1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2005-2014, 2018-2019, 2021, 2024 Intel Corporation
4 */
5 #include <linux/types.h>
6 #include <linux/slab.h>
7 #include <linux/export.h>
8
9 #include "iwl-drv.h"
10 #include "iwl-debug.h"
11 #include "iwl-io.h"
12 #include "iwl-prph.h"
13 #include "iwl-csr.h"
14 #include "agn.h"
15
16 /* EEPROM offset definitions */
17
18 /* indirect access definitions */
19 #define ADDRESS_MSK 0x0000FFFF
20 #define INDIRECT_TYPE_MSK 0x000F0000
21 #define INDIRECT_HOST 0x00010000
22 #define INDIRECT_GENERAL 0x00020000
23 #define INDIRECT_REGULATORY 0x00030000
24 #define INDIRECT_CALIBRATION 0x00040000
25 #define INDIRECT_PROCESS_ADJST 0x00050000
26 #define INDIRECT_OTHERS 0x00060000
27 #define INDIRECT_TXP_LIMIT 0x00070000
28 #define INDIRECT_TXP_LIMIT_SIZE 0x00080000
29 #define INDIRECT_ADDRESS 0x00100000
30
31 /* corresponding link offsets in EEPROM */
32 #define EEPROM_LINK_HOST (2*0x64)
33 #define EEPROM_LINK_GENERAL (2*0x65)
34 #define EEPROM_LINK_REGULATORY (2*0x66)
35 #define EEPROM_LINK_CALIBRATION (2*0x67)
36 #define EEPROM_LINK_PROCESS_ADJST (2*0x68)
37 #define EEPROM_LINK_OTHERS (2*0x69)
38 #define EEPROM_LINK_TXP_LIMIT (2*0x6a)
39 #define EEPROM_LINK_TXP_LIMIT_SIZE (2*0x6b)
40
41 /* General */
42 #define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
43 #define EEPROM_SUBSYSTEM_ID (2*0x0A) /* 2 bytes */
44 #define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
45 #define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
46 #define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
47 #define EEPROM_VERSION (2*0x44) /* 2 bytes */
48 #define EEPROM_SKU_CAP (2*0x45) /* 2 bytes */
49 #define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
50 #define EEPROM_RADIO_CONFIG (2*0x48) /* 2 bytes */
51 #define EEPROM_NUM_MAC_ADDRESS (2*0x4C) /* 2 bytes */
52
53 /* calibration */
54 struct iwl_eeprom_calib_hdr {
55 u8 version;
56 u8 pa_type;
57 __le16 voltage;
58 } __packed;
59
60 #define EEPROM_CALIB_ALL (INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
61 #define EEPROM_XTAL ((2*0x128) | EEPROM_CALIB_ALL)
62
63 /* temperature */
64 #define EEPROM_KELVIN_TEMPERATURE ((2*0x12A) | EEPROM_CALIB_ALL)
65 #define EEPROM_RAW_TEMPERATURE ((2*0x12B) | EEPROM_CALIB_ALL)
66
67 /* SKU Capabilities (actual values from EEPROM definition) */
68 enum eeprom_sku_bits {
69 EEPROM_SKU_CAP_BAND_24GHZ = BIT(4),
70 EEPROM_SKU_CAP_BAND_52GHZ = BIT(5),
71 EEPROM_SKU_CAP_11N_ENABLE = BIT(6),
72 EEPROM_SKU_CAP_AMT_ENABLE = BIT(7),
73 EEPROM_SKU_CAP_IPAN_ENABLE = BIT(8)
74 };
75
76 /* radio config bits (actual values from EEPROM definition) */
77 #define EEPROM_RF_CFG_TYPE_MSK(x) (x & 0x3) /* bits 0-1 */
78 #define EEPROM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */
79 #define EEPROM_RF_CFG_DASH_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */
80 #define EEPROM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */
81 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */
82 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
83
84 /*
85 * EEPROM bands
86 * These are the channel numbers from each band in the order
87 * that they are stored in the EEPROM band information. Note
88 * that EEPROM bands aren't the same as mac80211 bands, and
89 * there are even special "ht40 bands" in the EEPROM.
90 */
91 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
92 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
93 };
94
95 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
96 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
97 };
98
99 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
100 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
101 };
102
103 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
104 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
105 };
106
107 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
108 145, 149, 153, 157, 161, 165
109 };
110
111 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
112 1, 2, 3, 4, 5, 6, 7
113 };
114
115 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
116 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
117 };
118
119 #define IWL_NUM_CHANNELS (ARRAY_SIZE(iwl_eeprom_band_1) + \
120 ARRAY_SIZE(iwl_eeprom_band_2) + \
121 ARRAY_SIZE(iwl_eeprom_band_3) + \
122 ARRAY_SIZE(iwl_eeprom_band_4) + \
123 ARRAY_SIZE(iwl_eeprom_band_5))
124
125 /* rate data (static) */
126 static struct ieee80211_rate iwl_cfg80211_rates[] = {
127 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
128 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
129 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
131 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
132 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
133 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
134 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
135 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
136 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
137 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
138 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
139 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
140 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
141 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
142 };
143 #define RATES_24_OFFS 0
144 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
145 #define RATES_52_OFFS 4
146 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
147
148 /* EEPROM reading functions */
149
iwl_eeprom_query16(const u8 * eeprom,size_t eeprom_size,int offset)150 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
151 {
152 if (WARN_ON(offset + sizeof(u16) > eeprom_size))
153 return 0;
154 return le16_to_cpup((__le16 *)(eeprom + offset));
155 }
156
eeprom_indirect_address(const u8 * eeprom,size_t eeprom_size,u32 address)157 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
158 u32 address)
159 {
160 u16 offset = 0;
161
162 if ((address & INDIRECT_ADDRESS) == 0)
163 return address;
164
165 switch (address & INDIRECT_TYPE_MSK) {
166 case INDIRECT_HOST:
167 offset = iwl_eeprom_query16(eeprom, eeprom_size,
168 EEPROM_LINK_HOST);
169 break;
170 case INDIRECT_GENERAL:
171 offset = iwl_eeprom_query16(eeprom, eeprom_size,
172 EEPROM_LINK_GENERAL);
173 break;
174 case INDIRECT_REGULATORY:
175 offset = iwl_eeprom_query16(eeprom, eeprom_size,
176 EEPROM_LINK_REGULATORY);
177 break;
178 case INDIRECT_TXP_LIMIT:
179 offset = iwl_eeprom_query16(eeprom, eeprom_size,
180 EEPROM_LINK_TXP_LIMIT);
181 break;
182 case INDIRECT_TXP_LIMIT_SIZE:
183 offset = iwl_eeprom_query16(eeprom, eeprom_size,
184 EEPROM_LINK_TXP_LIMIT_SIZE);
185 break;
186 case INDIRECT_CALIBRATION:
187 offset = iwl_eeprom_query16(eeprom, eeprom_size,
188 EEPROM_LINK_CALIBRATION);
189 break;
190 case INDIRECT_PROCESS_ADJST:
191 offset = iwl_eeprom_query16(eeprom, eeprom_size,
192 EEPROM_LINK_PROCESS_ADJST);
193 break;
194 case INDIRECT_OTHERS:
195 offset = iwl_eeprom_query16(eeprom, eeprom_size,
196 EEPROM_LINK_OTHERS);
197 break;
198 default:
199 WARN_ON(1);
200 break;
201 }
202
203 /* translate the offset from words to byte */
204 return (address & ADDRESS_MSK) + (offset << 1);
205 }
206
iwl_eeprom_query_addr(const u8 * eeprom,size_t eeprom_size,u32 offset)207 static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
208 u32 offset)
209 {
210 u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
211
212 if (WARN_ON(address >= eeprom_size))
213 return NULL;
214
215 return &eeprom[address];
216 }
217
iwl_eeprom_read_calib(const u8 * eeprom,size_t eeprom_size,struct iwl_nvm_data * data)218 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
219 struct iwl_nvm_data *data)
220 {
221 struct iwl_eeprom_calib_hdr *hdr;
222
223 hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
224 EEPROM_CALIB_ALL);
225 if (!hdr)
226 return -ENODATA;
227 data->calib_version = hdr->version;
228 data->calib_voltage = hdr->voltage;
229
230 return 0;
231 }
232
233 /**
234 * enum iwl_eeprom_channel_flags - channel flags in EEPROM
235 * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
236 * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
237 * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
238 * @EEPROM_CHANNEL_RADAR: radar detection required
239 * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
240 * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
241 */
242 enum iwl_eeprom_channel_flags {
243 EEPROM_CHANNEL_VALID = BIT(0),
244 EEPROM_CHANNEL_IBSS = BIT(1),
245 EEPROM_CHANNEL_ACTIVE = BIT(3),
246 EEPROM_CHANNEL_RADAR = BIT(4),
247 EEPROM_CHANNEL_WIDE = BIT(5),
248 EEPROM_CHANNEL_DFS = BIT(7),
249 };
250
251 /**
252 * struct iwl_eeprom_channel - EEPROM channel data
253 * @flags: %EEPROM_CHANNEL_* flags
254 * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
255 */
256 struct iwl_eeprom_channel {
257 u8 flags;
258 s8 max_power_avg;
259 } __packed;
260
261 enum iwl_eeprom_enhanced_txpwr_flags {
262 IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
263 IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
264 IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
265 IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
266 IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
267 IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
268 IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
269 IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
270 };
271
272 /**
273 * struct iwl_eeprom_enhanced_txpwr - enhanced regulatory TX power limits
274 * @flags: entry flags
275 * @channel: channel number
276 * @chain_a_max: chain a max power in 1/2 dBm
277 * @chain_b_max: chain b max power in 1/2 dBm
278 * @chain_c_max: chain c max power in 1/2 dBm
279 * @delta_20_in_40: 20-in-40 deltas (hi/lo)
280 * @mimo2_max: mimo2 max power in 1/2 dBm
281 * @mimo3_max: mimo3 max power in 1/2 dBm
282 *
283 * This structure presents the enhanced regulatory tx power limit layout
284 * in an EEPROM image.
285 */
286 struct iwl_eeprom_enhanced_txpwr {
287 u8 flags;
288 u8 channel;
289 s8 chain_a_max;
290 s8 chain_b_max;
291 s8 chain_c_max;
292 u8 delta_20_in_40;
293 s8 mimo2_max;
294 s8 mimo3_max;
295 } __packed;
296
iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data * data,struct iwl_eeprom_enhanced_txpwr * txp)297 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
298 struct iwl_eeprom_enhanced_txpwr *txp)
299 {
300 s8 result = 0; /* (.5 dBm) */
301
302 /* Take the highest tx power from any valid chains */
303 if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
304 result = txp->chain_a_max;
305
306 if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
307 result = txp->chain_b_max;
308
309 if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
310 result = txp->chain_c_max;
311
312 if ((data->valid_tx_ant == ANT_AB ||
313 data->valid_tx_ant == ANT_BC ||
314 data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
315 result = txp->mimo2_max;
316
317 if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
318 result = txp->mimo3_max;
319
320 return result;
321 }
322
323 #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
324 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
325 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
326
327 #define TXP_CHECK_AND_PRINT(x) \
328 ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
329
330 static void
iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data * data,struct iwl_eeprom_enhanced_txpwr * txp,int n_channels,s8 max_txpower_avg)331 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
332 struct iwl_eeprom_enhanced_txpwr *txp,
333 int n_channels, s8 max_txpower_avg)
334 {
335 int ch_idx;
336 enum nl80211_band band;
337
338 band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
339 NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
340
341 for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
342 struct ieee80211_channel *chan = &data->channels[ch_idx];
343
344 /* update matching channel or from common data only */
345 if (txp->channel != 0 && chan->hw_value != txp->channel)
346 continue;
347
348 /* update matching band only */
349 if (band != chan->band)
350 continue;
351
352 if (chan->max_power < max_txpower_avg &&
353 !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
354 chan->max_power = max_txpower_avg;
355 }
356 }
357
iwl_eeprom_enhanced_txpower(struct device * dev,struct iwl_nvm_data * data,const u8 * eeprom,size_t eeprom_size,int n_channels)358 static void iwl_eeprom_enhanced_txpower(struct device *dev,
359 struct iwl_nvm_data *data,
360 const u8 *eeprom, size_t eeprom_size,
361 int n_channels)
362 {
363 struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
364 int idx, entries;
365 __le16 *txp_len;
366 s8 max_txp_avg_halfdbm;
367
368 BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
369
370 /* the length is in 16-bit words, but we want entries */
371 txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
372 EEPROM_TXP_SZ_OFFS);
373 entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
374
375 txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
376 EEPROM_TXP_OFFS);
377
378 for (idx = 0; idx < entries; idx++) {
379 txp = &txp_array[idx];
380 /* skip invalid entries */
381 if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
382 continue;
383
384 IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
385 (txp->channel && (txp->flags &
386 IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
387 "Common " : (txp->channel) ?
388 "Channel" : "Common",
389 (txp->channel),
390 TXP_CHECK_AND_PRINT(VALID),
391 TXP_CHECK_AND_PRINT(BAND_52G),
392 TXP_CHECK_AND_PRINT(OFDM),
393 TXP_CHECK_AND_PRINT(40MHZ),
394 TXP_CHECK_AND_PRINT(HT_AP),
395 TXP_CHECK_AND_PRINT(RES1),
396 TXP_CHECK_AND_PRINT(RES2),
397 TXP_CHECK_AND_PRINT(COMMON_TYPE),
398 txp->flags);
399 IWL_DEBUG_EEPROM(dev,
400 "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
401 txp->chain_a_max, txp->chain_b_max,
402 txp->chain_c_max);
403 IWL_DEBUG_EEPROM(dev,
404 "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
405 txp->mimo2_max, txp->mimo3_max,
406 ((txp->delta_20_in_40 & 0xf0) >> 4),
407 (txp->delta_20_in_40 & 0x0f));
408
409 max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
410
411 iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
412 DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
413
414 if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
415 data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
416 }
417 }
418
iwl_init_band_reference(const struct iwl_cfg * cfg,const u8 * eeprom,size_t eeprom_size,int eeprom_band,int * eeprom_ch_count,const struct iwl_eeprom_channel ** ch_info,const u8 ** eeprom_ch_array)419 static void iwl_init_band_reference(const struct iwl_cfg *cfg,
420 const u8 *eeprom, size_t eeprom_size,
421 int eeprom_band, int *eeprom_ch_count,
422 const struct iwl_eeprom_channel **ch_info,
423 const u8 **eeprom_ch_array)
424 {
425 u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
426
427 offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
428
429 *ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
430
431 switch (eeprom_band) {
432 case 1: /* 2.4GHz band */
433 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
434 *eeprom_ch_array = iwl_eeprom_band_1;
435 break;
436 case 2: /* 4.9GHz band */
437 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
438 *eeprom_ch_array = iwl_eeprom_band_2;
439 break;
440 case 3: /* 5.2GHz band */
441 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
442 *eeprom_ch_array = iwl_eeprom_band_3;
443 break;
444 case 4: /* 5.5GHz band */
445 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
446 *eeprom_ch_array = iwl_eeprom_band_4;
447 break;
448 case 5: /* 5.7GHz band */
449 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
450 *eeprom_ch_array = iwl_eeprom_band_5;
451 break;
452 case 6: /* 2.4GHz ht40 channels */
453 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
454 *eeprom_ch_array = iwl_eeprom_band_6;
455 break;
456 case 7: /* 5 GHz ht40 channels */
457 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
458 *eeprom_ch_array = iwl_eeprom_band_7;
459 break;
460 default:
461 *eeprom_ch_count = 0;
462 *eeprom_ch_array = NULL;
463 WARN_ON(1);
464 }
465 }
466
467 #define CHECK_AND_PRINT(x) \
468 ((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
469
iwl_mod_ht40_chan_info(struct device * dev,struct iwl_nvm_data * data,int n_channels,enum nl80211_band band,u16 channel,const struct iwl_eeprom_channel * eeprom_ch,u8 clear_ht40_extension_channel)470 static void iwl_mod_ht40_chan_info(struct device *dev,
471 struct iwl_nvm_data *data, int n_channels,
472 enum nl80211_band band, u16 channel,
473 const struct iwl_eeprom_channel *eeprom_ch,
474 u8 clear_ht40_extension_channel)
475 {
476 struct ieee80211_channel *chan = NULL;
477 int i;
478
479 for (i = 0; i < n_channels; i++) {
480 if (data->channels[i].band != band)
481 continue;
482 if (data->channels[i].hw_value != channel)
483 continue;
484 chan = &data->channels[i];
485 break;
486 }
487
488 if (!chan)
489 return;
490
491 IWL_DEBUG_EEPROM(dev,
492 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
493 channel,
494 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
495 CHECK_AND_PRINT(IBSS),
496 CHECK_AND_PRINT(ACTIVE),
497 CHECK_AND_PRINT(RADAR),
498 CHECK_AND_PRINT(WIDE),
499 CHECK_AND_PRINT(DFS),
500 eeprom_ch->flags,
501 eeprom_ch->max_power_avg,
502 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
503 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
504 : "not ");
505
506 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
507 chan->flags &= ~clear_ht40_extension_channel;
508 }
509
510 #define CHECK_AND_PRINT_I(x) \
511 ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
512
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const u8 * eeprom,size_t eeprom_size)513 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
514 struct iwl_nvm_data *data,
515 const u8 *eeprom, size_t eeprom_size)
516 {
517 int band, ch_idx;
518 const struct iwl_eeprom_channel *eeprom_ch_info;
519 const u8 *eeprom_ch_array;
520 int eeprom_ch_count;
521 int n_channels = 0;
522
523 /*
524 * Loop through the 5 EEPROM bands and add them to the parse list
525 */
526 for (band = 1; band <= 5; band++) {
527 struct ieee80211_channel *channel;
528
529 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
530 &eeprom_ch_count, &eeprom_ch_info,
531 &eeprom_ch_array);
532
533 /* Loop through each band adding each of the channels */
534 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
535 const struct iwl_eeprom_channel *eeprom_ch;
536
537 eeprom_ch = &eeprom_ch_info[ch_idx];
538
539 if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
540 IWL_DEBUG_EEPROM(dev,
541 "Ch. %d Flags %x [%sGHz] - No traffic\n",
542 eeprom_ch_array[ch_idx],
543 eeprom_ch_info[ch_idx].flags,
544 (band != 1) ? "5.2" : "2.4");
545 continue;
546 }
547
548 channel = &data->channels[n_channels];
549 n_channels++;
550
551 channel->hw_value = eeprom_ch_array[ch_idx];
552 channel->band = (band == 1) ? NL80211_BAND_2GHZ
553 : NL80211_BAND_5GHZ;
554 channel->center_freq =
555 ieee80211_channel_to_frequency(
556 channel->hw_value, channel->band);
557
558 /* set no-HT40, will enable as appropriate later */
559 channel->flags = IEEE80211_CHAN_NO_HT40;
560
561 if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
562 channel->flags |= IEEE80211_CHAN_NO_IR;
563
564 if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
565 channel->flags |= IEEE80211_CHAN_NO_IR;
566
567 if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
568 channel->flags |= IEEE80211_CHAN_RADAR;
569
570 /* Initialize regulatory-based run-time data */
571 channel->max_power =
572 eeprom_ch_info[ch_idx].max_power_avg;
573 IWL_DEBUG_EEPROM(dev,
574 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
575 channel->hw_value,
576 (band != 1) ? "5.2" : "2.4",
577 CHECK_AND_PRINT_I(VALID),
578 CHECK_AND_PRINT_I(IBSS),
579 CHECK_AND_PRINT_I(ACTIVE),
580 CHECK_AND_PRINT_I(RADAR),
581 CHECK_AND_PRINT_I(WIDE),
582 CHECK_AND_PRINT_I(DFS),
583 eeprom_ch_info[ch_idx].flags,
584 eeprom_ch_info[ch_idx].max_power_avg,
585 ((eeprom_ch_info[ch_idx].flags &
586 EEPROM_CHANNEL_IBSS) &&
587 !(eeprom_ch_info[ch_idx].flags &
588 EEPROM_CHANNEL_RADAR))
589 ? "" : "not ");
590 }
591 }
592
593 if (cfg->eeprom_params->enhanced_txpower) {
594 /*
595 * for newer device (6000 series and up)
596 * EEPROM contain enhanced tx power information
597 * driver need to process addition information
598 * to determine the max channel tx power limits
599 */
600 iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
601 n_channels);
602 } else {
603 /* All others use data from channel map */
604 int i;
605
606 data->max_tx_pwr_half_dbm = -128;
607
608 for (i = 0; i < n_channels; i++)
609 data->max_tx_pwr_half_dbm =
610 max_t(s8, data->max_tx_pwr_half_dbm,
611 data->channels[i].max_power * 2);
612 }
613
614 /* Check if we do have HT40 channels */
615 if (cfg->eeprom_params->regulatory_bands[5] ==
616 EEPROM_REGULATORY_BAND_NO_HT40 &&
617 cfg->eeprom_params->regulatory_bands[6] ==
618 EEPROM_REGULATORY_BAND_NO_HT40)
619 return n_channels;
620
621 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
622 for (band = 6; band <= 7; band++) {
623 enum nl80211_band ieeeband;
624
625 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
626 &eeprom_ch_count, &eeprom_ch_info,
627 &eeprom_ch_array);
628
629 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
630 ieeeband = (band == 6) ? NL80211_BAND_2GHZ
631 : NL80211_BAND_5GHZ;
632
633 /* Loop through each band adding each of the channels */
634 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
635 /* Set up driver's info for lower half */
636 iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
637 eeprom_ch_array[ch_idx],
638 &eeprom_ch_info[ch_idx],
639 IEEE80211_CHAN_NO_HT40PLUS);
640
641 /* Set up driver's info for upper half */
642 iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
643 eeprom_ch_array[ch_idx] + 4,
644 &eeprom_ch_info[ch_idx],
645 IEEE80211_CHAN_NO_HT40MINUS);
646 }
647 }
648
649 return n_channels;
650 }
651 /*
652 * EEPROM access time values:
653 *
654 * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
655 * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
656 * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
657 * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
658 */
659 #define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */
660
661 /*
662 * The device's EEPROM semaphore prevents conflicts between driver and uCode
663 * when accessing the EEPROM; each access is a series of pulses to/from the
664 * EEPROM chip, not a single event, so even reads could conflict if they
665 * weren't arbitrated by the semaphore.
666 */
667 #define IWL_EEPROM_SEM_TIMEOUT 10 /* microseconds */
668 #define IWL_EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
669
670
iwl_eeprom_acquire_semaphore(struct iwl_trans * trans)671 static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
672 {
673 u16 count;
674 int ret;
675
676 for (count = 0; count < IWL_EEPROM_SEM_RETRY_LIMIT; count++) {
677 /* Request semaphore */
678 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
679 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
680
681 /* See if we got it */
682 ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
683 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
684 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
685 IWL_EEPROM_SEM_TIMEOUT);
686 if (ret >= 0) {
687 IWL_DEBUG_EEPROM(trans->dev,
688 "Acquired semaphore after %d tries.\n",
689 count+1);
690 return ret;
691 }
692 }
693
694 return ret;
695 }
696
iwl_eeprom_release_semaphore(struct iwl_trans * trans)697 static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
698 {
699 iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
700 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
701 }
702
iwl_eeprom_verify_signature(struct iwl_trans * trans,bool nvm_is_otp)703 static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
704 {
705 u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
706
707 IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);
708
709 switch (gp) {
710 case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
711 if (!nvm_is_otp) {
712 IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
713 gp);
714 return -ENOENT;
715 }
716 return 0;
717 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
718 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
719 if (nvm_is_otp) {
720 IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
721 return -ENOENT;
722 }
723 return 0;
724 case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
725 default:
726 IWL_ERR(trans,
727 "bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
728 nvm_is_otp ? "OTP" : "EEPROM", gp);
729 return -ENOENT;
730 }
731 }
732
733 /******************************************************************************
734 *
735 * OTP related functions
736 *
737 ******************************************************************************/
738
iwl_set_otp_access_absolute(struct iwl_trans * trans)739 static void iwl_set_otp_access_absolute(struct iwl_trans *trans)
740 {
741 iwl_read32(trans, CSR_OTP_GP_REG);
742
743 iwl_clear_bit(trans, CSR_OTP_GP_REG,
744 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
745 }
746
iwl_nvm_is_otp(struct iwl_trans * trans)747 static int iwl_nvm_is_otp(struct iwl_trans *trans)
748 {
749 u32 otpgp;
750
751 /* OTP only valid for CP/PP and after */
752 switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) {
753 case CSR_HW_REV_TYPE_NONE:
754 IWL_ERR(trans, "Unknown hardware type\n");
755 return -EIO;
756 case CSR_HW_REV_TYPE_5300:
757 case CSR_HW_REV_TYPE_5350:
758 case CSR_HW_REV_TYPE_5100:
759 case CSR_HW_REV_TYPE_5150:
760 return 0;
761 default:
762 otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
763 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
764 return 1;
765 return 0;
766 }
767 }
768
iwl_init_otp_access(struct iwl_trans * trans)769 static int iwl_init_otp_access(struct iwl_trans *trans)
770 {
771 int ret;
772
773 ret = iwl_finish_nic_init(trans);
774 if (ret)
775 return ret;
776
777 iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
778 APMG_PS_CTRL_VAL_RESET_REQ);
779 udelay(5);
780 iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
781 APMG_PS_CTRL_VAL_RESET_REQ);
782
783 /*
784 * CSR auto clock gate disable bit -
785 * this is only applicable for HW with OTP shadow RAM
786 */
787 if (trans->trans_cfg->base_params->shadow_ram_support)
788 iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
789 CSR_RESET_LINK_PWR_MGMT_DISABLED);
790
791 return 0;
792 }
793
iwl_read_otp_word(struct iwl_trans * trans,u16 addr,__le16 * eeprom_data)794 static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
795 __le16 *eeprom_data)
796 {
797 int ret = 0;
798 u32 r;
799 u32 otpgp;
800
801 iwl_write32(trans, CSR_EEPROM_REG,
802 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
803 ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
804 CSR_EEPROM_REG_READ_VALID_MSK,
805 CSR_EEPROM_REG_READ_VALID_MSK,
806 IWL_EEPROM_ACCESS_TIMEOUT);
807 if (ret < 0) {
808 IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
809 return ret;
810 }
811 r = iwl_read32(trans, CSR_EEPROM_REG);
812 /* check for ECC errors: */
813 otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
814 if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
815 /* stop in this case */
816 /* set the uncorrectable OTP ECC bit for acknowledgment */
817 iwl_set_bit(trans, CSR_OTP_GP_REG,
818 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
819 IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
820 return -EINVAL;
821 }
822 if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
823 /* continue in this case */
824 /* set the correctable OTP ECC bit for acknowledgment */
825 iwl_set_bit(trans, CSR_OTP_GP_REG,
826 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
827 IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
828 }
829 *eeprom_data = cpu_to_le16(r >> 16);
830 return 0;
831 }
832
833 /*
834 * iwl_is_otp_empty: check for empty OTP
835 */
iwl_is_otp_empty(struct iwl_trans * trans)836 static bool iwl_is_otp_empty(struct iwl_trans *trans)
837 {
838 u16 next_link_addr = 0;
839 __le16 link_value;
840 bool is_empty = false;
841
842 /* locate the beginning of OTP link list */
843 if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
844 if (!link_value) {
845 IWL_ERR(trans, "OTP is empty\n");
846 is_empty = true;
847 }
848 } else {
849 IWL_ERR(trans, "Unable to read first block of OTP list.\n");
850 is_empty = true;
851 }
852
853 return is_empty;
854 }
855
856
857 /*
858 * iwl_find_otp_image: find EEPROM image in OTP
859 * finding the OTP block that contains the EEPROM image.
860 * the last valid block on the link list (the block _before_ the last block)
861 * is the block we should read and used to configure the device.
862 * If all the available OTP blocks are full, the last block will be the block
863 * we should read and used to configure the device.
864 * only perform this operation if shadow RAM is disabled
865 */
iwl_find_otp_image(struct iwl_trans * trans,u16 * validblockaddr)866 static int iwl_find_otp_image(struct iwl_trans *trans,
867 u16 *validblockaddr)
868 {
869 u16 next_link_addr = 0, valid_addr;
870 __le16 link_value = 0;
871 int usedblocks = 0;
872
873 /* set addressing mode to absolute to traverse the link list */
874 iwl_set_otp_access_absolute(trans);
875
876 /* checking for empty OTP or error */
877 if (iwl_is_otp_empty(trans))
878 return -EINVAL;
879
880 /*
881 * start traverse link list
882 * until reach the max number of OTP blocks
883 * different devices have different number of OTP blocks
884 */
885 do {
886 /* save current valid block address
887 * check for more block on the link list
888 */
889 valid_addr = next_link_addr;
890 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
891 IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
892 usedblocks, next_link_addr);
893 if (iwl_read_otp_word(trans, next_link_addr, &link_value))
894 return -EINVAL;
895 if (!link_value) {
896 /*
897 * reach the end of link list, return success and
898 * set address point to the starting address
899 * of the image
900 */
901 *validblockaddr = valid_addr;
902 /* skip first 2 bytes (link list pointer) */
903 *validblockaddr += 2;
904 return 0;
905 }
906 /* more in the link list, continue */
907 usedblocks++;
908 } while (usedblocks <= trans->trans_cfg->base_params->max_ll_items);
909
910 /* OTP has no valid blocks */
911 IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
912 return -EINVAL;
913 }
914
915 /*
916 * iwl_read_eeprom - read EEPROM contents
917 *
918 * Load the EEPROM contents from adapter and return it
919 * and its size.
920 *
921 * NOTE: This routine uses the non-debug IO access functions.
922 */
iwl_read_eeprom(struct iwl_trans * trans,u8 ** eeprom,size_t * eeprom_size)923 int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
924 {
925 __le16 *e;
926 u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
927 int sz;
928 int ret;
929 u16 addr;
930 u16 validblockaddr = 0;
931 u16 cache_addr = 0;
932 int nvm_is_otp;
933
934 if (!eeprom || !eeprom_size)
935 return -EINVAL;
936
937 nvm_is_otp = iwl_nvm_is_otp(trans);
938 if (nvm_is_otp < 0)
939 return nvm_is_otp;
940
941 sz = trans->trans_cfg->base_params->eeprom_size;
942 IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);
943
944 e = kmalloc(sz, GFP_KERNEL);
945 if (!e)
946 return -ENOMEM;
947
948 ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
949 if (ret < 0) {
950 IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
951 goto err_free;
952 }
953
954 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
955 ret = iwl_eeprom_acquire_semaphore(trans);
956 if (ret < 0) {
957 IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
958 goto err_free;
959 }
960
961 if (nvm_is_otp) {
962 ret = iwl_init_otp_access(trans);
963 if (ret) {
964 IWL_ERR(trans, "Failed to initialize OTP access.\n");
965 goto err_unlock;
966 }
967
968 iwl_write32(trans, CSR_EEPROM_GP,
969 iwl_read32(trans, CSR_EEPROM_GP) &
970 ~CSR_EEPROM_GP_IF_OWNER_MSK);
971
972 iwl_set_bit(trans, CSR_OTP_GP_REG,
973 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
974 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
975 /* traversing the linked list if no shadow ram supported */
976 if (!trans->trans_cfg->base_params->shadow_ram_support) {
977 ret = iwl_find_otp_image(trans, &validblockaddr);
978 if (ret)
979 goto err_unlock;
980 }
981 for (addr = validblockaddr; addr < validblockaddr + sz;
982 addr += sizeof(u16)) {
983 __le16 eeprom_data;
984
985 ret = iwl_read_otp_word(trans, addr, &eeprom_data);
986 if (ret)
987 goto err_unlock;
988 e[cache_addr / 2] = eeprom_data;
989 cache_addr += sizeof(u16);
990 }
991 } else {
992 /* eeprom is an array of 16bit values */
993 for (addr = 0; addr < sz; addr += sizeof(u16)) {
994 u32 r;
995
996 iwl_write32(trans, CSR_EEPROM_REG,
997 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
998
999 ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
1000 CSR_EEPROM_REG_READ_VALID_MSK,
1001 CSR_EEPROM_REG_READ_VALID_MSK,
1002 IWL_EEPROM_ACCESS_TIMEOUT);
1003 if (ret < 0) {
1004 IWL_ERR(trans,
1005 "Time out reading EEPROM[%d]\n", addr);
1006 goto err_unlock;
1007 }
1008 r = iwl_read32(trans, CSR_EEPROM_REG);
1009 e[addr / 2] = cpu_to_le16(r >> 16);
1010 }
1011 }
1012
1013 IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
1014 nvm_is_otp ? "OTP" : "EEPROM");
1015
1016 iwl_eeprom_release_semaphore(trans);
1017
1018 *eeprom_size = sz;
1019 *eeprom = (u8 *)e;
1020 return 0;
1021
1022 err_unlock:
1023 iwl_eeprom_release_semaphore(trans);
1024 err_free:
1025 kfree(e);
1026
1027 return ret;
1028 }
1029
iwl_init_sbands(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const u8 * eeprom,size_t eeprom_size)1030 static void iwl_init_sbands(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1031 struct iwl_nvm_data *data,
1032 const u8 *eeprom, size_t eeprom_size)
1033 {
1034 struct device *dev = trans->dev;
1035 int n_channels = iwl_init_channel_map(dev, cfg, data,
1036 eeprom, eeprom_size);
1037 int n_used = 0;
1038 struct ieee80211_supported_band *sband;
1039
1040 sband = &data->bands[NL80211_BAND_2GHZ];
1041 sband->band = NL80211_BAND_2GHZ;
1042 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1043 sband->n_bitrates = N_RATES_24;
1044 n_used += iwl_init_sband_channels(data, sband, n_channels,
1045 NL80211_BAND_2GHZ);
1046 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1047 data->valid_tx_ant, data->valid_rx_ant);
1048
1049 sband = &data->bands[NL80211_BAND_5GHZ];
1050 sband->band = NL80211_BAND_5GHZ;
1051 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1052 sband->n_bitrates = N_RATES_52;
1053 n_used += iwl_init_sband_channels(data, sband, n_channels,
1054 NL80211_BAND_5GHZ);
1055 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1056 data->valid_tx_ant, data->valid_rx_ant);
1057
1058 if (n_channels != n_used)
1059 IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
1060 n_used, n_channels);
1061 }
1062
1063 /* EEPROM data functions */
1064 struct iwl_nvm_data *
iwl_parse_eeprom_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const u8 * eeprom,size_t eeprom_size)1065 iwl_parse_eeprom_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1066 const u8 *eeprom, size_t eeprom_size)
1067 {
1068 struct iwl_nvm_data *data;
1069 struct device *dev = trans->dev;
1070 const void *tmp;
1071 u16 radio_cfg, sku;
1072
1073 if (WARN_ON(!cfg || !cfg->eeprom_params))
1074 return NULL;
1075
1076 data = kzalloc(struct_size(data, channels, IWL_NUM_CHANNELS),
1077 GFP_KERNEL);
1078 if (!data)
1079 return NULL;
1080
1081 /* get MAC address(es) */
1082 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
1083 if (!tmp)
1084 goto err_free;
1085 memcpy(data->hw_addr, tmp, ETH_ALEN);
1086 data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
1087 EEPROM_NUM_MAC_ADDRESS);
1088
1089 if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
1090 goto err_free;
1091
1092 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
1093 if (!tmp)
1094 goto err_free;
1095 memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
1096
1097 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1098 EEPROM_RAW_TEMPERATURE);
1099 if (!tmp)
1100 goto err_free;
1101 data->raw_temperature = *(__le16 *)tmp;
1102
1103 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1104 EEPROM_KELVIN_TEMPERATURE);
1105 if (!tmp)
1106 goto err_free;
1107 data->kelvin_temperature = *(__le16 *)tmp;
1108 data->kelvin_voltage = *((__le16 *)tmp + 1);
1109
1110 radio_cfg =
1111 iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
1112 data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
1113 data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
1114 data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
1115 data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
1116 data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
1117 data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
1118
1119 sku = iwl_eeprom_query16(eeprom, eeprom_size,
1120 EEPROM_SKU_CAP);
1121 data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
1122 data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
1123 data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
1124 data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
1125 data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
1126 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1127 data->sku_cap_11n_enable = false;
1128
1129 data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
1130 EEPROM_VERSION);
1131
1132 /* check overrides (some devices have wrong EEPROM) */
1133 if (cfg->valid_tx_ant)
1134 data->valid_tx_ant = cfg->valid_tx_ant;
1135 if (cfg->valid_rx_ant)
1136 data->valid_rx_ant = cfg->valid_rx_ant;
1137
1138 if (!data->valid_tx_ant || !data->valid_rx_ant) {
1139 IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
1140 data->valid_tx_ant, data->valid_rx_ant);
1141 goto err_free;
1142 }
1143
1144 iwl_init_sbands(trans, cfg, data, eeprom, eeprom_size);
1145
1146 return data;
1147 err_free:
1148 kfree(data);
1149 return NULL;
1150 }
1151