1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	(2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
intel_engine_context_size(struct intel_gt * gt,u8 class)273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 			       GRAPHICS_VER(gt->i915), cxt_size * 64,
321 			       cxt_size - 1);
322 			return round_up(cxt_size * 64, PAGE_SIZE);
323 		case 3:
324 		case 2:
325 		/* For the special day when i810 gets merged. */
326 		case 1:
327 			return 0;
328 		}
329 		break;
330 	default:
331 		MISSING_CASE(class);
332 		fallthrough;
333 	case VIDEO_DECODE_CLASS:
334 	case VIDEO_ENHANCEMENT_CLASS:
335 	case COPY_ENGINE_CLASS:
336 	case OTHER_CLASS:
337 		if (GRAPHICS_VER(gt->i915) < 8)
338 			return 0;
339 		return GEN8_LR_CONTEXT_OTHER_SIZE;
340 	}
341 }
342 
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 			      const struct engine_mmio_base *bases)
345 {
346 	int i;
347 
348 	for (i = 0; i < MAX_MMIO_BASES; i++)
349 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 			break;
351 
352 	GEM_BUG_ON(i == MAX_MMIO_BASES);
353 	GEM_BUG_ON(!bases[i].base);
354 
355 	return bases[i].base;
356 }
357 
__sprint_engine_name(struct intel_engine_cs * engine)358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 	/*
361 	 * Before we know what the uABI name for this engine will be,
362 	 * we still would like to keep track of this engine in the debug logs.
363 	 * We throw in a ' here as a reminder that this isn't its final name.
364 	 */
365 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 			     intel_engine_class_repr(engine->class),
367 			     engine->instance) >= sizeof(engine->name));
368 }
369 
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 	/*
373 	 * Though they added more rings on g4x/ilk, they did not add
374 	 * per-engine HWSTAM until gen6.
375 	 */
376 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 		return;
378 
379 	if (GRAPHICS_VER(engine->i915) >= 3)
380 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 	else
382 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384 
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 	/* Mask off all writes into the unknown HWSP */
388 	intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390 
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 	GEM_DEBUG_WARN_ON(iir);
394 }
395 
get_reset_domain(u8 ver,enum intel_engine_id id)396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 	u32 reset_domain;
399 
400 	if (ver >= 11) {
401 		static const u32 engine_reset_domains[] = {
402 			[RCS0]  = GEN11_GRDOM_RENDER,
403 			[BCS0]  = GEN11_GRDOM_BLT,
404 			[BCS1]  = XEHPC_GRDOM_BLT1,
405 			[BCS2]  = XEHPC_GRDOM_BLT2,
406 			[BCS3]  = XEHPC_GRDOM_BLT3,
407 			[BCS4]  = XEHPC_GRDOM_BLT4,
408 			[BCS5]  = XEHPC_GRDOM_BLT5,
409 			[BCS6]  = XEHPC_GRDOM_BLT6,
410 			[BCS7]  = XEHPC_GRDOM_BLT7,
411 			[BCS8]  = XEHPC_GRDOM_BLT8,
412 			[VCS0]  = GEN11_GRDOM_MEDIA,
413 			[VCS1]  = GEN11_GRDOM_MEDIA2,
414 			[VCS2]  = GEN11_GRDOM_MEDIA3,
415 			[VCS3]  = GEN11_GRDOM_MEDIA4,
416 			[VCS4]  = GEN11_GRDOM_MEDIA5,
417 			[VCS5]  = GEN11_GRDOM_MEDIA6,
418 			[VCS6]  = GEN11_GRDOM_MEDIA7,
419 			[VCS7]  = GEN11_GRDOM_MEDIA8,
420 			[VECS0] = GEN11_GRDOM_VECS,
421 			[VECS1] = GEN11_GRDOM_VECS2,
422 			[VECS2] = GEN11_GRDOM_VECS3,
423 			[VECS3] = GEN11_GRDOM_VECS4,
424 			[CCS0]  = GEN11_GRDOM_RENDER,
425 			[CCS1]  = GEN11_GRDOM_RENDER,
426 			[CCS2]  = GEN11_GRDOM_RENDER,
427 			[CCS3]  = GEN11_GRDOM_RENDER,
428 			[GSC0]  = GEN12_GRDOM_GSC,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	} else {
434 		static const u32 engine_reset_domains[] = {
435 			[RCS0]  = GEN6_GRDOM_RENDER,
436 			[BCS0]  = GEN6_GRDOM_BLT,
437 			[VCS0]  = GEN6_GRDOM_MEDIA,
438 			[VCS1]  = GEN8_GRDOM_MEDIA2,
439 			[VECS0] = GEN6_GRDOM_VECS,
440 		};
441 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 			   !engine_reset_domains[id]);
443 		reset_domain = engine_reset_domains[id];
444 	}
445 
446 	return reset_domain;
447 }
448 
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 			      u8 logical_instance)
451 {
452 	const struct engine_info *info = &intel_engines[id];
453 	struct drm_i915_private *i915 = gt->i915;
454 	struct intel_engine_cs *engine;
455 	u8 guc_class;
456 
457 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461 
462 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 		return -EINVAL;
464 
465 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 		return -EINVAL;
467 
468 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 		return -EINVAL;
470 
471 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 		return -EINVAL;
473 
474 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 	if (!engine)
476 		return -ENOMEM;
477 
478 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479 
480 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 	engine->id = id;
482 	engine->legacy_idx = INVALID_ENGINE;
483 	engine->mask = BIT(id);
484 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 						id);
486 	engine->i915 = i915;
487 	engine->gt = gt;
488 	engine->uncore = gt->uncore;
489 	guc_class = engine_class_to_guc_class(info->class);
490 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492 
493 	engine->irq_handler = nop_irq_handler;
494 
495 	engine->class = info->class;
496 	engine->instance = info->instance;
497 	engine->logical_mask = BIT(logical_instance);
498 	__sprint_engine_name(engine);
499 
500 	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
501 	    __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance)
502 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
503 
504 	/* features common between engines sharing EUs */
505 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
506 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
507 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
508 	}
509 
510 	engine->props.heartbeat_interval_ms =
511 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
512 	engine->props.max_busywait_duration_ns =
513 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
514 	engine->props.preempt_timeout_ms =
515 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
516 	engine->props.stop_timeout_ms =
517 		CONFIG_DRM_I915_STOP_TIMEOUT;
518 	engine->props.timeslice_duration_ms =
519 		CONFIG_DRM_I915_TIMESLICE_DURATION;
520 
521 	/*
522 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
523 	 * some compute workloads run quite long threads. That means they get
524 	 * reset due to not pre-empting in a timely manner. So, bump the
525 	 * pre-emption timeout value to be much higher for compute engines.
526 	 */
527 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
528 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
529 
530 	/* Cap properties according to any system limits */
531 #define CLAMP_PROP(field) \
532 	do { \
533 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
534 		if (clamp != engine->props.field) { \
535 			drm_notice(&engine->i915->drm, \
536 				   "Warning, clamping %s to %lld to prevent overflow\n", \
537 				   #field, clamp); \
538 			engine->props.field = clamp; \
539 		} \
540 	} while (0)
541 
542 	CLAMP_PROP(heartbeat_interval_ms);
543 	CLAMP_PROP(max_busywait_duration_ns);
544 	CLAMP_PROP(preempt_timeout_ms);
545 	CLAMP_PROP(stop_timeout_ms);
546 	CLAMP_PROP(timeslice_duration_ms);
547 
548 #undef CLAMP_PROP
549 
550 	engine->defaults = engine->props; /* never to change again */
551 
552 	engine->context_size = intel_engine_context_size(gt, engine->class);
553 	if (WARN_ON(engine->context_size > BIT(20)))
554 		engine->context_size = 0;
555 	if (engine->context_size)
556 		DRIVER_CAPS(i915)->has_logical_contexts = true;
557 
558 	ewma__engine_latency_init(&engine->latency);
559 
560 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
561 
562 	/* Scrub mmio state on takeover */
563 	intel_engine_sanitize_mmio(engine);
564 
565 	gt->engine_class[info->class][info->instance] = engine;
566 	gt->engine[id] = engine;
567 
568 	return 0;
569 }
570 
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
572 {
573 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
574 
575 	return value;
576 }
577 
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
579 {
580 	value = min(value, jiffies_to_nsecs(2));
581 
582 	return value;
583 }
584 
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
586 {
587 	/*
588 	 * NB: The GuC API only supports 32bit values. However, the limit is further
589 	 * reduced due to internal calculations which would otherwise overflow.
590 	 */
591 	if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
592 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
593 
594 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
595 
596 	return value;
597 }
598 
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
600 {
601 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
602 
603 	return value;
604 }
605 
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
607 {
608 	/*
609 	 * NB: The GuC API only supports 32bit values. However, the limit is further
610 	 * reduced due to internal calculations which would otherwise overflow.
611 	 */
612 	if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
613 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
614 
615 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
616 
617 	return value;
618 }
619 
__setup_engine_capabilities(struct intel_engine_cs * engine)620 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
621 {
622 	struct drm_i915_private *i915 = engine->i915;
623 
624 	if (engine->class == VIDEO_DECODE_CLASS) {
625 		/*
626 		 * HEVC support is present on first engine instance
627 		 * before Gen11 and on all instances afterwards.
628 		 */
629 		if (GRAPHICS_VER(i915) >= 11 ||
630 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
631 			engine->uabi_capabilities |=
632 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
633 
634 		/*
635 		 * SFC block is present only on even logical engine
636 		 * instances.
637 		 */
638 		if ((GRAPHICS_VER(i915) >= 11 &&
639 		     (engine->gt->info.vdbox_sfc_access &
640 		      BIT(engine->instance))) ||
641 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
642 			engine->uabi_capabilities |=
643 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
644 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
645 		if (GRAPHICS_VER(i915) >= 9 &&
646 		    engine->gt->info.sfc_mask & BIT(engine->instance))
647 			engine->uabi_capabilities |=
648 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
649 	}
650 }
651 
intel_setup_engine_capabilities(struct intel_gt * gt)652 static void intel_setup_engine_capabilities(struct intel_gt *gt)
653 {
654 	struct intel_engine_cs *engine;
655 	enum intel_engine_id id;
656 
657 	for_each_engine(engine, gt, id)
658 		__setup_engine_capabilities(engine);
659 }
660 
661 /**
662  * intel_engines_release() - free the resources allocated for Command Streamers
663  * @gt: pointer to struct intel_gt
664  */
intel_engines_release(struct intel_gt * gt)665 void intel_engines_release(struct intel_gt *gt)
666 {
667 	struct intel_engine_cs *engine;
668 	enum intel_engine_id id;
669 
670 	/*
671 	 * Before we release the resources held by engine, we must be certain
672 	 * that the HW is no longer accessing them -- having the GPU scribble
673 	 * to or read from a page being used for something else causes no end
674 	 * of fun.
675 	 *
676 	 * The GPU should be reset by this point, but assume the worst just
677 	 * in case we aborted before completely initialising the engines.
678 	 */
679 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
680 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
681 		intel_gt_reset_all_engines(gt);
682 
683 	/* Decouple the backend; but keep the layout for late GPU resets */
684 	for_each_engine(engine, gt, id) {
685 		if (!engine->release)
686 			continue;
687 
688 		intel_wakeref_wait_for_idle(&engine->wakeref);
689 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
690 
691 		engine->release(engine);
692 		engine->release = NULL;
693 
694 		memset(&engine->reset, 0, sizeof(engine->reset));
695 	}
696 
697 	llist_del_all(&gt->i915->uabi_engines_llist);
698 }
699 
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 	if (!engine->request_pool)
703 		return;
704 
705 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707 
intel_engines_free(struct intel_gt * gt)708 void intel_engines_free(struct intel_gt *gt)
709 {
710 	struct intel_engine_cs *engine;
711 	enum intel_engine_id id;
712 
713 	/* Free the requests! dma-resv keeps fences around for an eternity */
714 	rcu_barrier();
715 
716 	for_each_engine(engine, gt, id) {
717 		intel_engine_free_request_pool(engine);
718 		kfree(engine);
719 		gt->engine[id] = NULL;
720 	}
721 }
722 
723 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 			 unsigned int physical_vdbox,
726 			 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 	struct drm_i915_private *i915 = gt->i915;
729 
730 	/*
731 	 * In Gen11, only even numbered logical VDBOXes are hooked
732 	 * up to an SFC (Scaler & Format Converter) unit.
733 	 * In Gen12, Even numbered physical instance always are connected
734 	 * to an SFC. Odd numbered physical instances have SFC only if
735 	 * previous even instance is fused off.
736 	 *
737 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 	 * in the fuse register that tells us whether a specific SFC is present.
739 	 */
740 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 		return false;
742 	else if (MEDIA_VER(i915) >= 12)
743 		return (physical_vdbox % 2 == 0) ||
744 			!(BIT(physical_vdbox - 1) & vdbox_mask);
745 	else if (MEDIA_VER(i915) == 11)
746 		return logical_vdbox % 2 == 0;
747 
748 	return false;
749 }
750 
engine_mask_apply_media_fuses(struct intel_gt * gt)751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 	struct drm_i915_private *i915 = gt->i915;
754 	unsigned int logical_vdbox = 0;
755 	unsigned int i;
756 	u32 media_fuse, fuse1;
757 	u16 vdbox_mask;
758 	u16 vebox_mask;
759 
760 	if (MEDIA_VER(gt->i915) < 11)
761 		return;
762 
763 	/*
764 	 * On newer platforms the fusing register is called 'enable' and has
765 	 * enable semantics, while on older platforms it is called 'disable'
766 	 * and bits have disable semantices.
767 	 */
768 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 55))
770 		media_fuse = ~media_fuse;
771 
772 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
775 
776 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) {
777 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 	} else {
780 		gt->info.sfc_mask = ~0;
781 	}
782 
783 	for (i = 0; i < I915_MAX_VCS; i++) {
784 		if (!HAS_ENGINE(gt, _VCS(i))) {
785 			vdbox_mask &= ~BIT(i);
786 			continue;
787 		}
788 
789 		if (!(BIT(i) & vdbox_mask)) {
790 			gt->info.engine_mask &= ~BIT(_VCS(i));
791 			gt_dbg(gt, "vcs%u fused off\n", i);
792 			continue;
793 		}
794 
795 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 			gt->info.vdbox_sfc_access |= BIT(i);
797 		logical_vdbox++;
798 	}
799 	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
800 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
801 
802 	for (i = 0; i < I915_MAX_VECS; i++) {
803 		if (!HAS_ENGINE(gt, _VECS(i))) {
804 			vebox_mask &= ~BIT(i);
805 			continue;
806 		}
807 
808 		if (!(BIT(i) & vebox_mask)) {
809 			gt->info.engine_mask &= ~BIT(_VECS(i));
810 			gt_dbg(gt, "vecs%u fused off\n", i);
811 		}
812 	}
813 	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
814 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
815 }
816 
engine_mask_apply_compute_fuses(struct intel_gt * gt)817 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
818 {
819 	struct drm_i915_private *i915 = gt->i915;
820 	struct intel_gt_info *info = &gt->info;
821 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
822 	unsigned long ccs_mask;
823 	unsigned int i;
824 
825 	if (GRAPHICS_VER(i915) < 11)
826 		return;
827 
828 	if (hweight32(CCS_MASK(gt)) <= 1)
829 		return;
830 
831 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
832 						     ss_per_ccs);
833 	/*
834 	 * If all DSS in a quadrant are fused off, the corresponding CCS
835 	 * engine is not available for use.
836 	 */
837 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
838 		info->engine_mask &= ~BIT(_CCS(i));
839 		gt_dbg(gt, "ccs%u fused off\n", i);
840 	}
841 }
842 
843 /*
844  * Determine which engines are fused off in our particular hardware.
845  * Note that we have a catch-22 situation where we need to be able to access
846  * the blitter forcewake domain to read the engine fuses, but at the same time
847  * we need to know which engines are available on the system to know which
848  * forcewake domains are present. We solve this by intializing the forcewake
849  * domains based on the full engine mask in the platform capabilities before
850  * calling this function and pruning the domains for fused-off engines
851  * afterwards.
852  */
init_engine_mask(struct intel_gt * gt)853 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
854 {
855 	struct intel_gt_info *info = &gt->info;
856 
857 	GEM_BUG_ON(!info->engine_mask);
858 
859 	engine_mask_apply_media_fuses(gt);
860 	engine_mask_apply_compute_fuses(gt);
861 
862 	/*
863 	 * The only use of the GSC CS is to load and communicate with the GSC
864 	 * FW, so we have no use for it if we don't have the FW.
865 	 *
866 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
867 	 * catch-22 situation that breaks media C6 due to 2 requirements:
868 	 * 1) once turned on, the GSC power well will not go to sleep unless the
869 	 *    GSC FW is loaded.
870 	 * 2) to enable idling (which is required for media C6) we need to
871 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
872 	 *    submission, which will wake up the GSC power well.
873 	 */
874 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
875 		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
876 		info->engine_mask &= ~BIT(GSC0);
877 	}
878 
879 	/*
880 	 * Do not create the command streamer for CCS slices beyond the first.
881 	 * All the workload submitted to the first engine will be shared among
882 	 * all the slices.
883 	 *
884 	 * Once the user will be allowed to customize the CCS mode, then this
885 	 * check needs to be removed.
886 	 */
887 	if (IS_DG2(gt->i915)) {
888 		u8 first_ccs = __ffs(CCS_MASK(gt));
889 
890 		/*
891 		 * Store the number of active cslices before
892 		 * changing the CCS engine configuration
893 		 */
894 		gt->ccs.cslices = CCS_MASK(gt);
895 
896 		/* Mask off all the CCS engine */
897 		info->engine_mask &= ~GENMASK(CCS3, CCS0);
898 		/* Put back in the first CCS engine */
899 		info->engine_mask |= BIT(_CCS(first_ccs));
900 	}
901 
902 	return info->engine_mask;
903 }
904 
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)905 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
906 				 u8 class, const u8 *map, u8 num_instances)
907 {
908 	int i, j;
909 	u8 current_logical_id = 0;
910 
911 	for (j = 0; j < num_instances; ++j) {
912 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
913 			if (!HAS_ENGINE(gt, i) ||
914 			    intel_engines[i].class != class)
915 				continue;
916 
917 			if (intel_engines[i].instance == map[j]) {
918 				logical_ids[intel_engines[i].instance] =
919 					current_logical_id++;
920 				break;
921 			}
922 		}
923 	}
924 }
925 
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)926 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
927 {
928 	/*
929 	 * Logical to physical mapping is needed for proper support
930 	 * to split-frame feature.
931 	 */
932 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
933 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
934 
935 		populate_logical_ids(gt, logical_ids, class,
936 				     map, ARRAY_SIZE(map));
937 	} else {
938 		int i;
939 		u8 map[MAX_ENGINE_INSTANCE + 1];
940 
941 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
942 			map[i] = i;
943 		populate_logical_ids(gt, logical_ids, class,
944 				     map, ARRAY_SIZE(map));
945 	}
946 }
947 
948 /**
949  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
950  * @gt: pointer to struct intel_gt
951  *
952  * Return: non-zero if the initialization failed.
953  */
intel_engines_init_mmio(struct intel_gt * gt)954 int intel_engines_init_mmio(struct intel_gt *gt)
955 {
956 	struct drm_i915_private *i915 = gt->i915;
957 	const unsigned int engine_mask = init_engine_mask(gt);
958 	unsigned int mask = 0;
959 	unsigned int i, class;
960 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
961 	int err;
962 
963 	drm_WARN_ON(&i915->drm, engine_mask == 0);
964 	drm_WARN_ON(&i915->drm, engine_mask &
965 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
966 
967 	if (i915_inject_probe_failure(i915))
968 		return -ENODEV;
969 
970 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
971 		setup_logical_ids(gt, logical_ids, class);
972 
973 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
974 			u8 instance = intel_engines[i].instance;
975 
976 			if (intel_engines[i].class != class ||
977 			    !HAS_ENGINE(gt, i))
978 				continue;
979 
980 			err = intel_engine_setup(gt, i,
981 						 logical_ids[instance]);
982 			if (err)
983 				goto cleanup;
984 
985 			mask |= BIT(i);
986 		}
987 	}
988 
989 	/*
990 	 * Catch failures to update intel_engines table when the new engines
991 	 * are added to the driver by a warning and disabling the forgotten
992 	 * engines.
993 	 */
994 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
995 		gt->info.engine_mask = mask;
996 
997 	gt->info.num_engines = hweight32(mask);
998 
999 	intel_gt_check_and_clear_faults(gt);
1000 
1001 	intel_setup_engine_capabilities(gt);
1002 
1003 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1004 
1005 	return 0;
1006 
1007 cleanup:
1008 	intel_engines_free(gt);
1009 	return err;
1010 }
1011 
intel_engine_init_execlists(struct intel_engine_cs * engine)1012 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1013 {
1014 	struct intel_engine_execlists * const execlists = &engine->execlists;
1015 
1016 	execlists->port_mask = 1;
1017 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1018 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1019 
1020 	memset(execlists->pending, 0, sizeof(execlists->pending));
1021 	execlists->active =
1022 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1023 }
1024 
cleanup_status_page(struct intel_engine_cs * engine)1025 static void cleanup_status_page(struct intel_engine_cs *engine)
1026 {
1027 	struct i915_vma *vma;
1028 
1029 	/* Prevent writes into HWSP after returning the page to the system */
1030 	intel_engine_set_hwsp_writemask(engine, ~0u);
1031 
1032 	vma = fetch_and_zero(&engine->status_page.vma);
1033 	if (!vma)
1034 		return;
1035 
1036 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1037 		i915_vma_unpin(vma);
1038 
1039 	i915_gem_object_unpin_map(vma->obj);
1040 	i915_gem_object_put(vma->obj);
1041 }
1042 
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1043 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1044 				struct i915_gem_ww_ctx *ww,
1045 				struct i915_vma *vma)
1046 {
1047 	unsigned int flags;
1048 
1049 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1050 		/*
1051 		 * On g33, we cannot place HWS above 256MiB, so
1052 		 * restrict its pinning to the low mappable arena.
1053 		 * Though this restriction is not documented for
1054 		 * gen4, gen5, or byt, they also behave similarly
1055 		 * and hang if the HWS is placed at the top of the
1056 		 * GTT. To generalise, it appears that all !llc
1057 		 * platforms have issues with us placing the HWS
1058 		 * above the mappable region (even though we never
1059 		 * actually map it).
1060 		 */
1061 		flags = PIN_MAPPABLE;
1062 	else
1063 		flags = PIN_HIGH;
1064 
1065 	return i915_ggtt_pin(vma, ww, 0, flags);
1066 }
1067 
init_status_page(struct intel_engine_cs * engine)1068 static int init_status_page(struct intel_engine_cs *engine)
1069 {
1070 	struct drm_i915_gem_object *obj;
1071 	struct i915_gem_ww_ctx ww;
1072 	struct i915_vma *vma;
1073 	void *vaddr;
1074 	int ret;
1075 
1076 	INIT_LIST_HEAD(&engine->status_page.timelines);
1077 
1078 	/*
1079 	 * Though the HWS register does support 36bit addresses, historically
1080 	 * we have had hangs and corruption reported due to wild writes if
1081 	 * the HWS is placed above 4G. We only allow objects to be allocated
1082 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1083 	 * access to more than 4G.
1084 	 */
1085 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1086 	if (IS_ERR(obj)) {
1087 		gt_err(engine->gt, "Failed to allocate status page\n");
1088 		return PTR_ERR(obj);
1089 	}
1090 
1091 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1092 
1093 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1094 	if (IS_ERR(vma)) {
1095 		ret = PTR_ERR(vma);
1096 		goto err_put;
1097 	}
1098 
1099 	i915_gem_ww_ctx_init(&ww, true);
1100 retry:
1101 	ret = i915_gem_object_lock(obj, &ww);
1102 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1103 		ret = pin_ggtt_status_page(engine, &ww, vma);
1104 	if (ret)
1105 		goto err;
1106 
1107 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1108 	if (IS_ERR(vaddr)) {
1109 		ret = PTR_ERR(vaddr);
1110 		goto err_unpin;
1111 	}
1112 
1113 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1114 	engine->status_page.vma = vma;
1115 
1116 err_unpin:
1117 	if (ret)
1118 		i915_vma_unpin(vma);
1119 err:
1120 	if (ret == -EDEADLK) {
1121 		ret = i915_gem_ww_ctx_backoff(&ww);
1122 		if (!ret)
1123 			goto retry;
1124 	}
1125 	i915_gem_ww_ctx_fini(&ww);
1126 err_put:
1127 	if (ret)
1128 		i915_gem_object_put(obj);
1129 	return ret;
1130 }
1131 
intel_engine_init_tlb_invalidation(struct intel_engine_cs * engine)1132 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1133 {
1134 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1135 		[RENDER_CLASS].reg		= GEN8_RTCR,
1136 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1137 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1138 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1139 	};
1140 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1141 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1142 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1143 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1144 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1145 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1146 	};
1147 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1148 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1149 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1150 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1151 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1152 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1153 	};
1154 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1155 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1156 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1157 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1158 	};
1159 	struct drm_i915_private *i915 = engine->i915;
1160 	const unsigned int instance = engine->instance;
1161 	const unsigned int class = engine->class;
1162 	const union intel_engine_tlb_inv_reg *regs;
1163 	union intel_engine_tlb_inv_reg reg;
1164 	unsigned int num = 0;
1165 	u32 val;
1166 
1167 	/*
1168 	 * New platforms should not be added with catch-all-newer (>=)
1169 	 * condition so that any later platform added triggers the below warning
1170 	 * and in turn mandates a human cross-check of whether the invalidation
1171 	 * flows have compatible semantics.
1172 	 *
1173 	 * For instance with the 11.00 -> 12.00 transition three out of five
1174 	 * respective engine registers were moved to masked type. Then after the
1175 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1176 	 */
1177 
1178 	if (engine->gt->type == GT_MEDIA) {
1179 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1180 			regs = xelpmp_regs;
1181 			num = ARRAY_SIZE(xelpmp_regs);
1182 		}
1183 	} else {
1184 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1185 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1186 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1187 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1188 			regs = xehp_regs;
1189 			num = ARRAY_SIZE(xehp_regs);
1190 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1191 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1192 			regs = gen12_regs;
1193 			num = ARRAY_SIZE(gen12_regs);
1194 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1195 			regs = gen8_regs;
1196 			num = ARRAY_SIZE(gen8_regs);
1197 		} else if (GRAPHICS_VER(i915) < 8) {
1198 			return 0;
1199 		}
1200 	}
1201 
1202 	if (gt_WARN_ONCE(engine->gt, !num,
1203 			 "Platform does not implement TLB invalidation!"))
1204 		return -ENODEV;
1205 
1206 	if (gt_WARN_ON_ONCE(engine->gt,
1207 			    class >= num ||
1208 			    (!regs[class].reg.reg &&
1209 			     !regs[class].mcr_reg.reg)))
1210 		return -ERANGE;
1211 
1212 	reg = regs[class];
1213 
1214 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1215 		/*
1216 		 * There's only a single GSC instance, but it uses register bit
1217 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1218 		 */
1219 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1220 		val = 1;
1221 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1222 		reg.reg = GEN8_M2TCR;
1223 		val = 0;
1224 	} else {
1225 		val = instance;
1226 	}
1227 
1228 	val = BIT(val);
1229 
1230 	engine->tlb_inv.mcr = regs == xehp_regs;
1231 	engine->tlb_inv.reg = reg;
1232 	engine->tlb_inv.done = val;
1233 
1234 	if (GRAPHICS_VER(i915) >= 12 &&
1235 	    (engine->class == VIDEO_DECODE_CLASS ||
1236 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1237 	     engine->class == COMPUTE_CLASS ||
1238 	     engine->class == OTHER_CLASS))
1239 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1240 	else
1241 		engine->tlb_inv.request = val;
1242 
1243 	return 0;
1244 }
1245 
engine_setup_common(struct intel_engine_cs * engine)1246 static int engine_setup_common(struct intel_engine_cs *engine)
1247 {
1248 	int err;
1249 
1250 	init_llist_head(&engine->barrier_tasks);
1251 
1252 	err = intel_engine_init_tlb_invalidation(engine);
1253 	if (err)
1254 		return err;
1255 
1256 	err = init_status_page(engine);
1257 	if (err)
1258 		return err;
1259 
1260 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1261 	if (!engine->breadcrumbs) {
1262 		err = -ENOMEM;
1263 		goto err_status;
1264 	}
1265 
1266 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1267 	if (!engine->sched_engine) {
1268 		err = -ENOMEM;
1269 		goto err_sched_engine;
1270 	}
1271 	engine->sched_engine->private_data = engine;
1272 
1273 	err = intel_engine_init_cmd_parser(engine);
1274 	if (err)
1275 		goto err_cmd_parser;
1276 
1277 	intel_engine_init_execlists(engine);
1278 	intel_engine_init__pm(engine);
1279 	intel_engine_init_retire(engine);
1280 
1281 	/* Use the whole device by default */
1282 	engine->sseu =
1283 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1284 
1285 	intel_engine_init_workarounds(engine);
1286 	intel_engine_init_whitelist(engine);
1287 	intel_engine_init_ctx_wa(engine);
1288 
1289 	if (GRAPHICS_VER(engine->i915) >= 12)
1290 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1291 
1292 	return 0;
1293 
1294 err_cmd_parser:
1295 	i915_sched_engine_put(engine->sched_engine);
1296 err_sched_engine:
1297 	intel_breadcrumbs_put(engine->breadcrumbs);
1298 err_status:
1299 	cleanup_status_page(engine);
1300 	return err;
1301 }
1302 
1303 struct measure_breadcrumb {
1304 	struct i915_request rq;
1305 	struct intel_ring ring;
1306 	u32 cs[2048];
1307 };
1308 
measure_breadcrumb_dw(struct intel_context * ce)1309 static int measure_breadcrumb_dw(struct intel_context *ce)
1310 {
1311 	struct intel_engine_cs *engine = ce->engine;
1312 	struct measure_breadcrumb *frame;
1313 	int dw;
1314 
1315 	GEM_BUG_ON(!engine->gt->scratch);
1316 
1317 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1318 	if (!frame)
1319 		return -ENOMEM;
1320 
1321 	frame->rq.i915 = engine->i915;
1322 	frame->rq.engine = engine;
1323 	frame->rq.context = ce;
1324 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1325 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1326 
1327 	frame->ring.vaddr = frame->cs;
1328 	frame->ring.size = sizeof(frame->cs);
1329 	frame->ring.wrap =
1330 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1331 	frame->ring.effective_size = frame->ring.size;
1332 	intel_ring_update_space(&frame->ring);
1333 	frame->rq.ring = &frame->ring;
1334 
1335 	mutex_lock(&ce->timeline->mutex);
1336 	spin_lock_irq(&engine->sched_engine->lock);
1337 
1338 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1339 
1340 	spin_unlock_irq(&engine->sched_engine->lock);
1341 	mutex_unlock(&ce->timeline->mutex);
1342 
1343 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1344 
1345 	kfree(frame);
1346 	return dw;
1347 }
1348 
1349 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1350 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1351 				   struct i915_address_space *vm,
1352 				   unsigned int ring_size,
1353 				   unsigned int hwsp,
1354 				   struct lock_class_key *key,
1355 				   const char *name)
1356 {
1357 	struct intel_context *ce;
1358 	int err;
1359 
1360 	ce = intel_context_create(engine);
1361 	if (IS_ERR(ce))
1362 		return ce;
1363 
1364 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1365 	ce->timeline = page_pack_bits(NULL, hwsp);
1366 	ce->ring = NULL;
1367 	ce->ring_size = ring_size;
1368 
1369 	i915_vm_put(ce->vm);
1370 	ce->vm = i915_vm_get(vm);
1371 
1372 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1373 	if (err) {
1374 		intel_context_put(ce);
1375 		return ERR_PTR(err);
1376 	}
1377 
1378 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1379 
1380 	/*
1381 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1382 	 * so that we can use them from within the normal user timelines
1383 	 * should we need to inject GPU operations during their request
1384 	 * construction.
1385 	 */
1386 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1387 
1388 	return ce;
1389 }
1390 
intel_engine_destroy_pinned_context(struct intel_context * ce)1391 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1392 {
1393 	struct intel_engine_cs *engine = ce->engine;
1394 	struct i915_vma *hwsp = engine->status_page.vma;
1395 
1396 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1397 
1398 	mutex_lock(&hwsp->vm->mutex);
1399 	list_del(&ce->timeline->engine_link);
1400 	mutex_unlock(&hwsp->vm->mutex);
1401 
1402 	list_del(&ce->pinned_contexts_link);
1403 	intel_context_unpin(ce);
1404 	intel_context_put(ce);
1405 }
1406 
1407 static struct intel_context *
create_ggtt_bind_context(struct intel_engine_cs * engine)1408 create_ggtt_bind_context(struct intel_engine_cs *engine)
1409 {
1410 	static struct lock_class_key kernel;
1411 
1412 	/*
1413 	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1414 	 * bind requets at a time so get a bigger ring.
1415 	 */
1416 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1417 						  I915_GEM_HWS_GGTT_BIND_ADDR,
1418 						  &kernel, "ggtt_bind_context");
1419 }
1420 
1421 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1422 create_kernel_context(struct intel_engine_cs *engine)
1423 {
1424 	static struct lock_class_key kernel;
1425 
1426 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1427 						  I915_GEM_HWS_SEQNO_ADDR,
1428 						  &kernel, "kernel_context");
1429 }
1430 
1431 /*
1432  * engine_init_common - initialize engine state which might require hw access
1433  * @engine: Engine to initialize.
1434  *
1435  * Initializes @engine@ structure members shared between legacy and execlists
1436  * submission modes which do require hardware access.
1437  *
1438  * Typcally done at later stages of submission mode specific engine setup.
1439  *
1440  * Returns zero on success or an error code on failure.
1441  */
engine_init_common(struct intel_engine_cs * engine)1442 static int engine_init_common(struct intel_engine_cs *engine)
1443 {
1444 	struct intel_context *ce, *bce = NULL;
1445 	int ret;
1446 
1447 	engine->set_default_submission(engine);
1448 
1449 	/*
1450 	 * We may need to do things with the shrinker which
1451 	 * require us to immediately switch back to the default
1452 	 * context. This can cause a problem as pinning the
1453 	 * default context also requires GTT space which may not
1454 	 * be available. To avoid this we always pin the default
1455 	 * context.
1456 	 */
1457 	ce = create_kernel_context(engine);
1458 	if (IS_ERR(ce))
1459 		return PTR_ERR(ce);
1460 	/*
1461 	 * Create a separate pinned context for GGTT update with blitter engine
1462 	 * if a platform require such service. MI_UPDATE_GTT works on other
1463 	 * engines as well but BCS should be less busy engine so pick that for
1464 	 * GGTT updates.
1465 	 */
1466 	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1467 		bce = create_ggtt_bind_context(engine);
1468 		if (IS_ERR(bce)) {
1469 			ret = PTR_ERR(bce);
1470 			goto err_ce_context;
1471 		}
1472 	}
1473 
1474 	ret = measure_breadcrumb_dw(ce);
1475 	if (ret < 0)
1476 		goto err_bce_context;
1477 
1478 	engine->emit_fini_breadcrumb_dw = ret;
1479 	engine->kernel_context = ce;
1480 	engine->bind_context = bce;
1481 
1482 	return 0;
1483 
1484 err_bce_context:
1485 	if (bce)
1486 		intel_engine_destroy_pinned_context(bce);
1487 err_ce_context:
1488 	intel_engine_destroy_pinned_context(ce);
1489 	return ret;
1490 }
1491 
intel_engines_init(struct intel_gt * gt)1492 int intel_engines_init(struct intel_gt *gt)
1493 {
1494 	int (*setup)(struct intel_engine_cs *engine);
1495 	struct intel_engine_cs *engine;
1496 	enum intel_engine_id id;
1497 	int err;
1498 
1499 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1500 		gt->submission_method = INTEL_SUBMISSION_GUC;
1501 		setup = intel_guc_submission_setup;
1502 	} else if (HAS_EXECLISTS(gt->i915)) {
1503 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1504 		setup = intel_execlists_submission_setup;
1505 	} else {
1506 		gt->submission_method = INTEL_SUBMISSION_RING;
1507 		setup = intel_ring_submission_setup;
1508 	}
1509 
1510 	for_each_engine(engine, gt, id) {
1511 		err = engine_setup_common(engine);
1512 		if (err)
1513 			return err;
1514 
1515 		err = setup(engine);
1516 		if (err) {
1517 			intel_engine_cleanup_common(engine);
1518 			return err;
1519 		}
1520 
1521 		/* The backend should now be responsible for cleanup */
1522 		GEM_BUG_ON(engine->release == NULL);
1523 
1524 		err = engine_init_common(engine);
1525 		if (err)
1526 			return err;
1527 
1528 		intel_engine_add_user(engine);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /**
1535  * intel_engine_cleanup_common - cleans up the engine state created by
1536  *                                the common initiailizers.
1537  * @engine: Engine to cleanup.
1538  *
1539  * This cleans up everything created by the common helpers.
1540  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1541 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1542 {
1543 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1544 
1545 	i915_sched_engine_put(engine->sched_engine);
1546 	intel_breadcrumbs_put(engine->breadcrumbs);
1547 
1548 	intel_engine_fini_retire(engine);
1549 	intel_engine_cleanup_cmd_parser(engine);
1550 
1551 	if (engine->default_state)
1552 		fput(engine->default_state);
1553 
1554 	if (engine->kernel_context)
1555 		intel_engine_destroy_pinned_context(engine->kernel_context);
1556 
1557 	if (engine->bind_context)
1558 		intel_engine_destroy_pinned_context(engine->bind_context);
1559 
1560 
1561 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1562 	cleanup_status_page(engine);
1563 
1564 	intel_wa_list_free(&engine->ctx_wa_list);
1565 	intel_wa_list_free(&engine->wa_list);
1566 	intel_wa_list_free(&engine->whitelist);
1567 }
1568 
1569 /**
1570  * intel_engine_resume - re-initializes the HW state of the engine
1571  * @engine: Engine to resume.
1572  *
1573  * Returns zero on success or an error code on failure.
1574  */
intel_engine_resume(struct intel_engine_cs * engine)1575 int intel_engine_resume(struct intel_engine_cs *engine)
1576 {
1577 	intel_engine_apply_workarounds(engine);
1578 	intel_engine_apply_whitelist(engine);
1579 
1580 	return engine->resume(engine);
1581 }
1582 
intel_engine_get_active_head(const struct intel_engine_cs * engine)1583 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1584 {
1585 	struct drm_i915_private *i915 = engine->i915;
1586 
1587 	u64 acthd;
1588 
1589 	if (GRAPHICS_VER(i915) >= 8)
1590 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1591 	else if (GRAPHICS_VER(i915) >= 4)
1592 		acthd = ENGINE_READ(engine, RING_ACTHD);
1593 	else
1594 		acthd = ENGINE_READ(engine, ACTHD);
1595 
1596 	return acthd;
1597 }
1598 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1599 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1600 {
1601 	u64 bbaddr;
1602 
1603 	if (GRAPHICS_VER(engine->i915) >= 8)
1604 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1605 	else
1606 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1607 
1608 	return bbaddr;
1609 }
1610 
stop_timeout(const struct intel_engine_cs * engine)1611 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1612 {
1613 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1614 		return 0;
1615 
1616 	/*
1617 	 * If we are doing a normal GPU reset, we can take our time and allow
1618 	 * the engine to quiesce. We've stopped submission to the engine, and
1619 	 * if we wait long enough an innocent context should complete and
1620 	 * leave the engine idle. So they should not be caught unaware by
1621 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1622 	 */
1623 	return READ_ONCE(engine->props.stop_timeout_ms);
1624 }
1625 
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1626 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1627 				  int fast_timeout_us,
1628 				  int slow_timeout_ms)
1629 {
1630 	struct intel_uncore *uncore = engine->uncore;
1631 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1632 	int err;
1633 
1634 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1635 
1636 	/*
1637 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1638 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1639 	 */
1640 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1641 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1642 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1643 
1644 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1645 					   MODE_IDLE, MODE_IDLE,
1646 					   fast_timeout_us,
1647 					   slow_timeout_ms,
1648 					   NULL);
1649 
1650 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1651 	intel_uncore_posting_read_fw(uncore, mode);
1652 	return err;
1653 }
1654 
intel_engine_stop_cs(struct intel_engine_cs * engine)1655 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1656 {
1657 	int err = 0;
1658 
1659 	if (GRAPHICS_VER(engine->i915) < 3)
1660 		return -ENODEV;
1661 
1662 	ENGINE_TRACE(engine, "\n");
1663 	/*
1664 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1665 	 * especially with gem_eio tests.
1666 	 *
1667 	 * Occasionally trying to stop the cs times out, but does not adversely
1668 	 * affect functionality. The timeout is set as a config parameter that
1669 	 * defaults to 100ms. In most cases the follow up operation is to wait
1670 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1671 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1672 	 * caused, the caller must check and handle the return from this
1673 	 * function.
1674 	 */
1675 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1676 		ENGINE_TRACE(engine,
1677 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1678 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1679 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1680 
1681 		/*
1682 		 * Sometimes we observe that the idle flag is not
1683 		 * set even though the ring is empty. So double
1684 		 * check before giving up.
1685 		 */
1686 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1687 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1688 			err = -ETIMEDOUT;
1689 	}
1690 
1691 	return err;
1692 }
1693 
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1694 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1695 {
1696 	ENGINE_TRACE(engine, "\n");
1697 
1698 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1699 }
1700 
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1701 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1702 {
1703 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1704 		[RCS0] = MSG_IDLE_CS,
1705 		[BCS0] = MSG_IDLE_BCS,
1706 		[VCS0] = MSG_IDLE_VCS0,
1707 		[VCS1] = MSG_IDLE_VCS1,
1708 		[VCS2] = MSG_IDLE_VCS2,
1709 		[VCS3] = MSG_IDLE_VCS3,
1710 		[VCS4] = MSG_IDLE_VCS4,
1711 		[VCS5] = MSG_IDLE_VCS5,
1712 		[VCS6] = MSG_IDLE_VCS6,
1713 		[VCS7] = MSG_IDLE_VCS7,
1714 		[VECS0] = MSG_IDLE_VECS0,
1715 		[VECS1] = MSG_IDLE_VECS1,
1716 		[VECS2] = MSG_IDLE_VECS2,
1717 		[VECS3] = MSG_IDLE_VECS3,
1718 		[CCS0] = MSG_IDLE_CS,
1719 		[CCS1] = MSG_IDLE_CS,
1720 		[CCS2] = MSG_IDLE_CS,
1721 		[CCS3] = MSG_IDLE_CS,
1722 	};
1723 	u32 val;
1724 
1725 	if (!_reg[engine->id].reg)
1726 		return 0;
1727 
1728 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1729 
1730 	/* bits[29:25] & bits[13:9] >> shift */
1731 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1732 }
1733 
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1734 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1735 {
1736 	int ret;
1737 
1738 	/* Ensure GPM receives fw up/down after CS is stopped */
1739 	udelay(1);
1740 
1741 	/* Wait for forcewake request to complete in GPM */
1742 	ret =  __intel_wait_for_register_fw(gt->uncore,
1743 					    GEN9_PWRGT_DOMAIN_STATUS,
1744 					    fw_mask, fw_mask, 5000, 0, NULL);
1745 
1746 	/* Ensure CS receives fw ack from GPM */
1747 	udelay(1);
1748 
1749 	if (ret)
1750 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1751 }
1752 
1753 /*
1754  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1755  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1756  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1757  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1758  * are concerned only with the gt reset here, we use a logical OR of pending
1759  * forcewakeups from all reset domains and then wait for them to complete by
1760  * querying PWRGT_DOMAIN_STATUS.
1761  */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1762 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1763 {
1764 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1765 
1766 	if (fw_pending)
1767 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1768 }
1769 
1770 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1771 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1772 			       struct intel_instdone *instdone)
1773 {
1774 	struct drm_i915_private *i915 = engine->i915;
1775 	struct intel_uncore *uncore = engine->uncore;
1776 	u32 mmio_base = engine->mmio_base;
1777 	int slice;
1778 	int subslice;
1779 	int iter;
1780 
1781 	memset(instdone, 0, sizeof(*instdone));
1782 
1783 	if (GRAPHICS_VER(i915) >= 8) {
1784 		instdone->instdone =
1785 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1786 
1787 		if (engine->id != RCS0)
1788 			return;
1789 
1790 		instdone->slice_common =
1791 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1792 		if (GRAPHICS_VER(i915) >= 12) {
1793 			instdone->slice_common_extra[0] =
1794 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1795 			instdone->slice_common_extra[1] =
1796 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1797 		}
1798 
1799 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1800 			instdone->sampler[slice][subslice] =
1801 				intel_gt_mcr_read(engine->gt,
1802 						  GEN8_SAMPLER_INSTDONE,
1803 						  slice, subslice);
1804 			instdone->row[slice][subslice] =
1805 				intel_gt_mcr_read(engine->gt,
1806 						  GEN8_ROW_INSTDONE,
1807 						  slice, subslice);
1808 		}
1809 
1810 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1811 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1812 				instdone->geom_svg[slice][subslice] =
1813 					intel_gt_mcr_read(engine->gt,
1814 							  XEHPG_INSTDONE_GEOM_SVG,
1815 							  slice, subslice);
1816 		}
1817 	} else if (GRAPHICS_VER(i915) >= 7) {
1818 		instdone->instdone =
1819 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1820 
1821 		if (engine->id != RCS0)
1822 			return;
1823 
1824 		instdone->slice_common =
1825 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1826 		instdone->sampler[0][0] =
1827 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1828 		instdone->row[0][0] =
1829 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1830 	} else if (GRAPHICS_VER(i915) >= 4) {
1831 		instdone->instdone =
1832 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1833 		if (engine->id == RCS0)
1834 			/* HACK: Using the wrong struct member */
1835 			instdone->slice_common =
1836 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1837 	} else {
1838 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1839 	}
1840 }
1841 
ring_is_idle(struct intel_engine_cs * engine)1842 static bool ring_is_idle(struct intel_engine_cs *engine)
1843 {
1844 	bool idle = true;
1845 
1846 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1847 		return true;
1848 
1849 	if (!intel_engine_pm_get_if_awake(engine))
1850 		return true;
1851 
1852 	/* First check that no commands are left in the ring */
1853 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1854 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1855 		idle = false;
1856 
1857 	/* No bit for gen2, so assume the CS parser is idle */
1858 	if (GRAPHICS_VER(engine->i915) > 2 &&
1859 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1860 		idle = false;
1861 
1862 	intel_engine_pm_put(engine);
1863 
1864 	return idle;
1865 }
1866 
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1867 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1868 {
1869 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1870 
1871 	if (!t->callback)
1872 		return;
1873 
1874 	local_bh_disable();
1875 	if (tasklet_trylock(t)) {
1876 		/* Must wait for any GPU reset in progress. */
1877 		if (__tasklet_is_enabled(t))
1878 			t->callback(t);
1879 		tasklet_unlock(t);
1880 	}
1881 	local_bh_enable();
1882 
1883 	/* Synchronise and wait for the tasklet on another CPU */
1884 	if (sync)
1885 		tasklet_unlock_wait(t);
1886 }
1887 
1888 /**
1889  * intel_engine_is_idle() - Report if the engine has finished process all work
1890  * @engine: the intel_engine_cs
1891  *
1892  * Return true if there are no requests pending, nothing left to be submitted
1893  * to hardware, and that the engine is idle.
1894  */
intel_engine_is_idle(struct intel_engine_cs * engine)1895 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1896 {
1897 	/* More white lies, if wedged, hw state is inconsistent */
1898 	if (intel_gt_is_wedged(engine->gt))
1899 		return true;
1900 
1901 	if (!intel_engine_pm_is_awake(engine))
1902 		return true;
1903 
1904 	/* Waiting to drain ELSP? */
1905 	intel_synchronize_hardirq(engine->i915);
1906 	intel_engine_flush_submission(engine);
1907 
1908 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1909 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1910 		return false;
1911 
1912 	/* Ring stopped? */
1913 	return ring_is_idle(engine);
1914 }
1915 
intel_engines_are_idle(struct intel_gt * gt)1916 bool intel_engines_are_idle(struct intel_gt *gt)
1917 {
1918 	struct intel_engine_cs *engine;
1919 	enum intel_engine_id id;
1920 
1921 	/*
1922 	 * If the driver is wedged, HW state may be very inconsistent and
1923 	 * report that it is still busy, even though we have stopped using it.
1924 	 */
1925 	if (intel_gt_is_wedged(gt))
1926 		return true;
1927 
1928 	/* Already parked (and passed an idleness test); must still be idle */
1929 	if (!READ_ONCE(gt->awake))
1930 		return true;
1931 
1932 	for_each_engine(engine, gt, id) {
1933 		if (!intel_engine_is_idle(engine))
1934 			return false;
1935 	}
1936 
1937 	return true;
1938 }
1939 
intel_engine_irq_enable(struct intel_engine_cs * engine)1940 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1941 {
1942 	if (!engine->irq_enable)
1943 		return false;
1944 
1945 	/* Caller disables interrupts */
1946 	spin_lock(engine->gt->irq_lock);
1947 	engine->irq_enable(engine);
1948 	spin_unlock(engine->gt->irq_lock);
1949 
1950 	return true;
1951 }
1952 
intel_engine_irq_disable(struct intel_engine_cs * engine)1953 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1954 {
1955 	if (!engine->irq_disable)
1956 		return;
1957 
1958 	/* Caller disables interrupts */
1959 	spin_lock(engine->gt->irq_lock);
1960 	engine->irq_disable(engine);
1961 	spin_unlock(engine->gt->irq_lock);
1962 }
1963 
intel_engines_reset_default_submission(struct intel_gt * gt)1964 void intel_engines_reset_default_submission(struct intel_gt *gt)
1965 {
1966 	struct intel_engine_cs *engine;
1967 	enum intel_engine_id id;
1968 
1969 	for_each_engine(engine, gt, id) {
1970 		if (engine->sanitize)
1971 			engine->sanitize(engine);
1972 
1973 		engine->set_default_submission(engine);
1974 	}
1975 }
1976 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1977 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1978 {
1979 	switch (GRAPHICS_VER(engine->i915)) {
1980 	case 2:
1981 		return false; /* uses physical not virtual addresses */
1982 	case 3:
1983 		/* maybe only uses physical not virtual addresses */
1984 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1985 	case 4:
1986 		return !IS_I965G(engine->i915); /* who knows! */
1987 	case 6:
1988 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1989 	default:
1990 		return true;
1991 	}
1992 }
1993 
get_timeline(struct i915_request * rq)1994 static struct intel_timeline *get_timeline(struct i915_request *rq)
1995 {
1996 	struct intel_timeline *tl;
1997 
1998 	/*
1999 	 * Even though we are holding the engine->sched_engine->lock here, there
2000 	 * is no control over the submission queue per-se and we are
2001 	 * inspecting the active state at a random point in time, with an
2002 	 * unknown queue. Play safe and make sure the timeline remains valid.
2003 	 * (Only being used for pretty printing, one extra kref shouldn't
2004 	 * cause a camel stampede!)
2005 	 */
2006 	rcu_read_lock();
2007 	tl = rcu_dereference(rq->timeline);
2008 	if (!kref_get_unless_zero(&tl->kref))
2009 		tl = NULL;
2010 	rcu_read_unlock();
2011 
2012 	return tl;
2013 }
2014 
print_ring(char * buf,int sz,struct i915_request * rq)2015 static int print_ring(char *buf, int sz, struct i915_request *rq)
2016 {
2017 	int len = 0;
2018 
2019 	if (!i915_request_signaled(rq)) {
2020 		struct intel_timeline *tl = get_timeline(rq);
2021 
2022 		len = scnprintf(buf, sz,
2023 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2024 				i915_ggtt_offset(rq->ring->vma),
2025 				tl ? tl->hwsp_offset : 0,
2026 				hwsp_seqno(rq),
2027 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2028 						      1000 * 1000));
2029 
2030 		if (tl)
2031 			intel_timeline_put(tl);
2032 	}
2033 
2034 	return len;
2035 }
2036 
hexdump(struct drm_printer * m,const void * buf,size_t len)2037 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2038 {
2039 	const size_t rowsize = 8 * sizeof(u32);
2040 	const void *prev = NULL;
2041 	bool skip = false;
2042 	size_t pos;
2043 
2044 	for (pos = 0; pos < len; pos += rowsize) {
2045 		char line[128];
2046 
2047 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2048 			if (!skip) {
2049 				drm_printf(m, "*\n");
2050 				skip = true;
2051 			}
2052 			continue;
2053 		}
2054 
2055 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2056 						rowsize, sizeof(u32),
2057 						line, sizeof(line),
2058 						false) >= sizeof(line));
2059 		drm_printf(m, "[%04zx] %s\n", pos, line);
2060 
2061 		prev = buf + pos;
2062 		skip = false;
2063 	}
2064 }
2065 
repr_timer(const struct timer_list * t)2066 static const char *repr_timer(const struct timer_list *t)
2067 {
2068 	if (!READ_ONCE(t->expires))
2069 		return "inactive";
2070 
2071 	if (timer_pending(t))
2072 		return "active";
2073 
2074 	return "expired";
2075 }
2076 
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)2077 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2078 					 struct drm_printer *m)
2079 {
2080 	struct drm_i915_private *i915 = engine->i915;
2081 	struct intel_engine_execlists * const execlists = &engine->execlists;
2082 	u64 addr;
2083 
2084 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2085 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2086 	if (HAS_EXECLISTS(i915)) {
2087 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2088 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2089 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2090 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2091 	}
2092 	drm_printf(m, "\tRING_START: 0x%08x\n",
2093 		   ENGINE_READ(engine, RING_START));
2094 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2095 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2096 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2097 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2098 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2099 		   ENGINE_READ(engine, RING_CTL),
2100 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2101 	if (GRAPHICS_VER(engine->i915) > 2) {
2102 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2103 			   ENGINE_READ(engine, RING_MI_MODE),
2104 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2105 	}
2106 
2107 	if (GRAPHICS_VER(i915) >= 6) {
2108 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2109 			   ENGINE_READ(engine, RING_IMR));
2110 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2111 			   ENGINE_READ(engine, RING_ESR));
2112 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2113 			   ENGINE_READ(engine, RING_EMR));
2114 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2115 			   ENGINE_READ(engine, RING_EIR));
2116 	}
2117 
2118 	addr = intel_engine_get_active_head(engine);
2119 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2120 		   upper_32_bits(addr), lower_32_bits(addr));
2121 	addr = intel_engine_get_last_batch_head(engine);
2122 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2123 		   upper_32_bits(addr), lower_32_bits(addr));
2124 	if (GRAPHICS_VER(i915) >= 8)
2125 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2126 	else if (GRAPHICS_VER(i915) >= 4)
2127 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2128 	else
2129 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2130 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2131 		   upper_32_bits(addr), lower_32_bits(addr));
2132 	if (GRAPHICS_VER(i915) >= 4) {
2133 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2134 			   ENGINE_READ(engine, RING_IPEIR));
2135 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2136 			   ENGINE_READ(engine, RING_IPEHR));
2137 	} else {
2138 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2139 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2140 	}
2141 
2142 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2143 		struct i915_request * const *port, *rq;
2144 		const u32 *hws =
2145 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2146 		const u8 num_entries = execlists->csb_size;
2147 		unsigned int idx;
2148 		u8 read, write;
2149 
2150 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2151 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2152 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2153 			   repr_timer(&engine->execlists.preempt),
2154 			   repr_timer(&engine->execlists.timer));
2155 
2156 		read = execlists->csb_head;
2157 		write = READ_ONCE(*execlists->csb_write);
2158 
2159 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2160 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2161 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2162 			   read, write, num_entries);
2163 
2164 		if (read >= num_entries)
2165 			read = 0;
2166 		if (write >= num_entries)
2167 			write = 0;
2168 		if (read > write)
2169 			write += num_entries;
2170 		while (read < write) {
2171 			idx = ++read % num_entries;
2172 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2173 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2174 		}
2175 
2176 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2177 		rcu_read_lock();
2178 		for (port = execlists->active; (rq = *port); port++) {
2179 			char hdr[160];
2180 			int len;
2181 
2182 			len = scnprintf(hdr, sizeof(hdr),
2183 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2184 					(int)(port - execlists->active),
2185 					rq->context->lrc.ccid,
2186 					intel_context_is_closed(rq->context) ? "!" : "",
2187 					intel_context_is_banned(rq->context) ? "*" : "");
2188 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2189 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2190 			i915_request_show(m, rq, hdr, 0);
2191 		}
2192 		for (port = execlists->pending; (rq = *port); port++) {
2193 			char hdr[160];
2194 			int len;
2195 
2196 			len = scnprintf(hdr, sizeof(hdr),
2197 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2198 					(int)(port - execlists->pending),
2199 					rq->context->lrc.ccid,
2200 					intel_context_is_closed(rq->context) ? "!" : "",
2201 					intel_context_is_banned(rq->context) ? "*" : "");
2202 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2203 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2204 			i915_request_show(m, rq, hdr, 0);
2205 		}
2206 		rcu_read_unlock();
2207 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2208 	} else if (GRAPHICS_VER(i915) > 6) {
2209 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2210 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2211 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2212 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2213 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2214 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2215 	}
2216 }
2217 
print_request_ring(struct drm_printer * m,struct i915_request * rq)2218 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2219 {
2220 	struct i915_vma_resource *vma_res = rq->batch_res;
2221 	void *ring;
2222 	int size;
2223 
2224 	drm_printf(m,
2225 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2226 		   rq->head, rq->postfix, rq->tail,
2227 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2228 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2229 
2230 	size = rq->tail - rq->head;
2231 	if (rq->tail < rq->head)
2232 		size += rq->ring->size;
2233 
2234 	ring = kmalloc(size, GFP_ATOMIC);
2235 	if (ring) {
2236 		const void *vaddr = rq->ring->vaddr;
2237 		unsigned int head = rq->head;
2238 		unsigned int len = 0;
2239 
2240 		if (rq->tail < head) {
2241 			len = rq->ring->size - head;
2242 			memcpy(ring, vaddr + head, len);
2243 			head = 0;
2244 		}
2245 		memcpy(ring + len, vaddr + head, size - len);
2246 
2247 		hexdump(m, ring, size);
2248 		kfree(ring);
2249 	}
2250 }
2251 
read_ul(void * p,size_t x)2252 static unsigned long read_ul(void *p, size_t x)
2253 {
2254 	return *(unsigned long *)(p + x);
2255 }
2256 
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2257 static void print_properties(struct intel_engine_cs *engine,
2258 			     struct drm_printer *m)
2259 {
2260 	static const struct pmap {
2261 		size_t offset;
2262 		const char *name;
2263 	} props[] = {
2264 #define P(x) { \
2265 	.offset = offsetof(typeof(engine->props), x), \
2266 	.name = #x \
2267 }
2268 		P(heartbeat_interval_ms),
2269 		P(max_busywait_duration_ns),
2270 		P(preempt_timeout_ms),
2271 		P(stop_timeout_ms),
2272 		P(timeslice_duration_ms),
2273 
2274 		{},
2275 #undef P
2276 	};
2277 	const struct pmap *p;
2278 
2279 	drm_printf(m, "\tProperties:\n");
2280 	for (p = props; p->name; p++)
2281 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2282 			   p->name,
2283 			   read_ul(&engine->props, p->offset),
2284 			   read_ul(&engine->defaults, p->offset));
2285 }
2286 
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2287 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2288 {
2289 	struct intel_timeline *tl = get_timeline(rq);
2290 
2291 	i915_request_show(m, rq, msg, 0);
2292 
2293 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2294 		   i915_ggtt_offset(rq->ring->vma));
2295 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2296 		   rq->ring->head);
2297 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2298 		   rq->ring->tail);
2299 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2300 		   rq->ring->emit);
2301 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2302 		   rq->ring->space);
2303 
2304 	if (tl) {
2305 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2306 			   tl->hwsp_offset);
2307 		intel_timeline_put(tl);
2308 	}
2309 
2310 	print_request_ring(m, rq);
2311 
2312 	if (rq->context->lrc_reg_state) {
2313 		drm_printf(m, "Logical Ring Context:\n");
2314 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2315 	}
2316 }
2317 
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2318 void intel_engine_dump_active_requests(struct list_head *requests,
2319 				       struct i915_request *hung_rq,
2320 				       struct drm_printer *m)
2321 {
2322 	struct i915_request *rq;
2323 	const char *msg;
2324 	enum i915_request_state state;
2325 
2326 	list_for_each_entry(rq, requests, sched.link) {
2327 		if (rq == hung_rq)
2328 			continue;
2329 
2330 		state = i915_test_request_state(rq);
2331 		if (state < I915_REQUEST_QUEUED)
2332 			continue;
2333 
2334 		if (state == I915_REQUEST_ACTIVE)
2335 			msg = "\t\tactive on engine";
2336 		else
2337 			msg = "\t\tactive in queue";
2338 
2339 		engine_dump_request(rq, m, msg);
2340 	}
2341 }
2342 
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2343 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2344 					struct drm_printer *m)
2345 {
2346 	struct intel_context *hung_ce = NULL;
2347 	struct i915_request *hung_rq = NULL;
2348 
2349 	/*
2350 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2351 	 * The GPU is still running so requests are still executing and any
2352 	 * hardware reads will be out of date by the time they are reported.
2353 	 * But the intention here is just to report an instantaneous snapshot
2354 	 * so that's fine.
2355 	 */
2356 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2357 
2358 	drm_printf(m, "\tRequests:\n");
2359 
2360 	if (hung_rq)
2361 		engine_dump_request(hung_rq, m, "\t\thung");
2362 	else if (hung_ce)
2363 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2364 
2365 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2366 		intel_guc_dump_active_requests(engine, hung_rq, m);
2367 	else
2368 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2369 
2370 	if (hung_rq)
2371 		i915_request_put(hung_rq);
2372 }
2373 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2374 void intel_engine_dump(struct intel_engine_cs *engine,
2375 		       struct drm_printer *m,
2376 		       const char *header, ...)
2377 {
2378 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2379 	struct i915_request *rq;
2380 	intel_wakeref_t wakeref;
2381 	ktime_t dummy;
2382 
2383 	if (header) {
2384 		va_list ap;
2385 
2386 		va_start(ap, header);
2387 		drm_vprintf(m, header, &ap);
2388 		va_end(ap);
2389 	}
2390 
2391 	if (intel_gt_is_wedged(engine->gt))
2392 		drm_printf(m, "*** WEDGED ***\n");
2393 
2394 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2395 	drm_printf(m, "\tBarriers?: %s\n",
2396 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2397 	drm_printf(m, "\tLatency: %luus\n",
2398 		   ewma__engine_latency_read(&engine->latency));
2399 	if (intel_engine_supports_stats(engine))
2400 		drm_printf(m, "\tRuntime: %llums\n",
2401 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2402 								  &dummy)));
2403 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2404 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2405 
2406 	rcu_read_lock();
2407 	rq = READ_ONCE(engine->heartbeat.systole);
2408 	if (rq)
2409 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2410 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2411 	rcu_read_unlock();
2412 	drm_printf(m, "\tReset count: %d (global %d)\n",
2413 		   i915_reset_engine_count(error, engine),
2414 		   i915_reset_count(error));
2415 	print_properties(engine, m);
2416 
2417 	engine_dump_active_requests(engine, m);
2418 
2419 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2420 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2421 	if (wakeref) {
2422 		intel_engine_print_registers(engine, m);
2423 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2424 	} else {
2425 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2426 	}
2427 
2428 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2429 
2430 	drm_printf(m, "HWSP:\n");
2431 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2432 
2433 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2434 
2435 	intel_engine_print_breadcrumbs(engine, m);
2436 }
2437 
2438 /**
2439  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2440  * @engine: engine to report on
2441  * @now: monotonic timestamp of sampling
2442  *
2443  * Returns accumulated time @engine was busy since engine stats were enabled.
2444  */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2445 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2446 {
2447 	return engine->busyness(engine, now);
2448 }
2449 
2450 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2451 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2452 			    unsigned int count, unsigned long flags)
2453 {
2454 	if (count == 0)
2455 		return ERR_PTR(-EINVAL);
2456 
2457 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2458 		return intel_context_create(siblings[0]);
2459 
2460 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2461 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2462 }
2463 
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2464 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2465 {
2466 	struct i915_request *request, *active = NULL;
2467 
2468 	/*
2469 	 * This search does not work in GuC submission mode. However, the GuC
2470 	 * will report the hanging context directly to the driver itself. So
2471 	 * the driver should never get here when in GuC mode.
2472 	 */
2473 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2474 
2475 	/*
2476 	 * We are called by the error capture, reset and to dump engine
2477 	 * state at random points in time. In particular, note that neither is
2478 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2479 	 * and we assume that no more writes can happen (we waited long enough
2480 	 * for all writes that were in transaction to be flushed) - adding an
2481 	 * extra delay for a recent interrupt is pointless. Hence, we do
2482 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2483 	 * At all other times, we must assume the GPU is still running, but
2484 	 * we only care about the snapshot of this moment.
2485 	 */
2486 	lockdep_assert_held(&engine->sched_engine->lock);
2487 
2488 	rcu_read_lock();
2489 	request = execlists_active(&engine->execlists);
2490 	if (request) {
2491 		struct intel_timeline *tl = request->context->timeline;
2492 
2493 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2494 			if (__i915_request_is_complete(request))
2495 				break;
2496 
2497 			active = request;
2498 		}
2499 	}
2500 	rcu_read_unlock();
2501 	if (active)
2502 		return active;
2503 
2504 	list_for_each_entry(request, &engine->sched_engine->requests,
2505 			    sched.link) {
2506 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2507 			continue;
2508 
2509 		active = request;
2510 		break;
2511 	}
2512 
2513 	return active;
2514 }
2515 
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2516 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2517 				  struct intel_context **ce, struct i915_request **rq)
2518 {
2519 	unsigned long flags;
2520 
2521 	*ce = intel_engine_get_hung_context(engine);
2522 	if (*ce) {
2523 		intel_engine_clear_hung_context(engine);
2524 
2525 		*rq = intel_context_get_active_request(*ce);
2526 		return;
2527 	}
2528 
2529 	/*
2530 	 * Getting here with GuC enabled means it is a forced error capture
2531 	 * with no actual hang. So, no need to attempt the execlist search.
2532 	 */
2533 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2534 		return;
2535 
2536 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2537 	*rq = engine_execlist_find_hung_request(engine);
2538 	if (*rq)
2539 		*rq = i915_request_get_rcu(*rq);
2540 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2541 }
2542 
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2543 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2544 {
2545 	/*
2546 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2547 	 * support in the RCU_MODE register.  This only needs to be done once,
2548 	 * so for simplicity we'll take care of this in the RCS engine's
2549 	 * resume handler; since the RCS and all CCS engines belong to the
2550 	 * same reset domain and are reset together, this will also take care
2551 	 * of re-applying the setting after i915-triggered resets.
2552 	 */
2553 	if (!CCS_MASK(engine->gt))
2554 		return;
2555 
2556 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2557 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2558 }
2559 
2560 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2561 #include "mock_engine.c"
2562 #include "selftest_engine.c"
2563 #include "selftest_engine_cs.c"
2564 #endif
2565