399  		adapter->ptp_caps.n_per_out = 0;
1400  		adapter->ptp_caps.pps = 0;
1401  		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1402  		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1403  		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1404  		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1405  		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1406  		break;
1407  	case ixgbe_mac_X550:
1408  	case ixgbe_mac_X550EM_x:
1409  	case ixgbe_mac_x550em_a:
1410  		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1411  		adapter->ptp_caps.owner = THIS_MODULE;
1412  		adapter->ptp_caps.max_adj = 30000000;
1413  		adapter->ptp_caps.n_alarm = 0;
1414  		adapter->ptp_caps.n_ext_ts = 0;
1415  		adapter->ptp_caps.n_per_out = 0;
1416  		adapter->ptp_caps.pps = 1;
1417  		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1418  		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1419  		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1420  		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1421  		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1422  		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1423  		break;
1424  	default:
1425  		adapter->ptp_clock = NULL;
1426  		adapter->ptp_setup_sdp = NULL;
1427  		return -EOPNOTSUPP;
1428  	}
1429  
1430  	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1431  						&adapter->pdev->dev);
1432  	if (IS_ERR(adapter->ptp_clock)) {
1433  		err = PTR_ERR(adapter->ptp_clock);
1434  		adapter->ptp_clock = NULL;
1435  		e_dev_err("ptp_clock_register failed\n");
1436  		return err;
1437  	} else if (adapter->ptp_clock)
1438  		e_dev_info("registered PHC device on %s\n", netdev->name);
1439  
1440  	/* set default timestamp mode to disabled here. We do this in
1441  	 * create_clock instead of init, because we don't want to override the
1442  	 * previous settings during a resume cycle.
1443  	 */
1444  	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1445  	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1446  
1447  	return 0;
1448  }
1449  
1450  /**
1451   * ixgbe_ptp_init
1452   * @adapter: the ixgbe private adapter structure
1453   *
1454   * This function performs the required steps for enabling PTP
1455   * support. If PTP support has already been loaded it simply calls the
1456   * cyclecounter init routine and exits.
1457   */
ixgbe_ptp_init(struct ixgbe_adapter * adapter)1458  void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1459  {
1460  	/* initialize the spin lock first since we can't control when a user
1461  	 * will call the entry functions once we have initialized the clock
1462  	 * device
1463  	 */
1464  	spin_lock_init(&adapter->tmreg_lock);
1465  
1466  	/* obtain a PTP device, or re-use an existing device */
1467  	if (ixgbe_ptp_create_clock(adapter))
1468  		return;
1469  
1470  	/* we have a clock so we can initialize work now */
1471  	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1472  
1473  	/* reset the PTP related hardware bits */
1474  	ixgbe_ptp_reset(adapter);
1475  
1476  	/* enter the IXGBE_PTP_RUNNING state */
1477  	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1478  
1479  	return;
1480  }
1481  
1482  /**
1483   * ixgbe_ptp_suspend - stop PTP work items
1484   * @adapter: pointer to adapter struct
1485   *
1486   * this function suspends PTP activity, and prevents more PTP work from being
1487   * generated, but does not destroy the PTP clock device.
1488   */
ixgbe_ptp_suspend(struct ixgbe_adapter * adapter)1489  void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1490  {
1491  	/* Leave the IXGBE_PTP_RUNNING state. */
1492  	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1493  		return;
1494  
1495  	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1496  	if (adapter->ptp_setup_sdp)
1497  		adapter->ptp_setup_sdp(adapter);
1498  
1499  	/* ensure that we cancel any pending PTP Tx work item in progress */
1500  	cancel_work_sync(&adapter->ptp_tx_work);
1501  	ixgbe_ptp_clear_tx_timestamp(adapter);
1502  }
1503  
1504  /**
1505   * ixgbe_ptp_stop - close the PTP device
1506   * @adapter: pointer to adapter struct
1507   *
1508   * completely destroy the PTP device, should only be called when the device is
1509   * being fully closed.
1510   */
ixgbe_ptp_stop(struct ixgbe_adapter * adapter)1511  void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1512  {
1513  	/* first, suspend PTP activity */
1514  	ixgbe_ptp_suspend(adapter);
1515  
1516  	/* disable the PTP clock device */
1517  	if (adapter->ptp_clock) {
1518  		ptp_clock_unregister(adapter->ptp_clock);
1519  		adapter->ptp_clock = NULL;
1520  		e_dev_info("removed PHC on %s\n",
1521  			   adapter->netdev->name);
1522  	}
1523  }
1524