1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Invensense, Inc.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/device.h>
8 #include <linux/mutex.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/regmap.h>
11 #include <linux/delay.h>
12 
13 #include <linux/iio/buffer.h>
14 #include <linux/iio/common/inv_sensors_timestamp.h>
15 #include <linux/iio/iio.h>
16 
17 #include "inv_icm42600.h"
18 #include "inv_icm42600_buffer.h"
19 
20 /* FIFO header: 1 byte */
21 #define INV_ICM42600_FIFO_HEADER_MSG		BIT(7)
22 #define INV_ICM42600_FIFO_HEADER_ACCEL		BIT(6)
23 #define INV_ICM42600_FIFO_HEADER_GYRO		BIT(5)
24 #define INV_ICM42600_FIFO_HEADER_TMST_FSYNC	GENMASK(3, 2)
25 #define INV_ICM42600_FIFO_HEADER_ODR_ACCEL	BIT(1)
26 #define INV_ICM42600_FIFO_HEADER_ODR_GYRO	BIT(0)
27 
28 struct inv_icm42600_fifo_1sensor_packet {
29 	uint8_t header;
30 	struct inv_icm42600_fifo_sensor_data data;
31 	int8_t temp;
32 } __packed;
33 #define INV_ICM42600_FIFO_1SENSOR_PACKET_SIZE		8
34 
35 struct inv_icm42600_fifo_2sensors_packet {
36 	uint8_t header;
37 	struct inv_icm42600_fifo_sensor_data accel;
38 	struct inv_icm42600_fifo_sensor_data gyro;
39 	int8_t temp;
40 	__be16 timestamp;
41 } __packed;
42 #define INV_ICM42600_FIFO_2SENSORS_PACKET_SIZE		16
43 
inv_icm42600_fifo_decode_packet(const void * packet,const void ** accel,const void ** gyro,const int8_t ** temp,const void ** timestamp,unsigned int * odr)44 ssize_t inv_icm42600_fifo_decode_packet(const void *packet, const void **accel,
45 					const void **gyro, const int8_t **temp,
46 					const void **timestamp, unsigned int *odr)
47 {
48 	const struct inv_icm42600_fifo_1sensor_packet *pack1 = packet;
49 	const struct inv_icm42600_fifo_2sensors_packet *pack2 = packet;
50 	uint8_t header = *((const uint8_t *)packet);
51 
52 	/* FIFO empty */
53 	if (header & INV_ICM42600_FIFO_HEADER_MSG) {
54 		*accel = NULL;
55 		*gyro = NULL;
56 		*temp = NULL;
57 		*timestamp = NULL;
58 		*odr = 0;
59 		return 0;
60 	}
61 
62 	/* handle odr flags */
63 	*odr = 0;
64 	if (header & INV_ICM42600_FIFO_HEADER_ODR_GYRO)
65 		*odr |= INV_ICM42600_SENSOR_GYRO;
66 	if (header & INV_ICM42600_FIFO_HEADER_ODR_ACCEL)
67 		*odr |= INV_ICM42600_SENSOR_ACCEL;
68 
69 	/* accel + gyro */
70 	if ((header & INV_ICM42600_FIFO_HEADER_ACCEL) &&
71 	    (header & INV_ICM42600_FIFO_HEADER_GYRO)) {
72 		*accel = &pack2->accel;
73 		*gyro = &pack2->gyro;
74 		*temp = &pack2->temp;
75 		*timestamp = &pack2->timestamp;
76 		return INV_ICM42600_FIFO_2SENSORS_PACKET_SIZE;
77 	}
78 
79 	/* accel only */
80 	if (header & INV_ICM42600_FIFO_HEADER_ACCEL) {
81 		*accel = &pack1->data;
82 		*gyro = NULL;
83 		*temp = &pack1->temp;
84 		*timestamp = NULL;
85 		return INV_ICM42600_FIFO_1SENSOR_PACKET_SIZE;
86 	}
87 
88 	/* gyro only */
89 	if (header & INV_ICM42600_FIFO_HEADER_GYRO) {
90 		*accel = NULL;
91 		*gyro = &pack1->data;
92 		*temp = &pack1->temp;
93 		*timestamp = NULL;
94 		return INV_ICM42600_FIFO_1SENSOR_PACKET_SIZE;
95 	}
96 
97 	/* invalid packet if here */
98 	return -EINVAL;
99 }
100 
inv_icm42600_buffer_update_fifo_period(struct inv_icm42600_state * st)101 void inv_icm42600_buffer_update_fifo_period(struct inv_icm42600_state *st)
102 {
103 	uint32_t period_gyro, period_accel, period;
104 
105 	if (st->fifo.en & INV_ICM42600_SENSOR_GYRO)
106 		period_gyro = inv_icm42600_odr_to_period(st->conf.gyro.odr);
107 	else
108 		period_gyro = U32_MAX;
109 
110 	if (st->fifo.en & INV_ICM42600_SENSOR_ACCEL)
111 		period_accel = inv_icm42600_odr_to_period(st->conf.accel.odr);
112 	else
113 		period_accel = U32_MAX;
114 
115 	if (period_gyro <= period_accel)
116 		period = period_gyro;
117 	else
118 		period = period_accel;
119 
120 	st->fifo.period = period;
121 }
122 
inv_icm42600_buffer_set_fifo_en(struct inv_icm42600_state * st,unsigned int fifo_en)123 int inv_icm42600_buffer_set_fifo_en(struct inv_icm42600_state *st,
124 				    unsigned int fifo_en)
125 {
126 	unsigned int mask, val;
127 	int ret;
128 
129 	/* update only FIFO EN bits */
130 	mask = INV_ICM42600_FIFO_CONFIG1_TMST_FSYNC_EN |
131 		INV_ICM42600_FIFO_CONFIG1_TEMP_EN |
132 		INV_ICM42600_FIFO_CONFIG1_GYRO_EN |
133 		INV_ICM42600_FIFO_CONFIG1_ACCEL_EN;
134 
135 	val = 0;
136 	if (fifo_en & INV_ICM42600_SENSOR_GYRO)
137 		val |= INV_ICM42600_FIFO_CONFIG1_GYRO_EN;
138 	if (fifo_en & INV_ICM42600_SENSOR_ACCEL)
139 		val |= INV_ICM42600_FIFO_CONFIG1_ACCEL_EN;
140 	if (fifo_en & INV_ICM42600_SENSOR_TEMP)
141 		val |= INV_ICM42600_FIFO_CONFIG1_TEMP_EN;
142 
143 	ret = regmap_update_bits(st->map, INV_ICM42600_REG_FIFO_CONFIG1, mask, val);
144 	if (ret)
145 		return ret;
146 
147 	st->fifo.en = fifo_en;
148 	inv_icm42600_buffer_update_fifo_period(st);
149 
150 	return 0;
151 }
152 
inv_icm42600_get_packet_size(unsigned int fifo_en)153 static size_t inv_icm42600_get_packet_size(unsigned int fifo_en)
154 {
155 	size_t packet_size;
156 
157 	if ((fifo_en & INV_ICM42600_SENSOR_GYRO) &&
158 	    (fifo_en & INV_ICM42600_SENSOR_ACCEL))
159 		packet_size = INV_ICM42600_FIFO_2SENSORS_PACKET_SIZE;
160 	else
161 		packet_size = INV_ICM42600_FIFO_1SENSOR_PACKET_SIZE;
162 
163 	return packet_size;
164 }
165 
inv_icm42600_wm_truncate(unsigned int watermark,size_t packet_size)166 static unsigned int inv_icm42600_wm_truncate(unsigned int watermark,
167 					     size_t packet_size)
168 {
169 	size_t wm_size;
170 	unsigned int wm;
171 
172 	wm_size = watermark * packet_size;
173 	if (wm_size > INV_ICM42600_FIFO_WATERMARK_MAX)
174 		wm_size = INV_ICM42600_FIFO_WATERMARK_MAX;
175 
176 	wm = wm_size / packet_size;
177 
178 	return wm;
179 }
180 
181 /**
182  * inv_icm42600_buffer_update_watermark - update watermark FIFO threshold
183  * @st:	driver internal state
184  *
185  * Returns 0 on success, a negative error code otherwise.
186  *
187  * FIFO watermark threshold is computed based on the required watermark values
188  * set for gyro and accel sensors. Since watermark is all about acceptable data
189  * latency, use the smallest setting between the 2. It means choosing the
190  * smallest latency but this is not as simple as choosing the smallest watermark
191  * value. Latency depends on watermark and ODR. It requires several steps:
192  * 1) compute gyro and accel latencies and choose the smallest value.
193  * 2) adapt the choosen latency so that it is a multiple of both gyro and accel
194  *    ones. Otherwise it is possible that you don't meet a requirement. (for
195  *    example with gyro @100Hz wm 4 and accel @100Hz with wm 6, choosing the
196  *    value of 4 will not meet accel latency requirement because 6 is not a
197  *    multiple of 4. You need to use the value 2.)
198  * 3) Since all periods are multiple of each others, watermark is computed by
199  *    dividing this computed latency by the smallest period, which corresponds
200  *    to the FIFO frequency. Beware that this is only true because we are not
201  *    using 500Hz frequency which is not a multiple of the others.
202  */
inv_icm42600_buffer_update_watermark(struct inv_icm42600_state * st)203 int inv_icm42600_buffer_update_watermark(struct inv_icm42600_state *st)
204 {
205 	size_t packet_size, wm_size;
206 	unsigned int wm_gyro, wm_accel, watermark;
207 	uint32_t period_gyro, period_accel, period;
208 	uint32_t latency_gyro, latency_accel, latency;
209 	bool restore;
210 	__le16 raw_wm;
211 	int ret;
212 
213 	packet_size = inv_icm42600_get_packet_size(st->fifo.en);
214 
215 	/* compute sensors latency, depending on sensor watermark and odr */
216 	wm_gyro = inv_icm42600_wm_truncate(st->fifo.watermark.gyro, packet_size);
217 	wm_accel = inv_icm42600_wm_truncate(st->fifo.watermark.accel, packet_size);
218 	/* use us for odr to avoid overflow using 32 bits values */
219 	period_gyro = inv_icm42600_odr_to_period(st->conf.gyro.odr) / 1000UL;
220 	period_accel = inv_icm42600_odr_to_period(st->conf.accel.odr) / 1000UL;
221 	latency_gyro = period_gyro * wm_gyro;
222 	latency_accel = period_accel * wm_accel;
223 
224 	/* 0 value for watermark means that the sensor is turned off */
225 	if (wm_gyro == 0 && wm_accel == 0)
226 		return 0;
227 
228 	if (latency_gyro == 0) {
229 		watermark = wm_accel;
230 		st->fifo.watermark.eff_accel = wm_accel;
231 	} else if (latency_accel == 0) {
232 		watermark = wm_gyro;
233 		st->fifo.watermark.eff_gyro = wm_gyro;
234 	} else {
235 		/* compute the smallest latency that is a multiple of both */
236 		if (latency_gyro <= latency_accel)
237 			latency = latency_gyro - (latency_accel % latency_gyro);
238 		else
239 			latency = latency_accel - (latency_gyro % latency_accel);
240 		/* use the shortest period */
241 		if (period_gyro <= period_accel)
242 			period = period_gyro;
243 		else
244 			period = period_accel;
245 		/* all this works because periods are multiple of each others */
246 		watermark = latency / period;
247 		if (watermark < 1)
248 			watermark = 1;
249 		/* update effective watermark */
250 		st->fifo.watermark.eff_gyro = latency / period_gyro;
251 		if (st->fifo.watermark.eff_gyro < 1)
252 			st->fifo.watermark.eff_gyro = 1;
253 		st->fifo.watermark.eff_accel = latency / period_accel;
254 		if (st->fifo.watermark.eff_accel < 1)
255 			st->fifo.watermark.eff_accel = 1;
256 	}
257 
258 	/* compute watermark value in bytes */
259 	wm_size = watermark * packet_size;
260 
261 	/* changing FIFO watermark requires to turn off watermark interrupt */
262 	ret = regmap_update_bits_check(st->map, INV_ICM42600_REG_INT_SOURCE0,
263 				       INV_ICM42600_INT_SOURCE0_FIFO_THS_INT1_EN,
264 				       0, &restore);
265 	if (ret)
266 		return ret;
267 
268 	raw_wm = INV_ICM42600_FIFO_WATERMARK_VAL(wm_size);
269 	memcpy(st->buffer, &raw_wm, sizeof(raw_wm));
270 	ret = regmap_bulk_write(st->map, INV_ICM42600_REG_FIFO_WATERMARK,
271 				st->buffer, sizeof(raw_wm));
272 	if (ret)
273 		return ret;
274 
275 	/* restore watermark interrupt */
276 	if (restore) {
277 		ret = regmap_set_bits(st->map, INV_ICM42600_REG_INT_SOURCE0,
278 				      INV_ICM42600_INT_SOURCE0_FIFO_THS_INT1_EN);
279 		if (ret)
280 			return ret;
281 	}
282 
283 	return 0;
284 }
285 
inv_icm42600_buffer_preenable(struct iio_dev * indio_dev)286 static int inv_icm42600_buffer_preenable(struct iio_dev *indio_dev)
287 {
288 	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
289 	struct device *dev = regmap_get_device(st->map);
290 	struct inv_icm42600_sensor_state *sensor_st = iio_priv(indio_dev);
291 	struct inv_sensors_timestamp *ts = &sensor_st->ts;
292 
293 	pm_runtime_get_sync(dev);
294 
295 	mutex_lock(&st->lock);
296 	inv_sensors_timestamp_reset(ts);
297 	mutex_unlock(&st->lock);
298 
299 	return 0;
300 }
301 
302 /*
303  * update_scan_mode callback is turning sensors on and setting data FIFO enable
304  * bits.
305  */
inv_icm42600_buffer_postenable(struct iio_dev * indio_dev)306 static int inv_icm42600_buffer_postenable(struct iio_dev *indio_dev)
307 {
308 	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
309 	int ret;
310 
311 	mutex_lock(&st->lock);
312 
313 	/* exit if FIFO is already on */
314 	if (st->fifo.on) {
315 		ret = 0;
316 		goto out_on;
317 	}
318 
319 	/* set FIFO threshold interrupt */
320 	ret = regmap_set_bits(st->map, INV_ICM42600_REG_INT_SOURCE0,
321 			      INV_ICM42600_INT_SOURCE0_FIFO_THS_INT1_EN);
322 	if (ret)
323 		goto out_unlock;
324 
325 	/* flush FIFO data */
326 	ret = regmap_write(st->map, INV_ICM42600_REG_SIGNAL_PATH_RESET,
327 			   INV_ICM42600_SIGNAL_PATH_RESET_FIFO_FLUSH);
328 	if (ret)
329 		goto out_unlock;
330 
331 	/* set FIFO in streaming mode */
332 	ret = regmap_write(st->map, INV_ICM42600_REG_FIFO_CONFIG,
333 			   INV_ICM42600_FIFO_CONFIG_STREAM);
334 	if (ret)
335 		goto out_unlock;
336 
337 	/* workaround: first read of FIFO count after reset is always 0 */
338 	ret = regmap_bulk_read(st->map, INV_ICM42600_REG_FIFO_COUNT, st->buffer, 2);
339 	if (ret)
340 		goto out_unlock;
341 
342 out_on:
343 	/* increase FIFO on counter */
344 	st->fifo.on++;
345 out_unlock:
346 	mutex_unlock(&st->lock);
347 	return ret;
348 }
349 
inv_icm42600_buffer_predisable(struct iio_dev * indio_dev)350 static int inv_icm42600_buffer_predisable(struct iio_dev *indio_dev)
351 {
352 	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
353 	int ret;
354 
355 	mutex_lock(&st->lock);
356 
357 	/* exit if there are several sensors using the FIFO */
358 	if (st->fifo.on > 1) {
359 		ret = 0;
360 		goto out_off;
361 	}
362 
363 	/* set FIFO in bypass mode */
364 	ret = regmap_write(st->map, INV_ICM42600_REG_FIFO_CONFIG,
365 			   INV_ICM42600_FIFO_CONFIG_BYPASS);
366 	if (ret)
367 		goto out_unlock;
368 
369 	/* flush FIFO data */
370 	ret = regmap_write(st->map, INV_ICM42600_REG_SIGNAL_PATH_RESET,
371 			   INV_ICM42600_SIGNAL_PATH_RESET_FIFO_FLUSH);
372 	if (ret)
373 		goto out_unlock;
374 
375 	/* disable FIFO threshold interrupt */
376 	ret = regmap_clear_bits(st->map, INV_ICM42600_REG_INT_SOURCE0,
377 				INV_ICM42600_INT_SOURCE0_FIFO_THS_INT1_EN);
378 	if (ret)
379 		goto out_unlock;
380 
381 out_off:
382 	/* decrease FIFO on counter */
383 	st->fifo.on--;
384 out_unlock:
385 	mutex_unlock(&st->lock);
386 	return ret;
387 }
388 
inv_icm42600_buffer_postdisable(struct iio_dev * indio_dev)389 static int inv_icm42600_buffer_postdisable(struct iio_dev *indio_dev)
390 {
391 	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
392 	struct device *dev = regmap_get_device(st->map);
393 	unsigned int sensor;
394 	unsigned int *watermark;
395 	struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
396 	unsigned int sleep_temp = 0;
397 	unsigned int sleep_sensor = 0;
398 	unsigned int sleep;
399 	int ret;
400 
401 	if (indio_dev == st->indio_gyro) {
402 		sensor = INV_ICM42600_SENSOR_GYRO;
403 		watermark = &st->fifo.watermark.gyro;
404 	} else if (indio_dev == st->indio_accel) {
405 		sensor = INV_ICM42600_SENSOR_ACCEL;
406 		watermark = &st->fifo.watermark.accel;
407 	} else {
408 		return -EINVAL;
409 	}
410 
411 	mutex_lock(&st->lock);
412 
413 	ret = inv_icm42600_buffer_set_fifo_en(st, st->fifo.en & ~sensor);
414 	if (ret)
415 		goto out_unlock;
416 
417 	*watermark = 0;
418 	ret = inv_icm42600_buffer_update_watermark(st);
419 	if (ret)
420 		goto out_unlock;
421 
422 	conf.mode = INV_ICM42600_SENSOR_MODE_OFF;
423 	if (sensor == INV_ICM42600_SENSOR_GYRO)
424 		ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_sensor);
425 	else
426 		ret = inv_icm42600_set_accel_conf(st, &conf, &sleep_sensor);
427 	if (ret)
428 		goto out_unlock;
429 
430 	/* if FIFO is off, turn temperature off */
431 	if (!st->fifo.on)
432 		ret = inv_icm42600_set_temp_conf(st, false, &sleep_temp);
433 
434 out_unlock:
435 	mutex_unlock(&st->lock);
436 
437 	/* sleep maximum required time */
438 	sleep = max(sleep_sensor, sleep_temp);
439 	if (sleep)
440 		msleep(sleep);
441 
442 	pm_runtime_mark_last_busy(dev);
443 	pm_runtime_put_autosuspend(dev);
444 
445 	return ret;
446 }
447 
448 const struct iio_buffer_setup_ops inv_icm42600_buffer_ops = {
449 	.preenable = inv_icm42600_buffer_preenable,
450 	.postenable = inv_icm42600_buffer_postenable,
451 	.predisable = inv_icm42600_buffer_predisable,
452 	.postdisable = inv_icm42600_buffer_postdisable,
453 };
454 
inv_icm42600_buffer_fifo_read(struct inv_icm42600_state * st,unsigned int max)455 int inv_icm42600_buffer_fifo_read(struct inv_icm42600_state *st,
456 				  unsigned int max)
457 {
458 	size_t max_count;
459 	__be16 *raw_fifo_count;
460 	ssize_t i, size;
461 	const void *accel, *gyro, *timestamp;
462 	const int8_t *temp;
463 	unsigned int odr;
464 	int ret;
465 
466 	/* reset all samples counters */
467 	st->fifo.count = 0;
468 	st->fifo.nb.gyro = 0;
469 	st->fifo.nb.accel = 0;
470 	st->fifo.nb.total = 0;
471 
472 	/* compute maximum FIFO read size */
473 	if (max == 0)
474 		max_count = sizeof(st->fifo.data);
475 	else
476 		max_count = max * inv_icm42600_get_packet_size(st->fifo.en);
477 
478 	/* read FIFO count value */
479 	raw_fifo_count = (__be16 *)st->buffer;
480 	ret = regmap_bulk_read(st->map, INV_ICM42600_REG_FIFO_COUNT,
481 			       raw_fifo_count, sizeof(*raw_fifo_count));
482 	if (ret)
483 		return ret;
484 	st->fifo.count = be16_to_cpup(raw_fifo_count);
485 
486 	/* check and clamp FIFO count value */
487 	if (st->fifo.count == 0)
488 		return 0;
489 	if (st->fifo.count > max_count)
490 		st->fifo.count = max_count;
491 
492 	/* read all FIFO data in internal buffer */
493 	ret = regmap_noinc_read(st->map, INV_ICM42600_REG_FIFO_DATA,
494 				st->fifo.data, st->fifo.count);
495 	if (ret)
496 		return ret;
497 
498 	/* compute number of samples for each sensor */
499 	for (i = 0; i < st->fifo.count; i += size) {
500 		size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
501 				&accel, &gyro, &temp, &timestamp, &odr);
502 		if (size <= 0)
503 			break;
504 		if (gyro != NULL && inv_icm42600_fifo_is_data_valid(gyro))
505 			st->fifo.nb.gyro++;
506 		if (accel != NULL && inv_icm42600_fifo_is_data_valid(accel))
507 			st->fifo.nb.accel++;
508 		st->fifo.nb.total++;
509 	}
510 
511 	return 0;
512 }
513 
inv_icm42600_buffer_fifo_parse(struct inv_icm42600_state * st)514 int inv_icm42600_buffer_fifo_parse(struct inv_icm42600_state *st)
515 {
516 	struct inv_icm42600_sensor_state *gyro_st = iio_priv(st->indio_gyro);
517 	struct inv_icm42600_sensor_state *accel_st = iio_priv(st->indio_accel);
518 	struct inv_sensors_timestamp *ts;
519 	int ret;
520 
521 	if (st->fifo.nb.total == 0)
522 		return 0;
523 
524 	/* handle gyroscope timestamp and FIFO data parsing */
525 	if (st->fifo.nb.gyro > 0) {
526 		ts = &gyro_st->ts;
527 		inv_sensors_timestamp_interrupt(ts, st->fifo.watermark.eff_gyro,
528 						st->timestamp.gyro);
529 		ret = inv_icm42600_gyro_parse_fifo(st->indio_gyro);
530 		if (ret)
531 			return ret;
532 	}
533 
534 	/* handle accelerometer timestamp and FIFO data parsing */
535 	if (st->fifo.nb.accel > 0) {
536 		ts = &accel_st->ts;
537 		inv_sensors_timestamp_interrupt(ts, st->fifo.watermark.eff_accel,
538 						st->timestamp.accel);
539 		ret = inv_icm42600_accel_parse_fifo(st->indio_accel);
540 		if (ret)
541 			return ret;
542 	}
543 
544 	return 0;
545 }
546 
inv_icm42600_buffer_hwfifo_flush(struct inv_icm42600_state * st,unsigned int count)547 int inv_icm42600_buffer_hwfifo_flush(struct inv_icm42600_state *st,
548 				     unsigned int count)
549 {
550 	struct inv_icm42600_sensor_state *gyro_st = iio_priv(st->indio_gyro);
551 	struct inv_icm42600_sensor_state *accel_st = iio_priv(st->indio_accel);
552 	struct inv_sensors_timestamp *ts;
553 	int64_t gyro_ts, accel_ts;
554 	int ret;
555 
556 	gyro_ts = iio_get_time_ns(st->indio_gyro);
557 	accel_ts = iio_get_time_ns(st->indio_accel);
558 
559 	ret = inv_icm42600_buffer_fifo_read(st, count);
560 	if (ret)
561 		return ret;
562 
563 	if (st->fifo.nb.total == 0)
564 		return 0;
565 
566 	if (st->fifo.nb.gyro > 0) {
567 		ts = &gyro_st->ts;
568 		inv_sensors_timestamp_interrupt(ts, st->fifo.nb.gyro, gyro_ts);
569 		ret = inv_icm42600_gyro_parse_fifo(st->indio_gyro);
570 		if (ret)
571 			return ret;
572 	}
573 
574 	if (st->fifo.nb.accel > 0) {
575 		ts = &accel_st->ts;
576 		inv_sensors_timestamp_interrupt(ts, st->fifo.nb.accel, accel_ts);
577 		ret = inv_icm42600_accel_parse_fifo(st->indio_accel);
578 		if (ret)
579 			return ret;
580 	}
581 
582 	return 0;
583 }
584 
inv_icm42600_buffer_init(struct inv_icm42600_state * st)585 int inv_icm42600_buffer_init(struct inv_icm42600_state *st)
586 {
587 	unsigned int val;
588 	int ret;
589 
590 	st->fifo.watermark.eff_gyro = 1;
591 	st->fifo.watermark.eff_accel = 1;
592 
593 	/*
594 	 * Default FIFO configuration (bits 7 to 5)
595 	 * - use invalid value
596 	 * - FIFO count in bytes
597 	 * - FIFO count in big endian
598 	 */
599 	val = INV_ICM42600_INTF_CONFIG0_FIFO_COUNT_ENDIAN;
600 	ret = regmap_update_bits(st->map, INV_ICM42600_REG_INTF_CONFIG0,
601 				 GENMASK(7, 5), val);
602 	if (ret)
603 		return ret;
604 
605 	/*
606 	 * Enable FIFO partial read and continuous watermark interrupt.
607 	 * Disable all FIFO EN bits.
608 	 */
609 	val = INV_ICM42600_FIFO_CONFIG1_RESUME_PARTIAL_RD |
610 	      INV_ICM42600_FIFO_CONFIG1_WM_GT_TH;
611 	return regmap_update_bits(st->map, INV_ICM42600_REG_FIFO_CONFIG1,
612 				  GENMASK(6, 5) | GENMASK(3, 0), val);
613 }
614