1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2020 Invensense, Inc.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/device.h>
8 #include <linux/mutex.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/regmap.h>
11 #include <linux/delay.h>
12 #include <linux/math64.h>
13
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/common/inv_sensors_timestamp.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/kfifo_buf.h>
18
19 #include "inv_icm42600.h"
20 #include "inv_icm42600_temp.h"
21 #include "inv_icm42600_buffer.h"
22
23 #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \
24 { \
25 .type = IIO_ANGL_VEL, \
26 .modified = 1, \
27 .channel2 = _modifier, \
28 .info_mask_separate = \
29 BIT(IIO_CHAN_INFO_RAW) | \
30 BIT(IIO_CHAN_INFO_CALIBBIAS), \
31 .info_mask_shared_by_type = \
32 BIT(IIO_CHAN_INFO_SCALE), \
33 .info_mask_shared_by_type_available = \
34 BIT(IIO_CHAN_INFO_SCALE) | \
35 BIT(IIO_CHAN_INFO_CALIBBIAS), \
36 .info_mask_shared_by_all = \
37 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
38 .info_mask_shared_by_all_available = \
39 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
40 .scan_index = _index, \
41 .scan_type = { \
42 .sign = 's', \
43 .realbits = 16, \
44 .storagebits = 16, \
45 .endianness = IIO_BE, \
46 }, \
47 .ext_info = _ext_info, \
48 }
49
50 enum inv_icm42600_gyro_scan {
51 INV_ICM42600_GYRO_SCAN_X,
52 INV_ICM42600_GYRO_SCAN_Y,
53 INV_ICM42600_GYRO_SCAN_Z,
54 INV_ICM42600_GYRO_SCAN_TEMP,
55 INV_ICM42600_GYRO_SCAN_TIMESTAMP,
56 };
57
58 static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = {
59 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix),
60 {},
61 };
62
63 static const struct iio_chan_spec inv_icm42600_gyro_channels[] = {
64 INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X,
65 inv_icm42600_gyro_ext_infos),
66 INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y,
67 inv_icm42600_gyro_ext_infos),
68 INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z,
69 inv_icm42600_gyro_ext_infos),
70 INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP),
71 IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP),
72 };
73
74 /*
75 * IIO buffer data: size must be a power of 2 and timestamp aligned
76 * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp
77 */
78 struct inv_icm42600_gyro_buffer {
79 struct inv_icm42600_fifo_sensor_data gyro;
80 int16_t temp;
81 int64_t timestamp __aligned(8);
82 };
83
84 #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \
85 (BIT(INV_ICM42600_GYRO_SCAN_X) | \
86 BIT(INV_ICM42600_GYRO_SCAN_Y) | \
87 BIT(INV_ICM42600_GYRO_SCAN_Z))
88
89 #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP)
90
91 static const unsigned long inv_icm42600_gyro_scan_masks[] = {
92 /* 3-axis gyro + temperature */
93 INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP,
94 0,
95 };
96
97 /* enable gyroscope sensor and FIFO write */
inv_icm42600_gyro_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)98 static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev,
99 const unsigned long *scan_mask)
100 {
101 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
102 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
103 struct inv_sensors_timestamp *ts = &gyro_st->ts;
104 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
105 unsigned int fifo_en = 0;
106 unsigned int sleep_gyro = 0;
107 unsigned int sleep_temp = 0;
108 unsigned int sleep;
109 int ret;
110
111 mutex_lock(&st->lock);
112
113 if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) {
114 /* enable temp sensor */
115 ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp);
116 if (ret)
117 goto out_unlock;
118 fifo_en |= INV_ICM42600_SENSOR_TEMP;
119 }
120
121 if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) {
122 /* enable gyro sensor */
123 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
124 ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro);
125 if (ret)
126 goto out_unlock;
127 fifo_en |= INV_ICM42600_SENSOR_GYRO;
128 }
129
130 /* update data FIFO write */
131 inv_sensors_timestamp_apply_odr(ts, 0, 0, 0);
132 ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en);
133
134 out_unlock:
135 mutex_unlock(&st->lock);
136 /* sleep maximum required time */
137 sleep = max(sleep_gyro, sleep_temp);
138 if (sleep)
139 msleep(sleep);
140 return ret;
141 }
142
inv_icm42600_gyro_read_sensor(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int16_t * val)143 static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st,
144 struct iio_chan_spec const *chan,
145 int16_t *val)
146 {
147 struct device *dev = regmap_get_device(st->map);
148 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
149 unsigned int reg;
150 __be16 *data;
151 int ret;
152
153 if (chan->type != IIO_ANGL_VEL)
154 return -EINVAL;
155
156 switch (chan->channel2) {
157 case IIO_MOD_X:
158 reg = INV_ICM42600_REG_GYRO_DATA_X;
159 break;
160 case IIO_MOD_Y:
161 reg = INV_ICM42600_REG_GYRO_DATA_Y;
162 break;
163 case IIO_MOD_Z:
164 reg = INV_ICM42600_REG_GYRO_DATA_Z;
165 break;
166 default:
167 return -EINVAL;
168 }
169
170 pm_runtime_get_sync(dev);
171 mutex_lock(&st->lock);
172
173 /* enable gyro sensor */
174 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
175 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
176 if (ret)
177 goto exit;
178
179 /* read gyro register data */
180 data = (__be16 *)&st->buffer[0];
181 ret = regmap_bulk_read(st->map, reg, data, sizeof(*data));
182 if (ret)
183 goto exit;
184
185 *val = (int16_t)be16_to_cpup(data);
186 if (*val == INV_ICM42600_DATA_INVALID)
187 ret = -EINVAL;
188 exit:
189 mutex_unlock(&st->lock);
190 pm_runtime_mark_last_busy(dev);
191 pm_runtime_put_autosuspend(dev);
192 return ret;
193 }
194
195 /* IIO format int + nano */
196 static const int inv_icm42600_gyro_scale[] = {
197 /* +/- 2000dps => 0.001065264 rad/s */
198 [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0,
199 [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264,
200 /* +/- 1000dps => 0.000532632 rad/s */
201 [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0,
202 [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632,
203 /* +/- 500dps => 0.000266316 rad/s */
204 [2 * INV_ICM42600_GYRO_FS_500DPS] = 0,
205 [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316,
206 /* +/- 250dps => 0.000133158 rad/s */
207 [2 * INV_ICM42600_GYRO_FS_250DPS] = 0,
208 [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158,
209 /* +/- 125dps => 0.000066579 rad/s */
210 [2 * INV_ICM42600_GYRO_FS_125DPS] = 0,
211 [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579,
212 /* +/- 62.5dps => 0.000033290 rad/s */
213 [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0,
214 [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290,
215 /* +/- 31.25dps => 0.000016645 rad/s */
216 [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0,
217 [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645,
218 /* +/- 15.625dps => 0.000008322 rad/s */
219 [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0,
220 [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322,
221 };
222 static const int inv_icm42686_gyro_scale[] = {
223 /* +/- 4000dps => 0.002130529 rad/s */
224 [2 * INV_ICM42686_GYRO_FS_4000DPS] = 0,
225 [2 * INV_ICM42686_GYRO_FS_4000DPS + 1] = 2130529,
226 /* +/- 2000dps => 0.001065264 rad/s */
227 [2 * INV_ICM42686_GYRO_FS_2000DPS] = 0,
228 [2 * INV_ICM42686_GYRO_FS_2000DPS + 1] = 1065264,
229 /* +/- 1000dps => 0.000532632 rad/s */
230 [2 * INV_ICM42686_GYRO_FS_1000DPS] = 0,
231 [2 * INV_ICM42686_GYRO_FS_1000DPS + 1] = 532632,
232 /* +/- 500dps => 0.000266316 rad/s */
233 [2 * INV_ICM42686_GYRO_FS_500DPS] = 0,
234 [2 * INV_ICM42686_GYRO_FS_500DPS + 1] = 266316,
235 /* +/- 250dps => 0.000133158 rad/s */
236 [2 * INV_ICM42686_GYRO_FS_250DPS] = 0,
237 [2 * INV_ICM42686_GYRO_FS_250DPS + 1] = 133158,
238 /* +/- 125dps => 0.000066579 rad/s */
239 [2 * INV_ICM42686_GYRO_FS_125DPS] = 0,
240 [2 * INV_ICM42686_GYRO_FS_125DPS + 1] = 66579,
241 /* +/- 62.5dps => 0.000033290 rad/s */
242 [2 * INV_ICM42686_GYRO_FS_62_5DPS] = 0,
243 [2 * INV_ICM42686_GYRO_FS_62_5DPS + 1] = 33290,
244 /* +/- 31.25dps => 0.000016645 rad/s */
245 [2 * INV_ICM42686_GYRO_FS_31_25DPS] = 0,
246 [2 * INV_ICM42686_GYRO_FS_31_25DPS + 1] = 16645,
247 };
248
inv_icm42600_gyro_read_scale(struct iio_dev * indio_dev,int * val,int * val2)249 static int inv_icm42600_gyro_read_scale(struct iio_dev *indio_dev,
250 int *val, int *val2)
251 {
252 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
253 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
254 unsigned int idx;
255
256 idx = st->conf.gyro.fs;
257
258 *val = gyro_st->scales[2 * idx];
259 *val2 = gyro_st->scales[2 * idx + 1];
260 return IIO_VAL_INT_PLUS_NANO;
261 }
262
inv_icm42600_gyro_write_scale(struct iio_dev * indio_dev,int val,int val2)263 static int inv_icm42600_gyro_write_scale(struct iio_dev *indio_dev,
264 int val, int val2)
265 {
266 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
267 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
268 struct device *dev = regmap_get_device(st->map);
269 unsigned int idx;
270 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
271 int ret;
272
273 for (idx = 0; idx < gyro_st->scales_len; idx += 2) {
274 if (val == gyro_st->scales[idx] &&
275 val2 == gyro_st->scales[idx + 1])
276 break;
277 }
278 if (idx >= gyro_st->scales_len)
279 return -EINVAL;
280
281 conf.fs = idx / 2;
282
283 pm_runtime_get_sync(dev);
284 mutex_lock(&st->lock);
285
286 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
287
288 mutex_unlock(&st->lock);
289 pm_runtime_mark_last_busy(dev);
290 pm_runtime_put_autosuspend(dev);
291
292 return ret;
293 }
294
295 /* IIO format int + micro */
296 static const int inv_icm42600_gyro_odr[] = {
297 /* 12.5Hz */
298 12, 500000,
299 /* 25Hz */
300 25, 0,
301 /* 50Hz */
302 50, 0,
303 /* 100Hz */
304 100, 0,
305 /* 200Hz */
306 200, 0,
307 /* 1kHz */
308 1000, 0,
309 /* 2kHz */
310 2000, 0,
311 /* 4kHz */
312 4000, 0,
313 };
314
315 static const int inv_icm42600_gyro_odr_conv[] = {
316 INV_ICM42600_ODR_12_5HZ,
317 INV_ICM42600_ODR_25HZ,
318 INV_ICM42600_ODR_50HZ,
319 INV_ICM42600_ODR_100HZ,
320 INV_ICM42600_ODR_200HZ,
321 INV_ICM42600_ODR_1KHZ_LN,
322 INV_ICM42600_ODR_2KHZ_LN,
323 INV_ICM42600_ODR_4KHZ_LN,
324 };
325
inv_icm42600_gyro_read_odr(struct inv_icm42600_state * st,int * val,int * val2)326 static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st,
327 int *val, int *val2)
328 {
329 unsigned int odr;
330 unsigned int i;
331
332 odr = st->conf.gyro.odr;
333
334 for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) {
335 if (inv_icm42600_gyro_odr_conv[i] == odr)
336 break;
337 }
338 if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv))
339 return -EINVAL;
340
341 *val = inv_icm42600_gyro_odr[2 * i];
342 *val2 = inv_icm42600_gyro_odr[2 * i + 1];
343
344 return IIO_VAL_INT_PLUS_MICRO;
345 }
346
inv_icm42600_gyro_write_odr(struct iio_dev * indio_dev,int val,int val2)347 static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev,
348 int val, int val2)
349 {
350 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
351 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
352 struct inv_sensors_timestamp *ts = &gyro_st->ts;
353 struct device *dev = regmap_get_device(st->map);
354 unsigned int idx;
355 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
356 int ret;
357
358 for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) {
359 if (val == inv_icm42600_gyro_odr[idx] &&
360 val2 == inv_icm42600_gyro_odr[idx + 1])
361 break;
362 }
363 if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr))
364 return -EINVAL;
365
366 conf.odr = inv_icm42600_gyro_odr_conv[idx / 2];
367
368 pm_runtime_get_sync(dev);
369 mutex_lock(&st->lock);
370
371 ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr),
372 iio_buffer_enabled(indio_dev));
373 if (ret)
374 goto out_unlock;
375
376 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
377 if (ret)
378 goto out_unlock;
379 inv_icm42600_buffer_update_fifo_period(st);
380 inv_icm42600_buffer_update_watermark(st);
381
382 out_unlock:
383 mutex_unlock(&st->lock);
384 pm_runtime_mark_last_busy(dev);
385 pm_runtime_put_autosuspend(dev);
386
387 return ret;
388 }
389
390 /*
391 * Calibration bias values, IIO range format int + nano.
392 * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps.
393 */
394 static int inv_icm42600_gyro_calibbias[] = {
395 -1, 117010721, /* min: -1.117010721 rad/s */
396 0, 545415, /* step: 0.000545415 rad/s */
397 1, 116465306, /* max: 1.116465306 rad/s */
398 };
399
inv_icm42600_gyro_read_offset(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int * val,int * val2)400 static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st,
401 struct iio_chan_spec const *chan,
402 int *val, int *val2)
403 {
404 struct device *dev = regmap_get_device(st->map);
405 int64_t val64;
406 int32_t bias;
407 unsigned int reg;
408 int16_t offset;
409 uint8_t data[2];
410 int ret;
411
412 if (chan->type != IIO_ANGL_VEL)
413 return -EINVAL;
414
415 switch (chan->channel2) {
416 case IIO_MOD_X:
417 reg = INV_ICM42600_REG_OFFSET_USER0;
418 break;
419 case IIO_MOD_Y:
420 reg = INV_ICM42600_REG_OFFSET_USER1;
421 break;
422 case IIO_MOD_Z:
423 reg = INV_ICM42600_REG_OFFSET_USER3;
424 break;
425 default:
426 return -EINVAL;
427 }
428
429 pm_runtime_get_sync(dev);
430 mutex_lock(&st->lock);
431
432 ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data));
433 memcpy(data, st->buffer, sizeof(data));
434
435 mutex_unlock(&st->lock);
436 pm_runtime_mark_last_busy(dev);
437 pm_runtime_put_autosuspend(dev);
438 if (ret)
439 return ret;
440
441 /* 12 bits signed value */
442 switch (chan->channel2) {
443 case IIO_MOD_X:
444 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
445 break;
446 case IIO_MOD_Y:
447 offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11);
448 break;
449 case IIO_MOD_Z:
450 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
451 break;
452 default:
453 return -EINVAL;
454 }
455
456 /*
457 * convert raw offset to dps then to rad/s
458 * 12 bits signed raw max 64 to dps: 64 / 2048
459 * dps to rad: Pi / 180
460 * result in nano (1000000000)
461 * (offset * 64 * Pi * 1000000000) / (2048 * 180)
462 */
463 val64 = (int64_t)offset * 64LL * 3141592653LL;
464 /* for rounding, add + or - divisor (2048 * 180) divided by 2 */
465 if (val64 >= 0)
466 val64 += 2048 * 180 / 2;
467 else
468 val64 -= 2048 * 180 / 2;
469 bias = div_s64(val64, 2048 * 180);
470 *val = bias / 1000000000L;
471 *val2 = bias % 1000000000L;
472
473 return IIO_VAL_INT_PLUS_NANO;
474 }
475
inv_icm42600_gyro_write_offset(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int val,int val2)476 static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st,
477 struct iio_chan_spec const *chan,
478 int val, int val2)
479 {
480 struct device *dev = regmap_get_device(st->map);
481 int64_t val64, min, max;
482 unsigned int reg, regval;
483 int16_t offset;
484 int ret;
485
486 if (chan->type != IIO_ANGL_VEL)
487 return -EINVAL;
488
489 switch (chan->channel2) {
490 case IIO_MOD_X:
491 reg = INV_ICM42600_REG_OFFSET_USER0;
492 break;
493 case IIO_MOD_Y:
494 reg = INV_ICM42600_REG_OFFSET_USER1;
495 break;
496 case IIO_MOD_Z:
497 reg = INV_ICM42600_REG_OFFSET_USER3;
498 break;
499 default:
500 return -EINVAL;
501 }
502
503 /* inv_icm42600_gyro_calibbias: min - step - max in nano */
504 min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL +
505 (int64_t)inv_icm42600_gyro_calibbias[1];
506 max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL +
507 (int64_t)inv_icm42600_gyro_calibbias[5];
508 val64 = (int64_t)val * 1000000000LL + (int64_t)val2;
509 if (val64 < min || val64 > max)
510 return -EINVAL;
511
512 /*
513 * convert rad/s to dps then to raw value
514 * rad to dps: 180 / Pi
515 * dps to raw 12 bits signed, max 64: 2048 / 64
516 * val in nano (1000000000)
517 * val * 180 * 2048 / (Pi * 1000000000 * 64)
518 */
519 val64 = val64 * 180LL * 2048LL;
520 /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */
521 if (val64 >= 0)
522 val64 += 3141592653LL * 64LL / 2LL;
523 else
524 val64 -= 3141592653LL * 64LL / 2LL;
525 offset = div64_s64(val64, 3141592653LL * 64LL);
526
527 /* clamp value limited to 12 bits signed */
528 if (offset < -2048)
529 offset = -2048;
530 else if (offset > 2047)
531 offset = 2047;
532
533 pm_runtime_get_sync(dev);
534 mutex_lock(&st->lock);
535
536 switch (chan->channel2) {
537 case IIO_MOD_X:
538 /* OFFSET_USER1 register is shared */
539 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
540 ®val);
541 if (ret)
542 goto out_unlock;
543 st->buffer[0] = offset & 0xFF;
544 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
545 break;
546 case IIO_MOD_Y:
547 /* OFFSET_USER1 register is shared */
548 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
549 ®val);
550 if (ret)
551 goto out_unlock;
552 st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F);
553 st->buffer[1] = offset & 0xFF;
554 break;
555 case IIO_MOD_Z:
556 /* OFFSET_USER4 register is shared */
557 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4,
558 ®val);
559 if (ret)
560 goto out_unlock;
561 st->buffer[0] = offset & 0xFF;
562 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
563 break;
564 default:
565 ret = -EINVAL;
566 goto out_unlock;
567 }
568
569 ret = regmap_bulk_write(st->map, reg, st->buffer, 2);
570
571 out_unlock:
572 mutex_unlock(&st->lock);
573 pm_runtime_mark_last_busy(dev);
574 pm_runtime_put_autosuspend(dev);
575 return ret;
576 }
577
inv_icm42600_gyro_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)578 static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev,
579 struct iio_chan_spec const *chan,
580 int *val, int *val2, long mask)
581 {
582 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
583 int16_t data;
584 int ret;
585
586 switch (chan->type) {
587 case IIO_ANGL_VEL:
588 break;
589 case IIO_TEMP:
590 return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask);
591 default:
592 return -EINVAL;
593 }
594
595 switch (mask) {
596 case IIO_CHAN_INFO_RAW:
597 ret = iio_device_claim_direct_mode(indio_dev);
598 if (ret)
599 return ret;
600 ret = inv_icm42600_gyro_read_sensor(st, chan, &data);
601 iio_device_release_direct_mode(indio_dev);
602 if (ret)
603 return ret;
604 *val = data;
605 return IIO_VAL_INT;
606 case IIO_CHAN_INFO_SCALE:
607 return inv_icm42600_gyro_read_scale(indio_dev, val, val2);
608 case IIO_CHAN_INFO_SAMP_FREQ:
609 return inv_icm42600_gyro_read_odr(st, val, val2);
610 case IIO_CHAN_INFO_CALIBBIAS:
611 return inv_icm42600_gyro_read_offset(st, chan, val, val2);
612 default:
613 return -EINVAL;
614 }
615 }
616
inv_icm42600_gyro_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)617 static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev,
618 struct iio_chan_spec const *chan,
619 const int **vals,
620 int *type, int *length, long mask)
621 {
622 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
623
624 if (chan->type != IIO_ANGL_VEL)
625 return -EINVAL;
626
627 switch (mask) {
628 case IIO_CHAN_INFO_SCALE:
629 *vals = gyro_st->scales;
630 *type = IIO_VAL_INT_PLUS_NANO;
631 *length = gyro_st->scales_len;
632 return IIO_AVAIL_LIST;
633 case IIO_CHAN_INFO_SAMP_FREQ:
634 *vals = inv_icm42600_gyro_odr;
635 *type = IIO_VAL_INT_PLUS_MICRO;
636 *length = ARRAY_SIZE(inv_icm42600_gyro_odr);
637 return IIO_AVAIL_LIST;
638 case IIO_CHAN_INFO_CALIBBIAS:
639 *vals = inv_icm42600_gyro_calibbias;
640 *type = IIO_VAL_INT_PLUS_NANO;
641 return IIO_AVAIL_RANGE;
642 default:
643 return -EINVAL;
644 }
645 }
646
inv_icm42600_gyro_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)647 static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev,
648 struct iio_chan_spec const *chan,
649 int val, int val2, long mask)
650 {
651 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
652 int ret;
653
654 if (chan->type != IIO_ANGL_VEL)
655 return -EINVAL;
656
657 switch (mask) {
658 case IIO_CHAN_INFO_SCALE:
659 ret = iio_device_claim_direct_mode(indio_dev);
660 if (ret)
661 return ret;
662 ret = inv_icm42600_gyro_write_scale(indio_dev, val, val2);
663 iio_device_release_direct_mode(indio_dev);
664 return ret;
665 case IIO_CHAN_INFO_SAMP_FREQ:
666 return inv_icm42600_gyro_write_odr(indio_dev, val, val2);
667 case IIO_CHAN_INFO_CALIBBIAS:
668 ret = iio_device_claim_direct_mode(indio_dev);
669 if (ret)
670 return ret;
671 ret = inv_icm42600_gyro_write_offset(st, chan, val, val2);
672 iio_device_release_direct_mode(indio_dev);
673 return ret;
674 default:
675 return -EINVAL;
676 }
677 }
678
inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)679 static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev,
680 struct iio_chan_spec const *chan,
681 long mask)
682 {
683 if (chan->type != IIO_ANGL_VEL)
684 return -EINVAL;
685
686 switch (mask) {
687 case IIO_CHAN_INFO_SCALE:
688 return IIO_VAL_INT_PLUS_NANO;
689 case IIO_CHAN_INFO_SAMP_FREQ:
690 return IIO_VAL_INT_PLUS_MICRO;
691 case IIO_CHAN_INFO_CALIBBIAS:
692 return IIO_VAL_INT_PLUS_NANO;
693 default:
694 return -EINVAL;
695 }
696 }
697
inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev * indio_dev,unsigned int val)698 static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev,
699 unsigned int val)
700 {
701 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
702 int ret;
703
704 mutex_lock(&st->lock);
705
706 st->fifo.watermark.gyro = val;
707 ret = inv_icm42600_buffer_update_watermark(st);
708
709 mutex_unlock(&st->lock);
710
711 return ret;
712 }
713
inv_icm42600_gyro_hwfifo_flush(struct iio_dev * indio_dev,unsigned int count)714 static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev,
715 unsigned int count)
716 {
717 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
718 int ret;
719
720 if (count == 0)
721 return 0;
722
723 mutex_lock(&st->lock);
724
725 ret = inv_icm42600_buffer_hwfifo_flush(st, count);
726 if (!ret)
727 ret = st->fifo.nb.gyro;
728
729 mutex_unlock(&st->lock);
730
731 return ret;
732 }
733
734 static const struct iio_info inv_icm42600_gyro_info = {
735 .read_raw = inv_icm42600_gyro_read_raw,
736 .read_avail = inv_icm42600_gyro_read_avail,
737 .write_raw = inv_icm42600_gyro_write_raw,
738 .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt,
739 .debugfs_reg_access = inv_icm42600_debugfs_reg,
740 .update_scan_mode = inv_icm42600_gyro_update_scan_mode,
741 .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark,
742 .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush,
743 };
744
inv_icm42600_gyro_init(struct inv_icm42600_state * st)745 struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st)
746 {
747 struct device *dev = regmap_get_device(st->map);
748 const char *name;
749 struct inv_icm42600_sensor_state *gyro_st;
750 struct inv_sensors_timestamp_chip ts_chip;
751 struct iio_dev *indio_dev;
752 int ret;
753
754 name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name);
755 if (!name)
756 return ERR_PTR(-ENOMEM);
757
758 indio_dev = devm_iio_device_alloc(dev, sizeof(*gyro_st));
759 if (!indio_dev)
760 return ERR_PTR(-ENOMEM);
761 gyro_st = iio_priv(indio_dev);
762
763 switch (st->chip) {
764 case INV_CHIP_ICM42686:
765 gyro_st->scales = inv_icm42686_gyro_scale;
766 gyro_st->scales_len = ARRAY_SIZE(inv_icm42686_gyro_scale);
767 break;
768 default:
769 gyro_st->scales = inv_icm42600_gyro_scale;
770 gyro_st->scales_len = ARRAY_SIZE(inv_icm42600_gyro_scale);
771 break;
772 }
773
774 /*
775 * clock period is 32kHz (31250ns)
776 * jitter is +/- 2% (20 per mille)
777 */
778 ts_chip.clock_period = 31250;
779 ts_chip.jitter = 20;
780 ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr);
781 inv_sensors_timestamp_init(&gyro_st->ts, &ts_chip);
782
783 iio_device_set_drvdata(indio_dev, st);
784 indio_dev->name = name;
785 indio_dev->info = &inv_icm42600_gyro_info;
786 indio_dev->modes = INDIO_DIRECT_MODE;
787 indio_dev->channels = inv_icm42600_gyro_channels;
788 indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels);
789 indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks;
790 indio_dev->setup_ops = &inv_icm42600_buffer_ops;
791
792 ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
793 &inv_icm42600_buffer_ops);
794 if (ret)
795 return ERR_PTR(ret);
796
797 ret = devm_iio_device_register(dev, indio_dev);
798 if (ret)
799 return ERR_PTR(ret);
800
801 return indio_dev;
802 }
803
inv_icm42600_gyro_parse_fifo(struct iio_dev * indio_dev)804 int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev)
805 {
806 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
807 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
808 struct inv_sensors_timestamp *ts = &gyro_st->ts;
809 ssize_t i, size;
810 unsigned int no;
811 const void *accel, *gyro, *timestamp;
812 const int8_t *temp;
813 unsigned int odr;
814 int64_t ts_val;
815 struct inv_icm42600_gyro_buffer buffer;
816
817 /* parse all fifo packets */
818 for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) {
819 size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
820 &accel, &gyro, &temp, ×tamp, &odr);
821 /* quit if error or FIFO is empty */
822 if (size <= 0)
823 return size;
824
825 /* skip packet if no gyro data or data is invalid */
826 if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro))
827 continue;
828
829 /* update odr */
830 if (odr & INV_ICM42600_SENSOR_GYRO)
831 inv_sensors_timestamp_apply_odr(ts, st->fifo.period,
832 st->fifo.nb.total, no);
833
834 /* buffer is copied to userspace, zeroing it to avoid any data leak */
835 memset(&buffer, 0, sizeof(buffer));
836 memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro));
837 /* convert 8 bits FIFO temperature in high resolution format */
838 buffer.temp = temp ? (*temp * 64) : 0;
839 ts_val = inv_sensors_timestamp_pop(ts);
840 iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val);
841 }
842
843 return 0;
844 }
845