1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6 
7 #include <linux/dim.h>
8 
9 #include <net/libeth/cache.h>
10 #include <net/tcp.h>
11 #include <net/netdev_queues.h>
12 
13 #include "idpf_lan_txrx.h"
14 #include "virtchnl2_lan_desc.h"
15 
16 #define IDPF_LARGE_MAX_Q			256
17 #define IDPF_MAX_Q				16
18 #define IDPF_MIN_Q				2
19 /* Mailbox Queue */
20 #define IDPF_MAX_MBXQ				1
21 
22 #define IDPF_MIN_TXQ_DESC			64
23 #define IDPF_MIN_RXQ_DESC			64
24 #define IDPF_MIN_TXQ_COMPLQ_DESC		256
25 #define IDPF_MAX_QIDS				256
26 
27 /* Number of descriptors in a queue should be a multiple of 32. RX queue
28  * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
29  * to achieve BufQ descriptors aligned to 32
30  */
31 #define IDPF_REQ_DESC_MULTIPLE			32
32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
35 
36 #define IDPF_MAX_DESCS				8160
37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
39 #define MIN_SUPPORT_TXDID (\
40 	VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
41 	VIRTCHNL2_TXDID_FLEX_TSO_CTX)
42 
43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS		1
44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS		1
45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP		4
46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP		4
47 
48 #define IDPF_COMPLQ_PER_GROUP			1
49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP		1
50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP		2
51 #define IDPF_BUFQ2_ENA				1
52 #define IDPF_NUMQ_PER_CHUNK			1
53 
54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP		1
55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP		1
56 
57 /* Default vector sharing */
58 #define IDPF_MBX_Q_VEC		1
59 #define IDPF_MIN_Q_VEC		1
60 
61 #define IDPF_DFLT_TX_Q_DESC_COUNT		512
62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT		512
63 #define IDPF_DFLT_RX_Q_DESC_COUNT		512
64 
65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
66  * given RX completion queue has descriptors. This includes _ALL_ buffer
67  * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
68  * you have a total of 1024 buffers so your RX queue _must_ have at least that
69  * many descriptors. This macro divides a given number of RX descriptors by
70  * number of buffer queues to calculate how many descriptors each buffer queue
71  * can have without overrunning the RX queue.
72  *
73  * If you give hardware more buffers than completion descriptors what will
74  * happen is that if hardware gets a chance to post more than ring wrap of
75  * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
76  * in the descriptor will be wrong. Any overwritten descriptors' buffers will
77  * be gone forever and SW has no reasonable way to tell that this has happened.
78  * From SW perspective, when we finally get an interrupt, it looks like we're
79  * still waiting for descriptor to be done, stalling forever.
80  */
81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ)	((RXD) / (NUM_BUFQ))
82 
83 #define IDPF_RX_BUFQ_WORKING_SET(rxq)		((rxq)->desc_count - 1)
84 
85 #define IDPF_RX_BUMP_NTC(rxq, ntc)				\
86 do {								\
87 	if (unlikely(++(ntc) == (rxq)->desc_count)) {		\
88 		ntc = 0;					\
89 		idpf_queue_change(GEN_CHK, rxq);		\
90 	}							\
91 } while (0)
92 
93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx)			\
94 do {								\
95 	if (unlikely(++(idx) == (q)->desc_count))		\
96 		idx = 0;					\
97 } while (0)
98 
99 #define IDPF_RX_BUF_STRIDE			32
100 #define IDPF_RX_BUF_POST_STRIDE			16
101 #define IDPF_LOW_WATERMARK			64
102 
103 #define IDPF_TX_TSO_MIN_MSS			88
104 
105 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
106  * only relevant in flow scheduling mode
107  */
108 #define IDPF_TX_SPLITQ_RE_MIN_GAP	64
109 
110 #define IDPF_RX_BI_GEN_M		BIT(16)
111 #define IDPF_RX_BI_BUFID_M		GENMASK(15, 0)
112 
113 #define IDPF_RXD_EOF_SPLITQ		VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
114 #define IDPF_RXD_EOF_SINGLEQ		VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
115 
116 #define IDPF_DESC_UNUSED(txq)     \
117 	((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
118 	(txq)->next_to_clean - (txq)->next_to_use - 1)
119 
120 #define IDPF_TX_BUF_RSV_UNUSED(txq)	((txq)->stash->buf_stack.top)
121 #define IDPF_TX_BUF_RSV_LOW(txq)	(IDPF_TX_BUF_RSV_UNUSED(txq) < \
122 					 (txq)->desc_count >> 2)
123 
124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq)	((txcq)->desc_count >> 1)
125 /* Determine the absolute number of completions pending, i.e. the number of
126  * completions that are expected to arrive on the TX completion queue.
127  */
128 #define IDPF_TX_COMPLQ_PENDING(txq)	\
129 	(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
130 	0 : U32_MAX) + \
131 	(txq)->num_completions_pending - (txq)->complq->num_completions)
132 
133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH	16
134 /* Adjust the generation for the completion tag and wrap if necessary */
135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
136 	((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
137 	0 : (txq)->compl_tag_cur_gen)
138 
139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
140 
141 #define IDPF_TX_FLAGS_TSO		BIT(0)
142 #define IDPF_TX_FLAGS_IPV4		BIT(1)
143 #define IDPF_TX_FLAGS_IPV6		BIT(2)
144 #define IDPF_TX_FLAGS_TUNNEL		BIT(3)
145 
146 union idpf_tx_flex_desc {
147 	struct idpf_flex_tx_desc q; /* queue based scheduling */
148 	struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
149 };
150 
151 #define idpf_tx_buf libeth_sqe
152 
153 /**
154  * struct idpf_buf_lifo - LIFO for managing OOO completions
155  * @top: Used to know how many buffers are left
156  * @size: Total size of LIFO
157  * @bufs: Backing array
158  */
159 struct idpf_buf_lifo {
160 	u16 top;
161 	u16 size;
162 	struct idpf_tx_stash **bufs;
163 };
164 
165 /**
166  * struct idpf_tx_offload_params - Offload parameters for a given packet
167  * @tx_flags: Feature flags enabled for this packet
168  * @hdr_offsets: Offset parameter for single queue model
169  * @cd_tunneling: Type of tunneling enabled for single queue model
170  * @tso_len: Total length of payload to segment
171  * @mss: Segment size
172  * @tso_segs: Number of segments to be sent
173  * @tso_hdr_len: Length of headers to be duplicated
174  * @td_cmd: Command field to be inserted into descriptor
175  */
176 struct idpf_tx_offload_params {
177 	u32 tx_flags;
178 
179 	u32 hdr_offsets;
180 	u32 cd_tunneling;
181 
182 	u32 tso_len;
183 	u16 mss;
184 	u16 tso_segs;
185 	u16 tso_hdr_len;
186 
187 	u16 td_cmd;
188 };
189 
190 /**
191  * struct idpf_tx_splitq_params
192  * @dtype: General descriptor info
193  * @eop_cmd: Type of EOP
194  * @compl_tag: Associated tag for completion
195  * @td_tag: Descriptor tunneling tag
196  * @offload: Offload parameters
197  */
198 struct idpf_tx_splitq_params {
199 	enum idpf_tx_desc_dtype_value dtype;
200 	u16 eop_cmd;
201 	union {
202 		u16 compl_tag;
203 		u16 td_tag;
204 	};
205 
206 	struct idpf_tx_offload_params offload;
207 };
208 
209 enum idpf_tx_ctx_desc_eipt_offload {
210 	IDPF_TX_CTX_EXT_IP_NONE         = 0x0,
211 	IDPF_TX_CTX_EXT_IP_IPV6         = 0x1,
212 	IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
213 	IDPF_TX_CTX_EXT_IP_IPV4         = 0x3
214 };
215 
216 /* Checksum offload bits decoded from the receive descriptor. */
217 struct idpf_rx_csum_decoded {
218 	u32 l3l4p : 1;
219 	u32 ipe : 1;
220 	u32 eipe : 1;
221 	u32 eudpe : 1;
222 	u32 ipv6exadd : 1;
223 	u32 l4e : 1;
224 	u32 pprs : 1;
225 	u32 nat : 1;
226 	u32 raw_csum_inv : 1;
227 	u32 raw_csum : 16;
228 };
229 
230 struct idpf_rx_extracted {
231 	unsigned int size;
232 	u16 rx_ptype;
233 };
234 
235 #define IDPF_TX_COMPLQ_CLEAN_BUDGET	256
236 #define IDPF_TX_MIN_PKT_LEN		17
237 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR	1
238 #define IDPF_TX_DESCS_PER_CACHE_LINE	(L1_CACHE_BYTES / \
239 					 sizeof(struct idpf_flex_tx_desc))
240 #define IDPF_TX_DESCS_FOR_CTX		1
241 /* TX descriptors needed, worst case */
242 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
243 			     IDPF_TX_DESCS_PER_CACHE_LINE + \
244 			     IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
245 
246 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
247  * In order to align with the read requests we will align the value to
248  * the nearest 4K which represents our maximum read request size.
249  */
250 #define IDPF_TX_MAX_READ_REQ_SIZE	SZ_4K
251 #define IDPF_TX_MAX_DESC_DATA		(SZ_16K - 1)
252 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
253 	ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
254 
255 #define idpf_rx_buf libeth_fqe
256 
257 #define IDPF_RX_MAX_PTYPE_PROTO_IDS    32
258 #define IDPF_RX_MAX_PTYPE_SZ	(sizeof(struct virtchnl2_ptype) + \
259 				 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
260 #define IDPF_RX_PTYPE_HDR_SZ	sizeof(struct virtchnl2_get_ptype_info)
261 #define IDPF_RX_MAX_PTYPES_PER_BUF	\
262 	DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
263 			   IDPF_RX_MAX_PTYPE_SZ)
264 
265 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
266 
267 #define IDPF_TUN_IP_GRE (\
268 	IDPF_PTYPE_TUNNEL_IP |\
269 	IDPF_PTYPE_TUNNEL_IP_GRENAT)
270 
271 #define IDPF_TUN_IP_GRE_MAC (\
272 	IDPF_TUN_IP_GRE |\
273 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
274 
275 #define IDPF_RX_MAX_PTYPE	1024
276 #define IDPF_RX_MAX_BASE_PTYPE	256
277 #define IDPF_INVALID_PTYPE_ID	0xFFFF
278 
279 enum idpf_tunnel_state {
280 	IDPF_PTYPE_TUNNEL_IP                    = BIT(0),
281 	IDPF_PTYPE_TUNNEL_IP_GRENAT             = BIT(1),
282 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC         = BIT(2),
283 };
284 
285 struct idpf_ptype_state {
286 	bool outer_ip:1;
287 	bool outer_frag:1;
288 	u8 tunnel_state:6;
289 };
290 
291 /**
292  * enum idpf_queue_flags_t
293  * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
294  *		      identify new descriptor writebacks on the ring. HW sets
295  *		      the gen bit to 1 on the first writeback of any given
296  *		      descriptor. After the ring wraps, HW sets the gen bit of
297  *		      those descriptors to 0, and continues flipping
298  *		      0->1 or 1->0 on each ring wrap. SW maintains its own
299  *		      gen bit to know what value will indicate writebacks on
300  *		      the next pass around the ring. E.g. it is initialized
301  *		      to 1 and knows that reading a gen bit of 1 in any
302  *		      descriptor on the initial pass of the ring indicates a
303  *		      writeback. It also flips on every ring wrap.
304  * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
305  *			  bit and Q_RFL_GEN is the SW bit.
306  * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
307  * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
308  * @__IDPF_Q_POLL_MODE: Enable poll mode
309  * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
310  * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
311  * @__IDPF_Q_FLAGS_NBITS: Must be last
312  */
313 enum idpf_queue_flags_t {
314 	__IDPF_Q_GEN_CHK,
315 	__IDPF_Q_RFL_GEN_CHK,
316 	__IDPF_Q_FLOW_SCH_EN,
317 	__IDPF_Q_SW_MARKER,
318 	__IDPF_Q_POLL_MODE,
319 	__IDPF_Q_CRC_EN,
320 	__IDPF_Q_HSPLIT_EN,
321 
322 	__IDPF_Q_FLAGS_NBITS,
323 };
324 
325 #define idpf_queue_set(f, q)		__set_bit(__IDPF_Q_##f, (q)->flags)
326 #define idpf_queue_clear(f, q)		__clear_bit(__IDPF_Q_##f, (q)->flags)
327 #define idpf_queue_change(f, q)		__change_bit(__IDPF_Q_##f, (q)->flags)
328 #define idpf_queue_has(f, q)		test_bit(__IDPF_Q_##f, (q)->flags)
329 
330 #define idpf_queue_has_clear(f, q)			\
331 	__test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
332 #define idpf_queue_assign(f, q, v)			\
333 	__assign_bit(__IDPF_Q_##f, (q)->flags, v)
334 
335 /**
336  * struct idpf_vec_regs
337  * @dyn_ctl_reg: Dynamic control interrupt register offset
338  * @itrn_reg: Interrupt Throttling Rate register offset
339  * @itrn_index_spacing: Register spacing between ITR registers of the same
340  *			vector
341  */
342 struct idpf_vec_regs {
343 	u32 dyn_ctl_reg;
344 	u32 itrn_reg;
345 	u32 itrn_index_spacing;
346 };
347 
348 /**
349  * struct idpf_intr_reg
350  * @dyn_ctl: Dynamic control interrupt register
351  * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
352  * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask
353  * @dyn_ctl_itridx_s: Register bit offset for ITR index
354  * @dyn_ctl_itridx_m: Mask for ITR index
355  * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
356  * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature
357  * @rx_itr: RX ITR register
358  * @tx_itr: TX ITR register
359  * @icr_ena: Interrupt cause register offset
360  * @icr_ena_ctlq_m: Mask for ICR
361  */
362 struct idpf_intr_reg {
363 	void __iomem *dyn_ctl;
364 	u32 dyn_ctl_intena_m;
365 	u32 dyn_ctl_intena_msk_m;
366 	u32 dyn_ctl_itridx_s;
367 	u32 dyn_ctl_itridx_m;
368 	u32 dyn_ctl_intrvl_s;
369 	u32 dyn_ctl_wb_on_itr_m;
370 	void __iomem *rx_itr;
371 	void __iomem *tx_itr;
372 	void __iomem *icr_ena;
373 	u32 icr_ena_ctlq_m;
374 };
375 
376 /**
377  * struct idpf_q_vector
378  * @vport: Vport back pointer
379  * @num_rxq: Number of RX queues
380  * @num_txq: Number of TX queues
381  * @num_bufq: Number of buffer queues
382  * @num_complq: number of completion queues
383  * @rx: Array of RX queues to service
384  * @tx: Array of TX queues to service
385  * @bufq: Array of buffer queues to service
386  * @complq: array of completion queues
387  * @intr_reg: See struct idpf_intr_reg
388  * @napi: napi handler
389  * @total_events: Number of interrupts processed
390  * @wb_on_itr: whether WB on ITR is enabled
391  * @tx_dim: Data for TX net_dim algorithm
392  * @tx_itr_value: TX interrupt throttling rate
393  * @tx_intr_mode: Dynamic ITR or not
394  * @tx_itr_idx: TX ITR index
395  * @rx_dim: Data for RX net_dim algorithm
396  * @rx_itr_value: RX interrupt throttling rate
397  * @rx_intr_mode: Dynamic ITR or not
398  * @rx_itr_idx: RX ITR index
399  * @v_idx: Vector index
400  * @affinity_mask: CPU affinity mask
401  */
402 struct idpf_q_vector {
403 	__cacheline_group_begin_aligned(read_mostly);
404 	struct idpf_vport *vport;
405 
406 	u16 num_rxq;
407 	u16 num_txq;
408 	u16 num_bufq;
409 	u16 num_complq;
410 	struct idpf_rx_queue **rx;
411 	struct idpf_tx_queue **tx;
412 	struct idpf_buf_queue **bufq;
413 	struct idpf_compl_queue **complq;
414 
415 	struct idpf_intr_reg intr_reg;
416 	__cacheline_group_end_aligned(read_mostly);
417 
418 	__cacheline_group_begin_aligned(read_write);
419 	struct napi_struct napi;
420 	u16 total_events;
421 	bool wb_on_itr;
422 
423 	struct dim tx_dim;
424 	u16 tx_itr_value;
425 	bool tx_intr_mode;
426 	u32 tx_itr_idx;
427 
428 	struct dim rx_dim;
429 	u16 rx_itr_value;
430 	bool rx_intr_mode;
431 	u32 rx_itr_idx;
432 	__cacheline_group_end_aligned(read_write);
433 
434 	__cacheline_group_begin_aligned(cold);
435 	u16 v_idx;
436 
437 	cpumask_var_t affinity_mask;
438 	__cacheline_group_end_aligned(cold);
439 };
440 libeth_cacheline_set_assert(struct idpf_q_vector, 112,
441 			    424 + 2 * sizeof(struct dim),
442 			    8 + sizeof(cpumask_var_t));
443 
444 struct idpf_rx_queue_stats {
445 	u64_stats_t packets;
446 	u64_stats_t bytes;
447 	u64_stats_t rsc_pkts;
448 	u64_stats_t hw_csum_err;
449 	u64_stats_t hsplit_pkts;
450 	u64_stats_t hsplit_buf_ovf;
451 	u64_stats_t bad_descs;
452 };
453 
454 struct idpf_tx_queue_stats {
455 	u64_stats_t packets;
456 	u64_stats_t bytes;
457 	u64_stats_t lso_pkts;
458 	u64_stats_t linearize;
459 	u64_stats_t q_busy;
460 	u64_stats_t skb_drops;
461 	u64_stats_t dma_map_errs;
462 };
463 
464 #define IDPF_ITR_DYNAMIC	1
465 #define IDPF_ITR_MAX		0x1FE0
466 #define IDPF_ITR_20K		0x0032
467 #define IDPF_ITR_GRAN_S		1	/* Assume ITR granularity is 2us */
468 #define IDPF_ITR_MASK		0x1FFE  /* ITR register value alignment mask */
469 #define ITR_REG_ALIGN(setting)	((setting) & IDPF_ITR_MASK)
470 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
471 #define IDPF_ITR_TX_DEF		IDPF_ITR_20K
472 #define IDPF_ITR_RX_DEF		IDPF_ITR_20K
473 /* Index used for 'No ITR' update in DYN_CTL register */
474 #define IDPF_NO_ITR_UPDATE_IDX	3
475 #define IDPF_ITR_IDX_SPACING(spacing, dflt)	(spacing ? spacing : dflt)
476 #define IDPF_DIM_DEFAULT_PROFILE_IX		1
477 
478 /**
479  * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
480  * @buf_stack: Stack of empty buffers to store buffer info for out of order
481  *	       buffer completions. See struct idpf_buf_lifo
482  * @sched_buf_hash: Hash table to store buffers
483  */
484 struct idpf_txq_stash {
485 	struct idpf_buf_lifo buf_stack;
486 	DECLARE_HASHTABLE(sched_buf_hash, 12);
487 } ____cacheline_aligned;
488 
489 /**
490  * struct idpf_rx_queue - software structure representing a receive queue
491  * @rx: universal receive descriptor array
492  * @single_buf: buffer descriptor array in singleq
493  * @desc_ring: virtual descriptor ring address
494  * @bufq_sets: Pointer to the array of buffer queues in splitq mode
495  * @napi: NAPI instance corresponding to this queue (splitq)
496  * @rx_buf: See struct &libeth_fqe
497  * @pp: Page pool pointer in singleq mode
498  * @netdev: &net_device corresponding to this queue
499  * @tail: Tail offset. Used for both queue models single and split.
500  * @flags: See enum idpf_queue_flags_t
501  * @idx: For RX queue, it is used to index to total RX queue across groups and
502  *	 used for skb reporting.
503  * @desc_count: Number of descriptors
504  * @rxdids: Supported RX descriptor ids
505  * @rx_ptype_lkup: LUT of Rx ptypes
506  * @next_to_use: Next descriptor to use
507  * @next_to_clean: Next descriptor to clean
508  * @next_to_alloc: RX buffer to allocate at
509  * @skb: Pointer to the skb
510  * @truesize: data buffer truesize in singleq
511  * @stats_sync: See struct u64_stats_sync
512  * @q_stats: See union idpf_rx_queue_stats
513  * @q_id: Queue id
514  * @size: Length of descriptor ring in bytes
515  * @dma: Physical address of ring
516  * @q_vector: Backreference to associated vector
517  * @rx_buffer_low_watermark: RX buffer low watermark
518  * @rx_hbuf_size: Header buffer size
519  * @rx_buf_size: Buffer size
520  * @rx_max_pkt_size: RX max packet size
521  */
522 struct idpf_rx_queue {
523 	__cacheline_group_begin_aligned(read_mostly);
524 	union {
525 		union virtchnl2_rx_desc *rx;
526 		struct virtchnl2_singleq_rx_buf_desc *single_buf;
527 
528 		void *desc_ring;
529 	};
530 	union {
531 		struct {
532 			struct idpf_bufq_set *bufq_sets;
533 			struct napi_struct *napi;
534 		};
535 		struct {
536 			struct libeth_fqe *rx_buf;
537 			struct page_pool *pp;
538 		};
539 	};
540 	struct net_device *netdev;
541 	void __iomem *tail;
542 
543 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
544 	u16 idx;
545 	u16 desc_count;
546 
547 	u32 rxdids;
548 	const struct libeth_rx_pt *rx_ptype_lkup;
549 	__cacheline_group_end_aligned(read_mostly);
550 
551 	__cacheline_group_begin_aligned(read_write);
552 	u16 next_to_use;
553 	u16 next_to_clean;
554 	u16 next_to_alloc;
555 
556 	struct sk_buff *skb;
557 	u32 truesize;
558 
559 	struct u64_stats_sync stats_sync;
560 	struct idpf_rx_queue_stats q_stats;
561 	__cacheline_group_end_aligned(read_write);
562 
563 	__cacheline_group_begin_aligned(cold);
564 	u32 q_id;
565 	u32 size;
566 	dma_addr_t dma;
567 
568 	struct idpf_q_vector *q_vector;
569 
570 	u16 rx_buffer_low_watermark;
571 	u16 rx_hbuf_size;
572 	u16 rx_buf_size;
573 	u16 rx_max_pkt_size;
574 	__cacheline_group_end_aligned(cold);
575 };
576 libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
577 			    80 + sizeof(struct u64_stats_sync),
578 			    32);
579 
580 /**
581  * struct idpf_tx_queue - software structure representing a transmit queue
582  * @base_tx: base Tx descriptor array
583  * @base_ctx: base Tx context descriptor array
584  * @flex_tx: flex Tx descriptor array
585  * @flex_ctx: flex Tx context descriptor array
586  * @desc_ring: virtual descriptor ring address
587  * @tx_buf: See struct idpf_tx_buf
588  * @txq_grp: See struct idpf_txq_group
589  * @dev: Device back pointer for DMA mapping
590  * @tail: Tail offset. Used for both queue models single and split
591  * @flags: See enum idpf_queue_flags_t
592  * @idx: For TX queue, it is used as index to map between TX queue group and
593  *	 hot path TX pointers stored in vport. Used in both singleq/splitq.
594  * @desc_count: Number of descriptors
595  * @tx_min_pkt_len: Min supported packet length
596  * @compl_tag_gen_s: Completion tag generation bit
597  *	The format of the completion tag will change based on the TXQ
598  *	descriptor ring size so that we can maintain roughly the same level
599  *	of "uniqueness" across all descriptor sizes. For example, if the
600  *	TXQ descriptor ring size is 64 (the minimum size supported), the
601  *	completion tag will be formatted as below:
602  *	15                 6 5         0
603  *	--------------------------------
604  *	|    GEN=0-1023     |IDX = 0-63|
605  *	--------------------------------
606  *
607  *	This gives us 64*1024 = 65536 possible unique values. Similarly, if
608  *	the TXQ descriptor ring size is 8160 (the maximum size supported),
609  *	the completion tag will be formatted as below:
610  *	15 13 12                       0
611  *	--------------------------------
612  *	|GEN |       IDX = 0-8159      |
613  *	--------------------------------
614  *
615  *	This gives us 8*8160 = 65280 possible unique values.
616  * @netdev: &net_device corresponding to this queue
617  * @next_to_use: Next descriptor to use
618  * @next_to_clean: Next descriptor to clean
619  * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
620  *		   the TX completion queue, it can be for any TXQ associated
621  *		   with that completion queue. This means we can clean up to
622  *		   N TXQs during a single call to clean the completion queue.
623  *		   cleaned_bytes|pkts tracks the clean stats per TXQ during
624  *		   that single call to clean the completion queue. By doing so,
625  *		   we can update BQL with aggregate cleaned stats for each TXQ
626  *		   only once at the end of the cleaning routine.
627  * @clean_budget: singleq only, queue cleaning budget
628  * @cleaned_pkts: Number of packets cleaned for the above said case
629  * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
630  * @stash: Tx buffer stash for Flow-based scheduling mode
631  * @compl_tag_bufid_m: Completion tag buffer id mask
632  * @compl_tag_cur_gen: Used to keep track of current completion tag generation
633  * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
634  * @stats_sync: See struct u64_stats_sync
635  * @q_stats: See union idpf_tx_queue_stats
636  * @q_id: Queue id
637  * @size: Length of descriptor ring in bytes
638  * @dma: Physical address of ring
639  * @q_vector: Backreference to associated vector
640  */
641 struct idpf_tx_queue {
642 	__cacheline_group_begin_aligned(read_mostly);
643 	union {
644 		struct idpf_base_tx_desc *base_tx;
645 		struct idpf_base_tx_ctx_desc *base_ctx;
646 		union idpf_tx_flex_desc *flex_tx;
647 		struct idpf_flex_tx_ctx_desc *flex_ctx;
648 
649 		void *desc_ring;
650 	};
651 	struct libeth_sqe *tx_buf;
652 	struct idpf_txq_group *txq_grp;
653 	struct device *dev;
654 	void __iomem *tail;
655 
656 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
657 	u16 idx;
658 	u16 desc_count;
659 
660 	u16 tx_min_pkt_len;
661 	u16 compl_tag_gen_s;
662 
663 	struct net_device *netdev;
664 	__cacheline_group_end_aligned(read_mostly);
665 
666 	__cacheline_group_begin_aligned(read_write);
667 	u16 next_to_use;
668 	u16 next_to_clean;
669 
670 	union {
671 		u32 cleaned_bytes;
672 		u32 clean_budget;
673 	};
674 	u16 cleaned_pkts;
675 
676 	u16 tx_max_bufs;
677 	struct idpf_txq_stash *stash;
678 
679 	u16 compl_tag_bufid_m;
680 	u16 compl_tag_cur_gen;
681 	u16 compl_tag_gen_max;
682 
683 	struct u64_stats_sync stats_sync;
684 	struct idpf_tx_queue_stats q_stats;
685 	__cacheline_group_end_aligned(read_write);
686 
687 	__cacheline_group_begin_aligned(cold);
688 	u32 q_id;
689 	u32 size;
690 	dma_addr_t dma;
691 
692 	struct idpf_q_vector *q_vector;
693 	__cacheline_group_end_aligned(cold);
694 };
695 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
696 			    88 + sizeof(struct u64_stats_sync),
697 			    24);
698 
699 /**
700  * struct idpf_buf_queue - software structure representing a buffer queue
701  * @split_buf: buffer descriptor array
702  * @hdr_buf: &libeth_fqe for header buffers
703  * @hdr_pp: &page_pool for header buffers
704  * @buf: &libeth_fqe for data buffers
705  * @pp: &page_pool for data buffers
706  * @tail: Tail offset
707  * @flags: See enum idpf_queue_flags_t
708  * @desc_count: Number of descriptors
709  * @next_to_use: Next descriptor to use
710  * @next_to_clean: Next descriptor to clean
711  * @next_to_alloc: RX buffer to allocate at
712  * @hdr_truesize: truesize for buffer headers
713  * @truesize: truesize for data buffers
714  * @q_id: Queue id
715  * @size: Length of descriptor ring in bytes
716  * @dma: Physical address of ring
717  * @q_vector: Backreference to associated vector
718  * @rx_buffer_low_watermark: RX buffer low watermark
719  * @rx_hbuf_size: Header buffer size
720  * @rx_buf_size: Buffer size
721  */
722 struct idpf_buf_queue {
723 	__cacheline_group_begin_aligned(read_mostly);
724 	struct virtchnl2_splitq_rx_buf_desc *split_buf;
725 	struct libeth_fqe *hdr_buf;
726 	struct page_pool *hdr_pp;
727 	struct libeth_fqe *buf;
728 	struct page_pool *pp;
729 	void __iomem *tail;
730 
731 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
732 	u32 desc_count;
733 	__cacheline_group_end_aligned(read_mostly);
734 
735 	__cacheline_group_begin_aligned(read_write);
736 	u32 next_to_use;
737 	u32 next_to_clean;
738 	u32 next_to_alloc;
739 
740 	u32 hdr_truesize;
741 	u32 truesize;
742 	__cacheline_group_end_aligned(read_write);
743 
744 	__cacheline_group_begin_aligned(cold);
745 	u32 q_id;
746 	u32 size;
747 	dma_addr_t dma;
748 
749 	struct idpf_q_vector *q_vector;
750 
751 	u16 rx_buffer_low_watermark;
752 	u16 rx_hbuf_size;
753 	u16 rx_buf_size;
754 	__cacheline_group_end_aligned(cold);
755 };
756 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
757 
758 /**
759  * struct idpf_compl_queue - software structure representing a completion queue
760  * @comp: completion descriptor array
761  * @txq_grp: See struct idpf_txq_group
762  * @flags: See enum idpf_queue_flags_t
763  * @desc_count: Number of descriptors
764  * @clean_budget: queue cleaning budget
765  * @netdev: &net_device corresponding to this queue
766  * @next_to_use: Next descriptor to use. Relevant in both split & single txq
767  *		 and bufq.
768  * @next_to_clean: Next descriptor to clean
769  * @num_completions: Only relevant for TX completion queue. It tracks the
770  *		     number of completions received to compare against the
771  *		     number of completions pending, as accumulated by the
772  *		     TX queues.
773  * @q_id: Queue id
774  * @size: Length of descriptor ring in bytes
775  * @dma: Physical address of ring
776  * @q_vector: Backreference to associated vector
777  */
778 struct idpf_compl_queue {
779 	__cacheline_group_begin_aligned(read_mostly);
780 	struct idpf_splitq_tx_compl_desc *comp;
781 	struct idpf_txq_group *txq_grp;
782 
783 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
784 	u32 desc_count;
785 
786 	u32 clean_budget;
787 	struct net_device *netdev;
788 	__cacheline_group_end_aligned(read_mostly);
789 
790 	__cacheline_group_begin_aligned(read_write);
791 	u32 next_to_use;
792 	u32 next_to_clean;
793 
794 	aligned_u64 num_completions;
795 	__cacheline_group_end_aligned(read_write);
796 
797 	__cacheline_group_begin_aligned(cold);
798 	u32 q_id;
799 	u32 size;
800 	dma_addr_t dma;
801 
802 	struct idpf_q_vector *q_vector;
803 	__cacheline_group_end_aligned(cold);
804 };
805 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
806 
807 /**
808  * struct idpf_sw_queue
809  * @ring: Pointer to the ring
810  * @flags: See enum idpf_queue_flags_t
811  * @desc_count: Descriptor count
812  * @next_to_use: Buffer to allocate at
813  * @next_to_clean: Next descriptor to clean
814  *
815  * Software queues are used in splitq mode to manage buffers between rxq
816  * producer and the bufq consumer.  These are required in order to maintain a
817  * lockless buffer management system and are strictly software only constructs.
818  */
819 struct idpf_sw_queue {
820 	__cacheline_group_begin_aligned(read_mostly);
821 	u32 *ring;
822 
823 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
824 	u32 desc_count;
825 	__cacheline_group_end_aligned(read_mostly);
826 
827 	__cacheline_group_begin_aligned(read_write);
828 	u32 next_to_use;
829 	u32 next_to_clean;
830 	__cacheline_group_end_aligned(read_write);
831 };
832 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
833 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
834 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
835 
836 /**
837  * struct idpf_rxq_set
838  * @rxq: RX queue
839  * @refillq: pointers to refill queues
840  *
841  * Splitq only.  idpf_rxq_set associates an rxq with at an array of refillqs.
842  * Each rxq needs a refillq to return used buffers back to the respective bufq.
843  * Bufqs then clean these refillqs for buffers to give to hardware.
844  */
845 struct idpf_rxq_set {
846 	struct idpf_rx_queue rxq;
847 	struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
848 };
849 
850 /**
851  * struct idpf_bufq_set
852  * @bufq: Buffer queue
853  * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
854  *		  in idpf_rxq_group.
855  * @refillqs: Pointer to refill queues array.
856  *
857  * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
858  * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
859  * Used buffers received by rxqs will be put on refillqs which bufqs will
860  * clean to return new buffers back to hardware.
861  *
862  * Buffers needed by some number of rxqs associated in this rxq_group are
863  * managed by at most two bufqs (depending on performance configuration).
864  */
865 struct idpf_bufq_set {
866 	struct idpf_buf_queue bufq;
867 	int num_refillqs;
868 	struct idpf_sw_queue *refillqs;
869 };
870 
871 /**
872  * struct idpf_rxq_group
873  * @vport: Vport back pointer
874  * @singleq: Struct with single queue related members
875  * @singleq.num_rxq: Number of RX queues associated
876  * @singleq.rxqs: Array of RX queue pointers
877  * @splitq: Struct with split queue related members
878  * @splitq.num_rxq_sets: Number of RX queue sets
879  * @splitq.rxq_sets: Array of RX queue sets
880  * @splitq.bufq_sets: Buffer queue set pointer
881  *
882  * In singleq mode, an rxq_group is simply an array of rxqs.  In splitq, a
883  * rxq_group contains all the rxqs, bufqs and refillqs needed to
884  * manage buffers in splitq mode.
885  */
886 struct idpf_rxq_group {
887 	struct idpf_vport *vport;
888 
889 	union {
890 		struct {
891 			u16 num_rxq;
892 			struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
893 		} singleq;
894 		struct {
895 			u16 num_rxq_sets;
896 			struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
897 			struct idpf_bufq_set *bufq_sets;
898 		} splitq;
899 	};
900 };
901 
902 /**
903  * struct idpf_txq_group
904  * @vport: Vport back pointer
905  * @num_txq: Number of TX queues associated
906  * @txqs: Array of TX queue pointers
907  * @stashes: array of OOO stashes for the queues
908  * @complq: Associated completion queue pointer, split queue only
909  * @num_completions_pending: Total number of completions pending for the
910  *			     completion queue, acculumated for all TX queues
911  *			     associated with that completion queue.
912  *
913  * Between singleq and splitq, a txq_group is largely the same except for the
914  * complq. In splitq a single complq is responsible for handling completions
915  * for some number of txqs associated in this txq_group.
916  */
917 struct idpf_txq_group {
918 	struct idpf_vport *vport;
919 
920 	u16 num_txq;
921 	struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
922 	struct idpf_txq_stash *stashes;
923 
924 	struct idpf_compl_queue *complq;
925 
926 	aligned_u64 num_completions_pending;
927 };
928 
idpf_q_vector_to_mem(const struct idpf_q_vector * q_vector)929 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
930 {
931 	u32 cpu;
932 
933 	if (!q_vector)
934 		return NUMA_NO_NODE;
935 
936 	cpu = cpumask_first(q_vector->affinity_mask);
937 
938 	return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
939 }
940 
941 /**
942  * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
943  * @size: transmit request size in bytes
944  *
945  * In the case where a large frag (>= 16K) needs to be split across multiple
946  * descriptors, we need to assume that we can have no more than 12K of data
947  * per descriptor due to hardware alignment restrictions (4K alignment).
948  */
idpf_size_to_txd_count(unsigned int size)949 static inline u32 idpf_size_to_txd_count(unsigned int size)
950 {
951 	return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
952 }
953 
954 /**
955  * idpf_tx_singleq_build_ctob - populate command tag offset and size
956  * @td_cmd: Command to be filled in desc
957  * @td_offset: Offset to be filled in desc
958  * @size: Size of the buffer
959  * @td_tag: td tag to be filled
960  *
961  * Returns the 64 bit value populated with the input parameters
962  */
idpf_tx_singleq_build_ctob(u64 td_cmd,u64 td_offset,unsigned int size,u64 td_tag)963 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
964 						unsigned int size, u64 td_tag)
965 {
966 	return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
967 			   (td_cmd << IDPF_TXD_QW1_CMD_S) |
968 			   (td_offset << IDPF_TXD_QW1_OFFSET_S) |
969 			   ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
970 			   (td_tag << IDPF_TXD_QW1_L2TAG1_S));
971 }
972 
973 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
974 			      struct idpf_tx_splitq_params *params,
975 			      u16 td_cmd, u16 size);
976 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
977 				    struct idpf_tx_splitq_params *params,
978 				    u16 td_cmd, u16 size);
979 /**
980  * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
981  * @desc: descriptor to populate
982  * @params: pointer to tx params struct
983  * @td_cmd: command to be filled in desc
984  * @size: size of buffer
985  */
idpf_tx_splitq_build_desc(union idpf_tx_flex_desc * desc,struct idpf_tx_splitq_params * params,u16 td_cmd,u16 size)986 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
987 					     struct idpf_tx_splitq_params *params,
988 					     u16 td_cmd, u16 size)
989 {
990 	if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
991 		idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
992 	else
993 		idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
994 }
995 
996 /**
997  * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts
998  * @q_vector: pointer to queue vector struct
999  */
idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector * q_vector)1000 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector)
1001 {
1002 	struct idpf_intr_reg *reg;
1003 
1004 	if (q_vector->wb_on_itr)
1005 		return;
1006 
1007 	q_vector->wb_on_itr = true;
1008 	reg = &q_vector->intr_reg;
1009 
1010 	writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m |
1011 	       (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s),
1012 	       reg->dyn_ctl);
1013 }
1014 
1015 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1016 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1017 			    struct virtchnl2_create_vport *vport_msg);
1018 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
1019 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1020 			     struct virtchnl2_create_vport *vport_msg,
1021 			     struct idpf_vport_max_q *max_q);
1022 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
1023 int idpf_vport_queues_alloc(struct idpf_vport *vport);
1024 void idpf_vport_queues_rel(struct idpf_vport *vport);
1025 void idpf_vport_intr_rel(struct idpf_vport *vport);
1026 int idpf_vport_intr_alloc(struct idpf_vport *vport);
1027 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1028 void idpf_vport_intr_deinit(struct idpf_vport *vport);
1029 int idpf_vport_intr_init(struct idpf_vport *vport);
1030 void idpf_vport_intr_ena(struct idpf_vport *vport);
1031 int idpf_config_rss(struct idpf_vport *vport);
1032 int idpf_init_rss(struct idpf_vport *vport);
1033 void idpf_deinit_rss(struct idpf_vport *vport);
1034 int idpf_rx_bufs_init_all(struct idpf_vport *vport);
1035 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
1036 		      unsigned int size);
1037 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
1038 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1039 			   bool xmit_more);
1040 unsigned int idpf_size_to_txd_count(unsigned int size);
1041 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1042 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
1043 			   struct idpf_tx_buf *first, u16 ring_idx);
1044 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
1045 					 struct sk_buff *skb);
1046 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1047 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1048 				  struct idpf_tx_queue *tx_q);
1049 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1050 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1051 				      u16 cleaned_count);
1052 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1053 
idpf_tx_maybe_stop_common(struct idpf_tx_queue * tx_q,u32 needed)1054 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q,
1055 					     u32 needed)
1056 {
1057 	return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx,
1058 					  IDPF_DESC_UNUSED(tx_q),
1059 					  needed, needed);
1060 }
1061 
1062 #endif /* !_IDPF_TXRX_H_ */
1063