1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
5 
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/i2c.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/sysfs.h>
12 #include <linux/jiffies.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/acpi.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/math64.h>
19 #include <linux/minmax.h>
20 #include <linux/pm.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 
24 #include <linux/iio/common/inv_sensors_timestamp.h>
25 #include <linux/iio/iio.h>
26 
27 #include "inv_mpu_iio.h"
28 #include "inv_mpu_magn.h"
29 
30 /*
31  * this is the gyro scale translated from dynamic range plus/minus
32  * {250, 500, 1000, 2000} to rad/s
33  */
34 static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
35 
36 /*
37  * this is the accel scale translated from dynamic range plus/minus
38  * {2, 4, 8, 16} to m/s^2
39  */
40 static const int accel_scale[] = {598, 1196, 2392, 4785};
41 
42 static const struct inv_mpu6050_reg_map reg_set_icm20602 = {
43 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
44 	.lpf                    = INV_MPU6050_REG_CONFIG,
45 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
46 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
47 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
48 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
49 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
50 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
51 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
52 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
53 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
54 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
55 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
56 	.int_status             = INV_MPU6050_REG_INT_STATUS,
57 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
58 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
59 	.int_pin_cfg            = INV_MPU6050_REG_INT_PIN_CFG,
60 	.accl_offset            = INV_MPU6500_REG_ACCEL_OFFSET,
61 	.gyro_offset            = INV_MPU6050_REG_GYRO_OFFSET,
62 	.i2c_if                 = INV_ICM20602_REG_I2C_IF,
63 };
64 
65 static const struct inv_mpu6050_reg_map reg_set_6500 = {
66 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
67 	.lpf                    = INV_MPU6050_REG_CONFIG,
68 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
69 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
70 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
71 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
72 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
73 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
74 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
75 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
76 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
77 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
78 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
79 	.int_status             = INV_MPU6050_REG_INT_STATUS,
80 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
81 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
82 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
83 	.accl_offset		= INV_MPU6500_REG_ACCEL_OFFSET,
84 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
85 	.i2c_if                 = 0,
86 };
87 
88 static const struct inv_mpu6050_reg_map reg_set_6050 = {
89 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
90 	.lpf                    = INV_MPU6050_REG_CONFIG,
91 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
92 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
93 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
94 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
95 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
96 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
97 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
98 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
99 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
100 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
101 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
102 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
103 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
104 	.accl_offset		= INV_MPU6050_REG_ACCEL_OFFSET,
105 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
106 	.i2c_if                 = 0,
107 };
108 
109 static const struct inv_mpu6050_chip_config chip_config_6050 = {
110 	.clk = INV_CLK_INTERNAL,
111 	.fsr = INV_MPU6050_FSR_2000DPS,
112 	.lpf = INV_MPU6050_FILTER_20HZ,
113 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
114 	.gyro_en = true,
115 	.accl_en = true,
116 	.temp_en = true,
117 	.magn_en = false,
118 	.gyro_fifo_enable = false,
119 	.accl_fifo_enable = false,
120 	.temp_fifo_enable = false,
121 	.magn_fifo_enable = false,
122 	.accl_fs = INV_MPU6050_FS_02G,
123 	.user_ctrl = 0,
124 };
125 
126 static const struct inv_mpu6050_chip_config chip_config_6500 = {
127 	.clk = INV_CLK_PLL,
128 	.fsr = INV_MPU6050_FSR_2000DPS,
129 	.lpf = INV_MPU6050_FILTER_20HZ,
130 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
131 	.gyro_en = true,
132 	.accl_en = true,
133 	.temp_en = true,
134 	.magn_en = false,
135 	.gyro_fifo_enable = false,
136 	.accl_fifo_enable = false,
137 	.temp_fifo_enable = false,
138 	.magn_fifo_enable = false,
139 	.accl_fs = INV_MPU6050_FS_02G,
140 	.user_ctrl = 0,
141 };
142 
143 /* Indexed by enum inv_devices */
144 static const struct inv_mpu6050_hw hw_info[] = {
145 	{
146 		.whoami = INV_MPU6050_WHOAMI_VALUE,
147 		.name = "MPU6050",
148 		.reg = &reg_set_6050,
149 		.config = &chip_config_6050,
150 		.fifo_size = 1024,
151 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
152 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
153 	},
154 	{
155 		.whoami = INV_MPU6500_WHOAMI_VALUE,
156 		.name = "MPU6500",
157 		.reg = &reg_set_6500,
158 		.config = &chip_config_6500,
159 		.fifo_size = 512,
160 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
161 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
162 	},
163 	{
164 		.whoami = INV_MPU6515_WHOAMI_VALUE,
165 		.name = "MPU6515",
166 		.reg = &reg_set_6500,
167 		.config = &chip_config_6500,
168 		.fifo_size = 512,
169 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
170 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
171 	},
172 	{
173 		.whoami = INV_MPU6880_WHOAMI_VALUE,
174 		.name = "MPU6880",
175 		.reg = &reg_set_6500,
176 		.config = &chip_config_6500,
177 		.fifo_size = 4096,
178 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
179 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
180 	},
181 	{
182 		.whoami = INV_MPU6000_WHOAMI_VALUE,
183 		.name = "MPU6000",
184 		.reg = &reg_set_6050,
185 		.config = &chip_config_6050,
186 		.fifo_size = 1024,
187 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
188 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
189 	},
190 	{
191 		.whoami = INV_MPU9150_WHOAMI_VALUE,
192 		.name = "MPU9150",
193 		.reg = &reg_set_6050,
194 		.config = &chip_config_6050,
195 		.fifo_size = 1024,
196 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
197 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
198 	},
199 	{
200 		.whoami = INV_MPU9250_WHOAMI_VALUE,
201 		.name = "MPU9250",
202 		.reg = &reg_set_6500,
203 		.config = &chip_config_6500,
204 		.fifo_size = 512,
205 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
206 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
207 	},
208 	{
209 		.whoami = INV_MPU9255_WHOAMI_VALUE,
210 		.name = "MPU9255",
211 		.reg = &reg_set_6500,
212 		.config = &chip_config_6500,
213 		.fifo_size = 512,
214 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
215 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
216 	},
217 	{
218 		.whoami = INV_ICM20608_WHOAMI_VALUE,
219 		.name = "ICM20608",
220 		.reg = &reg_set_6500,
221 		.config = &chip_config_6500,
222 		.fifo_size = 512,
223 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
224 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
225 	},
226 	{
227 		.whoami = INV_ICM20608D_WHOAMI_VALUE,
228 		.name = "ICM20608D",
229 		.reg = &reg_set_6500,
230 		.config = &chip_config_6500,
231 		.fifo_size = 512,
232 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
233 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
234 	},
235 	{
236 		.whoami = INV_ICM20609_WHOAMI_VALUE,
237 		.name = "ICM20609",
238 		.reg = &reg_set_6500,
239 		.config = &chip_config_6500,
240 		.fifo_size = 4 * 1024,
241 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
242 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
243 	},
244 	{
245 		.whoami = INV_ICM20689_WHOAMI_VALUE,
246 		.name = "ICM20689",
247 		.reg = &reg_set_6500,
248 		.config = &chip_config_6500,
249 		.fifo_size = 4 * 1024,
250 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
251 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
252 	},
253 	{
254 		.whoami = INV_ICM20600_WHOAMI_VALUE,
255 		.name = "ICM20600",
256 		.reg = &reg_set_icm20602,
257 		.config = &chip_config_6500,
258 		.fifo_size = 1008,
259 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
260 		.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
261 	},
262 	{
263 		.whoami = INV_ICM20602_WHOAMI_VALUE,
264 		.name = "ICM20602",
265 		.reg = &reg_set_icm20602,
266 		.config = &chip_config_6500,
267 		.fifo_size = 1008,
268 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
269 		.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
270 	},
271 	{
272 		.whoami = INV_ICM20690_WHOAMI_VALUE,
273 		.name = "ICM20690",
274 		.reg = &reg_set_6500,
275 		.config = &chip_config_6500,
276 		.fifo_size = 1024,
277 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
278 		.startup_time = {INV_ICM20690_GYRO_STARTUP_TIME, INV_ICM20690_ACCEL_STARTUP_TIME},
279 	},
280 	{
281 		.whoami = INV_IAM20680_WHOAMI_VALUE,
282 		.name = "IAM20680",
283 		.reg = &reg_set_6500,
284 		.config = &chip_config_6500,
285 		.fifo_size = 512,
286 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
287 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
288 	},
289 };
290 
inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state * st,bool sleep,bool cycle,int clock,int temp_dis)291 static int inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state *st, bool sleep,
292 					bool cycle, int clock, int temp_dis)
293 {
294 	u8 val;
295 
296 	if (clock < 0)
297 		clock = st->chip_config.clk;
298 	if (temp_dis < 0)
299 		temp_dis = !st->chip_config.temp_en;
300 
301 	val = clock & INV_MPU6050_BIT_CLK_MASK;
302 	if (temp_dis)
303 		val |= INV_MPU6050_BIT_TEMP_DIS;
304 	if (sleep)
305 		val |= INV_MPU6050_BIT_SLEEP;
306 	if (cycle)
307 		val |= INV_MPU6050_BIT_CYCLE;
308 
309 	dev_dbg(regmap_get_device(st->map), "pwr_mgmt_1: 0x%x\n", val);
310 	return regmap_write(st->map, st->reg->pwr_mgmt_1, val);
311 }
312 
inv_mpu6050_clock_switch(struct inv_mpu6050_state * st,unsigned int clock)313 static int inv_mpu6050_clock_switch(struct inv_mpu6050_state *st,
314 				    unsigned int clock)
315 {
316 	int ret;
317 
318 	switch (st->chip_type) {
319 	case INV_MPU6050:
320 	case INV_MPU6000:
321 	case INV_MPU9150:
322 		/* old chips: switch clock manually */
323 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, clock, -1);
324 		if (ret)
325 			return ret;
326 		st->chip_config.clk = clock;
327 		break;
328 	default:
329 		/* automatic clock switching, nothing to do */
330 		break;
331 	}
332 
333 	return 0;
334 }
335 
inv_mpu6050_switch_engine(struct inv_mpu6050_state * st,bool en,unsigned int mask)336 int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en,
337 			      unsigned int mask)
338 {
339 	unsigned int sleep, val;
340 	u8 pwr_mgmt2, user_ctrl;
341 	int ret;
342 
343 	/* delete useless requests */
344 	if (mask & INV_MPU6050_SENSOR_ACCL && en == st->chip_config.accl_en)
345 		mask &= ~INV_MPU6050_SENSOR_ACCL;
346 	if (mask & INV_MPU6050_SENSOR_GYRO && en == st->chip_config.gyro_en)
347 		mask &= ~INV_MPU6050_SENSOR_GYRO;
348 	if (mask & INV_MPU6050_SENSOR_TEMP && en == st->chip_config.temp_en)
349 		mask &= ~INV_MPU6050_SENSOR_TEMP;
350 	if (mask & INV_MPU6050_SENSOR_MAGN && en == st->chip_config.magn_en)
351 		mask &= ~INV_MPU6050_SENSOR_MAGN;
352 	if (mask & INV_MPU6050_SENSOR_WOM && en == st->chip_config.wom_en)
353 		mask &= ~INV_MPU6050_SENSOR_WOM;
354 
355 	/* force accel on if WoM is on and not going off */
356 	if (!en && (mask & INV_MPU6050_SENSOR_ACCL) && st->chip_config.wom_en &&
357 			!(mask & INV_MPU6050_SENSOR_WOM))
358 		mask &= ~INV_MPU6050_SENSOR_ACCL;
359 
360 	if (mask == 0)
361 		return 0;
362 
363 	/* turn on/off temperature sensor */
364 	if (mask & INV_MPU6050_SENSOR_TEMP) {
365 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, !en);
366 		if (ret)
367 			return ret;
368 		st->chip_config.temp_en = en;
369 	}
370 
371 	/* update user_crtl for driving magnetometer */
372 	if (mask & INV_MPU6050_SENSOR_MAGN) {
373 		user_ctrl = st->chip_config.user_ctrl;
374 		if (en)
375 			user_ctrl |= INV_MPU6050_BIT_I2C_MST_EN;
376 		else
377 			user_ctrl &= ~INV_MPU6050_BIT_I2C_MST_EN;
378 		ret = regmap_write(st->map, st->reg->user_ctrl, user_ctrl);
379 		if (ret)
380 			return ret;
381 		st->chip_config.user_ctrl = user_ctrl;
382 		st->chip_config.magn_en = en;
383 	}
384 
385 	/* manage accel & gyro engines */
386 	if (mask & (INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO)) {
387 		/* compute power management 2 current value */
388 		pwr_mgmt2 = 0;
389 		if (!st->chip_config.accl_en)
390 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
391 		if (!st->chip_config.gyro_en)
392 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
393 
394 		/* update to new requested value */
395 		if (mask & INV_MPU6050_SENSOR_ACCL) {
396 			if (en)
397 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_ACCL_STBY;
398 			else
399 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
400 		}
401 		if (mask & INV_MPU6050_SENSOR_GYRO) {
402 			if (en)
403 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_GYRO_STBY;
404 			else
405 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
406 		}
407 
408 		/* switch clock to internal when turning gyro off */
409 		if (mask & INV_MPU6050_SENSOR_GYRO && !en) {
410 			ret = inv_mpu6050_clock_switch(st, INV_CLK_INTERNAL);
411 			if (ret)
412 				return ret;
413 		}
414 
415 		/* update sensors engine */
416 		dev_dbg(regmap_get_device(st->map), "pwr_mgmt_2: 0x%x\n",
417 			pwr_mgmt2);
418 		ret = regmap_write(st->map, st->reg->pwr_mgmt_2, pwr_mgmt2);
419 		if (ret)
420 			return ret;
421 		if (mask & INV_MPU6050_SENSOR_ACCL)
422 			st->chip_config.accl_en = en;
423 		if (mask & INV_MPU6050_SENSOR_GYRO)
424 			st->chip_config.gyro_en = en;
425 
426 		/* compute required time to have sensors stabilized */
427 		sleep = 0;
428 		if (en) {
429 			if (mask & INV_MPU6050_SENSOR_ACCL) {
430 				if (sleep < st->hw->startup_time.accel)
431 					sleep = st->hw->startup_time.accel;
432 			}
433 			if (mask & INV_MPU6050_SENSOR_GYRO) {
434 				if (sleep < st->hw->startup_time.gyro)
435 					sleep = st->hw->startup_time.gyro;
436 			}
437 		} else {
438 			if (mask & INV_MPU6050_SENSOR_GYRO) {
439 				if (sleep < INV_MPU6050_GYRO_DOWN_TIME)
440 					sleep = INV_MPU6050_GYRO_DOWN_TIME;
441 			}
442 		}
443 		if (sleep)
444 			msleep(sleep);
445 
446 		/* switch clock to PLL when turning gyro on */
447 		if (mask & INV_MPU6050_SENSOR_GYRO && en) {
448 			ret = inv_mpu6050_clock_switch(st, INV_CLK_PLL);
449 			if (ret)
450 				return ret;
451 		}
452 	}
453 
454 	/* enable/disable accel intelligence control */
455 	if (mask & INV_MPU6050_SENSOR_WOM) {
456 		val = en ? INV_MPU6500_BIT_ACCEL_INTEL_EN |
457 			   INV_MPU6500_BIT_ACCEL_INTEL_MODE : 0;
458 		ret = regmap_write(st->map, INV_MPU6500_REG_ACCEL_INTEL_CTRL, val);
459 		if (ret)
460 			return ret;
461 		st->chip_config.wom_en = en;
462 	}
463 
464 	return 0;
465 }
466 
inv_mpu6050_set_power_itg(struct inv_mpu6050_state * st,bool power_on)467 static int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st,
468 				     bool power_on)
469 {
470 	int result;
471 
472 	result = inv_mpu6050_pwr_mgmt_1_write(st, !power_on, false, -1, -1);
473 	if (result)
474 		return result;
475 
476 	if (power_on)
477 		usleep_range(INV_MPU6050_REG_UP_TIME_MIN,
478 			     INV_MPU6050_REG_UP_TIME_MAX);
479 
480 	return 0;
481 }
482 
inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state * st,enum inv_mpu6050_fsr_e val)483 static int inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state *st,
484 				    enum inv_mpu6050_fsr_e val)
485 {
486 	unsigned int gyro_shift;
487 	u8 data;
488 
489 	switch (st->chip_type) {
490 	case INV_ICM20690:
491 		gyro_shift = INV_ICM20690_GYRO_CONFIG_FSR_SHIFT;
492 		break;
493 	default:
494 		gyro_shift = INV_MPU6050_GYRO_CONFIG_FSR_SHIFT;
495 		break;
496 	}
497 
498 	data = val << gyro_shift;
499 	return regmap_write(st->map, st->reg->gyro_config, data);
500 }
501 
inv_mpu6050_set_accel_lpf_regs(struct inv_mpu6050_state * st,enum inv_mpu6050_filter_e val)502 static int inv_mpu6050_set_accel_lpf_regs(struct inv_mpu6050_state *st,
503 					  enum inv_mpu6050_filter_e val)
504 {
505 	switch (st->chip_type) {
506 	case INV_MPU6050:
507 	case INV_MPU6000:
508 	case INV_MPU9150:
509 		/* old chips, nothing to do */
510 		return 0;
511 	case INV_ICM20689:
512 	case INV_ICM20690:
513 		/* set FIFO size to maximum value */
514 		val |= INV_ICM20689_BITS_FIFO_SIZE_MAX;
515 		break;
516 	default:
517 		break;
518 	}
519 
520 	return regmap_write(st->map, st->reg->accel_lpf, val);
521 }
522 
523 /*
524  *  inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent
525  *
526  *  MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope
527  *  MPU6500 and above have a dedicated register for accelerometer
528  */
inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state * st,enum inv_mpu6050_filter_e val)529 static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st,
530 				    enum inv_mpu6050_filter_e val)
531 {
532 	int result;
533 
534 	result = regmap_write(st->map, st->reg->lpf, val);
535 	if (result)
536 		return result;
537 
538 	/* set accel lpf */
539 	return inv_mpu6050_set_accel_lpf_regs(st, val);
540 }
541 
542 /*
543  *  inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
544  *
545  *  Initial configuration:
546  *  FSR: ± 2000DPS
547  *  DLPF: 20Hz
548  *  FIFO rate: 50Hz
549  *  Clock source: Gyro PLL
550  */
inv_mpu6050_init_config(struct iio_dev * indio_dev)551 static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
552 {
553 	int result;
554 	u8 d;
555 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
556 	struct inv_sensors_timestamp_chip timestamp;
557 
558 	result = inv_mpu6050_set_gyro_fsr(st, st->chip_config.fsr);
559 	if (result)
560 		return result;
561 
562 	result = inv_mpu6050_set_lpf_regs(st, st->chip_config.lpf);
563 	if (result)
564 		return result;
565 
566 	d = st->chip_config.divider;
567 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
568 	if (result)
569 		return result;
570 
571 	d = (st->chip_config.accl_fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
572 	result = regmap_write(st->map, st->reg->accl_config, d);
573 	if (result)
574 		return result;
575 
576 	result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask);
577 	if (result)
578 		return result;
579 
580 	/* clock jitter is +/- 2% */
581 	timestamp.clock_period = NSEC_PER_SEC / INV_MPU6050_INTERNAL_FREQ_HZ;
582 	timestamp.jitter = 20;
583 	timestamp.init_period =
584 			NSEC_PER_SEC / INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
585 	inv_sensors_timestamp_init(&st->timestamp, &timestamp);
586 
587 	/* magn chip init, noop if not present in the chip */
588 	result = inv_mpu_magn_probe(st);
589 	if (result)
590 		return result;
591 
592 	return 0;
593 }
594 
inv_mpu6050_sensor_set(struct inv_mpu6050_state * st,int reg,int axis,int val)595 static int inv_mpu6050_sensor_set(struct inv_mpu6050_state  *st, int reg,
596 				int axis, int val)
597 {
598 	int ind;
599 	__be16 d = cpu_to_be16(val);
600 
601 	ind = (axis - IIO_MOD_X) * 2;
602 
603 	return regmap_bulk_write(st->map, reg + ind, &d, sizeof(d));
604 }
605 
inv_mpu6050_sensor_show(struct inv_mpu6050_state * st,int reg,int axis,int * val)606 static int inv_mpu6050_sensor_show(struct inv_mpu6050_state  *st, int reg,
607 				   int axis, int *val)
608 {
609 	int ind, result;
610 	__be16 d;
611 
612 	ind = (axis - IIO_MOD_X) * 2;
613 	result = regmap_bulk_read(st->map, reg + ind, &d, sizeof(d));
614 	if (result)
615 		return result;
616 	*val = (short)be16_to_cpup(&d);
617 
618 	return IIO_VAL_INT;
619 }
620 
inv_mpu6050_read_channel_data(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)621 static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev,
622 					 struct iio_chan_spec const *chan,
623 					 int *val)
624 {
625 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
626 	struct device *pdev = regmap_get_device(st->map);
627 	unsigned int freq_hz, period_us, min_sleep_us, max_sleep_us;
628 	int result;
629 	int ret;
630 
631 	/* compute sample period */
632 	freq_hz = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
633 	period_us = 1000000 / freq_hz;
634 
635 	result = pm_runtime_resume_and_get(pdev);
636 	if (result)
637 		return result;
638 
639 	switch (chan->type) {
640 	case IIO_ANGL_VEL:
641 		if (!st->chip_config.gyro_en) {
642 			result = inv_mpu6050_switch_engine(st, true,
643 					INV_MPU6050_SENSOR_GYRO);
644 			if (result)
645 				goto error_power_off;
646 			/* need to wait 2 periods to have first valid sample */
647 			min_sleep_us = 2 * period_us;
648 			max_sleep_us = 2 * (period_us + period_us / 2);
649 			usleep_range(min_sleep_us, max_sleep_us);
650 		}
651 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
652 					      chan->channel2, val);
653 		break;
654 	case IIO_ACCEL:
655 		if (!st->chip_config.accl_en) {
656 			result = inv_mpu6050_switch_engine(st, true,
657 					INV_MPU6050_SENSOR_ACCL);
658 			if (result)
659 				goto error_power_off;
660 			/* wait 1 period for first sample availability */
661 			min_sleep_us = period_us;
662 			max_sleep_us = period_us + period_us / 2;
663 			usleep_range(min_sleep_us, max_sleep_us);
664 		}
665 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
666 					      chan->channel2, val);
667 		break;
668 	case IIO_TEMP:
669 		/* temperature sensor work only with accel and/or gyro */
670 		if (!st->chip_config.accl_en && !st->chip_config.gyro_en) {
671 			result = -EBUSY;
672 			goto error_power_off;
673 		}
674 		if (!st->chip_config.temp_en) {
675 			result = inv_mpu6050_switch_engine(st, true,
676 					INV_MPU6050_SENSOR_TEMP);
677 			if (result)
678 				goto error_power_off;
679 			/* wait 1 period for first sample availability */
680 			min_sleep_us = period_us;
681 			max_sleep_us = period_us + period_us / 2;
682 			usleep_range(min_sleep_us, max_sleep_us);
683 		}
684 		ret = inv_mpu6050_sensor_show(st, st->reg->temperature,
685 					      IIO_MOD_X, val);
686 		break;
687 	case IIO_MAGN:
688 		if (!st->chip_config.magn_en) {
689 			result = inv_mpu6050_switch_engine(st, true,
690 					INV_MPU6050_SENSOR_MAGN);
691 			if (result)
692 				goto error_power_off;
693 			/* frequency is limited for magnetometer */
694 			if (freq_hz > INV_MPU_MAGN_FREQ_HZ_MAX) {
695 				freq_hz = INV_MPU_MAGN_FREQ_HZ_MAX;
696 				period_us = 1000000 / freq_hz;
697 			}
698 			/* need to wait 2 periods to have first valid sample */
699 			min_sleep_us = 2 * period_us;
700 			max_sleep_us = 2 * (period_us + period_us / 2);
701 			usleep_range(min_sleep_us, max_sleep_us);
702 		}
703 		ret = inv_mpu_magn_read(st, chan->channel2, val);
704 		break;
705 	default:
706 		ret = -EINVAL;
707 		break;
708 	}
709 
710 	pm_runtime_mark_last_busy(pdev);
711 	pm_runtime_put_autosuspend(pdev);
712 
713 	return ret;
714 
715 error_power_off:
716 	pm_runtime_put_autosuspend(pdev);
717 	return result;
718 }
719 
720 static int
inv_mpu6050_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)721 inv_mpu6050_read_raw(struct iio_dev *indio_dev,
722 		     struct iio_chan_spec const *chan,
723 		     int *val, int *val2, long mask)
724 {
725 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
726 	int ret = 0;
727 
728 	switch (mask) {
729 	case IIO_CHAN_INFO_RAW:
730 		ret = iio_device_claim_direct_mode(indio_dev);
731 		if (ret)
732 			return ret;
733 		mutex_lock(&st->lock);
734 		ret = inv_mpu6050_read_channel_data(indio_dev, chan, val);
735 		mutex_unlock(&st->lock);
736 		iio_device_release_direct_mode(indio_dev);
737 		return ret;
738 	case IIO_CHAN_INFO_SCALE:
739 		switch (chan->type) {
740 		case IIO_ANGL_VEL:
741 			mutex_lock(&st->lock);
742 			*val  = 0;
743 			*val2 = gyro_scale_6050[st->chip_config.fsr];
744 			mutex_unlock(&st->lock);
745 
746 			return IIO_VAL_INT_PLUS_NANO;
747 		case IIO_ACCEL:
748 			mutex_lock(&st->lock);
749 			*val = 0;
750 			*val2 = accel_scale[st->chip_config.accl_fs];
751 			mutex_unlock(&st->lock);
752 
753 			return IIO_VAL_INT_PLUS_MICRO;
754 		case IIO_TEMP:
755 			*val = st->hw->temp.scale / 1000000;
756 			*val2 = st->hw->temp.scale % 1000000;
757 			return IIO_VAL_INT_PLUS_MICRO;
758 		case IIO_MAGN:
759 			return inv_mpu_magn_get_scale(st, chan, val, val2);
760 		default:
761 			return -EINVAL;
762 		}
763 	case IIO_CHAN_INFO_OFFSET:
764 		switch (chan->type) {
765 		case IIO_TEMP:
766 			*val = st->hw->temp.offset;
767 			return IIO_VAL_INT;
768 		default:
769 			return -EINVAL;
770 		}
771 	case IIO_CHAN_INFO_CALIBBIAS:
772 		switch (chan->type) {
773 		case IIO_ANGL_VEL:
774 			mutex_lock(&st->lock);
775 			ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset,
776 						chan->channel2, val);
777 			mutex_unlock(&st->lock);
778 			return ret;
779 		case IIO_ACCEL:
780 			mutex_lock(&st->lock);
781 			ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset,
782 						chan->channel2, val);
783 			mutex_unlock(&st->lock);
784 			return ret;
785 
786 		default:
787 			return -EINVAL;
788 		}
789 	default:
790 		return -EINVAL;
791 	}
792 }
793 
inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state * st,int val,int val2)794 static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val,
795 					int val2)
796 {
797 	int result, i;
798 
799 	if (val != 0)
800 		return -EINVAL;
801 
802 	for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
803 		if (gyro_scale_6050[i] == val2) {
804 			result = inv_mpu6050_set_gyro_fsr(st, i);
805 			if (result)
806 				return result;
807 
808 			st->chip_config.fsr = i;
809 			return 0;
810 		}
811 	}
812 
813 	return -EINVAL;
814 }
815 
inv_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)816 static int inv_write_raw_get_fmt(struct iio_dev *indio_dev,
817 				 struct iio_chan_spec const *chan, long mask)
818 {
819 	switch (mask) {
820 	case IIO_CHAN_INFO_SCALE:
821 		switch (chan->type) {
822 		case IIO_ANGL_VEL:
823 			return IIO_VAL_INT_PLUS_NANO;
824 		default:
825 			return IIO_VAL_INT_PLUS_MICRO;
826 		}
827 	default:
828 		return IIO_VAL_INT_PLUS_MICRO;
829 	}
830 
831 	return -EINVAL;
832 }
833 
inv_mpu6050_write_accel_scale(struct inv_mpu6050_state * st,int val,int val2)834 static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val,
835 					 int val2)
836 {
837 	int result, i;
838 	u8 d;
839 
840 	if (val != 0)
841 		return -EINVAL;
842 
843 	for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
844 		if (accel_scale[i] == val2) {
845 			d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
846 			result = regmap_write(st->map, st->reg->accl_config, d);
847 			if (result)
848 				return result;
849 
850 			st->chip_config.accl_fs = i;
851 			return 0;
852 		}
853 	}
854 
855 	return -EINVAL;
856 }
857 
inv_mpu6050_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)858 static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
859 				 struct iio_chan_spec const *chan,
860 				 int val, int val2, long mask)
861 {
862 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
863 	struct device *pdev = regmap_get_device(st->map);
864 	int result;
865 
866 	/*
867 	 * we should only update scale when the chip is disabled, i.e.
868 	 * not running
869 	 */
870 	result = iio_device_claim_direct_mode(indio_dev);
871 	if (result)
872 		return result;
873 
874 	mutex_lock(&st->lock);
875 	result = pm_runtime_resume_and_get(pdev);
876 	if (result)
877 		goto error_write_raw_unlock;
878 
879 	switch (mask) {
880 	case IIO_CHAN_INFO_SCALE:
881 		switch (chan->type) {
882 		case IIO_ANGL_VEL:
883 			result = inv_mpu6050_write_gyro_scale(st, val, val2);
884 			break;
885 		case IIO_ACCEL:
886 			result = inv_mpu6050_write_accel_scale(st, val, val2);
887 			break;
888 		default:
889 			result = -EINVAL;
890 			break;
891 		}
892 		break;
893 	case IIO_CHAN_INFO_CALIBBIAS:
894 		switch (chan->type) {
895 		case IIO_ANGL_VEL:
896 			result = inv_mpu6050_sensor_set(st,
897 							st->reg->gyro_offset,
898 							chan->channel2, val);
899 			break;
900 		case IIO_ACCEL:
901 			result = inv_mpu6050_sensor_set(st,
902 							st->reg->accl_offset,
903 							chan->channel2, val);
904 			break;
905 		default:
906 			result = -EINVAL;
907 			break;
908 		}
909 		break;
910 	default:
911 		result = -EINVAL;
912 		break;
913 	}
914 
915 	pm_runtime_mark_last_busy(pdev);
916 	pm_runtime_put_autosuspend(pdev);
917 error_write_raw_unlock:
918 	mutex_unlock(&st->lock);
919 	iio_device_release_direct_mode(indio_dev);
920 
921 	return result;
922 }
923 
inv_mpu6050_convert_wom_to_roc(unsigned int threshold,unsigned int freq_div)924 static u64 inv_mpu6050_convert_wom_to_roc(unsigned int threshold, unsigned int freq_div)
925 {
926 	/* 4mg per LSB converted in m/s² in micro (1000000) */
927 	const unsigned int convert = 4U * 9807U;
928 	u64 value;
929 
930 	value = threshold * convert;
931 
932 	/* compute the differential by multiplying by the frequency */
933 	return div_u64(value * INV_MPU6050_INTERNAL_FREQ_HZ, freq_div);
934 }
935 
inv_mpu6050_convert_roc_to_wom(u64 roc,unsigned int freq_div)936 static unsigned int inv_mpu6050_convert_roc_to_wom(u64 roc, unsigned int freq_div)
937 {
938 	/* 4mg per LSB converted in m/s² in micro (1000000) */
939 	const unsigned int convert = 4U * 9807U;
940 	u64 value;
941 
942 	/* return 0 only if roc is 0 */
943 	if (roc == 0)
944 		return 0;
945 
946 	value = div_u64(roc * freq_div, convert * INV_MPU6050_INTERNAL_FREQ_HZ);
947 
948 	/* limit value to 8 bits and prevent 0 */
949 	return min(255, max(1, value));
950 }
951 
inv_mpu6050_set_wom_int(struct inv_mpu6050_state * st,bool on)952 static int inv_mpu6050_set_wom_int(struct inv_mpu6050_state *st, bool on)
953 {
954 	unsigned int reg_val, val;
955 
956 	switch (st->chip_type) {
957 	case INV_MPU6050:
958 	case INV_MPU6500:
959 	case INV_MPU6515:
960 	case INV_MPU6880:
961 	case INV_MPU6000:
962 	case INV_MPU9150:
963 	case INV_MPU9250:
964 	case INV_MPU9255:
965 		reg_val = INV_MPU6500_BIT_WOM_INT_EN;
966 		break;
967 	default:
968 		reg_val = INV_ICM20608_BIT_WOM_INT_EN;
969 		break;
970 	}
971 
972 	val = on ? reg_val : 0;
973 
974 	return regmap_update_bits(st->map, st->reg->int_enable, reg_val, val);
975 }
976 
inv_mpu6050_set_wom_threshold(struct inv_mpu6050_state * st,u64 value,unsigned int freq_div)977 static int inv_mpu6050_set_wom_threshold(struct inv_mpu6050_state *st, u64 value,
978 					 unsigned int freq_div)
979 {
980 	unsigned int threshold;
981 	int result;
982 
983 	/* convert roc to wom threshold and convert back to handle clipping */
984 	threshold = inv_mpu6050_convert_roc_to_wom(value, freq_div);
985 	value = inv_mpu6050_convert_wom_to_roc(threshold, freq_div);
986 
987 	dev_dbg(regmap_get_device(st->map), "wom_threshold: 0x%x\n", threshold);
988 
989 	switch (st->chip_type) {
990 	case INV_ICM20609:
991 	case INV_ICM20689:
992 	case INV_ICM20600:
993 	case INV_ICM20602:
994 	case INV_ICM20690:
995 		st->data[0] = threshold;
996 		st->data[1] = threshold;
997 		st->data[2] = threshold;
998 		result = regmap_bulk_write(st->map, INV_ICM20609_REG_ACCEL_WOM_X_THR,
999 					   st->data, 3);
1000 		break;
1001 	default:
1002 		result = regmap_write(st->map, INV_MPU6500_REG_WOM_THRESHOLD, threshold);
1003 		break;
1004 	}
1005 	if (result)
1006 		return result;
1007 
1008 	st->chip_config.roc_threshold = value;
1009 
1010 	return 0;
1011 }
1012 
inv_mpu6050_set_lp_odr(struct inv_mpu6050_state * st,unsigned int freq_div,unsigned int * lp_div)1013 static int inv_mpu6050_set_lp_odr(struct inv_mpu6050_state *st, unsigned int freq_div,
1014 				  unsigned int *lp_div)
1015 {
1016 	static const unsigned int freq_dividers[] = {2, 4, 8, 16, 32, 64, 128, 256};
1017 	static const unsigned int reg_values[] = {
1018 		INV_MPU6050_LPOSC_500HZ, INV_MPU6050_LPOSC_250HZ,
1019 		INV_MPU6050_LPOSC_125HZ, INV_MPU6050_LPOSC_62HZ,
1020 		INV_MPU6050_LPOSC_31HZ, INV_MPU6050_LPOSC_16HZ,
1021 		INV_MPU6050_LPOSC_8HZ, INV_MPU6050_LPOSC_4HZ,
1022 	};
1023 	unsigned int val, i;
1024 
1025 	switch (st->chip_type) {
1026 	case INV_ICM20609:
1027 	case INV_ICM20689:
1028 	case INV_ICM20600:
1029 	case INV_ICM20602:
1030 	case INV_ICM20690:
1031 		/* nothing to do */
1032 		*lp_div = INV_MPU6050_FREQ_DIVIDER(st);
1033 		return 0;
1034 	default:
1035 		break;
1036 	}
1037 
1038 	/* found the nearest superior frequency divider */
1039 	i = ARRAY_SIZE(reg_values) - 1;
1040 	val = reg_values[i];
1041 	*lp_div = freq_dividers[i];
1042 	for (i = 0; i < ARRAY_SIZE(freq_dividers); ++i) {
1043 		if (freq_div <= freq_dividers[i]) {
1044 			val = reg_values[i];
1045 			*lp_div = freq_dividers[i];
1046 			break;
1047 		}
1048 	}
1049 
1050 	dev_dbg(regmap_get_device(st->map), "lp_odr: 0x%x\n", val);
1051 	return regmap_write(st->map, INV_MPU6500_REG_LP_ODR, val);
1052 }
1053 
inv_mpu6050_set_wom_lp(struct inv_mpu6050_state * st,bool on)1054 static int inv_mpu6050_set_wom_lp(struct inv_mpu6050_state *st, bool on)
1055 {
1056 	unsigned int lp_div;
1057 	int result;
1058 
1059 	if (on) {
1060 		/* set low power ODR */
1061 		result = inv_mpu6050_set_lp_odr(st, INV_MPU6050_FREQ_DIVIDER(st), &lp_div);
1062 		if (result)
1063 			return result;
1064 		/* disable accel low pass filter */
1065 		result = inv_mpu6050_set_accel_lpf_regs(st, INV_MPU6050_FILTER_NOLPF);
1066 		if (result)
1067 			return result;
1068 		/* update wom threshold with new low-power frequency divider */
1069 		result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold, lp_div);
1070 		if (result)
1071 			return result;
1072 		/* set cycle mode */
1073 		result = inv_mpu6050_pwr_mgmt_1_write(st, false, true, -1, -1);
1074 	} else {
1075 		/* disable cycle mode */
1076 		result = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, -1);
1077 		if (result)
1078 			return result;
1079 		/* restore wom threshold */
1080 		result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold,
1081 						       INV_MPU6050_FREQ_DIVIDER(st));
1082 		if (result)
1083 			return result;
1084 		/* restore accel low pass filter */
1085 		result = inv_mpu6050_set_accel_lpf_regs(st, st->chip_config.lpf);
1086 	}
1087 
1088 	return result;
1089 }
1090 
inv_mpu6050_enable_wom(struct inv_mpu6050_state * st,bool en)1091 static int inv_mpu6050_enable_wom(struct inv_mpu6050_state *st, bool en)
1092 {
1093 	struct device *pdev = regmap_get_device(st->map);
1094 	unsigned int mask;
1095 	int result;
1096 
1097 	if (en) {
1098 		result = pm_runtime_resume_and_get(pdev);
1099 		if (result)
1100 			return result;
1101 
1102 		mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_WOM;
1103 		result = inv_mpu6050_switch_engine(st, true, mask);
1104 		if (result)
1105 			goto error_suspend;
1106 
1107 		result = inv_mpu6050_set_wom_int(st, true);
1108 		if (result)
1109 			goto error_suspend;
1110 	} else {
1111 		result = inv_mpu6050_set_wom_int(st, false);
1112 		if (result)
1113 			dev_err(pdev, "error %d disabling WoM interrupt bit", result);
1114 
1115 		/* disable only WoM and let accel be disabled by autosuspend */
1116 		result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_SENSOR_WOM);
1117 		if (result) {
1118 			dev_err(pdev, "error %d disabling WoM force off", result);
1119 			/* force WoM off */
1120 			st->chip_config.wom_en = false;
1121 		}
1122 
1123 		pm_runtime_mark_last_busy(pdev);
1124 		pm_runtime_put_autosuspend(pdev);
1125 	}
1126 
1127 	return result;
1128 
1129 error_suspend:
1130 	pm_runtime_mark_last_busy(pdev);
1131 	pm_runtime_put_autosuspend(pdev);
1132 	return result;
1133 }
1134 
inv_mpu6050_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1135 static int inv_mpu6050_read_event_config(struct iio_dev *indio_dev,
1136 					 const struct iio_chan_spec *chan,
1137 					 enum iio_event_type type,
1138 					 enum iio_event_direction dir)
1139 {
1140 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1141 
1142 	/* support only WoM (accel roc rising) event */
1143 	if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
1144 	    dir != IIO_EV_DIR_RISING)
1145 		return -EINVAL;
1146 
1147 	guard(mutex)(&st->lock);
1148 
1149 	return st->chip_config.wom_en ? 1 : 0;
1150 }
1151 
inv_mpu6050_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)1152 static int inv_mpu6050_write_event_config(struct iio_dev *indio_dev,
1153 					  const struct iio_chan_spec *chan,
1154 					  enum iio_event_type type,
1155 					  enum iio_event_direction dir,
1156 					  int state)
1157 {
1158 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1159 	int enable;
1160 
1161 	/* support only WoM (accel roc rising) event */
1162 	if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
1163 	    dir != IIO_EV_DIR_RISING)
1164 		return -EINVAL;
1165 
1166 	enable = !!state;
1167 
1168 	guard(mutex)(&st->lock);
1169 
1170 	if (st->chip_config.wom_en == enable)
1171 		return 0;
1172 
1173 	return inv_mpu6050_enable_wom(st, enable);
1174 }
1175 
inv_mpu6050_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1176 static int inv_mpu6050_read_event_value(struct iio_dev *indio_dev,
1177 					const struct iio_chan_spec *chan,
1178 					enum iio_event_type type,
1179 					enum iio_event_direction dir,
1180 					enum iio_event_info info,
1181 					int *val, int *val2)
1182 {
1183 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1184 	u32 rem;
1185 
1186 	/* support only WoM (accel roc rising) event value */
1187 	if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
1188 	    dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE)
1189 		return -EINVAL;
1190 
1191 	guard(mutex)(&st->lock);
1192 
1193 	/* return value in micro */
1194 	*val = div_u64_rem(st->chip_config.roc_threshold, 1000000U, &rem);
1195 	*val2 = rem;
1196 
1197 	return IIO_VAL_INT_PLUS_MICRO;
1198 }
1199 
inv_mpu6050_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1200 static int inv_mpu6050_write_event_value(struct iio_dev *indio_dev,
1201 					 const struct iio_chan_spec *chan,
1202 					 enum iio_event_type type,
1203 					 enum iio_event_direction dir,
1204 					 enum iio_event_info info,
1205 					 int val, int val2)
1206 {
1207 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1208 	struct device *pdev = regmap_get_device(st->map);
1209 	u64 value;
1210 	int result;
1211 
1212 	/* support only WoM (accel roc rising) event value */
1213 	if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
1214 	    dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE)
1215 		return -EINVAL;
1216 
1217 	if (val < 0 || val2 < 0)
1218 		return -EINVAL;
1219 
1220 	guard(mutex)(&st->lock);
1221 
1222 	result = pm_runtime_resume_and_get(pdev);
1223 	if (result)
1224 		return result;
1225 
1226 	value = (u64)val * 1000000ULL + (u64)val2;
1227 	result = inv_mpu6050_set_wom_threshold(st, value, INV_MPU6050_FREQ_DIVIDER(st));
1228 
1229 	pm_runtime_mark_last_busy(pdev);
1230 	pm_runtime_put_autosuspend(pdev);
1231 
1232 	return result;
1233 }
1234 
1235 /*
1236  *  inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
1237  *
1238  *                  Based on the Nyquist principle, the bandwidth of the low
1239  *                  pass filter must not exceed the signal sampling rate divided
1240  *                  by 2, or there would be aliasing.
1241  *                  This function basically search for the correct low pass
1242  *                  parameters based on the fifo rate, e.g, sampling frequency.
1243  *
1244  *  lpf is set automatically when setting sampling rate to avoid any aliases.
1245  */
inv_mpu6050_set_lpf(struct inv_mpu6050_state * st,int rate)1246 static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
1247 {
1248 	static const int hz[] = {400, 200, 90, 40, 20, 10};
1249 	static const int d[] = {
1250 		INV_MPU6050_FILTER_200HZ, INV_MPU6050_FILTER_100HZ,
1251 		INV_MPU6050_FILTER_45HZ, INV_MPU6050_FILTER_20HZ,
1252 		INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ
1253 	};
1254 	int i, result;
1255 	u8 data;
1256 
1257 	data = INV_MPU6050_FILTER_5HZ;
1258 	for (i = 0; i < ARRAY_SIZE(hz); ++i) {
1259 		if (rate >= hz[i]) {
1260 			data = d[i];
1261 			break;
1262 		}
1263 	}
1264 	result = inv_mpu6050_set_lpf_regs(st, data);
1265 	if (result)
1266 		return result;
1267 	st->chip_config.lpf = data;
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * inv_mpu6050_fifo_rate_store() - Set fifo rate.
1274  */
1275 static ssize_t
inv_mpu6050_fifo_rate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1276 inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr,
1277 			    const char *buf, size_t count)
1278 {
1279 	int fifo_rate;
1280 	u32 fifo_period;
1281 	bool fifo_on;
1282 	u8 d;
1283 	int result;
1284 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1285 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1286 	struct device *pdev = regmap_get_device(st->map);
1287 
1288 	if (kstrtoint(buf, 10, &fifo_rate))
1289 		return -EINVAL;
1290 	if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
1291 	    fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
1292 		return -EINVAL;
1293 
1294 	/* compute the chip sample rate divider */
1295 	d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate);
1296 	/* compute back the fifo rate to handle truncation cases */
1297 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d);
1298 	fifo_period = NSEC_PER_SEC / fifo_rate;
1299 
1300 	mutex_lock(&st->lock);
1301 	if (d == st->chip_config.divider) {
1302 		result = 0;
1303 		goto fifo_rate_fail_unlock;
1304 	}
1305 
1306 	fifo_on = st->chip_config.accl_fifo_enable ||
1307 		  st->chip_config.gyro_fifo_enable ||
1308 		  st->chip_config.magn_fifo_enable;
1309 	result = inv_sensors_timestamp_update_odr(&st->timestamp, fifo_period, fifo_on);
1310 	if (result)
1311 		goto fifo_rate_fail_unlock;
1312 
1313 	result = pm_runtime_resume_and_get(pdev);
1314 	if (result)
1315 		goto fifo_rate_fail_unlock;
1316 
1317 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
1318 	if (result)
1319 		goto fifo_rate_fail_power_off;
1320 	st->chip_config.divider = d;
1321 
1322 	result = inv_mpu6050_set_lpf(st, fifo_rate);
1323 	if (result)
1324 		goto fifo_rate_fail_power_off;
1325 
1326 	/* update rate for magn, noop if not present in chip */
1327 	result = inv_mpu_magn_set_rate(st, fifo_rate);
1328 	if (result)
1329 		goto fifo_rate_fail_power_off;
1330 
1331 	/* update wom threshold since roc is dependent on sampling frequency */
1332 	result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold,
1333 					       INV_MPU6050_FREQ_DIVIDER(st));
1334 	if (result)
1335 		goto fifo_rate_fail_power_off;
1336 
1337 	pm_runtime_mark_last_busy(pdev);
1338 fifo_rate_fail_power_off:
1339 	pm_runtime_put_autosuspend(pdev);
1340 fifo_rate_fail_unlock:
1341 	mutex_unlock(&st->lock);
1342 	if (result)
1343 		return result;
1344 
1345 	return count;
1346 }
1347 
1348 /*
1349  * inv_fifo_rate_show() - Get the current sampling rate.
1350  */
1351 static ssize_t
inv_fifo_rate_show(struct device * dev,struct device_attribute * attr,char * buf)1352 inv_fifo_rate_show(struct device *dev, struct device_attribute *attr,
1353 		   char *buf)
1354 {
1355 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
1356 	unsigned fifo_rate;
1357 
1358 	mutex_lock(&st->lock);
1359 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
1360 	mutex_unlock(&st->lock);
1361 
1362 	return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate);
1363 }
1364 
1365 /*
1366  * inv_attr_show() - calling this function will show current
1367  *                    parameters.
1368  *
1369  * Deprecated in favor of IIO mounting matrix API.
1370  *
1371  * See inv_get_mount_matrix()
1372  */
inv_attr_show(struct device * dev,struct device_attribute * attr,char * buf)1373 static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr,
1374 			     char *buf)
1375 {
1376 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
1377 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
1378 	s8 *m;
1379 
1380 	switch (this_attr->address) {
1381 	/*
1382 	 * In MPU6050, the two matrix are the same because gyro and accel
1383 	 * are integrated in one chip
1384 	 */
1385 	case ATTR_GYRO_MATRIX:
1386 	case ATTR_ACCL_MATRIX:
1387 		m = st->plat_data.orientation;
1388 
1389 		return scnprintf(buf, PAGE_SIZE,
1390 			"%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
1391 			m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 }
1396 
1397 /**
1398  * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
1399  *                                  MPU6050 device.
1400  * @indio_dev: The IIO device
1401  * @trig: The new trigger
1402  *
1403  * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
1404  * device, -EINVAL otherwise.
1405  */
inv_mpu6050_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1406 static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
1407 					struct iio_trigger *trig)
1408 {
1409 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1410 
1411 	if (st->trig != trig)
1412 		return -EINVAL;
1413 
1414 	return 0;
1415 }
1416 
1417 static const struct iio_mount_matrix *
inv_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1418 inv_get_mount_matrix(const struct iio_dev *indio_dev,
1419 		     const struct iio_chan_spec *chan)
1420 {
1421 	struct inv_mpu6050_state *data = iio_priv(indio_dev);
1422 	const struct iio_mount_matrix *matrix;
1423 
1424 	if (chan->type == IIO_MAGN)
1425 		matrix = &data->magn_orient;
1426 	else
1427 		matrix = &data->orientation;
1428 
1429 	return matrix;
1430 }
1431 
1432 static const struct iio_chan_spec_ext_info inv_ext_info[] = {
1433 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix),
1434 	{ }
1435 };
1436 
1437 static const struct iio_event_spec inv_wom_events[] = {
1438 	{
1439 		.type = IIO_EV_TYPE_ROC,
1440 		.dir = IIO_EV_DIR_RISING,
1441 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1442 				 BIT(IIO_EV_INFO_VALUE),
1443 	},
1444 };
1445 
1446 #define INV_MPU6050_CHAN(_type, _channel2, _index)                    \
1447 	{                                                             \
1448 		.type = _type,                                        \
1449 		.modified = 1,                                        \
1450 		.channel2 = _channel2,                                \
1451 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1452 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	      \
1453 				      BIT(IIO_CHAN_INFO_CALIBBIAS),   \
1454 		.scan_index = _index,                                 \
1455 		.scan_type = {                                        \
1456 				.sign = 's',                          \
1457 				.realbits = 16,                       \
1458 				.storagebits = 16,                    \
1459 				.shift = 0,                           \
1460 				.endianness = IIO_BE,                 \
1461 			     },                                       \
1462 		.ext_info = inv_ext_info,                             \
1463 	}
1464 
1465 #define INV_MPU6050_TEMP_CHAN(_index)				\
1466 	{							\
1467 		.type = IIO_TEMP,				\
1468 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
1469 				| BIT(IIO_CHAN_INFO_OFFSET)	\
1470 				| BIT(IIO_CHAN_INFO_SCALE),	\
1471 		.scan_index = _index,				\
1472 		.scan_type = {					\
1473 			.sign = 's',				\
1474 			.realbits = 16,				\
1475 			.storagebits = 16,			\
1476 			.shift = 0,				\
1477 			.endianness = IIO_BE,			\
1478 		},						\
1479 	}
1480 
1481 #define INV_MPU6050_EVENT_CHAN(_type, _channel2, _events, _events_nb)	\
1482 {									\
1483 	.type = _type,							\
1484 	.modified = 1,							\
1485 	.channel2 = _channel2,						\
1486 	.event_spec = _events,						\
1487 	.num_event_specs = _events_nb,					\
1488 	.scan_index = -1,						\
1489 }
1490 
1491 static const struct iio_chan_spec inv_mpu6050_channels[] = {
1492 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
1493 
1494 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1495 
1496 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1497 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1498 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1499 
1500 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1501 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1502 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1503 };
1504 
1505 static const struct iio_chan_spec inv_mpu6500_channels[] = {
1506 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
1507 
1508 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1509 
1510 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1511 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1512 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1513 
1514 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1515 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1516 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1517 
1518 	INV_MPU6050_EVENT_CHAN(IIO_ACCEL, IIO_MOD_X_OR_Y_OR_Z,
1519 			       inv_wom_events, ARRAY_SIZE(inv_wom_events)),
1520 };
1521 
1522 #define INV_MPU6050_SCAN_MASK_3AXIS_ACCEL	\
1523 	(BIT(INV_MPU6050_SCAN_ACCL_X)		\
1524 	| BIT(INV_MPU6050_SCAN_ACCL_Y)		\
1525 	| BIT(INV_MPU6050_SCAN_ACCL_Z))
1526 
1527 #define INV_MPU6050_SCAN_MASK_3AXIS_GYRO	\
1528 	(BIT(INV_MPU6050_SCAN_GYRO_X)		\
1529 	| BIT(INV_MPU6050_SCAN_GYRO_Y)		\
1530 	| BIT(INV_MPU6050_SCAN_GYRO_Z))
1531 
1532 #define INV_MPU6050_SCAN_MASK_TEMP		(BIT(INV_MPU6050_SCAN_TEMP))
1533 
1534 static const unsigned long inv_mpu_scan_masks[] = {
1535 	/* 3-axis accel */
1536 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1537 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1538 	/* 3-axis gyro */
1539 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1540 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1541 	/* 6-axis accel + gyro */
1542 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1543 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1544 		| INV_MPU6050_SCAN_MASK_TEMP,
1545 	0,
1546 };
1547 
1548 #define INV_MPU9X50_MAGN_CHAN(_chan2, _bits, _index)			\
1549 	{								\
1550 		.type = IIO_MAGN,					\
1551 		.modified = 1,						\
1552 		.channel2 = _chan2,					\
1553 		.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) |	\
1554 				      BIT(IIO_CHAN_INFO_RAW),		\
1555 		.scan_index = _index,					\
1556 		.scan_type = {						\
1557 			.sign = 's',					\
1558 			.realbits = _bits,				\
1559 			.storagebits = 16,				\
1560 			.shift = 0,					\
1561 			.endianness = IIO_BE,				\
1562 		},							\
1563 		.ext_info = inv_ext_info,				\
1564 	}
1565 
1566 static const struct iio_chan_spec inv_mpu9150_channels[] = {
1567 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1568 
1569 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1570 
1571 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1572 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1573 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1574 
1575 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1576 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1577 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1578 
1579 	/* Magnetometer resolution is 13 bits */
1580 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 13, INV_MPU9X50_SCAN_MAGN_X),
1581 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 13, INV_MPU9X50_SCAN_MAGN_Y),
1582 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 13, INV_MPU9X50_SCAN_MAGN_Z),
1583 };
1584 
1585 static const struct iio_chan_spec inv_mpu9250_channels[] = {
1586 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1587 
1588 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1589 
1590 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1591 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1592 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1593 
1594 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1595 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1596 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1597 
1598 	/* Magnetometer resolution is 16 bits */
1599 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 16, INV_MPU9X50_SCAN_MAGN_X),
1600 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 16, INV_MPU9X50_SCAN_MAGN_Y),
1601 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 16, INV_MPU9X50_SCAN_MAGN_Z),
1602 };
1603 
1604 #define INV_MPU9X50_SCAN_MASK_3AXIS_MAGN	\
1605 	(BIT(INV_MPU9X50_SCAN_MAGN_X)		\
1606 	| BIT(INV_MPU9X50_SCAN_MAGN_Y)		\
1607 	| BIT(INV_MPU9X50_SCAN_MAGN_Z))
1608 
1609 static const unsigned long inv_mpu9x50_scan_masks[] = {
1610 	/* 3-axis accel */
1611 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1612 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1613 	/* 3-axis gyro */
1614 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1615 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1616 	/* 3-axis magn */
1617 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1618 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP,
1619 	/* 6-axis accel + gyro */
1620 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1621 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1622 		| INV_MPU6050_SCAN_MASK_TEMP,
1623 	/* 6-axis accel + magn */
1624 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1625 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1626 		| INV_MPU6050_SCAN_MASK_TEMP,
1627 	/* 6-axis gyro + magn */
1628 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1629 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1630 		| INV_MPU6050_SCAN_MASK_TEMP,
1631 	/* 9-axis accel + gyro + magn */
1632 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1633 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1634 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1635 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1636 		| INV_MPU6050_SCAN_MASK_TEMP,
1637 	0,
1638 };
1639 
1640 static const unsigned long inv_icm20602_scan_masks[] = {
1641 	/* 3-axis accel + temp (mandatory) */
1642 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1643 	/* 3-axis gyro + temp (mandatory) */
1644 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1645 	/* 6-axis accel + gyro + temp (mandatory) */
1646 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1647 		| INV_MPU6050_SCAN_MASK_TEMP,
1648 	0,
1649 };
1650 
1651 /*
1652  * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and
1653  * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the
1654  * low-pass filter. Specifically, each of these sampling rates are about twice
1655  * the bandwidth of a corresponding low-pass filter, which should eliminate
1656  * aliasing following the Nyquist principle. By picking a frequency different
1657  * from these, the user risks aliasing effects.
1658  */
1659 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
1660 static IIO_CONST_ATTR(in_anglvel_scale_available,
1661 					  "0.000133090 0.000266181 0.000532362 0.001064724");
1662 static IIO_CONST_ATTR(in_accel_scale_available,
1663 					  "0.000598 0.001196 0.002392 0.004785");
1664 static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
1665 	inv_mpu6050_fifo_rate_store);
1666 
1667 /* Deprecated: kept for userspace backward compatibility. */
1668 static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
1669 	ATTR_GYRO_MATRIX);
1670 static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
1671 	ATTR_ACCL_MATRIX);
1672 
1673 static struct attribute *inv_attributes[] = {
1674 	&iio_dev_attr_in_gyro_matrix.dev_attr.attr,  /* deprecated */
1675 	&iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */
1676 	&iio_dev_attr_sampling_frequency.dev_attr.attr,
1677 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1678 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
1679 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
1680 	NULL,
1681 };
1682 
1683 static const struct attribute_group inv_attribute_group = {
1684 	.attrs = inv_attributes
1685 };
1686 
inv_mpu6050_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)1687 static int inv_mpu6050_reg_access(struct iio_dev *indio_dev,
1688 				  unsigned int reg,
1689 				  unsigned int writeval,
1690 				  unsigned int *readval)
1691 {
1692 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1693 	int ret;
1694 
1695 	mutex_lock(&st->lock);
1696 	if (readval)
1697 		ret = regmap_read(st->map, reg, readval);
1698 	else
1699 		ret = regmap_write(st->map, reg, writeval);
1700 	mutex_unlock(&st->lock);
1701 
1702 	return ret;
1703 }
1704 
1705 static const struct iio_info mpu_info = {
1706 	.read_raw = &inv_mpu6050_read_raw,
1707 	.write_raw = &inv_mpu6050_write_raw,
1708 	.write_raw_get_fmt = &inv_write_raw_get_fmt,
1709 	.attrs = &inv_attribute_group,
1710 	.read_event_config = inv_mpu6050_read_event_config,
1711 	.write_event_config = inv_mpu6050_write_event_config,
1712 	.read_event_value = inv_mpu6050_read_event_value,
1713 	.write_event_value = inv_mpu6050_write_event_value,
1714 	.validate_trigger = inv_mpu6050_validate_trigger,
1715 	.debugfs_reg_access = &inv_mpu6050_reg_access,
1716 };
1717 
1718 /*
1719  *  inv_check_and_setup_chip() - check and setup chip.
1720  */
inv_check_and_setup_chip(struct inv_mpu6050_state * st)1721 static int inv_check_and_setup_chip(struct inv_mpu6050_state *st)
1722 {
1723 	int result;
1724 	unsigned int regval, mask;
1725 	int i;
1726 
1727 	st->hw  = &hw_info[st->chip_type];
1728 	st->reg = hw_info[st->chip_type].reg;
1729 	memcpy(&st->chip_config, hw_info[st->chip_type].config,
1730 	       sizeof(st->chip_config));
1731 	st->data = devm_kzalloc(regmap_get_device(st->map), st->hw->fifo_size, GFP_KERNEL);
1732 	if (st->data == NULL)
1733 		return -ENOMEM;
1734 
1735 	/* check chip self-identification */
1736 	result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, &regval);
1737 	if (result)
1738 		return result;
1739 	if (regval != st->hw->whoami) {
1740 		/* check whoami against all possible values */
1741 		for (i = 0; i < INV_NUM_PARTS; ++i) {
1742 			if (regval == hw_info[i].whoami) {
1743 				dev_warn(regmap_get_device(st->map),
1744 					"whoami mismatch got 0x%02x (%s) expected 0x%02x (%s)\n",
1745 					regval, hw_info[i].name,
1746 					st->hw->whoami, st->hw->name);
1747 				break;
1748 			}
1749 		}
1750 		if (i >= INV_NUM_PARTS) {
1751 			dev_err(regmap_get_device(st->map),
1752 				"invalid whoami 0x%02x expected 0x%02x (%s)\n",
1753 				regval, st->hw->whoami, st->hw->name);
1754 			return -ENODEV;
1755 		}
1756 	}
1757 
1758 	/* reset to make sure previous state are not there */
1759 	result = regmap_write(st->map, st->reg->pwr_mgmt_1,
1760 			      INV_MPU6050_BIT_H_RESET);
1761 	if (result)
1762 		return result;
1763 	msleep(INV_MPU6050_POWER_UP_TIME);
1764 	switch (st->chip_type) {
1765 	case INV_MPU6000:
1766 	case INV_MPU6500:
1767 	case INV_MPU6515:
1768 	case INV_MPU6880:
1769 	case INV_MPU9250:
1770 	case INV_MPU9255:
1771 		/* reset signal path (required for spi connection) */
1772 		regval = INV_MPU6050_BIT_TEMP_RST | INV_MPU6050_BIT_ACCEL_RST |
1773 			 INV_MPU6050_BIT_GYRO_RST;
1774 		result = regmap_write(st->map, INV_MPU6050_REG_SIGNAL_PATH_RESET,
1775 				      regval);
1776 		if (result)
1777 			return result;
1778 		msleep(INV_MPU6050_POWER_UP_TIME);
1779 		break;
1780 	default:
1781 		break;
1782 	}
1783 
1784 	/*
1785 	 * Turn power on. After reset, the sleep bit could be on
1786 	 * or off depending on the OTP settings. Turning power on
1787 	 * make it in a definite state as well as making the hardware
1788 	 * state align with the software state
1789 	 */
1790 	result = inv_mpu6050_set_power_itg(st, true);
1791 	if (result)
1792 		return result;
1793 	mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
1794 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
1795 	result = inv_mpu6050_switch_engine(st, false, mask);
1796 	if (result)
1797 		goto error_power_off;
1798 
1799 	return 0;
1800 
1801 error_power_off:
1802 	inv_mpu6050_set_power_itg(st, false);
1803 	return result;
1804 }
1805 
inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state * st)1806 static int inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state *st)
1807 {
1808 	int result;
1809 
1810 	result = regulator_enable(st->vddio_supply);
1811 	if (result) {
1812 		dev_err(regmap_get_device(st->map),
1813 			"Failed to enable vddio regulator: %d\n", result);
1814 	} else {
1815 		/* Give the device a little bit of time to start up. */
1816 		usleep_range(3000, 5000);
1817 	}
1818 
1819 	return result;
1820 }
1821 
inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state * st)1822 static int inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state *st)
1823 {
1824 	int result;
1825 
1826 	result = regulator_disable(st->vddio_supply);
1827 	if (result)
1828 		dev_err(regmap_get_device(st->map),
1829 			"Failed to disable vddio regulator: %d\n", result);
1830 
1831 	return result;
1832 }
1833 
inv_mpu_core_disable_regulator_action(void * _data)1834 static void inv_mpu_core_disable_regulator_action(void *_data)
1835 {
1836 	struct inv_mpu6050_state *st = _data;
1837 	int result;
1838 
1839 	result = regulator_disable(st->vdd_supply);
1840 	if (result)
1841 		dev_err(regmap_get_device(st->map),
1842 			"Failed to disable vdd regulator: %d\n", result);
1843 
1844 	inv_mpu_core_disable_regulator_vddio(st);
1845 }
1846 
inv_mpu_pm_disable(void * data)1847 static void inv_mpu_pm_disable(void *data)
1848 {
1849 	struct device *dev = data;
1850 
1851 	pm_runtime_disable(dev);
1852 }
1853 
inv_mpu_core_probe(struct regmap * regmap,int irq,const char * name,int (* inv_mpu_bus_setup)(struct iio_dev *),int chip_type)1854 int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name,
1855 		int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type)
1856 {
1857 	struct inv_mpu6050_state *st;
1858 	struct iio_dev *indio_dev;
1859 	struct inv_mpu6050_platform_data *pdata;
1860 	struct device *dev = regmap_get_device(regmap);
1861 	int result;
1862 	struct irq_data *desc;
1863 	int irq_type;
1864 
1865 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1866 	if (!indio_dev)
1867 		return -ENOMEM;
1868 
1869 	BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS);
1870 	if (chip_type < 0 || chip_type >= INV_NUM_PARTS) {
1871 		dev_err(dev, "Bad invensense chip_type=%d name=%s\n",
1872 				chip_type, name);
1873 		return -ENODEV;
1874 	}
1875 	st = iio_priv(indio_dev);
1876 	mutex_init(&st->lock);
1877 	st->chip_type = chip_type;
1878 	st->irq = irq;
1879 	st->map = regmap;
1880 
1881 	st->level_shifter = device_property_read_bool(dev,
1882 						      "invensense,level-shifter");
1883 	pdata = dev_get_platdata(dev);
1884 	if (!pdata) {
1885 		result = iio_read_mount_matrix(dev, &st->orientation);
1886 		if (result) {
1887 			dev_err(dev, "Failed to retrieve mounting matrix %d\n",
1888 				result);
1889 			return result;
1890 		}
1891 	} else {
1892 		st->plat_data = *pdata;
1893 	}
1894 
1895 	if (irq > 0) {
1896 		desc = irq_get_irq_data(irq);
1897 		if (!desc) {
1898 			dev_err(dev, "Could not find IRQ %d\n", irq);
1899 			return -EINVAL;
1900 		}
1901 
1902 		irq_type = irqd_get_trigger_type(desc);
1903 		if (!irq_type)
1904 			irq_type = IRQF_TRIGGER_RISING;
1905 	} else {
1906 		/* Doesn't really matter, use the default */
1907 		irq_type = IRQF_TRIGGER_RISING;
1908 	}
1909 
1910 	if (irq_type & IRQF_TRIGGER_RISING)	// rising or both-edge
1911 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH;
1912 	else if (irq_type == IRQF_TRIGGER_FALLING)
1913 		st->irq_mask = INV_MPU6050_ACTIVE_LOW;
1914 	else if (irq_type == IRQF_TRIGGER_HIGH)
1915 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH |
1916 			INV_MPU6050_LATCH_INT_EN;
1917 	else if (irq_type == IRQF_TRIGGER_LOW)
1918 		st->irq_mask = INV_MPU6050_ACTIVE_LOW |
1919 			INV_MPU6050_LATCH_INT_EN;
1920 	else {
1921 		dev_err(dev, "Invalid interrupt type 0x%x specified\n",
1922 			irq_type);
1923 		return -EINVAL;
1924 	}
1925 	device_set_wakeup_capable(dev, true);
1926 
1927 	st->vdd_supply = devm_regulator_get(dev, "vdd");
1928 	if (IS_ERR(st->vdd_supply))
1929 		return dev_err_probe(dev, PTR_ERR(st->vdd_supply),
1930 				     "Failed to get vdd regulator\n");
1931 
1932 	st->vddio_supply = devm_regulator_get(dev, "vddio");
1933 	if (IS_ERR(st->vddio_supply))
1934 		return dev_err_probe(dev, PTR_ERR(st->vddio_supply),
1935 				     "Failed to get vddio regulator\n");
1936 
1937 	result = regulator_enable(st->vdd_supply);
1938 	if (result) {
1939 		dev_err(dev, "Failed to enable vdd regulator: %d\n", result);
1940 		return result;
1941 	}
1942 	msleep(INV_MPU6050_POWER_UP_TIME);
1943 
1944 	result = inv_mpu_core_enable_regulator_vddio(st);
1945 	if (result) {
1946 		regulator_disable(st->vdd_supply);
1947 		return result;
1948 	}
1949 
1950 	result = devm_add_action_or_reset(dev, inv_mpu_core_disable_regulator_action,
1951 				 st);
1952 	if (result) {
1953 		dev_err(dev, "Failed to setup regulator cleanup action %d\n",
1954 			result);
1955 		return result;
1956 	}
1957 
1958 	/* fill magnetometer orientation */
1959 	result = inv_mpu_magn_set_orient(st);
1960 	if (result)
1961 		return result;
1962 
1963 	/* power is turned on inside check chip type*/
1964 	result = inv_check_and_setup_chip(st);
1965 	if (result)
1966 		return result;
1967 
1968 	result = inv_mpu6050_init_config(indio_dev);
1969 	if (result) {
1970 		dev_err(dev, "Could not initialize device.\n");
1971 		goto error_power_off;
1972 	}
1973 
1974 	dev_set_drvdata(dev, indio_dev);
1975 	/* name will be NULL when enumerated via ACPI */
1976 	if (name)
1977 		indio_dev->name = name;
1978 	else
1979 		indio_dev->name = dev_name(dev);
1980 
1981 	/* requires parent device set in indio_dev */
1982 	if (inv_mpu_bus_setup) {
1983 		result = inv_mpu_bus_setup(indio_dev);
1984 		if (result)
1985 			goto error_power_off;
1986 	}
1987 
1988 	/* chip init is done, turning on runtime power management */
1989 	result = pm_runtime_set_active(dev);
1990 	if (result)
1991 		goto error_power_off;
1992 	pm_runtime_get_noresume(dev);
1993 	pm_runtime_enable(dev);
1994 	pm_runtime_set_autosuspend_delay(dev, INV_MPU6050_SUSPEND_DELAY_MS);
1995 	pm_runtime_use_autosuspend(dev);
1996 	pm_runtime_put(dev);
1997 	result = devm_add_action_or_reset(dev, inv_mpu_pm_disable, dev);
1998 	if (result)
1999 		return result;
2000 
2001 	switch (chip_type) {
2002 	case INV_MPU6000:
2003 	case INV_MPU6050:
2004 		indio_dev->channels = inv_mpu6050_channels;
2005 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels);
2006 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
2007 		break;
2008 	case INV_MPU9150:
2009 		indio_dev->channels = inv_mpu9150_channels;
2010 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9150_channels);
2011 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
2012 		break;
2013 	case INV_MPU9250:
2014 	case INV_MPU9255:
2015 		indio_dev->channels = inv_mpu9250_channels;
2016 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9250_channels);
2017 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
2018 		break;
2019 	case INV_ICM20600:
2020 	case INV_ICM20602:
2021 		indio_dev->channels = inv_mpu6500_channels;
2022 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
2023 		indio_dev->available_scan_masks = inv_icm20602_scan_masks;
2024 		break;
2025 	default:
2026 		indio_dev->channels = inv_mpu6500_channels;
2027 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
2028 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
2029 		break;
2030 	}
2031 	/*
2032 	 * Use magnetometer inside the chip only if there is no i2c
2033 	 * auxiliary device in use. Otherwise Going back to 6-axis only.
2034 	 */
2035 	if (st->magn_disabled) {
2036 		switch (chip_type) {
2037 		case INV_MPU9150:
2038 			indio_dev->channels = inv_mpu6050_channels;
2039 			indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels);
2040 			indio_dev->available_scan_masks = inv_mpu_scan_masks;
2041 			break;
2042 		default:
2043 			indio_dev->channels = inv_mpu6500_channels;
2044 			indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
2045 			indio_dev->available_scan_masks = inv_mpu_scan_masks;
2046 			break;
2047 		}
2048 	}
2049 
2050 	indio_dev->info = &mpu_info;
2051 
2052 	if (irq > 0) {
2053 		/*
2054 		 * The driver currently only supports buffered capture with its
2055 		 * own trigger. So no IRQ, no trigger, no buffer
2056 		 */
2057 		result = devm_iio_triggered_buffer_setup(dev, indio_dev,
2058 							 iio_pollfunc_store_time,
2059 							 inv_mpu6050_read_fifo,
2060 							 NULL);
2061 		if (result) {
2062 			dev_err(dev, "configure buffer fail %d\n", result);
2063 			return result;
2064 		}
2065 
2066 		result = inv_mpu6050_probe_trigger(indio_dev, irq_type);
2067 		if (result) {
2068 			dev_err(dev, "trigger probe fail %d\n", result);
2069 			return result;
2070 		}
2071 	}
2072 
2073 	result = devm_iio_device_register(dev, indio_dev);
2074 	if (result) {
2075 		dev_err(dev, "IIO register fail %d\n", result);
2076 		return result;
2077 	}
2078 
2079 	return 0;
2080 
2081 error_power_off:
2082 	inv_mpu6050_set_power_itg(st, false);
2083 	return result;
2084 }
2085 EXPORT_SYMBOL_NS_GPL(inv_mpu_core_probe, IIO_MPU6050);
2086 
inv_mpu_resume(struct device * dev)2087 static int inv_mpu_resume(struct device *dev)
2088 {
2089 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2090 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
2091 	bool wakeup;
2092 	int result;
2093 
2094 	guard(mutex)(&st->lock);
2095 
2096 	wakeup = device_may_wakeup(dev) && st->chip_config.wom_en;
2097 
2098 	if (wakeup) {
2099 		enable_irq(st->irq);
2100 		disable_irq_wake(st->irq);
2101 		result = inv_mpu6050_set_wom_lp(st, false);
2102 		if (result)
2103 			return result;
2104 	} else {
2105 		result = inv_mpu_core_enable_regulator_vddio(st);
2106 		if (result)
2107 			return result;
2108 		result = inv_mpu6050_set_power_itg(st, true);
2109 		if (result)
2110 			return result;
2111 	}
2112 
2113 	pm_runtime_disable(dev);
2114 	pm_runtime_set_active(dev);
2115 	pm_runtime_enable(dev);
2116 
2117 	result = inv_mpu6050_switch_engine(st, true, st->suspended_sensors);
2118 	if (result)
2119 		return result;
2120 
2121 	if (st->chip_config.wom_en && !wakeup) {
2122 		result = inv_mpu6050_set_wom_int(st, true);
2123 		if (result)
2124 			return result;
2125 	}
2126 
2127 	if (iio_buffer_enabled(indio_dev))
2128 		result = inv_mpu6050_prepare_fifo(st, true);
2129 
2130 	return result;
2131 }
2132 
inv_mpu_suspend(struct device * dev)2133 static int inv_mpu_suspend(struct device *dev)
2134 {
2135 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2136 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
2137 	bool wakeup;
2138 	int result;
2139 
2140 	guard(mutex)(&st->lock);
2141 
2142 	st->suspended_sensors = 0;
2143 	if (pm_runtime_suspended(dev))
2144 		return 0;
2145 
2146 	if (iio_buffer_enabled(indio_dev)) {
2147 		result = inv_mpu6050_prepare_fifo(st, false);
2148 		if (result)
2149 			return result;
2150 	}
2151 
2152 	wakeup = device_may_wakeup(dev) && st->chip_config.wom_en;
2153 
2154 	if (st->chip_config.wom_en && !wakeup) {
2155 		result = inv_mpu6050_set_wom_int(st, false);
2156 		if (result)
2157 			return result;
2158 	}
2159 
2160 	if (st->chip_config.accl_en && !wakeup)
2161 		st->suspended_sensors |= INV_MPU6050_SENSOR_ACCL;
2162 	if (st->chip_config.gyro_en)
2163 		st->suspended_sensors |= INV_MPU6050_SENSOR_GYRO;
2164 	if (st->chip_config.temp_en)
2165 		st->suspended_sensors |= INV_MPU6050_SENSOR_TEMP;
2166 	if (st->chip_config.magn_en)
2167 		st->suspended_sensors |= INV_MPU6050_SENSOR_MAGN;
2168 	if (st->chip_config.wom_en && !wakeup)
2169 		st->suspended_sensors |= INV_MPU6050_SENSOR_WOM;
2170 	result = inv_mpu6050_switch_engine(st, false, st->suspended_sensors);
2171 	if (result)
2172 		return result;
2173 
2174 	if (wakeup) {
2175 		result = inv_mpu6050_set_wom_lp(st, true);
2176 		if (result)
2177 			return result;
2178 		enable_irq_wake(st->irq);
2179 		disable_irq(st->irq);
2180 	} else {
2181 		result = inv_mpu6050_set_power_itg(st, false);
2182 		if (result)
2183 			return result;
2184 		inv_mpu_core_disable_regulator_vddio(st);
2185 	}
2186 
2187 	return 0;
2188 }
2189 
inv_mpu_runtime_suspend(struct device * dev)2190 static int inv_mpu_runtime_suspend(struct device *dev)
2191 {
2192 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
2193 	unsigned int sensors;
2194 	int ret;
2195 
2196 	mutex_lock(&st->lock);
2197 
2198 	sensors = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
2199 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN |
2200 			INV_MPU6050_SENSOR_WOM;
2201 	ret = inv_mpu6050_switch_engine(st, false, sensors);
2202 	if (ret)
2203 		goto out_unlock;
2204 
2205 	ret = inv_mpu6050_set_power_itg(st, false);
2206 	if (ret)
2207 		goto out_unlock;
2208 
2209 	inv_mpu_core_disable_regulator_vddio(st);
2210 
2211 out_unlock:
2212 	mutex_unlock(&st->lock);
2213 	return ret;
2214 }
2215 
inv_mpu_runtime_resume(struct device * dev)2216 static int inv_mpu_runtime_resume(struct device *dev)
2217 {
2218 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
2219 	int ret;
2220 
2221 	ret = inv_mpu_core_enable_regulator_vddio(st);
2222 	if (ret)
2223 		return ret;
2224 
2225 	return inv_mpu6050_set_power_itg(st, true);
2226 }
2227 
2228 EXPORT_NS_GPL_DEV_PM_OPS(inv_mpu_pmops, IIO_MPU6050) = {
2229 	SYSTEM_SLEEP_PM_OPS(inv_mpu_suspend, inv_mpu_resume)
2230 	RUNTIME_PM_OPS(inv_mpu_runtime_suspend, inv_mpu_runtime_resume, NULL)
2231 };
2232 
2233 MODULE_AUTHOR("Invensense Corporation");
2234 MODULE_DESCRIPTION("Invensense device MPU6050 driver");
2235 MODULE_LICENSE("GPL");
2236 MODULE_IMPORT_NS(IIO_INV_SENSORS_TIMESTAMP);
2237