1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Definitions for the TCP module.
8   *
9   * Version:	@(#)tcp.h	1.0.5	05/23/93
10   *
11   * Authors:	Ross Biro
12   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13   */
14  #ifndef _TCP_H
15  #define _TCP_H
16  
17  #define FASTRETRANS_DEBUG 1
18  
19  #include <linux/list.h>
20  #include <linux/tcp.h>
21  #include <linux/bug.h>
22  #include <linux/slab.h>
23  #include <linux/cache.h>
24  #include <linux/percpu.h>
25  #include <linux/skbuff.h>
26  #include <linux/kref.h>
27  #include <linux/ktime.h>
28  #include <linux/indirect_call_wrapper.h>
29  
30  #include <net/inet_connection_sock.h>
31  #include <net/inet_timewait_sock.h>
32  #include <net/inet_hashtables.h>
33  #include <net/checksum.h>
34  #include <net/request_sock.h>
35  #include <net/sock_reuseport.h>
36  #include <net/sock.h>
37  #include <net/snmp.h>
38  #include <net/ip.h>
39  #include <net/tcp_states.h>
40  #include <net/tcp_ao.h>
41  #include <net/inet_ecn.h>
42  #include <net/dst.h>
43  #include <net/mptcp.h>
44  
45  #include <linux/seq_file.h>
46  #include <linux/memcontrol.h>
47  #include <linux/bpf-cgroup.h>
48  #include <linux/siphash.h>
49  
50  extern struct inet_hashinfo tcp_hashinfo;
51  
52  DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53  int tcp_orphan_count_sum(void);
54  
55  DECLARE_PER_CPU(u32, tcp_tw_isn);
56  
57  void tcp_time_wait(struct sock *sk, int state, int timeo);
58  
59  #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
60  #define MAX_TCP_OPTION_SPACE 40
61  #define TCP_MIN_SND_MSS		48
62  #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63  
64  /*
65   * Never offer a window over 32767 without using window scaling. Some
66   * poor stacks do signed 16bit maths!
67   */
68  #define MAX_TCP_WINDOW		32767U
69  
70  /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71  #define TCP_MIN_MSS		88U
72  
73  /* The initial MTU to use for probing */
74  #define TCP_BASE_MSS		1024
75  
76  /* probing interval, default to 10 minutes as per RFC4821 */
77  #define TCP_PROBE_INTERVAL	600
78  
79  /* Specify interval when tcp mtu probing will stop */
80  #define TCP_PROBE_THRESHOLD	8
81  
82  /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83  #define TCP_FASTRETRANS_THRESH 3
84  
85  /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86  #define TCP_MAX_QUICKACKS	16U
87  
88  /* Maximal number of window scale according to RFC1323 */
89  #define TCP_MAX_WSCALE		14U
90  
91  /* urg_data states */
92  #define TCP_URG_VALID	0x0100
93  #define TCP_URG_NOTYET	0x0200
94  #define TCP_URG_READ	0x0400
95  
96  #define TCP_RETR1	3	/*
97  				 * This is how many retries it does before it
98  				 * tries to figure out if the gateway is
99  				 * down. Minimal RFC value is 3; it corresponds
100  				 * to ~3sec-8min depending on RTO.
101  				 */
102  
103  #define TCP_RETR2	15	/*
104  				 * This should take at least
105  				 * 90 minutes to time out.
106  				 * RFC1122 says that the limit is 100 sec.
107  				 * 15 is ~13-30min depending on RTO.
108  				 */
109  
110  #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
111  				 * when active opening a connection.
112  				 * RFC1122 says the minimum retry MUST
113  				 * be at least 180secs.  Nevertheless
114  				 * this value is corresponding to
115  				 * 63secs of retransmission with the
116  				 * current initial RTO.
117  				 */
118  
119  #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
120  				 * when passive opening a connection.
121  				 * This is corresponding to 31secs of
122  				 * retransmission with the current
123  				 * initial RTO.
124  				 */
125  
126  #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127  				  * state, about 60 seconds	*/
128  #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
129                                   /* BSD style FIN_WAIT2 deadlock breaker.
130  				  * It used to be 3min, new value is 60sec,
131  				  * to combine FIN-WAIT-2 timeout with
132  				  * TIME-WAIT timer.
133  				  */
134  #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
135  
136  #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
137  static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138  
139  #if HZ >= 100
140  #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
141  #define TCP_ATO_MIN	((unsigned)(HZ/25))
142  #else
143  #define TCP_DELACK_MIN	4U
144  #define TCP_ATO_MIN	4U
145  #endif
146  #define TCP_RTO_MAX	((unsigned)(120*HZ))
147  #define TCP_RTO_MIN	((unsigned)(HZ/5))
148  #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
149  
150  #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
151  
152  #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
153  #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
154  						 * used as a fallback RTO for the
155  						 * initial data transmission if no
156  						 * valid RTT sample has been acquired,
157  						 * most likely due to retrans in 3WHS.
158  						 */
159  
160  #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161  					                 * for local resources.
162  					                 */
163  #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
164  #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
165  #define TCP_KEEPALIVE_INTVL	(75*HZ)
166  
167  #define MAX_TCP_KEEPIDLE	32767
168  #define MAX_TCP_KEEPINTVL	32767
169  #define MAX_TCP_KEEPCNT		127
170  #define MAX_TCP_SYNCNT		127
171  
172  /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173   * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174   * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
175   */
176  #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
177  
178  #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
179  					 * after this time. It should be equal
180  					 * (or greater than) TCP_TIMEWAIT_LEN
181  					 * to provide reliability equal to one
182  					 * provided by timewait state.
183  					 */
184  #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
185  					 * timestamps. It must be less than
186  					 * minimal timewait lifetime.
187  					 */
188  /*
189   *	TCP option
190   */
191  
192  #define TCPOPT_NOP		1	/* Padding */
193  #define TCPOPT_EOL		0	/* End of options */
194  #define TCPOPT_MSS		2	/* Segment size negotiating */
195  #define TCPOPT_WINDOW		3	/* Window scaling */
196  #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
197  #define TCPOPT_SACK             5       /* SACK Block */
198  #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
199  #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
200  #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
201  #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
202  #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
203  #define TCPOPT_EXP		254	/* Experimental */
204  /* Magic number to be after the option value for sharing TCP
205   * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
206   */
207  #define TCPOPT_FASTOPEN_MAGIC	0xF989
208  #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
209  
210  /*
211   *     TCP option lengths
212   */
213  
214  #define TCPOLEN_MSS            4
215  #define TCPOLEN_WINDOW         3
216  #define TCPOLEN_SACK_PERM      2
217  #define TCPOLEN_TIMESTAMP      10
218  #define TCPOLEN_MD5SIG         18
219  #define TCPOLEN_FASTOPEN_BASE  2
220  #define TCPOLEN_EXP_FASTOPEN_BASE  4
221  #define TCPOLEN_EXP_SMC_BASE   6
222  
223  /* But this is what stacks really send out. */
224  #define TCPOLEN_TSTAMP_ALIGNED		12
225  #define TCPOLEN_WSCALE_ALIGNED		4
226  #define TCPOLEN_SACKPERM_ALIGNED	4
227  #define TCPOLEN_SACK_BASE		2
228  #define TCPOLEN_SACK_BASE_ALIGNED	4
229  #define TCPOLEN_SACK_PERBLOCK		8
230  #define TCPOLEN_MD5SIG_ALIGNED		20
231  #define TCPOLEN_MSS_ALIGNED		4
232  #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
233  
234  /* Flags in tp->nonagle */
235  #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
236  #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
237  #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
238  
239  /* TCP thin-stream limits */
240  #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
241  
242  /* TCP initial congestion window as per rfc6928 */
243  #define TCP_INIT_CWND		10
244  
245  /* Bit Flags for sysctl_tcp_fastopen */
246  #define	TFO_CLIENT_ENABLE	1
247  #define	TFO_SERVER_ENABLE	2
248  #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
249  
250  /* Accept SYN data w/o any cookie option */
251  #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
252  
253  /* Force enable TFO on all listeners, i.e., not requiring the
254   * TCP_FASTOPEN socket option.
255   */
256  #define	TFO_SERVER_WO_SOCKOPT1	0x400
257  
258  
259  /* sysctl variables for tcp */
260  extern int sysctl_tcp_max_orphans;
261  extern long sysctl_tcp_mem[3];
262  
263  #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
264  #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
265  #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
266  
267  extern atomic_long_t tcp_memory_allocated;
268  DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
269  
270  extern struct percpu_counter tcp_sockets_allocated;
271  extern unsigned long tcp_memory_pressure;
272  
273  /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)274  static inline bool tcp_under_memory_pressure(const struct sock *sk)
275  {
276  	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277  	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
278  		return true;
279  
280  	return READ_ONCE(tcp_memory_pressure);
281  }
282  /*
283   * The next routines deal with comparing 32 bit unsigned ints
284   * and worry about wraparound (automatic with unsigned arithmetic).
285   */
286  
before(__u32 seq1,__u32 seq2)287  static inline bool before(__u32 seq1, __u32 seq2)
288  {
289          return (__s32)(seq1-seq2) < 0;
290  }
291  #define after(seq2, seq1) 	before(seq1, seq2)
292  
293  /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)294  static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
295  {
296  	return seq3 - seq2 >= seq1 - seq2;
297  }
298  
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)299  static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
300  {
301  	sk_wmem_queued_add(sk, -skb->truesize);
302  	if (!skb_zcopy_pure(skb))
303  		sk_mem_uncharge(sk, skb->truesize);
304  	else
305  		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
306  	__kfree_skb(skb);
307  }
308  
309  void sk_forced_mem_schedule(struct sock *sk, int size);
310  
311  bool tcp_check_oom(const struct sock *sk, int shift);
312  
313  
314  extern struct proto tcp_prot;
315  
316  #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317  #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318  #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
319  #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
320  
321  void tcp_tasklet_init(void);
322  
323  int tcp_v4_err(struct sk_buff *skb, u32);
324  
325  void tcp_shutdown(struct sock *sk, int how);
326  
327  int tcp_v4_early_demux(struct sk_buff *skb);
328  int tcp_v4_rcv(struct sk_buff *skb);
329  
330  void tcp_remove_empty_skb(struct sock *sk);
331  int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
332  int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
333  int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
334  			 size_t size, struct ubuf_info *uarg);
335  void tcp_splice_eof(struct socket *sock);
336  int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337  int tcp_wmem_schedule(struct sock *sk, int copy);
338  void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339  	      int size_goal);
340  void tcp_release_cb(struct sock *sk);
341  void tcp_wfree(struct sk_buff *skb);
342  void tcp_write_timer_handler(struct sock *sk);
343  void tcp_delack_timer_handler(struct sock *sk);
344  int tcp_ioctl(struct sock *sk, int cmd, int *karg);
345  enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346  void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347  void tcp_rcv_space_adjust(struct sock *sk);
348  int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349  void tcp_twsk_destructor(struct sock *sk);
350  void tcp_twsk_purge(struct list_head *net_exit_list);
351  ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
352  			struct pipe_inode_info *pipe, size_t len,
353  			unsigned int flags);
354  struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
355  				     bool force_schedule);
356  
tcp_dec_quickack_mode(struct sock * sk)357  static inline void tcp_dec_quickack_mode(struct sock *sk)
358  {
359  	struct inet_connection_sock *icsk = inet_csk(sk);
360  
361  	if (icsk->icsk_ack.quick) {
362  		/* How many ACKs S/ACKing new data have we sent? */
363  		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
364  
365  		if (pkts >= icsk->icsk_ack.quick) {
366  			icsk->icsk_ack.quick = 0;
367  			/* Leaving quickack mode we deflate ATO. */
368  			icsk->icsk_ack.ato   = TCP_ATO_MIN;
369  		} else
370  			icsk->icsk_ack.quick -= pkts;
371  	}
372  }
373  
374  #define	TCP_ECN_OK		1
375  #define	TCP_ECN_QUEUE_CWR	2
376  #define	TCP_ECN_DEMAND_CWR	4
377  #define	TCP_ECN_SEEN		8
378  
379  enum tcp_tw_status {
380  	TCP_TW_SUCCESS = 0,
381  	TCP_TW_RST = 1,
382  	TCP_TW_ACK = 2,
383  	TCP_TW_SYN = 3
384  };
385  
386  
387  enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
388  					      struct sk_buff *skb,
389  					      const struct tcphdr *th,
390  					      u32 *tw_isn);
391  struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
392  			   struct request_sock *req, bool fastopen,
393  			   bool *lost_race);
394  enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
395  				       struct sk_buff *skb);
396  void tcp_enter_loss(struct sock *sk);
397  void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
398  void tcp_clear_retrans(struct tcp_sock *tp);
399  void tcp_update_metrics(struct sock *sk);
400  void tcp_init_metrics(struct sock *sk);
401  void tcp_metrics_init(void);
402  bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
403  void __tcp_close(struct sock *sk, long timeout);
404  void tcp_close(struct sock *sk, long timeout);
405  void tcp_init_sock(struct sock *sk);
406  void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
407  __poll_t tcp_poll(struct file *file, struct socket *sock,
408  		      struct poll_table_struct *wait);
409  int do_tcp_getsockopt(struct sock *sk, int level,
410  		      int optname, sockptr_t optval, sockptr_t optlen);
411  int tcp_getsockopt(struct sock *sk, int level, int optname,
412  		   char __user *optval, int __user *optlen);
413  bool tcp_bpf_bypass_getsockopt(int level, int optname);
414  int do_tcp_setsockopt(struct sock *sk, int level, int optname,
415  		      sockptr_t optval, unsigned int optlen);
416  int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
417  		   unsigned int optlen);
418  void tcp_set_keepalive(struct sock *sk, int val);
419  void tcp_syn_ack_timeout(const struct request_sock *req);
420  int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
421  		int flags, int *addr_len);
422  int tcp_set_rcvlowat(struct sock *sk, int val);
423  int tcp_set_window_clamp(struct sock *sk, int val);
424  void tcp_update_recv_tstamps(struct sk_buff *skb,
425  			     struct scm_timestamping_internal *tss);
426  void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
427  			struct scm_timestamping_internal *tss);
428  void tcp_data_ready(struct sock *sk);
429  #ifdef CONFIG_MMU
430  int tcp_mmap(struct file *file, struct socket *sock,
431  	     struct vm_area_struct *vma);
432  #endif
433  void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
434  		       struct tcp_options_received *opt_rx,
435  		       int estab, struct tcp_fastopen_cookie *foc);
436  
437  /*
438   *	BPF SKB-less helpers
439   */
440  u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
441  			 struct tcphdr *th, u32 *cookie);
442  u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
443  			 struct tcphdr *th, u32 *cookie);
444  u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
445  u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
446  			  const struct tcp_request_sock_ops *af_ops,
447  			  struct sock *sk, struct tcphdr *th);
448  /*
449   *	TCP v4 functions exported for the inet6 API
450   */
451  
452  void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
453  void tcp_v4_mtu_reduced(struct sock *sk);
454  void tcp_req_err(struct sock *sk, u32 seq, bool abort);
455  void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
456  int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457  struct sock *tcp_create_openreq_child(const struct sock *sk,
458  				      struct request_sock *req,
459  				      struct sk_buff *skb);
460  void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
461  struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
462  				  struct request_sock *req,
463  				  struct dst_entry *dst,
464  				  struct request_sock *req_unhash,
465  				  bool *own_req);
466  int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
467  int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
468  int tcp_connect(struct sock *sk);
469  enum tcp_synack_type {
470  	TCP_SYNACK_NORMAL,
471  	TCP_SYNACK_FASTOPEN,
472  	TCP_SYNACK_COOKIE,
473  };
474  struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
475  				struct request_sock *req,
476  				struct tcp_fastopen_cookie *foc,
477  				enum tcp_synack_type synack_type,
478  				struct sk_buff *syn_skb);
479  int tcp_disconnect(struct sock *sk, int flags);
480  
481  void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
482  int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
483  void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
484  
485  /* From syncookies.c */
486  struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
487  				 struct request_sock *req,
488  				 struct dst_entry *dst);
489  int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
490  struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
491  struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
492  					    struct sock *sk, struct sk_buff *skb,
493  					    struct tcp_options_received *tcp_opt,
494  					    int mss, u32 tsoff);
495  
496  #if IS_ENABLED(CONFIG_BPF)
497  struct bpf_tcp_req_attrs {
498  	u32 rcv_tsval;
499  	u32 rcv_tsecr;
500  	u16 mss;
501  	u8 rcv_wscale;
502  	u8 snd_wscale;
503  	u8 ecn_ok;
504  	u8 wscale_ok;
505  	u8 sack_ok;
506  	u8 tstamp_ok;
507  	u8 usec_ts_ok;
508  	u8 reserved[3];
509  };
510  #endif
511  
512  #ifdef CONFIG_SYN_COOKIES
513  
514  /* Syncookies use a monotonic timer which increments every 60 seconds.
515   * This counter is used both as a hash input and partially encoded into
516   * the cookie value.  A cookie is only validated further if the delta
517   * between the current counter value and the encoded one is less than this,
518   * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
519   * the counter advances immediately after a cookie is generated).
520   */
521  #define MAX_SYNCOOKIE_AGE	2
522  #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
523  #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
524  
525  /* syncookies: remember time of last synqueue overflow
526   * But do not dirty this field too often (once per second is enough)
527   * It is racy as we do not hold a lock, but race is very minor.
528   */
tcp_synq_overflow(const struct sock * sk)529  static inline void tcp_synq_overflow(const struct sock *sk)
530  {
531  	unsigned int last_overflow;
532  	unsigned int now = jiffies;
533  
534  	if (sk->sk_reuseport) {
535  		struct sock_reuseport *reuse;
536  
537  		reuse = rcu_dereference(sk->sk_reuseport_cb);
538  		if (likely(reuse)) {
539  			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540  			if (!time_between32(now, last_overflow,
541  					    last_overflow + HZ))
542  				WRITE_ONCE(reuse->synq_overflow_ts, now);
543  			return;
544  		}
545  	}
546  
547  	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
548  	if (!time_between32(now, last_overflow, last_overflow + HZ))
549  		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
550  }
551  
552  /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)553  static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
554  {
555  	unsigned int last_overflow;
556  	unsigned int now = jiffies;
557  
558  	if (sk->sk_reuseport) {
559  		struct sock_reuseport *reuse;
560  
561  		reuse = rcu_dereference(sk->sk_reuseport_cb);
562  		if (likely(reuse)) {
563  			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
564  			return !time_between32(now, last_overflow - HZ,
565  					       last_overflow +
566  					       TCP_SYNCOOKIE_VALID);
567  		}
568  	}
569  
570  	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
571  
572  	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
573  	 * then we're under synflood. However, we have to use
574  	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
575  	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
576  	 * jiffies but before we store .ts_recent_stamp into last_overflow,
577  	 * which could lead to rejecting a valid syncookie.
578  	 */
579  	return !time_between32(now, last_overflow - HZ,
580  			       last_overflow + TCP_SYNCOOKIE_VALID);
581  }
582  
tcp_cookie_time(void)583  static inline u32 tcp_cookie_time(void)
584  {
585  	u64 val = get_jiffies_64();
586  
587  	do_div(val, TCP_SYNCOOKIE_PERIOD);
588  	return val;
589  }
590  
591  /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
tcp_ns_to_ts(bool usec_ts,u64 val)592  static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
593  {
594  	if (usec_ts)
595  		return div_u64(val, NSEC_PER_USEC);
596  
597  	return div_u64(val, NSEC_PER_MSEC);
598  }
599  
600  u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
601  			      u16 *mssp);
602  __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
603  u64 cookie_init_timestamp(struct request_sock *req, u64 now);
604  bool cookie_timestamp_decode(const struct net *net,
605  			     struct tcp_options_received *opt);
606  
cookie_ecn_ok(const struct net * net,const struct dst_entry * dst)607  static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
608  {
609  	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
610  		dst_feature(dst, RTAX_FEATURE_ECN);
611  }
612  
613  #if IS_ENABLED(CONFIG_BPF)
cookie_bpf_ok(struct sk_buff * skb)614  static inline bool cookie_bpf_ok(struct sk_buff *skb)
615  {
616  	return skb->sk;
617  }
618  
619  struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
620  #else
cookie_bpf_ok(struct sk_buff * skb)621  static inline bool cookie_bpf_ok(struct sk_buff *skb)
622  {
623  	return false;
624  }
625  
cookie_bpf_check(struct net * net,struct sock * sk,struct sk_buff * skb)626  static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
627  						    struct sk_buff *skb)
628  {
629  	return NULL;
630  }
631  #endif
632  
633  /* From net/ipv6/syncookies.c */
634  int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
635  struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
636  
637  u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
638  			      const struct tcphdr *th, u16 *mssp);
639  __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
640  #endif
641  /* tcp_output.c */
642  
643  void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
644  void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
645  void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
646  			       int nonagle);
647  int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
648  int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
649  void tcp_retransmit_timer(struct sock *sk);
650  void tcp_xmit_retransmit_queue(struct sock *);
651  void tcp_simple_retransmit(struct sock *);
652  void tcp_enter_recovery(struct sock *sk, bool ece_ack);
653  int tcp_trim_head(struct sock *, struct sk_buff *, u32);
654  enum tcp_queue {
655  	TCP_FRAG_IN_WRITE_QUEUE,
656  	TCP_FRAG_IN_RTX_QUEUE,
657  };
658  int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
659  		 struct sk_buff *skb, u32 len,
660  		 unsigned int mss_now, gfp_t gfp);
661  
662  void tcp_send_probe0(struct sock *);
663  int tcp_write_wakeup(struct sock *, int mib);
664  void tcp_send_fin(struct sock *sk);
665  void tcp_send_active_reset(struct sock *sk, gfp_t priority,
666  			   enum sk_rst_reason reason);
667  int tcp_send_synack(struct sock *);
668  void tcp_push_one(struct sock *, unsigned int mss_now);
669  void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
670  void tcp_send_ack(struct sock *sk);
671  void tcp_send_delayed_ack(struct sock *sk);
672  void tcp_send_loss_probe(struct sock *sk);
673  bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
674  void tcp_skb_collapse_tstamp(struct sk_buff *skb,
675  			     const struct sk_buff *next_skb);
676  
677  /* tcp_input.c */
678  void tcp_rearm_rto(struct sock *sk);
679  void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
680  void tcp_done_with_error(struct sock *sk, int err);
681  void tcp_reset(struct sock *sk, struct sk_buff *skb);
682  void tcp_fin(struct sock *sk);
683  void tcp_check_space(struct sock *sk);
684  void tcp_sack_compress_send_ack(struct sock *sk);
685  
686  /* tcp_timer.c */
687  void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)688  static inline void tcp_clear_xmit_timers(struct sock *sk)
689  {
690  	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
691  		__sock_put(sk);
692  
693  	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
694  		__sock_put(sk);
695  
696  	inet_csk_clear_xmit_timers(sk);
697  }
698  
699  unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
700  unsigned int tcp_current_mss(struct sock *sk);
701  u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
702  
703  /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)704  static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
705  {
706  	int cutoff;
707  
708  	/* When peer uses tiny windows, there is no use in packetizing
709  	 * to sub-MSS pieces for the sake of SWS or making sure there
710  	 * are enough packets in the pipe for fast recovery.
711  	 *
712  	 * On the other hand, for extremely large MSS devices, handling
713  	 * smaller than MSS windows in this way does make sense.
714  	 */
715  	if (tp->max_window > TCP_MSS_DEFAULT)
716  		cutoff = (tp->max_window >> 1);
717  	else
718  		cutoff = tp->max_window;
719  
720  	if (cutoff && pktsize > cutoff)
721  		return max_t(int, cutoff, 68U - tp->tcp_header_len);
722  	else
723  		return pktsize;
724  }
725  
726  /* tcp.c */
727  void tcp_get_info(struct sock *, struct tcp_info *);
728  
729  /* Read 'sendfile()'-style from a TCP socket */
730  int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
731  		  sk_read_actor_t recv_actor);
732  int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
733  struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
734  void tcp_read_done(struct sock *sk, size_t len);
735  
736  void tcp_initialize_rcv_mss(struct sock *sk);
737  
738  int tcp_mtu_to_mss(struct sock *sk, int pmtu);
739  int tcp_mss_to_mtu(struct sock *sk, int mss);
740  void tcp_mtup_init(struct sock *sk);
741  
tcp_bound_rto(struct sock * sk)742  static inline void tcp_bound_rto(struct sock *sk)
743  {
744  	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
745  		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
746  }
747  
__tcp_set_rto(const struct tcp_sock * tp)748  static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
749  {
750  	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
751  }
752  
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)753  static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
754  {
755  	/* mptcp hooks are only on the slow path */
756  	if (sk_is_mptcp((struct sock *)tp))
757  		return;
758  
759  	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
760  			       ntohl(TCP_FLAG_ACK) |
761  			       snd_wnd);
762  }
763  
tcp_fast_path_on(struct tcp_sock * tp)764  static inline void tcp_fast_path_on(struct tcp_sock *tp)
765  {
766  	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
767  }
768  
tcp_fast_path_check(struct sock * sk)769  static inline void tcp_fast_path_check(struct sock *sk)
770  {
771  	struct tcp_sock *tp = tcp_sk(sk);
772  
773  	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
774  	    tp->rcv_wnd &&
775  	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
776  	    !tp->urg_data)
777  		tcp_fast_path_on(tp);
778  }
779  
780  u32 tcp_delack_max(const struct sock *sk);
781  
782  /* Compute the actual rto_min value */
tcp_rto_min(const struct sock * sk)783  static inline u32 tcp_rto_min(const struct sock *sk)
784  {
785  	const struct dst_entry *dst = __sk_dst_get(sk);
786  	u32 rto_min = inet_csk(sk)->icsk_rto_min;
787  
788  	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
789  		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
790  	return rto_min;
791  }
792  
tcp_rto_min_us(const struct sock * sk)793  static inline u32 tcp_rto_min_us(const struct sock *sk)
794  {
795  	return jiffies_to_usecs(tcp_rto_min(sk));
796  }
797  
tcp_ca_dst_locked(const struct dst_entry * dst)798  static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
799  {
800  	return dst_metric_locked(dst, RTAX_CC_ALGO);
801  }
802  
803  /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)804  static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
805  {
806  	return minmax_get(&tp->rtt_min);
807  }
808  
809  /* Compute the actual receive window we are currently advertising.
810   * Rcv_nxt can be after the window if our peer push more data
811   * than the offered window.
812   */
tcp_receive_window(const struct tcp_sock * tp)813  static inline u32 tcp_receive_window(const struct tcp_sock *tp)
814  {
815  	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
816  
817  	if (win < 0)
818  		win = 0;
819  	return (u32) win;
820  }
821  
822  /* Choose a new window, without checks for shrinking, and without
823   * scaling applied to the result.  The caller does these things
824   * if necessary.  This is a "raw" window selection.
825   */
826  u32 __tcp_select_window(struct sock *sk);
827  
828  void tcp_send_window_probe(struct sock *sk);
829  
830  /* TCP uses 32bit jiffies to save some space.
831   * Note that this is different from tcp_time_stamp, which
832   * historically has been the same until linux-4.13.
833   */
834  #define tcp_jiffies32 ((u32)jiffies)
835  
836  /*
837   * Deliver a 32bit value for TCP timestamp option (RFC 7323)
838   * It is no longer tied to jiffies, but to 1 ms clock.
839   * Note: double check if you want to use tcp_jiffies32 instead of this.
840   */
841  #define TCP_TS_HZ	1000
842  
tcp_clock_ns(void)843  static inline u64 tcp_clock_ns(void)
844  {
845  	return ktime_get_ns();
846  }
847  
tcp_clock_us(void)848  static inline u64 tcp_clock_us(void)
849  {
850  	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
851  }
852  
tcp_clock_ms(void)853  static inline u64 tcp_clock_ms(void)
854  {
855  	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
856  }
857  
858  /* TCP Timestamp included in TS option (RFC 1323) can either use ms
859   * or usec resolution. Each socket carries a flag to select one or other
860   * resolution, as the route attribute could change anytime.
861   * Each flow must stick to initial resolution.
862   */
tcp_clock_ts(bool usec_ts)863  static inline u32 tcp_clock_ts(bool usec_ts)
864  {
865  	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
866  }
867  
tcp_time_stamp_ms(const struct tcp_sock * tp)868  static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
869  {
870  	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
871  }
872  
tcp_time_stamp_ts(const struct tcp_sock * tp)873  static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
874  {
875  	if (tp->tcp_usec_ts)
876  		return tp->tcp_mstamp;
877  	return tcp_time_stamp_ms(tp);
878  }
879  
880  void tcp_mstamp_refresh(struct tcp_sock *tp);
881  
tcp_stamp_us_delta(u64 t1,u64 t0)882  static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
883  {
884  	return max_t(s64, t1 - t0, 0);
885  }
886  
887  /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)888  static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
889  {
890  	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
891  }
892  
893  /* Provide skb TSval in usec or ms unit */
tcp_skb_timestamp_ts(bool usec_ts,const struct sk_buff * skb)894  static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
895  {
896  	if (usec_ts)
897  		return tcp_skb_timestamp_us(skb);
898  
899  	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
900  }
901  
tcp_tw_tsval(const struct tcp_timewait_sock * tcptw)902  static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
903  {
904  	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
905  }
906  
tcp_rsk_tsval(const struct tcp_request_sock * treq)907  static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
908  {
909  	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
910  }
911  
912  #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
913  
914  #define TCPHDR_FIN 0x01
915  #define TCPHDR_SYN 0x02
916  #define TCPHDR_RST 0x04
917  #define TCPHDR_PSH 0x08
918  #define TCPHDR_ACK 0x10
919  #define TCPHDR_URG 0x20
920  #define TCPHDR_ECE 0x40
921  #define TCPHDR_CWR 0x80
922  
923  #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
924  
925  /* State flags for sacked in struct tcp_skb_cb */
926  enum tcp_skb_cb_sacked_flags {
927  	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
928  	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
929  	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
930  	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
931  				   TCPCB_LOST),	/* All tag bits			*/
932  	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
933  	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
934  	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
935  				   TCPCB_REPAIRED),
936  };
937  
938  /* This is what the send packet queuing engine uses to pass
939   * TCP per-packet control information to the transmission code.
940   * We also store the host-order sequence numbers in here too.
941   * This is 44 bytes if IPV6 is enabled.
942   * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
943   */
944  struct tcp_skb_cb {
945  	__u32		seq;		/* Starting sequence number	*/
946  	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
947  	union {
948  		/* Note :
949  		 * 	  tcp_gso_segs/size are used in write queue only,
950  		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
951  		 */
952  		struct {
953  			u16	tcp_gso_segs;
954  			u16	tcp_gso_size;
955  		};
956  	};
957  	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
958  
959  	__u8		sacked;		/* State flags for SACK.	*/
960  	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
961  	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
962  			eor:1,		/* Is skb MSG_EOR marked? */
963  			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
964  			unused:5;
965  	__u32		ack_seq;	/* Sequence number ACK'd	*/
966  	union {
967  		struct {
968  #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
969  			/* There is space for up to 24 bytes */
970  			__u32 is_app_limited:1, /* cwnd not fully used? */
971  			      delivered_ce:20,
972  			      unused:11;
973  			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
974  			__u32 delivered;
975  			/* start of send pipeline phase */
976  			u64 first_tx_mstamp;
977  			/* when we reached the "delivered" count */
978  			u64 delivered_mstamp;
979  		} tx;   /* only used for outgoing skbs */
980  		union {
981  			struct inet_skb_parm	h4;
982  #if IS_ENABLED(CONFIG_IPV6)
983  			struct inet6_skb_parm	h6;
984  #endif
985  		} header;	/* For incoming skbs */
986  	};
987  };
988  
989  #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
990  
991  extern const struct inet_connection_sock_af_ops ipv4_specific;
992  
993  #if IS_ENABLED(CONFIG_IPV6)
994  /* This is the variant of inet6_iif() that must be used by TCP,
995   * as TCP moves IP6CB into a different location in skb->cb[]
996   */
tcp_v6_iif(const struct sk_buff * skb)997  static inline int tcp_v6_iif(const struct sk_buff *skb)
998  {
999  	return TCP_SKB_CB(skb)->header.h6.iif;
1000  }
1001  
tcp_v6_iif_l3_slave(const struct sk_buff * skb)1002  static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1003  {
1004  	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1005  
1006  	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1007  }
1008  
1009  /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)1010  static inline int tcp_v6_sdif(const struct sk_buff *skb)
1011  {
1012  #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1013  	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1014  		return TCP_SKB_CB(skb)->header.h6.iif;
1015  #endif
1016  	return 0;
1017  }
1018  
1019  extern const struct inet_connection_sock_af_ops ipv6_specific;
1020  
1021  INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1022  INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1023  void tcp_v6_early_demux(struct sk_buff *skb);
1024  
1025  #endif
1026  
1027  /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)1028  static inline int tcp_v4_sdif(struct sk_buff *skb)
1029  {
1030  #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1031  	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1032  		return TCP_SKB_CB(skb)->header.h4.iif;
1033  #endif
1034  	return 0;
1035  }
1036  
1037  /* Due to TSO, an SKB can be composed of multiple actual
1038   * packets.  To keep these tracked properly, we use this.
1039   */
tcp_skb_pcount(const struct sk_buff * skb)1040  static inline int tcp_skb_pcount(const struct sk_buff *skb)
1041  {
1042  	return TCP_SKB_CB(skb)->tcp_gso_segs;
1043  }
1044  
tcp_skb_pcount_set(struct sk_buff * skb,int segs)1045  static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1046  {
1047  	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1048  }
1049  
tcp_skb_pcount_add(struct sk_buff * skb,int segs)1050  static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1051  {
1052  	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1053  }
1054  
1055  /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)1056  static inline int tcp_skb_mss(const struct sk_buff *skb)
1057  {
1058  	return TCP_SKB_CB(skb)->tcp_gso_size;
1059  }
1060  
tcp_skb_can_collapse_to(const struct sk_buff * skb)1061  static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1062  {
1063  	return likely(!TCP_SKB_CB(skb)->eor);
1064  }
1065  
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1066  static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1067  					const struct sk_buff *from)
1068  {
1069  	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1070  	return likely(tcp_skb_can_collapse_to(to) &&
1071  		      mptcp_skb_can_collapse(to, from) &&
1072  		      skb_pure_zcopy_same(to, from) &&
1073  		      skb_frags_readable(to) == skb_frags_readable(from));
1074  }
1075  
tcp_skb_can_collapse_rx(const struct sk_buff * to,const struct sk_buff * from)1076  static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1077  					   const struct sk_buff *from)
1078  {
1079  	return likely(mptcp_skb_can_collapse(to, from) &&
1080  		      !skb_cmp_decrypted(to, from));
1081  }
1082  
1083  /* Events passed to congestion control interface */
1084  enum tcp_ca_event {
1085  	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1086  	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1087  	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1088  	CA_EVENT_LOSS,		/* loss timeout */
1089  	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1090  	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1091  };
1092  
1093  /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1094  enum tcp_ca_ack_event_flags {
1095  	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1096  	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1097  	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1098  };
1099  
1100  /*
1101   * Interface for adding new TCP congestion control handlers
1102   */
1103  #define TCP_CA_NAME_MAX	16
1104  #define TCP_CA_MAX	128
1105  #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1106  
1107  #define TCP_CA_UNSPEC	0
1108  
1109  /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1110  #define TCP_CONG_NON_RESTRICTED 0x1
1111  /* Requires ECN/ECT set on all packets */
1112  #define TCP_CONG_NEEDS_ECN	0x2
1113  #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1114  
1115  union tcp_cc_info;
1116  
1117  struct ack_sample {
1118  	u32 pkts_acked;
1119  	s32 rtt_us;
1120  	u32 in_flight;
1121  };
1122  
1123  /* A rate sample measures the number of (original/retransmitted) data
1124   * packets delivered "delivered" over an interval of time "interval_us".
1125   * The tcp_rate.c code fills in the rate sample, and congestion
1126   * control modules that define a cong_control function to run at the end
1127   * of ACK processing can optionally chose to consult this sample when
1128   * setting cwnd and pacing rate.
1129   * A sample is invalid if "delivered" or "interval_us" is negative.
1130   */
1131  struct rate_sample {
1132  	u64  prior_mstamp; /* starting timestamp for interval */
1133  	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1134  	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1135  	s32  delivered;		/* number of packets delivered over interval */
1136  	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1137  	long interval_us;	/* time for tp->delivered to incr "delivered" */
1138  	u32 snd_interval_us;	/* snd interval for delivered packets */
1139  	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1140  	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1141  	int  losses;		/* number of packets marked lost upon ACK */
1142  	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1143  	u32  prior_in_flight;	/* in flight before this ACK */
1144  	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1145  	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1146  	bool is_retrans;	/* is sample from retransmission? */
1147  	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1148  };
1149  
1150  struct tcp_congestion_ops {
1151  /* fast path fields are put first to fill one cache line */
1152  
1153  	/* return slow start threshold (required) */
1154  	u32 (*ssthresh)(struct sock *sk);
1155  
1156  	/* do new cwnd calculation (required) */
1157  	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1158  
1159  	/* call before changing ca_state (optional) */
1160  	void (*set_state)(struct sock *sk, u8 new_state);
1161  
1162  	/* call when cwnd event occurs (optional) */
1163  	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1164  
1165  	/* call when ack arrives (optional) */
1166  	void (*in_ack_event)(struct sock *sk, u32 flags);
1167  
1168  	/* hook for packet ack accounting (optional) */
1169  	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1170  
1171  	/* override sysctl_tcp_min_tso_segs */
1172  	u32 (*min_tso_segs)(struct sock *sk);
1173  
1174  	/* call when packets are delivered to update cwnd and pacing rate,
1175  	 * after all the ca_state processing. (optional)
1176  	 */
1177  	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1178  
1179  
1180  	/* new value of cwnd after loss (required) */
1181  	u32  (*undo_cwnd)(struct sock *sk);
1182  	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1183  	u32 (*sndbuf_expand)(struct sock *sk);
1184  
1185  /* control/slow paths put last */
1186  	/* get info for inet_diag (optional) */
1187  	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1188  			   union tcp_cc_info *info);
1189  
1190  	char 			name[TCP_CA_NAME_MAX];
1191  	struct module		*owner;
1192  	struct list_head	list;
1193  	u32			key;
1194  	u32			flags;
1195  
1196  	/* initialize private data (optional) */
1197  	void (*init)(struct sock *sk);
1198  	/* cleanup private data  (optional) */
1199  	void (*release)(struct sock *sk);
1200  } ____cacheline_aligned_in_smp;
1201  
1202  int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1203  void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1204  int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1205  				  struct tcp_congestion_ops *old_type);
1206  int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1207  
1208  void tcp_assign_congestion_control(struct sock *sk);
1209  void tcp_init_congestion_control(struct sock *sk);
1210  void tcp_cleanup_congestion_control(struct sock *sk);
1211  int tcp_set_default_congestion_control(struct net *net, const char *name);
1212  void tcp_get_default_congestion_control(struct net *net, char *name);
1213  void tcp_get_available_congestion_control(char *buf, size_t len);
1214  void tcp_get_allowed_congestion_control(char *buf, size_t len);
1215  int tcp_set_allowed_congestion_control(char *allowed);
1216  int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1217  			       bool cap_net_admin);
1218  u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1219  void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1220  
1221  u32 tcp_reno_ssthresh(struct sock *sk);
1222  u32 tcp_reno_undo_cwnd(struct sock *sk);
1223  void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1224  extern struct tcp_congestion_ops tcp_reno;
1225  
1226  struct tcp_congestion_ops *tcp_ca_find(const char *name);
1227  struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1228  u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1229  #ifdef CONFIG_INET
1230  char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1231  #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1232  static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1233  {
1234  	return NULL;
1235  }
1236  #endif
1237  
tcp_ca_needs_ecn(const struct sock * sk)1238  static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1239  {
1240  	const struct inet_connection_sock *icsk = inet_csk(sk);
1241  
1242  	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1243  }
1244  
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1245  static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1246  {
1247  	const struct inet_connection_sock *icsk = inet_csk(sk);
1248  
1249  	if (icsk->icsk_ca_ops->cwnd_event)
1250  		icsk->icsk_ca_ops->cwnd_event(sk, event);
1251  }
1252  
1253  /* From tcp_cong.c */
1254  void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1255  
1256  /* From tcp_rate.c */
1257  void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1258  void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1259  			    struct rate_sample *rs);
1260  void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1261  		  bool is_sack_reneg, struct rate_sample *rs);
1262  void tcp_rate_check_app_limited(struct sock *sk);
1263  
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1264  static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1265  {
1266  	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1267  }
1268  
1269  /* These functions determine how the current flow behaves in respect of SACK
1270   * handling. SACK is negotiated with the peer, and therefore it can vary
1271   * between different flows.
1272   *
1273   * tcp_is_sack - SACK enabled
1274   * tcp_is_reno - No SACK
1275   */
tcp_is_sack(const struct tcp_sock * tp)1276  static inline int tcp_is_sack(const struct tcp_sock *tp)
1277  {
1278  	return likely(tp->rx_opt.sack_ok);
1279  }
1280  
tcp_is_reno(const struct tcp_sock * tp)1281  static inline bool tcp_is_reno(const struct tcp_sock *tp)
1282  {
1283  	return !tcp_is_sack(tp);
1284  }
1285  
tcp_left_out(const struct tcp_sock * tp)1286  static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1287  {
1288  	return tp->sacked_out + tp->lost_out;
1289  }
1290  
1291  /* This determines how many packets are "in the network" to the best
1292   * of our knowledge.  In many cases it is conservative, but where
1293   * detailed information is available from the receiver (via SACK
1294   * blocks etc.) we can make more aggressive calculations.
1295   *
1296   * Use this for decisions involving congestion control, use just
1297   * tp->packets_out to determine if the send queue is empty or not.
1298   *
1299   * Read this equation as:
1300   *
1301   *	"Packets sent once on transmission queue" MINUS
1302   *	"Packets left network, but not honestly ACKed yet" PLUS
1303   *	"Packets fast retransmitted"
1304   */
tcp_packets_in_flight(const struct tcp_sock * tp)1305  static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1306  {
1307  	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1308  }
1309  
1310  #define TCP_INFINITE_SSTHRESH	0x7fffffff
1311  
tcp_snd_cwnd(const struct tcp_sock * tp)1312  static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1313  {
1314  	return tp->snd_cwnd;
1315  }
1316  
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1317  static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1318  {
1319  	WARN_ON_ONCE((int)val <= 0);
1320  	tp->snd_cwnd = val;
1321  }
1322  
tcp_in_slow_start(const struct tcp_sock * tp)1323  static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1324  {
1325  	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1326  }
1327  
tcp_in_initial_slowstart(const struct tcp_sock * tp)1328  static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1329  {
1330  	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1331  }
1332  
tcp_in_cwnd_reduction(const struct sock * sk)1333  static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1334  {
1335  	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1336  	       (1 << inet_csk(sk)->icsk_ca_state);
1337  }
1338  
1339  /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1340   * The exception is cwnd reduction phase, when cwnd is decreasing towards
1341   * ssthresh.
1342   */
tcp_current_ssthresh(const struct sock * sk)1343  static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1344  {
1345  	const struct tcp_sock *tp = tcp_sk(sk);
1346  
1347  	if (tcp_in_cwnd_reduction(sk))
1348  		return tp->snd_ssthresh;
1349  	else
1350  		return max(tp->snd_ssthresh,
1351  			   ((tcp_snd_cwnd(tp) >> 1) +
1352  			    (tcp_snd_cwnd(tp) >> 2)));
1353  }
1354  
1355  /* Use define here intentionally to get WARN_ON location shown at the caller */
1356  #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1357  
1358  void tcp_enter_cwr(struct sock *sk);
1359  __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1360  
1361  /* The maximum number of MSS of available cwnd for which TSO defers
1362   * sending if not using sysctl_tcp_tso_win_divisor.
1363   */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1364  static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1365  {
1366  	return 3;
1367  }
1368  
1369  /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1370  static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1371  {
1372  	return tp->snd_una + tp->snd_wnd;
1373  }
1374  
1375  /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1376   * flexible approach. The RFC suggests cwnd should not be raised unless
1377   * it was fully used previously. And that's exactly what we do in
1378   * congestion avoidance mode. But in slow start we allow cwnd to grow
1379   * as long as the application has used half the cwnd.
1380   * Example :
1381   *    cwnd is 10 (IW10), but application sends 9 frames.
1382   *    We allow cwnd to reach 18 when all frames are ACKed.
1383   * This check is safe because it's as aggressive as slow start which already
1384   * risks 100% overshoot. The advantage is that we discourage application to
1385   * either send more filler packets or data to artificially blow up the cwnd
1386   * usage, and allow application-limited process to probe bw more aggressively.
1387   */
tcp_is_cwnd_limited(const struct sock * sk)1388  static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1389  {
1390  	const struct tcp_sock *tp = tcp_sk(sk);
1391  
1392  	if (tp->is_cwnd_limited)
1393  		return true;
1394  
1395  	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1396  	if (tcp_in_slow_start(tp))
1397  		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1398  
1399  	return false;
1400  }
1401  
1402  /* BBR congestion control needs pacing.
1403   * Same remark for SO_MAX_PACING_RATE.
1404   * sch_fq packet scheduler is efficiently handling pacing,
1405   * but is not always installed/used.
1406   * Return true if TCP stack should pace packets itself.
1407   */
tcp_needs_internal_pacing(const struct sock * sk)1408  static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1409  {
1410  	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1411  }
1412  
1413  /* Estimates in how many jiffies next packet for this flow can be sent.
1414   * Scheduling a retransmit timer too early would be silly.
1415   */
tcp_pacing_delay(const struct sock * sk)1416  static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1417  {
1418  	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1419  
1420  	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1421  }
1422  
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1423  static inline void tcp_reset_xmit_timer(struct sock *sk,
1424  					const int what,
1425  					unsigned long when,
1426  					const unsigned long max_when)
1427  {
1428  	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1429  				  max_when);
1430  }
1431  
1432  /* Something is really bad, we could not queue an additional packet,
1433   * because qdisc is full or receiver sent a 0 window, or we are paced.
1434   * We do not want to add fuel to the fire, or abort too early,
1435   * so make sure the timer we arm now is at least 200ms in the future,
1436   * regardless of current icsk_rto value (as it could be ~2ms)
1437   */
tcp_probe0_base(const struct sock * sk)1438  static inline unsigned long tcp_probe0_base(const struct sock *sk)
1439  {
1440  	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1441  }
1442  
1443  /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1444  static inline unsigned long tcp_probe0_when(const struct sock *sk,
1445  					    unsigned long max_when)
1446  {
1447  	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1448  			   inet_csk(sk)->icsk_backoff);
1449  	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1450  
1451  	return (unsigned long)min_t(u64, when, max_when);
1452  }
1453  
tcp_check_probe_timer(struct sock * sk)1454  static inline void tcp_check_probe_timer(struct sock *sk)
1455  {
1456  	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1457  		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1458  				     tcp_probe0_base(sk), TCP_RTO_MAX);
1459  }
1460  
tcp_init_wl(struct tcp_sock * tp,u32 seq)1461  static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1462  {
1463  	tp->snd_wl1 = seq;
1464  }
1465  
tcp_update_wl(struct tcp_sock * tp,u32 seq)1466  static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1467  {
1468  	tp->snd_wl1 = seq;
1469  }
1470  
1471  /*
1472   * Calculate(/check) TCP checksum
1473   */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1474  static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1475  				   __be32 daddr, __wsum base)
1476  {
1477  	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1478  }
1479  
tcp_checksum_complete(struct sk_buff * skb)1480  static inline bool tcp_checksum_complete(struct sk_buff *skb)
1481  {
1482  	return !skb_csum_unnecessary(skb) &&
1483  		__skb_checksum_complete(skb);
1484  }
1485  
1486  bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1487  		     enum skb_drop_reason *reason);
1488  
1489  
1490  int tcp_filter(struct sock *sk, struct sk_buff *skb);
1491  void tcp_set_state(struct sock *sk, int state);
1492  void tcp_done(struct sock *sk);
1493  int tcp_abort(struct sock *sk, int err);
1494  
tcp_sack_reset(struct tcp_options_received * rx_opt)1495  static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1496  {
1497  	rx_opt->dsack = 0;
1498  	rx_opt->num_sacks = 0;
1499  }
1500  
1501  void tcp_cwnd_restart(struct sock *sk, s32 delta);
1502  
tcp_slow_start_after_idle_check(struct sock * sk)1503  static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1504  {
1505  	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1506  	struct tcp_sock *tp = tcp_sk(sk);
1507  	s32 delta;
1508  
1509  	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1510  	    tp->packets_out || ca_ops->cong_control)
1511  		return;
1512  	delta = tcp_jiffies32 - tp->lsndtime;
1513  	if (delta > inet_csk(sk)->icsk_rto)
1514  		tcp_cwnd_restart(sk, delta);
1515  }
1516  
1517  /* Determine a window scaling and initial window to offer. */
1518  void tcp_select_initial_window(const struct sock *sk, int __space,
1519  			       __u32 mss, __u32 *rcv_wnd,
1520  			       __u32 *window_clamp, int wscale_ok,
1521  			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1522  
__tcp_win_from_space(u8 scaling_ratio,int space)1523  static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1524  {
1525  	s64 scaled_space = (s64)space * scaling_ratio;
1526  
1527  	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1528  }
1529  
tcp_win_from_space(const struct sock * sk,int space)1530  static inline int tcp_win_from_space(const struct sock *sk, int space)
1531  {
1532  	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1533  }
1534  
1535  /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1536  static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1537  {
1538  	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1539  
1540  	do_div(val, scaling_ratio);
1541  	return val;
1542  }
1543  
tcp_space_from_win(const struct sock * sk,int win)1544  static inline int tcp_space_from_win(const struct sock *sk, int win)
1545  {
1546  	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1547  }
1548  
1549  /* Assume a 50% default for skb->len/skb->truesize ratio.
1550   * This may be adjusted later in tcp_measure_rcv_mss().
1551   */
1552  #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1553  
tcp_scaling_ratio_init(struct sock * sk)1554  static inline void tcp_scaling_ratio_init(struct sock *sk)
1555  {
1556  	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1557  }
1558  
1559  /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1560  static inline int tcp_space(const struct sock *sk)
1561  {
1562  	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1563  				  READ_ONCE(sk->sk_backlog.len) -
1564  				  atomic_read(&sk->sk_rmem_alloc));
1565  }
1566  
tcp_full_space(const struct sock * sk)1567  static inline int tcp_full_space(const struct sock *sk)
1568  {
1569  	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1570  }
1571  
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1572  static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1573  {
1574  	int unused_mem = sk_unused_reserved_mem(sk);
1575  	struct tcp_sock *tp = tcp_sk(sk);
1576  
1577  	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1578  	if (unused_mem)
1579  		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1580  					 tcp_win_from_space(sk, unused_mem));
1581  }
1582  
tcp_adjust_rcv_ssthresh(struct sock * sk)1583  static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1584  {
1585  	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1586  }
1587  
1588  void tcp_cleanup_rbuf(struct sock *sk, int copied);
1589  void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1590  
1591  
1592  /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1593   * If 87.5 % (7/8) of the space has been consumed, we want to override
1594   * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1595   * len/truesize ratio.
1596   */
tcp_rmem_pressure(const struct sock * sk)1597  static inline bool tcp_rmem_pressure(const struct sock *sk)
1598  {
1599  	int rcvbuf, threshold;
1600  
1601  	if (tcp_under_memory_pressure(sk))
1602  		return true;
1603  
1604  	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1605  	threshold = rcvbuf - (rcvbuf >> 3);
1606  
1607  	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1608  }
1609  
tcp_epollin_ready(const struct sock * sk,int target)1610  static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1611  {
1612  	const struct tcp_sock *tp = tcp_sk(sk);
1613  	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1614  
1615  	if (avail <= 0)
1616  		return false;
1617  
1618  	return (avail >= target) || tcp_rmem_pressure(sk) ||
1619  	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1620  }
1621  
1622  extern void tcp_openreq_init_rwin(struct request_sock *req,
1623  				  const struct sock *sk_listener,
1624  				  const struct dst_entry *dst);
1625  
1626  void tcp_enter_memory_pressure(struct sock *sk);
1627  void tcp_leave_memory_pressure(struct sock *sk);
1628  
keepalive_intvl_when(const struct tcp_sock * tp)1629  static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1630  {
1631  	struct net *net = sock_net((struct sock *)tp);
1632  	int val;
1633  
1634  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1635  	 * and do_tcp_setsockopt().
1636  	 */
1637  	val = READ_ONCE(tp->keepalive_intvl);
1638  
1639  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1640  }
1641  
keepalive_time_when(const struct tcp_sock * tp)1642  static inline int keepalive_time_when(const struct tcp_sock *tp)
1643  {
1644  	struct net *net = sock_net((struct sock *)tp);
1645  	int val;
1646  
1647  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1648  	val = READ_ONCE(tp->keepalive_time);
1649  
1650  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1651  }
1652  
keepalive_probes(const struct tcp_sock * tp)1653  static inline int keepalive_probes(const struct tcp_sock *tp)
1654  {
1655  	struct net *net = sock_net((struct sock *)tp);
1656  	int val;
1657  
1658  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1659  	 * and do_tcp_setsockopt().
1660  	 */
1661  	val = READ_ONCE(tp->keepalive_probes);
1662  
1663  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1664  }
1665  
keepalive_time_elapsed(const struct tcp_sock * tp)1666  static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1667  {
1668  	const struct inet_connection_sock *icsk = &tp->inet_conn;
1669  
1670  	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1671  			  tcp_jiffies32 - tp->rcv_tstamp);
1672  }
1673  
tcp_fin_time(const struct sock * sk)1674  static inline int tcp_fin_time(const struct sock *sk)
1675  {
1676  	int fin_timeout = tcp_sk(sk)->linger2 ? :
1677  		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1678  	const int rto = inet_csk(sk)->icsk_rto;
1679  
1680  	if (fin_timeout < (rto << 2) - (rto >> 1))
1681  		fin_timeout = (rto << 2) - (rto >> 1);
1682  
1683  	return fin_timeout;
1684  }
1685  
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1686  static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1687  				  int paws_win)
1688  {
1689  	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1690  		return true;
1691  	if (unlikely(!time_before32(ktime_get_seconds(),
1692  				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1693  		return true;
1694  	/*
1695  	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1696  	 * then following tcp messages have valid values. Ignore 0 value,
1697  	 * or else 'negative' tsval might forbid us to accept their packets.
1698  	 */
1699  	if (!rx_opt->ts_recent)
1700  		return true;
1701  	return false;
1702  }
1703  
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1704  static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1705  				   int rst)
1706  {
1707  	if (tcp_paws_check(rx_opt, 0))
1708  		return false;
1709  
1710  	/* RST segments are not recommended to carry timestamp,
1711  	   and, if they do, it is recommended to ignore PAWS because
1712  	   "their cleanup function should take precedence over timestamps."
1713  	   Certainly, it is mistake. It is necessary to understand the reasons
1714  	   of this constraint to relax it: if peer reboots, clock may go
1715  	   out-of-sync and half-open connections will not be reset.
1716  	   Actually, the problem would be not existing if all
1717  	   the implementations followed draft about maintaining clock
1718  	   via reboots. Linux-2.2 DOES NOT!
1719  
1720  	   However, we can relax time bounds for RST segments to MSL.
1721  	 */
1722  	if (rst && !time_before32(ktime_get_seconds(),
1723  				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1724  		return false;
1725  	return true;
1726  }
1727  
1728  bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1729  			  int mib_idx, u32 *last_oow_ack_time);
1730  
tcp_mib_init(struct net * net)1731  static inline void tcp_mib_init(struct net *net)
1732  {
1733  	/* See RFC 2012 */
1734  	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1735  	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1736  	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1737  	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1738  }
1739  
1740  /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1741  static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1742  {
1743  	tp->lost_skb_hint = NULL;
1744  }
1745  
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1746  static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1747  {
1748  	tcp_clear_retrans_hints_partial(tp);
1749  	tp->retransmit_skb_hint = NULL;
1750  }
1751  
1752  #define tcp_md5_addr tcp_ao_addr
1753  
1754  /* - key database */
1755  struct tcp_md5sig_key {
1756  	struct hlist_node	node;
1757  	u8			keylen;
1758  	u8			family; /* AF_INET or AF_INET6 */
1759  	u8			prefixlen;
1760  	u8			flags;
1761  	union tcp_md5_addr	addr;
1762  	int			l3index; /* set if key added with L3 scope */
1763  	u8			key[TCP_MD5SIG_MAXKEYLEN];
1764  	struct rcu_head		rcu;
1765  };
1766  
1767  /* - sock block */
1768  struct tcp_md5sig_info {
1769  	struct hlist_head	head;
1770  	struct rcu_head		rcu;
1771  };
1772  
1773  /* - pseudo header */
1774  struct tcp4_pseudohdr {
1775  	__be32		saddr;
1776  	__be32		daddr;
1777  	__u8		pad;
1778  	__u8		protocol;
1779  	__be16		len;
1780  };
1781  
1782  struct tcp6_pseudohdr {
1783  	struct in6_addr	saddr;
1784  	struct in6_addr daddr;
1785  	__be32		len;
1786  	__be32		protocol;	/* including padding */
1787  };
1788  
1789  union tcp_md5sum_block {
1790  	struct tcp4_pseudohdr ip4;
1791  #if IS_ENABLED(CONFIG_IPV6)
1792  	struct tcp6_pseudohdr ip6;
1793  #endif
1794  };
1795  
1796  /*
1797   * struct tcp_sigpool - per-CPU pool of ahash_requests
1798   * @scratch: per-CPU temporary area, that can be used between
1799   *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1800   *	     crypto request
1801   * @req: pre-allocated ahash request
1802   */
1803  struct tcp_sigpool {
1804  	void *scratch;
1805  	struct ahash_request *req;
1806  };
1807  
1808  int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1809  void tcp_sigpool_get(unsigned int id);
1810  void tcp_sigpool_release(unsigned int id);
1811  int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1812  			      const struct sk_buff *skb,
1813  			      unsigned int header_len);
1814  
1815  /**
1816   * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1817   * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1818   * @c: returned tcp_sigpool for usage (uninitialized on failure)
1819   *
1820   * Returns 0 on success, error otherwise.
1821   */
1822  int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1823  /**
1824   * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1825   * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1826   */
1827  void tcp_sigpool_end(struct tcp_sigpool *c);
1828  size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1829  /* - functions */
1830  int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1831  			const struct sock *sk, const struct sk_buff *skb);
1832  int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1833  		   int family, u8 prefixlen, int l3index, u8 flags,
1834  		   const u8 *newkey, u8 newkeylen);
1835  int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1836  		     int family, u8 prefixlen, int l3index,
1837  		     struct tcp_md5sig_key *key);
1838  
1839  int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1840  		   int family, u8 prefixlen, int l3index, u8 flags);
1841  void tcp_clear_md5_list(struct sock *sk);
1842  struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1843  					 const struct sock *addr_sk);
1844  
1845  #ifdef CONFIG_TCP_MD5SIG
1846  struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1847  					   const union tcp_md5_addr *addr,
1848  					   int family, bool any_l3index);
1849  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1850  tcp_md5_do_lookup(const struct sock *sk, int l3index,
1851  		  const union tcp_md5_addr *addr, int family)
1852  {
1853  	if (!static_branch_unlikely(&tcp_md5_needed.key))
1854  		return NULL;
1855  	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1856  }
1857  
1858  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1859  tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1860  			      const union tcp_md5_addr *addr, int family)
1861  {
1862  	if (!static_branch_unlikely(&tcp_md5_needed.key))
1863  		return NULL;
1864  	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1865  }
1866  
1867  #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1868  #else
1869  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1870  tcp_md5_do_lookup(const struct sock *sk, int l3index,
1871  		  const union tcp_md5_addr *addr, int family)
1872  {
1873  	return NULL;
1874  }
1875  
1876  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1877  tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1878  			      const union tcp_md5_addr *addr, int family)
1879  {
1880  	return NULL;
1881  }
1882  
1883  #define tcp_twsk_md5_key(twsk)	NULL
1884  #endif
1885  
1886  int tcp_md5_alloc_sigpool(void);
1887  void tcp_md5_release_sigpool(void);
1888  void tcp_md5_add_sigpool(void);
1889  extern int tcp_md5_sigpool_id;
1890  
1891  int tcp_md5_hash_key(struct tcp_sigpool *hp,
1892  		     const struct tcp_md5sig_key *key);
1893  
1894  /* From tcp_fastopen.c */
1895  void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1896  			    struct tcp_fastopen_cookie *cookie);
1897  void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1898  			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1899  			    u16 try_exp);
1900  struct tcp_fastopen_request {
1901  	/* Fast Open cookie. Size 0 means a cookie request */
1902  	struct tcp_fastopen_cookie	cookie;
1903  	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1904  	size_t				size;
1905  	int				copied;	/* queued in tcp_connect() */
1906  	struct ubuf_info		*uarg;
1907  };
1908  void tcp_free_fastopen_req(struct tcp_sock *tp);
1909  void tcp_fastopen_destroy_cipher(struct sock *sk);
1910  void tcp_fastopen_ctx_destroy(struct net *net);
1911  int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1912  			      void *primary_key, void *backup_key);
1913  int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1914  			    u64 *key);
1915  void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1916  struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1917  			      struct request_sock *req,
1918  			      struct tcp_fastopen_cookie *foc,
1919  			      const struct dst_entry *dst);
1920  void tcp_fastopen_init_key_once(struct net *net);
1921  bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1922  			     struct tcp_fastopen_cookie *cookie);
1923  bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1924  #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1925  #define TCP_FASTOPEN_KEY_MAX 2
1926  #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1927  	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1928  
1929  /* Fastopen key context */
1930  struct tcp_fastopen_context {
1931  	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1932  	int		num;
1933  	struct rcu_head	rcu;
1934  };
1935  
1936  void tcp_fastopen_active_disable(struct sock *sk);
1937  bool tcp_fastopen_active_should_disable(struct sock *sk);
1938  void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1939  void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1940  
1941  /* Caller needs to wrap with rcu_read_(un)lock() */
1942  static inline
tcp_fastopen_get_ctx(const struct sock * sk)1943  struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1944  {
1945  	struct tcp_fastopen_context *ctx;
1946  
1947  	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1948  	if (!ctx)
1949  		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1950  	return ctx;
1951  }
1952  
1953  static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1954  bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1955  			       const struct tcp_fastopen_cookie *orig)
1956  {
1957  	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1958  	    orig->len == foc->len &&
1959  	    !memcmp(orig->val, foc->val, foc->len))
1960  		return true;
1961  	return false;
1962  }
1963  
1964  static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1965  int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1966  {
1967  	return ctx->num;
1968  }
1969  
1970  /* Latencies incurred by various limits for a sender. They are
1971   * chronograph-like stats that are mutually exclusive.
1972   */
1973  enum tcp_chrono {
1974  	TCP_CHRONO_UNSPEC,
1975  	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1976  	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1977  	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1978  	__TCP_CHRONO_MAX,
1979  };
1980  
1981  void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1982  void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1983  
1984  /* This helper is needed, because skb->tcp_tsorted_anchor uses
1985   * the same memory storage than skb->destructor/_skb_refdst
1986   */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1987  static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1988  {
1989  	skb->destructor = NULL;
1990  	skb->_skb_refdst = 0UL;
1991  }
1992  
1993  #define tcp_skb_tsorted_save(skb) {		\
1994  	unsigned long _save = skb->_skb_refdst;	\
1995  	skb->_skb_refdst = 0UL;
1996  
1997  #define tcp_skb_tsorted_restore(skb)		\
1998  	skb->_skb_refdst = _save;		\
1999  }
2000  
2001  void tcp_write_queue_purge(struct sock *sk);
2002  
tcp_rtx_queue_head(const struct sock * sk)2003  static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2004  {
2005  	return skb_rb_first(&sk->tcp_rtx_queue);
2006  }
2007  
tcp_rtx_queue_tail(const struct sock * sk)2008  static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2009  {
2010  	return skb_rb_last(&sk->tcp_rtx_queue);
2011  }
2012  
tcp_write_queue_tail(const struct sock * sk)2013  static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2014  {
2015  	return skb_peek_tail(&sk->sk_write_queue);
2016  }
2017  
2018  #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2019  	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2020  
tcp_send_head(const struct sock * sk)2021  static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2022  {
2023  	return skb_peek(&sk->sk_write_queue);
2024  }
2025  
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)2026  static inline bool tcp_skb_is_last(const struct sock *sk,
2027  				   const struct sk_buff *skb)
2028  {
2029  	return skb_queue_is_last(&sk->sk_write_queue, skb);
2030  }
2031  
2032  /**
2033   * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2034   * @sk: socket
2035   *
2036   * Since the write queue can have a temporary empty skb in it,
2037   * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2038   */
tcp_write_queue_empty(const struct sock * sk)2039  static inline bool tcp_write_queue_empty(const struct sock *sk)
2040  {
2041  	const struct tcp_sock *tp = tcp_sk(sk);
2042  
2043  	return tp->write_seq == tp->snd_nxt;
2044  }
2045  
tcp_rtx_queue_empty(const struct sock * sk)2046  static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2047  {
2048  	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2049  }
2050  
tcp_rtx_and_write_queues_empty(const struct sock * sk)2051  static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2052  {
2053  	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2054  }
2055  
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)2056  static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2057  {
2058  	__skb_queue_tail(&sk->sk_write_queue, skb);
2059  
2060  	/* Queue it, remembering where we must start sending. */
2061  	if (sk->sk_write_queue.next == skb)
2062  		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2063  }
2064  
2065  /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)2066  static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2067  						  struct sk_buff *skb,
2068  						  struct sock *sk)
2069  {
2070  	__skb_queue_before(&sk->sk_write_queue, skb, new);
2071  }
2072  
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)2073  static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2074  {
2075  	tcp_skb_tsorted_anchor_cleanup(skb);
2076  	__skb_unlink(skb, &sk->sk_write_queue);
2077  }
2078  
2079  void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2080  
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)2081  static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2082  {
2083  	tcp_skb_tsorted_anchor_cleanup(skb);
2084  	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2085  }
2086  
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2087  static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2088  {
2089  	list_del(&skb->tcp_tsorted_anchor);
2090  	tcp_rtx_queue_unlink(skb, sk);
2091  	tcp_wmem_free_skb(sk, skb);
2092  }
2093  
tcp_write_collapse_fence(struct sock * sk)2094  static inline void tcp_write_collapse_fence(struct sock *sk)
2095  {
2096  	struct sk_buff *skb = tcp_write_queue_tail(sk);
2097  
2098  	if (skb)
2099  		TCP_SKB_CB(skb)->eor = 1;
2100  }
2101  
tcp_push_pending_frames(struct sock * sk)2102  static inline void tcp_push_pending_frames(struct sock *sk)
2103  {
2104  	if (tcp_send_head(sk)) {
2105  		struct tcp_sock *tp = tcp_sk(sk);
2106  
2107  		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2108  	}
2109  }
2110  
2111  /* Start sequence of the skb just after the highest skb with SACKed
2112   * bit, valid only if sacked_out > 0 or when the caller has ensured
2113   * validity by itself.
2114   */
tcp_highest_sack_seq(struct tcp_sock * tp)2115  static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2116  {
2117  	if (!tp->sacked_out)
2118  		return tp->snd_una;
2119  
2120  	if (tp->highest_sack == NULL)
2121  		return tp->snd_nxt;
2122  
2123  	return TCP_SKB_CB(tp->highest_sack)->seq;
2124  }
2125  
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2126  static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2127  {
2128  	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2129  }
2130  
tcp_highest_sack(struct sock * sk)2131  static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2132  {
2133  	return tcp_sk(sk)->highest_sack;
2134  }
2135  
tcp_highest_sack_reset(struct sock * sk)2136  static inline void tcp_highest_sack_reset(struct sock *sk)
2137  {
2138  	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2139  }
2140  
2141  /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2142  static inline void tcp_highest_sack_replace(struct sock *sk,
2143  					    struct sk_buff *old,
2144  					    struct sk_buff *new)
2145  {
2146  	if (old == tcp_highest_sack(sk))
2147  		tcp_sk(sk)->highest_sack = new;
2148  }
2149  
2150  /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2151  static inline bool inet_sk_transparent(const struct sock *sk)
2152  {
2153  	switch (sk->sk_state) {
2154  	case TCP_TIME_WAIT:
2155  		return inet_twsk(sk)->tw_transparent;
2156  	case TCP_NEW_SYN_RECV:
2157  		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2158  	}
2159  	return inet_test_bit(TRANSPARENT, sk);
2160  }
2161  
2162  /* Determines whether this is a thin stream (which may suffer from
2163   * increased latency). Used to trigger latency-reducing mechanisms.
2164   */
tcp_stream_is_thin(struct tcp_sock * tp)2165  static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2166  {
2167  	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2168  }
2169  
2170  /* /proc */
2171  enum tcp_seq_states {
2172  	TCP_SEQ_STATE_LISTENING,
2173  	TCP_SEQ_STATE_ESTABLISHED,
2174  };
2175  
2176  void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2177  void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2178  void tcp_seq_stop(struct seq_file *seq, void *v);
2179  
2180  struct tcp_seq_afinfo {
2181  	sa_family_t			family;
2182  };
2183  
2184  struct tcp_iter_state {
2185  	struct seq_net_private	p;
2186  	enum tcp_seq_states	state;
2187  	struct sock		*syn_wait_sk;
2188  	int			bucket, offset, sbucket, num;
2189  	loff_t			last_pos;
2190  };
2191  
2192  extern struct request_sock_ops tcp_request_sock_ops;
2193  extern struct request_sock_ops tcp6_request_sock_ops;
2194  
2195  void tcp_v4_destroy_sock(struct sock *sk);
2196  
2197  struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2198  				netdev_features_t features);
2199  struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2200  struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2201  struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2202  				struct tcphdr *th);
2203  INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2204  INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2205  INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2206  INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2207  #ifdef CONFIG_INET
2208  void tcp_gro_complete(struct sk_buff *skb);
2209  #else
tcp_gro_complete(struct sk_buff * skb)2210  static inline void tcp_gro_complete(struct sk_buff *skb) { }
2211  #endif
2212  
2213  void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2214  
tcp_notsent_lowat(const struct tcp_sock * tp)2215  static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2216  {
2217  	struct net *net = sock_net((struct sock *)tp);
2218  	u32 val;
2219  
2220  	val = READ_ONCE(tp->notsent_lowat);
2221  
2222  	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2223  }
2224  
2225  bool tcp_stream_memory_free(const struct sock *sk, int wake);
2226  
2227  #ifdef CONFIG_PROC_FS
2228  int tcp4_proc_init(void);
2229  void tcp4_proc_exit(void);
2230  #endif
2231  
2232  int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2233  int tcp_conn_request(struct request_sock_ops *rsk_ops,
2234  		     const struct tcp_request_sock_ops *af_ops,
2235  		     struct sock *sk, struct sk_buff *skb);
2236  
2237  /* TCP af-specific functions */
2238  struct tcp_sock_af_ops {
2239  #ifdef CONFIG_TCP_MD5SIG
2240  	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2241  						const struct sock *addr_sk);
2242  	int		(*calc_md5_hash)(char *location,
2243  					 const struct tcp_md5sig_key *md5,
2244  					 const struct sock *sk,
2245  					 const struct sk_buff *skb);
2246  	int		(*md5_parse)(struct sock *sk,
2247  				     int optname,
2248  				     sockptr_t optval,
2249  				     int optlen);
2250  #endif
2251  #ifdef CONFIG_TCP_AO
2252  	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2253  	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2254  					struct sock *addr_sk,
2255  					int sndid, int rcvid);
2256  	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2257  			      const struct sock *sk,
2258  			      __be32 sisn, __be32 disn, bool send);
2259  	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2260  			    const struct sock *sk, const struct sk_buff *skb,
2261  			    const u8 *tkey, int hash_offset, u32 sne);
2262  #endif
2263  };
2264  
2265  struct tcp_request_sock_ops {
2266  	u16 mss_clamp;
2267  #ifdef CONFIG_TCP_MD5SIG
2268  	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2269  						 const struct sock *addr_sk);
2270  	int		(*calc_md5_hash) (char *location,
2271  					  const struct tcp_md5sig_key *md5,
2272  					  const struct sock *sk,
2273  					  const struct sk_buff *skb);
2274  #endif
2275  #ifdef CONFIG_TCP_AO
2276  	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2277  					struct request_sock *req,
2278  					int sndid, int rcvid);
2279  	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2280  	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2281  			      struct request_sock *req, const struct sk_buff *skb,
2282  			      int hash_offset, u32 sne);
2283  #endif
2284  #ifdef CONFIG_SYN_COOKIES
2285  	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2286  				 __u16 *mss);
2287  #endif
2288  	struct dst_entry *(*route_req)(const struct sock *sk,
2289  				       struct sk_buff *skb,
2290  				       struct flowi *fl,
2291  				       struct request_sock *req,
2292  				       u32 tw_isn);
2293  	u32 (*init_seq)(const struct sk_buff *skb);
2294  	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2295  	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2296  			   struct flowi *fl, struct request_sock *req,
2297  			   struct tcp_fastopen_cookie *foc,
2298  			   enum tcp_synack_type synack_type,
2299  			   struct sk_buff *syn_skb);
2300  };
2301  
2302  extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2303  #if IS_ENABLED(CONFIG_IPV6)
2304  extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2305  #endif
2306  
2307  #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2308  static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2309  					 const struct sock *sk, struct sk_buff *skb,
2310  					 __u16 *mss)
2311  {
2312  	tcp_synq_overflow(sk);
2313  	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2314  	return ops->cookie_init_seq(skb, mss);
2315  }
2316  #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2317  static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2318  					 const struct sock *sk, struct sk_buff *skb,
2319  					 __u16 *mss)
2320  {
2321  	return 0;
2322  }
2323  #endif
2324  
2325  struct tcp_key {
2326  	union {
2327  		struct {
2328  			struct tcp_ao_key *ao_key;
2329  			char *traffic_key;
2330  			u32 sne;
2331  			u8 rcv_next;
2332  		};
2333  		struct tcp_md5sig_key *md5_key;
2334  	};
2335  	enum {
2336  		TCP_KEY_NONE = 0,
2337  		TCP_KEY_MD5,
2338  		TCP_KEY_AO,
2339  	} type;
2340  };
2341  
tcp_get_current_key(const struct sock * sk,struct tcp_key * out)2342  static inline void tcp_get_current_key(const struct sock *sk,
2343  				       struct tcp_key *out)
2344  {
2345  #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2346  	const struct tcp_sock *tp = tcp_sk(sk);
2347  #endif
2348  
2349  #ifdef CONFIG_TCP_AO
2350  	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2351  		struct tcp_ao_info *ao;
2352  
2353  		ao = rcu_dereference_protected(tp->ao_info,
2354  					       lockdep_sock_is_held(sk));
2355  		if (ao) {
2356  			out->ao_key = READ_ONCE(ao->current_key);
2357  			out->type = TCP_KEY_AO;
2358  			return;
2359  		}
2360  	}
2361  #endif
2362  #ifdef CONFIG_TCP_MD5SIG
2363  	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2364  	    rcu_access_pointer(tp->md5sig_info)) {
2365  		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2366  		if (out->md5_key) {
2367  			out->type = TCP_KEY_MD5;
2368  			return;
2369  		}
2370  	}
2371  #endif
2372  	out->type = TCP_KEY_NONE;
2373  }
2374  
tcp_key_is_md5(const struct tcp_key * key)2375  static inline bool tcp_key_is_md5(const struct tcp_key *key)
2376  {
2377  	if (static_branch_tcp_md5())
2378  		return key->type == TCP_KEY_MD5;
2379  	return false;
2380  }
2381  
tcp_key_is_ao(const struct tcp_key * key)2382  static inline bool tcp_key_is_ao(const struct tcp_key *key)
2383  {
2384  	if (static_branch_tcp_ao())
2385  		return key->type == TCP_KEY_AO;
2386  	return false;
2387  }
2388  
2389  int tcpv4_offload_init(void);
2390  
2391  void tcp_v4_init(void);
2392  void tcp_init(void);
2393  
2394  /* tcp_recovery.c */
2395  void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2396  void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2397  extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2398  				u32 reo_wnd);
2399  extern bool tcp_rack_mark_lost(struct sock *sk);
2400  extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2401  			     u64 xmit_time);
2402  extern void tcp_rack_reo_timeout(struct sock *sk);
2403  extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2404  
2405  /* tcp_plb.c */
2406  
2407  /*
2408   * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2409   * expects cong_ratio which represents fraction of traffic that experienced
2410   * congestion over a single RTT. In order to avoid floating point operations,
2411   * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2412   */
2413  #define TCP_PLB_SCALE 8
2414  
2415  /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2416  struct tcp_plb_state {
2417  	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2418  		unused:3;
2419  	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2420  };
2421  
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2422  static inline void tcp_plb_init(const struct sock *sk,
2423  				struct tcp_plb_state *plb)
2424  {
2425  	plb->consec_cong_rounds = 0;
2426  	plb->pause_until = 0;
2427  }
2428  void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2429  			  const int cong_ratio);
2430  void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2431  void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2432  
2433  /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2434  static inline s64 tcp_rto_delta_us(const struct sock *sk)
2435  {
2436  	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2437  	u32 rto = inet_csk(sk)->icsk_rto;
2438  
2439  	if (likely(skb)) {
2440  		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2441  
2442  		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2443  	} else {
2444  		WARN_ONCE(1,
2445  			"rtx queue emtpy: "
2446  			"out:%u sacked:%u lost:%u retrans:%u "
2447  			"tlp_high_seq:%u sk_state:%u ca_state:%u "
2448  			"advmss:%u mss_cache:%u pmtu:%u\n",
2449  			tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2450  			tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2451  			tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2452  			inet_csk(sk)->icsk_ca_state,
2453  			tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2454  			inet_csk(sk)->icsk_pmtu_cookie);
2455  		return jiffies_to_usecs(rto);
2456  	}
2457  
2458  }
2459  
2460  /*
2461   * Save and compile IPv4 options, return a pointer to it
2462   */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2463  static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2464  							 struct sk_buff *skb)
2465  {
2466  	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2467  	struct ip_options_rcu *dopt = NULL;
2468  
2469  	if (opt->optlen) {
2470  		int opt_size = sizeof(*dopt) + opt->optlen;
2471  
2472  		dopt = kmalloc(opt_size, GFP_ATOMIC);
2473  		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2474  			kfree(dopt);
2475  			dopt = NULL;
2476  		}
2477  	}
2478  	return dopt;
2479  }
2480  
2481  /* locally generated TCP pure ACKs have skb->truesize == 2
2482   * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2483   * This is much faster than dissecting the packet to find out.
2484   * (Think of GRE encapsulations, IPv4, IPv6, ...)
2485   */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2486  static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2487  {
2488  	return skb->truesize == 2;
2489  }
2490  
skb_set_tcp_pure_ack(struct sk_buff * skb)2491  static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2492  {
2493  	skb->truesize = 2;
2494  }
2495  
tcp_inq(struct sock * sk)2496  static inline int tcp_inq(struct sock *sk)
2497  {
2498  	struct tcp_sock *tp = tcp_sk(sk);
2499  	int answ;
2500  
2501  	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2502  		answ = 0;
2503  	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2504  		   !tp->urg_data ||
2505  		   before(tp->urg_seq, tp->copied_seq) ||
2506  		   !before(tp->urg_seq, tp->rcv_nxt)) {
2507  
2508  		answ = tp->rcv_nxt - tp->copied_seq;
2509  
2510  		/* Subtract 1, if FIN was received */
2511  		if (answ && sock_flag(sk, SOCK_DONE))
2512  			answ--;
2513  	} else {
2514  		answ = tp->urg_seq - tp->copied_seq;
2515  	}
2516  
2517  	return answ;
2518  }
2519  
2520  int tcp_peek_len(struct socket *sock);
2521  
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2522  static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2523  {
2524  	u16 segs_in;
2525  
2526  	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2527  
2528  	/* We update these fields while other threads might
2529  	 * read them from tcp_get_info()
2530  	 */
2531  	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2532  	if (skb->len > tcp_hdrlen(skb))
2533  		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2534  }
2535  
2536  /*
2537   * TCP listen path runs lockless.
2538   * We forced "struct sock" to be const qualified to make sure
2539   * we don't modify one of its field by mistake.
2540   * Here, we increment sk_drops which is an atomic_t, so we can safely
2541   * make sock writable again.
2542   */
tcp_listendrop(const struct sock * sk)2543  static inline void tcp_listendrop(const struct sock *sk)
2544  {
2545  	atomic_inc(&((struct sock *)sk)->sk_drops);
2546  	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2547  }
2548  
2549  enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2550  
2551  /*
2552   * Interface for adding Upper Level Protocols over TCP
2553   */
2554  
2555  #define TCP_ULP_NAME_MAX	16
2556  #define TCP_ULP_MAX		128
2557  #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2558  
2559  struct tcp_ulp_ops {
2560  	struct list_head	list;
2561  
2562  	/* initialize ulp */
2563  	int (*init)(struct sock *sk);
2564  	/* update ulp */
2565  	void (*update)(struct sock *sk, struct proto *p,
2566  		       void (*write_space)(struct sock *sk));
2567  	/* cleanup ulp */
2568  	void (*release)(struct sock *sk);
2569  	/* diagnostic */
2570  	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2571  	size_t (*get_info_size)(const struct sock *sk);
2572  	/* clone ulp */
2573  	void (*clone)(const struct request_sock *req, struct sock *newsk,
2574  		      const gfp_t priority);
2575  
2576  	char		name[TCP_ULP_NAME_MAX];
2577  	struct module	*owner;
2578  };
2579  int tcp_register_ulp(struct tcp_ulp_ops *type);
2580  void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2581  int tcp_set_ulp(struct sock *sk, const char *name);
2582  void tcp_get_available_ulp(char *buf, size_t len);
2583  void tcp_cleanup_ulp(struct sock *sk);
2584  void tcp_update_ulp(struct sock *sk, struct proto *p,
2585  		    void (*write_space)(struct sock *sk));
2586  
2587  #define MODULE_ALIAS_TCP_ULP(name)				\
2588  	__MODULE_INFO(alias, alias_userspace, name);		\
2589  	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2590  
2591  #ifdef CONFIG_NET_SOCK_MSG
2592  struct sk_msg;
2593  struct sk_psock;
2594  
2595  #ifdef CONFIG_BPF_SYSCALL
2596  int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2597  void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2598  #endif /* CONFIG_BPF_SYSCALL */
2599  
2600  #ifdef CONFIG_INET
2601  void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2602  #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2603  static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2604  {
2605  }
2606  #endif
2607  
2608  int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2609  			  struct sk_msg *msg, u32 bytes, int flags);
2610  #endif /* CONFIG_NET_SOCK_MSG */
2611  
2612  #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2613  static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2614  {
2615  }
2616  #endif
2617  
2618  #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2619  static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2620  				      struct sk_buff *skb,
2621  				      unsigned int end_offset)
2622  {
2623  	skops->skb = skb;
2624  	skops->skb_data_end = skb->data + end_offset;
2625  }
2626  #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2627  static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2628  				      struct sk_buff *skb,
2629  				      unsigned int end_offset)
2630  {
2631  }
2632  #endif
2633  
2634  /* Call BPF_SOCK_OPS program that returns an int. If the return value
2635   * is < 0, then the BPF op failed (for example if the loaded BPF
2636   * program does not support the chosen operation or there is no BPF
2637   * program loaded).
2638   */
2639  #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2640  static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2641  {
2642  	struct bpf_sock_ops_kern sock_ops;
2643  	int ret;
2644  
2645  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2646  	if (sk_fullsock(sk)) {
2647  		sock_ops.is_fullsock = 1;
2648  		sock_owned_by_me(sk);
2649  	}
2650  
2651  	sock_ops.sk = sk;
2652  	sock_ops.op = op;
2653  	if (nargs > 0)
2654  		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2655  
2656  	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2657  	if (ret == 0)
2658  		ret = sock_ops.reply;
2659  	else
2660  		ret = -1;
2661  	return ret;
2662  }
2663  
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2664  static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2665  {
2666  	u32 args[2] = {arg1, arg2};
2667  
2668  	return tcp_call_bpf(sk, op, 2, args);
2669  }
2670  
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2671  static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2672  				    u32 arg3)
2673  {
2674  	u32 args[3] = {arg1, arg2, arg3};
2675  
2676  	return tcp_call_bpf(sk, op, 3, args);
2677  }
2678  
2679  #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2680  static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2681  {
2682  	return -EPERM;
2683  }
2684  
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2685  static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2686  {
2687  	return -EPERM;
2688  }
2689  
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2690  static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2691  				    u32 arg3)
2692  {
2693  	return -EPERM;
2694  }
2695  
2696  #endif
2697  
tcp_timeout_init(struct sock * sk)2698  static inline u32 tcp_timeout_init(struct sock *sk)
2699  {
2700  	int timeout;
2701  
2702  	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2703  
2704  	if (timeout <= 0)
2705  		timeout = TCP_TIMEOUT_INIT;
2706  	return min_t(int, timeout, TCP_RTO_MAX);
2707  }
2708  
tcp_rwnd_init_bpf(struct sock * sk)2709  static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2710  {
2711  	int rwnd;
2712  
2713  	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2714  
2715  	if (rwnd < 0)
2716  		rwnd = 0;
2717  	return rwnd;
2718  }
2719  
tcp_bpf_ca_needs_ecn(struct sock * sk)2720  static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2721  {
2722  	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2723  }
2724  
tcp_bpf_rtt(struct sock * sk,long mrtt,u32 srtt)2725  static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2726  {
2727  	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2728  		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2729  }
2730  
2731  #if IS_ENABLED(CONFIG_SMC)
2732  extern struct static_key_false tcp_have_smc;
2733  #endif
2734  
2735  #if IS_ENABLED(CONFIG_TLS_DEVICE)
2736  void clean_acked_data_enable(struct inet_connection_sock *icsk,
2737  			     void (*cad)(struct sock *sk, u32 ack_seq));
2738  void clean_acked_data_disable(struct inet_connection_sock *icsk);
2739  void clean_acked_data_flush(void);
2740  #endif
2741  
2742  DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2743  static inline void tcp_add_tx_delay(struct sk_buff *skb,
2744  				    const struct tcp_sock *tp)
2745  {
2746  	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2747  		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2748  }
2749  
2750  /* Compute Earliest Departure Time for some control packets
2751   * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2752   */
tcp_transmit_time(const struct sock * sk)2753  static inline u64 tcp_transmit_time(const struct sock *sk)
2754  {
2755  	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2756  		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2757  			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2758  
2759  		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2760  	}
2761  	return 0;
2762  }
2763  
tcp_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const struct tcp_ao_hdr ** aoh)2764  static inline int tcp_parse_auth_options(const struct tcphdr *th,
2765  		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2766  {
2767  	const u8 *md5_tmp, *ao_tmp;
2768  	int ret;
2769  
2770  	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2771  	if (ret)
2772  		return ret;
2773  
2774  	if (md5_hash)
2775  		*md5_hash = md5_tmp;
2776  
2777  	if (aoh) {
2778  		if (!ao_tmp)
2779  			*aoh = NULL;
2780  		else
2781  			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2782  	}
2783  
2784  	return 0;
2785  }
2786  
tcp_ao_required(struct sock * sk,const void * saddr,int family,int l3index,bool stat_inc)2787  static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2788  				   int family, int l3index, bool stat_inc)
2789  {
2790  #ifdef CONFIG_TCP_AO
2791  	struct tcp_ao_info *ao_info;
2792  	struct tcp_ao_key *ao_key;
2793  
2794  	if (!static_branch_unlikely(&tcp_ao_needed.key))
2795  		return false;
2796  
2797  	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2798  					lockdep_sock_is_held(sk));
2799  	if (!ao_info)
2800  		return false;
2801  
2802  	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2803  	if (ao_info->ao_required || ao_key) {
2804  		if (stat_inc) {
2805  			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2806  			atomic64_inc(&ao_info->counters.ao_required);
2807  		}
2808  		return true;
2809  	}
2810  #endif
2811  	return false;
2812  }
2813  
2814  enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2815  		const struct request_sock *req, const struct sk_buff *skb,
2816  		const void *saddr, const void *daddr,
2817  		int family, int dif, int sdif);
2818  
2819  #endif	/* _TCP_H */
2820