1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42
43 /*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49 static DEFINE_MUTEX(input_mutex);
50
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53 static const unsigned int input_max_code[EV_CNT] = {
54 [EV_KEY] = KEY_MAX,
55 [EV_REL] = REL_MAX,
56 [EV_ABS] = ABS_MAX,
57 [EV_MSC] = MSC_MAX,
58 [EV_SW] = SW_MAX,
59 [EV_LED] = LED_MAX,
60 [EV_SND] = SND_MAX,
61 [EV_FF] = FF_MAX,
62 };
63
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
66 {
67 return code <= max && test_bit(code, bm);
68 }
69
input_defuzz_abs_event(int value,int old_val,int fuzz)70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
75
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
78
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
81 }
82
83 return value;
84 }
85
input_start_autorepeat(struct input_dev * dev,int code)86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 }
95 }
96
input_stop_autorepeat(struct input_dev * dev)97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 del_timer(&dev->timer);
100 }
101
102 /*
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
107 *
108 * This function is called with dev->event_lock held and interrupts disabled.
109 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)110 static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
112 {
113 struct input_handle *handle;
114 struct input_value *v;
115
116 lockdep_assert_held(&dev->event_lock);
117
118 rcu_read_lock();
119
120 handle = rcu_dereference(dev->grab);
121 if (handle) {
122 count = handle->handle_events(handle, vals, count);
123 } else {
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 if (handle->open) {
126 count = handle->handle_events(handle, vals,
127 count);
128 if (!count)
129 break;
130 }
131 }
132
133 rcu_read_unlock();
134
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
139 if (v->value)
140 input_start_autorepeat(dev, v->code);
141 else
142 input_stop_autorepeat(dev);
143 }
144 }
145 }
146 }
147
148 #define INPUT_IGNORE_EVENT 0
149 #define INPUT_PASS_TO_HANDLERS 1
150 #define INPUT_PASS_TO_DEVICE 2
151 #define INPUT_SLOT 4
152 #define INPUT_FLUSH 8
153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)155 static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
157 {
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
160 bool is_mt_event;
161 int *pold;
162
163 if (code == ABS_MT_SLOT) {
164 /*
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
167 */
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
169 mt->slot = *pval;
170
171 return INPUT_IGNORE_EVENT;
172 }
173
174 is_mt_event = input_is_mt_value(code);
175
176 if (!is_mt_event) {
177 pold = &dev->absinfo[code].value;
178 } else if (mt) {
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 } else {
182 /*
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
185 */
186 pold = NULL;
187 }
188
189 if (pold) {
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
192 if (*pold == *pval)
193 return INPUT_IGNORE_EVENT;
194
195 *pold = *pval;
196 }
197
198 /* Flush pending "slot" event */
199 if (is_new_slot) {
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 }
203
204 return INPUT_PASS_TO_HANDLERS;
205 }
206
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)207 static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
209 {
210 int disposition = INPUT_IGNORE_EVENT;
211 int value = *pval;
212
213 /* filter-out events from inhibited devices */
214 if (dev->inhibited)
215 return INPUT_IGNORE_EVENT;
216
217 switch (type) {
218
219 case EV_SYN:
220 switch (code) {
221 case SYN_CONFIG:
222 disposition = INPUT_PASS_TO_ALL;
223 break;
224
225 case SYN_REPORT:
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 break;
228 case SYN_MT_REPORT:
229 disposition = INPUT_PASS_TO_HANDLERS;
230 break;
231 }
232 break;
233
234 case EV_KEY:
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236
237 /* auto-repeat bypasses state updates */
238 if (value == 2) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
241 }
242
243 if (!!test_bit(code, dev->key) != !!value) {
244
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
247 }
248 }
249 break;
250
251 case EV_SW:
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
254
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
257 }
258 break;
259
260 case EV_ABS:
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
263
264 break;
265
266 case EV_REL:
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
269
270 break;
271
272 case EV_MSC:
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
275
276 break;
277
278 case EV_LED:
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
281
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
284 }
285 break;
286
287 case EV_SND:
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
293 }
294 break;
295
296 case EV_REP:
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_FF:
304 if (value >= 0)
305 disposition = INPUT_PASS_TO_ALL;
306 break;
307
308 case EV_PWR:
309 disposition = INPUT_PASS_TO_ALL;
310 break;
311 }
312
313 *pval = value;
314 return disposition;
315 }
316
input_event_dispose(struct input_dev * dev,int disposition,unsigned int type,unsigned int code,int value)317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
319 {
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
322
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
325
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
328 v->type = EV_ABS;
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
331 }
332
333 v = &dev->vals[dev->num_vals++];
334 v->type = type;
335 v->code = code;
336 v->value = value;
337 }
338
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
342 dev->num_vals = 0;
343 /*
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
348 */
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
353 dev->num_vals = 0;
354 }
355 }
356
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)357 void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
359 {
360 int disposition;
361
362 lockdep_assert_held(&dev->event_lock);
363
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
366 if (type != EV_SYN)
367 add_input_randomness(type, code, value);
368
369 input_event_dispose(dev, disposition, type, code, value);
370 }
371 }
372
373 /**
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
377 * @code: event code
378 * @value: value of the event
379 *
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
382 *
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
388 * axis, etc.
389 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)390 void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
392 {
393 unsigned long flags;
394
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
396
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
400 }
401 }
402 EXPORT_SYMBOL(input_event);
403
404 /**
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
410 *
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
413 * the device.
414 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)415 void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
417 {
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
420 unsigned long flags;
421
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
424
425 rcu_read_lock();
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
429 rcu_read_unlock();
430
431 spin_unlock_irqrestore(&dev->event_lock, flags);
432 }
433 }
434 EXPORT_SYMBOL(input_inject_event);
435
436 /**
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
439 *
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
442 */
input_alloc_absinfo(struct input_dev * dev)443 void input_alloc_absinfo(struct input_dev *dev)
444 {
445 if (dev->absinfo)
446 return;
447
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 if (!dev->absinfo) {
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
452 /*
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
456 */
457 }
458 }
459 EXPORT_SYMBOL(input_alloc_absinfo);
460
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
463 {
464 struct input_absinfo *absinfo;
465
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
468
469 input_alloc_absinfo(dev);
470 if (!dev->absinfo)
471 return;
472
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
478 }
479 EXPORT_SYMBOL(input_set_abs_params);
480
481 /**
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
487 *
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
492 * the touchscreen.
493 */
input_copy_abs(struct input_dev * dst,unsigned int dst_axis,const struct input_dev * src,unsigned int src_axis)494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
496 {
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
500 return;
501
502 /*
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
506 */
507 if (!src->absinfo)
508 return;
509
510 input_set_capability(dst, EV_ABS, dst_axis);
511 if (!dst->absinfo)
512 return;
513
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
515 }
516 EXPORT_SYMBOL(input_copy_abs);
517
518 /**
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
521 *
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
525 */
input_grab_device(struct input_handle * handle)526 int input_grab_device(struct input_handle *handle)
527 {
528 struct input_dev *dev = handle->dev;
529 int retval;
530
531 retval = mutex_lock_interruptible(&dev->mutex);
532 if (retval)
533 return retval;
534
535 if (dev->grab) {
536 retval = -EBUSY;
537 goto out;
538 }
539
540 rcu_assign_pointer(dev->grab, handle);
541
542 out:
543 mutex_unlock(&dev->mutex);
544 return retval;
545 }
546 EXPORT_SYMBOL(input_grab_device);
547
__input_release_device(struct input_handle * handle)548 static void __input_release_device(struct input_handle *handle)
549 {
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
552
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
558 synchronize_rcu();
559
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
563 }
564 }
565
566 /**
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
569 *
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
574 */
input_release_device(struct input_handle * handle)575 void input_release_device(struct input_handle *handle)
576 {
577 struct input_dev *dev = handle->dev;
578
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
582 }
583 EXPORT_SYMBOL(input_release_device);
584
585 /**
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
588 *
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
591 */
input_open_device(struct input_handle * handle)592 int input_open_device(struct input_handle *handle)
593 {
594 struct input_dev *dev = handle->dev;
595 int retval;
596
597 retval = mutex_lock_interruptible(&dev->mutex);
598 if (retval)
599 return retval;
600
601 if (dev->going_away) {
602 retval = -ENODEV;
603 goto out;
604 }
605
606 handle->open++;
607
608 if (dev->users++ || dev->inhibited) {
609 /*
610 * Device is already opened and/or inhibited,
611 * so we can exit immediately and report success.
612 */
613 goto out;
614 }
615
616 if (dev->open) {
617 retval = dev->open(dev);
618 if (retval) {
619 dev->users--;
620 handle->open--;
621 /*
622 * Make sure we are not delivering any more events
623 * through this handle
624 */
625 synchronize_rcu();
626 goto out;
627 }
628 }
629
630 if (dev->poller)
631 input_dev_poller_start(dev->poller);
632
633 out:
634 mutex_unlock(&dev->mutex);
635 return retval;
636 }
637 EXPORT_SYMBOL(input_open_device);
638
input_flush_device(struct input_handle * handle,struct file * file)639 int input_flush_device(struct input_handle *handle, struct file *file)
640 {
641 struct input_dev *dev = handle->dev;
642 int retval;
643
644 retval = mutex_lock_interruptible(&dev->mutex);
645 if (retval)
646 return retval;
647
648 if (dev->flush)
649 retval = dev->flush(dev, file);
650
651 mutex_unlock(&dev->mutex);
652 return retval;
653 }
654 EXPORT_SYMBOL(input_flush_device);
655
656 /**
657 * input_close_device - close input device
658 * @handle: handle through which device is being accessed
659 *
660 * This function should be called by input handlers when they
661 * want to stop receive events from given input device.
662 */
input_close_device(struct input_handle * handle)663 void input_close_device(struct input_handle *handle)
664 {
665 struct input_dev *dev = handle->dev;
666
667 mutex_lock(&dev->mutex);
668
669 __input_release_device(handle);
670
671 if (!--dev->users && !dev->inhibited) {
672 if (dev->poller)
673 input_dev_poller_stop(dev->poller);
674 if (dev->close)
675 dev->close(dev);
676 }
677
678 if (!--handle->open) {
679 /*
680 * synchronize_rcu() makes sure that input_pass_values()
681 * completed and that no more input events are delivered
682 * through this handle
683 */
684 synchronize_rcu();
685 }
686
687 mutex_unlock(&dev->mutex);
688 }
689 EXPORT_SYMBOL(input_close_device);
690
691 /*
692 * Simulate keyup events for all keys that are marked as pressed.
693 * The function must be called with dev->event_lock held.
694 */
input_dev_release_keys(struct input_dev * dev)695 static bool input_dev_release_keys(struct input_dev *dev)
696 {
697 bool need_sync = false;
698 int code;
699
700 lockdep_assert_held(&dev->event_lock);
701
702 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 for_each_set_bit(code, dev->key, KEY_CNT) {
704 input_handle_event(dev, EV_KEY, code, 0);
705 need_sync = true;
706 }
707 }
708
709 return need_sync;
710 }
711
712 /*
713 * Prepare device for unregistering
714 */
input_disconnect_device(struct input_dev * dev)715 static void input_disconnect_device(struct input_dev *dev)
716 {
717 struct input_handle *handle;
718
719 /*
720 * Mark device as going away. Note that we take dev->mutex here
721 * not to protect access to dev->going_away but rather to ensure
722 * that there are no threads in the middle of input_open_device()
723 */
724 mutex_lock(&dev->mutex);
725 dev->going_away = true;
726 mutex_unlock(&dev->mutex);
727
728 spin_lock_irq(&dev->event_lock);
729
730 /*
731 * Simulate keyup events for all pressed keys so that handlers
732 * are not left with "stuck" keys. The driver may continue
733 * generate events even after we done here but they will not
734 * reach any handlers.
735 */
736 if (input_dev_release_keys(dev))
737 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
738
739 list_for_each_entry(handle, &dev->h_list, d_node)
740 handle->open = 0;
741
742 spin_unlock_irq(&dev->event_lock);
743 }
744
745 /**
746 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747 * @ke: keymap entry containing scancode to be converted.
748 * @scancode: pointer to the location where converted scancode should
749 * be stored.
750 *
751 * This function is used to convert scancode stored in &struct keymap_entry
752 * into scalar form understood by legacy keymap handling methods. These
753 * methods expect scancodes to be represented as 'unsigned int'.
754 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)755 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 unsigned int *scancode)
757 {
758 switch (ke->len) {
759 case 1:
760 *scancode = *((u8 *)ke->scancode);
761 break;
762
763 case 2:
764 *scancode = *((u16 *)ke->scancode);
765 break;
766
767 case 4:
768 *scancode = *((u32 *)ke->scancode);
769 break;
770
771 default:
772 return -EINVAL;
773 }
774
775 return 0;
776 }
777 EXPORT_SYMBOL(input_scancode_to_scalar);
778
779 /*
780 * Those routines handle the default case where no [gs]etkeycode() is
781 * defined. In this case, an array indexed by the scancode is used.
782 */
783
input_fetch_keycode(struct input_dev * dev,unsigned int index)784 static unsigned int input_fetch_keycode(struct input_dev *dev,
785 unsigned int index)
786 {
787 switch (dev->keycodesize) {
788 case 1:
789 return ((u8 *)dev->keycode)[index];
790
791 case 2:
792 return ((u16 *)dev->keycode)[index];
793
794 default:
795 return ((u32 *)dev->keycode)[index];
796 }
797 }
798
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)799 static int input_default_getkeycode(struct input_dev *dev,
800 struct input_keymap_entry *ke)
801 {
802 unsigned int index;
803 int error;
804
805 if (!dev->keycodesize)
806 return -EINVAL;
807
808 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
809 index = ke->index;
810 else {
811 error = input_scancode_to_scalar(ke, &index);
812 if (error)
813 return error;
814 }
815
816 if (index >= dev->keycodemax)
817 return -EINVAL;
818
819 ke->keycode = input_fetch_keycode(dev, index);
820 ke->index = index;
821 ke->len = sizeof(index);
822 memcpy(ke->scancode, &index, sizeof(index));
823
824 return 0;
825 }
826
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)827 static int input_default_setkeycode(struct input_dev *dev,
828 const struct input_keymap_entry *ke,
829 unsigned int *old_keycode)
830 {
831 unsigned int index;
832 int error;
833 int i;
834
835 if (!dev->keycodesize)
836 return -EINVAL;
837
838 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
839 index = ke->index;
840 } else {
841 error = input_scancode_to_scalar(ke, &index);
842 if (error)
843 return error;
844 }
845
846 if (index >= dev->keycodemax)
847 return -EINVAL;
848
849 if (dev->keycodesize < sizeof(ke->keycode) &&
850 (ke->keycode >> (dev->keycodesize * 8)))
851 return -EINVAL;
852
853 switch (dev->keycodesize) {
854 case 1: {
855 u8 *k = (u8 *)dev->keycode;
856 *old_keycode = k[index];
857 k[index] = ke->keycode;
858 break;
859 }
860 case 2: {
861 u16 *k = (u16 *)dev->keycode;
862 *old_keycode = k[index];
863 k[index] = ke->keycode;
864 break;
865 }
866 default: {
867 u32 *k = (u32 *)dev->keycode;
868 *old_keycode = k[index];
869 k[index] = ke->keycode;
870 break;
871 }
872 }
873
874 if (*old_keycode <= KEY_MAX) {
875 __clear_bit(*old_keycode, dev->keybit);
876 for (i = 0; i < dev->keycodemax; i++) {
877 if (input_fetch_keycode(dev, i) == *old_keycode) {
878 __set_bit(*old_keycode, dev->keybit);
879 /* Setting the bit twice is useless, so break */
880 break;
881 }
882 }
883 }
884
885 __set_bit(ke->keycode, dev->keybit);
886 return 0;
887 }
888
889 /**
890 * input_get_keycode - retrieve keycode currently mapped to a given scancode
891 * @dev: input device which keymap is being queried
892 * @ke: keymap entry
893 *
894 * This function should be called by anyone interested in retrieving current
895 * keymap. Presently evdev handlers use it.
896 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
898 {
899 unsigned long flags;
900 int retval;
901
902 spin_lock_irqsave(&dev->event_lock, flags);
903 retval = dev->getkeycode(dev, ke);
904 spin_unlock_irqrestore(&dev->event_lock, flags);
905
906 return retval;
907 }
908 EXPORT_SYMBOL(input_get_keycode);
909
910 /**
911 * input_set_keycode - attribute a keycode to a given scancode
912 * @dev: input device which keymap is being updated
913 * @ke: new keymap entry
914 *
915 * This function should be called by anyone needing to update current
916 * keymap. Presently keyboard and evdev handlers use it.
917 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)918 int input_set_keycode(struct input_dev *dev,
919 const struct input_keymap_entry *ke)
920 {
921 unsigned long flags;
922 unsigned int old_keycode;
923 int retval;
924
925 if (ke->keycode > KEY_MAX)
926 return -EINVAL;
927
928 spin_lock_irqsave(&dev->event_lock, flags);
929
930 retval = dev->setkeycode(dev, ke, &old_keycode);
931 if (retval)
932 goto out;
933
934 /* Make sure KEY_RESERVED did not get enabled. */
935 __clear_bit(KEY_RESERVED, dev->keybit);
936
937 /*
938 * Simulate keyup event if keycode is not present
939 * in the keymap anymore
940 */
941 if (old_keycode > KEY_MAX) {
942 dev_warn(dev->dev.parent ?: &dev->dev,
943 "%s: got too big old keycode %#x\n",
944 __func__, old_keycode);
945 } else if (test_bit(EV_KEY, dev->evbit) &&
946 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 __test_and_clear_bit(old_keycode, dev->key)) {
948 /*
949 * We have to use input_event_dispose() here directly instead
950 * of input_handle_event() because the key we want to release
951 * here is considered no longer supported by the device and
952 * input_handle_event() will ignore it.
953 */
954 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 EV_KEY, old_keycode, 0);
956 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 EV_SYN, SYN_REPORT, 1);
958 }
959
960 out:
961 spin_unlock_irqrestore(&dev->event_lock, flags);
962
963 return retval;
964 }
965 EXPORT_SYMBOL(input_set_keycode);
966
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)967 bool input_match_device_id(const struct input_dev *dev,
968 const struct input_device_id *id)
969 {
970 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 if (id->bustype != dev->id.bustype)
972 return false;
973
974 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 if (id->vendor != dev->id.vendor)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 if (id->product != dev->id.product)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 if (id->version != dev->id.version)
984 return false;
985
986 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
996 return false;
997 }
998
999 return true;
1000 }
1001 EXPORT_SYMBOL(input_match_device_id);
1002
input_match_device(struct input_handler * handler,struct input_dev * dev)1003 static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 struct input_dev *dev)
1005 {
1006 const struct input_device_id *id;
1007
1008 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 if (input_match_device_id(dev, id) &&
1010 (!handler->match || handler->match(handler, dev))) {
1011 return id;
1012 }
1013 }
1014
1015 return NULL;
1016 }
1017
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1019 {
1020 const struct input_device_id *id;
1021 int error;
1022
1023 id = input_match_device(handler, dev);
1024 if (!id)
1025 return -ENODEV;
1026
1027 error = handler->connect(handler, dev, id);
1028 if (error && error != -ENODEV)
1029 pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 handler->name, kobject_name(&dev->dev.kobj), error);
1031
1032 return error;
1033 }
1034
1035 #ifdef CONFIG_COMPAT
1036
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1037 static int input_bits_to_string(char *buf, int buf_size,
1038 unsigned long bits, bool skip_empty)
1039 {
1040 int len = 0;
1041
1042 if (in_compat_syscall()) {
1043 u32 dword = bits >> 32;
1044 if (dword || !skip_empty)
1045 len += snprintf(buf, buf_size, "%x ", dword);
1046
1047 dword = bits & 0xffffffffUL;
1048 if (dword || !skip_empty || len)
1049 len += snprintf(buf + len, max(buf_size - len, 0),
1050 "%x", dword);
1051 } else {
1052 if (bits || !skip_empty)
1053 len += snprintf(buf, buf_size, "%lx", bits);
1054 }
1055
1056 return len;
1057 }
1058
1059 #else /* !CONFIG_COMPAT */
1060
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1061 static int input_bits_to_string(char *buf, int buf_size,
1062 unsigned long bits, bool skip_empty)
1063 {
1064 return bits || !skip_empty ?
1065 snprintf(buf, buf_size, "%lx", bits) : 0;
1066 }
1067
1068 #endif
1069
1070 #ifdef CONFIG_PROC_FS
1071
1072 static struct proc_dir_entry *proc_bus_input_dir;
1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074 static int input_devices_state;
1075
input_wakeup_procfs_readers(void)1076 static inline void input_wakeup_procfs_readers(void)
1077 {
1078 input_devices_state++;
1079 wake_up(&input_devices_poll_wait);
1080 }
1081
1082 struct input_seq_state {
1083 unsigned short pos;
1084 bool mutex_acquired;
1085 int input_devices_state;
1086 };
1087
input_proc_devices_poll(struct file * file,poll_table * wait)1088 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1089 {
1090 struct seq_file *seq = file->private_data;
1091 struct input_seq_state *state = seq->private;
1092
1093 poll_wait(file, &input_devices_poll_wait, wait);
1094 if (state->input_devices_state != input_devices_state) {
1095 state->input_devices_state = input_devices_state;
1096 return EPOLLIN | EPOLLRDNORM;
1097 }
1098
1099 return 0;
1100 }
1101
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1102 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1103 {
1104 struct input_seq_state *state = seq->private;
1105 int error;
1106
1107 error = mutex_lock_interruptible(&input_mutex);
1108 if (error) {
1109 state->mutex_acquired = false;
1110 return ERR_PTR(error);
1111 }
1112
1113 state->mutex_acquired = true;
1114
1115 return seq_list_start(&input_dev_list, *pos);
1116 }
1117
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1118 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1119 {
1120 return seq_list_next(v, &input_dev_list, pos);
1121 }
1122
input_seq_stop(struct seq_file * seq,void * v)1123 static void input_seq_stop(struct seq_file *seq, void *v)
1124 {
1125 struct input_seq_state *state = seq->private;
1126
1127 if (state->mutex_acquired)
1128 mutex_unlock(&input_mutex);
1129 }
1130
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1131 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1132 unsigned long *bitmap, int max)
1133 {
1134 int i;
1135 bool skip_empty = true;
1136 char buf[18];
1137
1138 seq_printf(seq, "B: %s=", name);
1139
1140 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1141 if (input_bits_to_string(buf, sizeof(buf),
1142 bitmap[i], skip_empty)) {
1143 skip_empty = false;
1144 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1145 }
1146 }
1147
1148 /*
1149 * If no output was produced print a single 0.
1150 */
1151 if (skip_empty)
1152 seq_putc(seq, '0');
1153
1154 seq_putc(seq, '\n');
1155 }
1156
input_devices_seq_show(struct seq_file * seq,void * v)1157 static int input_devices_seq_show(struct seq_file *seq, void *v)
1158 {
1159 struct input_dev *dev = container_of(v, struct input_dev, node);
1160 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1161 struct input_handle *handle;
1162
1163 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1164 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1165
1166 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1167 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1168 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1169 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1170 seq_puts(seq, "H: Handlers=");
1171
1172 list_for_each_entry(handle, &dev->h_list, d_node)
1173 seq_printf(seq, "%s ", handle->name);
1174 seq_putc(seq, '\n');
1175
1176 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1177
1178 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1179 if (test_bit(EV_KEY, dev->evbit))
1180 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1181 if (test_bit(EV_REL, dev->evbit))
1182 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1183 if (test_bit(EV_ABS, dev->evbit))
1184 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1185 if (test_bit(EV_MSC, dev->evbit))
1186 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1187 if (test_bit(EV_LED, dev->evbit))
1188 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1189 if (test_bit(EV_SND, dev->evbit))
1190 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1191 if (test_bit(EV_FF, dev->evbit))
1192 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1193 if (test_bit(EV_SW, dev->evbit))
1194 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1195
1196 seq_putc(seq, '\n');
1197
1198 kfree(path);
1199 return 0;
1200 }
1201
1202 static const struct seq_operations input_devices_seq_ops = {
1203 .start = input_devices_seq_start,
1204 .next = input_devices_seq_next,
1205 .stop = input_seq_stop,
1206 .show = input_devices_seq_show,
1207 };
1208
input_proc_devices_open(struct inode * inode,struct file * file)1209 static int input_proc_devices_open(struct inode *inode, struct file *file)
1210 {
1211 return seq_open_private(file, &input_devices_seq_ops,
1212 sizeof(struct input_seq_state));
1213 }
1214
1215 static const struct proc_ops input_devices_proc_ops = {
1216 .proc_open = input_proc_devices_open,
1217 .proc_poll = input_proc_devices_poll,
1218 .proc_read = seq_read,
1219 .proc_lseek = seq_lseek,
1220 .proc_release = seq_release_private,
1221 };
1222
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1223 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1224 {
1225 struct input_seq_state *state = seq->private;
1226 int error;
1227
1228 error = mutex_lock_interruptible(&input_mutex);
1229 if (error) {
1230 state->mutex_acquired = false;
1231 return ERR_PTR(error);
1232 }
1233
1234 state->mutex_acquired = true;
1235 state->pos = *pos;
1236
1237 return seq_list_start(&input_handler_list, *pos);
1238 }
1239
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1240 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1241 {
1242 struct input_seq_state *state = seq->private;
1243
1244 state->pos = *pos + 1;
1245 return seq_list_next(v, &input_handler_list, pos);
1246 }
1247
input_handlers_seq_show(struct seq_file * seq,void * v)1248 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1249 {
1250 struct input_handler *handler = container_of(v, struct input_handler, node);
1251 struct input_seq_state *state = seq->private;
1252
1253 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1254 if (handler->filter)
1255 seq_puts(seq, " (filter)");
1256 if (handler->legacy_minors)
1257 seq_printf(seq, " Minor=%d", handler->minor);
1258 seq_putc(seq, '\n');
1259
1260 return 0;
1261 }
1262
1263 static const struct seq_operations input_handlers_seq_ops = {
1264 .start = input_handlers_seq_start,
1265 .next = input_handlers_seq_next,
1266 .stop = input_seq_stop,
1267 .show = input_handlers_seq_show,
1268 };
1269
input_proc_handlers_open(struct inode * inode,struct file * file)1270 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1271 {
1272 return seq_open_private(file, &input_handlers_seq_ops,
1273 sizeof(struct input_seq_state));
1274 }
1275
1276 static const struct proc_ops input_handlers_proc_ops = {
1277 .proc_open = input_proc_handlers_open,
1278 .proc_read = seq_read,
1279 .proc_lseek = seq_lseek,
1280 .proc_release = seq_release_private,
1281 };
1282
input_proc_init(void)1283 static int __init input_proc_init(void)
1284 {
1285 struct proc_dir_entry *entry;
1286
1287 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1288 if (!proc_bus_input_dir)
1289 return -ENOMEM;
1290
1291 entry = proc_create("devices", 0, proc_bus_input_dir,
1292 &input_devices_proc_ops);
1293 if (!entry)
1294 goto fail1;
1295
1296 entry = proc_create("handlers", 0, proc_bus_input_dir,
1297 &input_handlers_proc_ops);
1298 if (!entry)
1299 goto fail2;
1300
1301 return 0;
1302
1303 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1304 fail1: remove_proc_entry("bus/input", NULL);
1305 return -ENOMEM;
1306 }
1307
input_proc_exit(void)1308 static void input_proc_exit(void)
1309 {
1310 remove_proc_entry("devices", proc_bus_input_dir);
1311 remove_proc_entry("handlers", proc_bus_input_dir);
1312 remove_proc_entry("bus/input", NULL);
1313 }
1314
1315 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1316 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1317 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1318 static inline void input_proc_exit(void) { }
1319 #endif
1320
1321 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1322 static ssize_t input_dev_show_##name(struct device *dev, \
1323 struct device_attribute *attr, \
1324 char *buf) \
1325 { \
1326 struct input_dev *input_dev = to_input_dev(dev); \
1327 \
1328 return sysfs_emit(buf, "%s\n", \
1329 input_dev->name ? input_dev->name : ""); \
1330 } \
1331 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1332
1333 INPUT_DEV_STRING_ATTR_SHOW(name);
1334 INPUT_DEV_STRING_ATTR_SHOW(phys);
1335 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1336
input_print_modalias_bits(char * buf,int size,char name,const unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1337 static int input_print_modalias_bits(char *buf, int size,
1338 char name, const unsigned long *bm,
1339 unsigned int min_bit, unsigned int max_bit)
1340 {
1341 int bit = min_bit;
1342 int len = 0;
1343
1344 len += snprintf(buf, max(size, 0), "%c", name);
1345 for_each_set_bit_from(bit, bm, max_bit)
1346 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1347 return len;
1348 }
1349
input_print_modalias_parts(char * buf,int size,int full_len,const struct input_dev * id)1350 static int input_print_modalias_parts(char *buf, int size, int full_len,
1351 const struct input_dev *id)
1352 {
1353 int len, klen, remainder, space;
1354
1355 len = snprintf(buf, max(size, 0),
1356 "input:b%04Xv%04Xp%04Xe%04X-",
1357 id->id.bustype, id->id.vendor,
1358 id->id.product, id->id.version);
1359
1360 len += input_print_modalias_bits(buf + len, size - len,
1361 'e', id->evbit, 0, EV_MAX);
1362
1363 /*
1364 * Calculate the remaining space in the buffer making sure we
1365 * have place for the terminating 0.
1366 */
1367 space = max(size - (len + 1), 0);
1368
1369 klen = input_print_modalias_bits(buf + len, size - len,
1370 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371 len += klen;
1372
1373 /*
1374 * If we have more data than we can fit in the buffer, check
1375 * if we can trim key data to fit in the rest. We will indicate
1376 * that key data is incomplete by adding "+" sign at the end, like
1377 * this: * "k1,2,3,45,+,".
1378 *
1379 * Note that we shortest key info (if present) is "k+," so we
1380 * can only try to trim if key data is longer than that.
1381 */
1382 if (full_len && size < full_len + 1 && klen > 3) {
1383 remainder = full_len - len;
1384 /*
1385 * We can only trim if we have space for the remainder
1386 * and also for at least "k+," which is 3 more characters.
1387 */
1388 if (remainder <= space - 3) {
1389 /*
1390 * We are guaranteed to have 'k' in the buffer, so
1391 * we need at least 3 additional bytes for storing
1392 * "+," in addition to the remainder.
1393 */
1394 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1395 if (buf[i] == 'k' || buf[i] == ',') {
1396 strcpy(buf + i + 1, "+,");
1397 len = i + 3; /* Not counting '\0' */
1398 break;
1399 }
1400 }
1401 }
1402 }
1403
1404 len += input_print_modalias_bits(buf + len, size - len,
1405 'r', id->relbit, 0, REL_MAX);
1406 len += input_print_modalias_bits(buf + len, size - len,
1407 'a', id->absbit, 0, ABS_MAX);
1408 len += input_print_modalias_bits(buf + len, size - len,
1409 'm', id->mscbit, 0, MSC_MAX);
1410 len += input_print_modalias_bits(buf + len, size - len,
1411 'l', id->ledbit, 0, LED_MAX);
1412 len += input_print_modalias_bits(buf + len, size - len,
1413 's', id->sndbit, 0, SND_MAX);
1414 len += input_print_modalias_bits(buf + len, size - len,
1415 'f', id->ffbit, 0, FF_MAX);
1416 len += input_print_modalias_bits(buf + len, size - len,
1417 'w', id->swbit, 0, SW_MAX);
1418
1419 return len;
1420 }
1421
input_print_modalias(char * buf,int size,const struct input_dev * id)1422 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1423 {
1424 int full_len;
1425
1426 /*
1427 * Printing is done in 2 passes: first one figures out total length
1428 * needed for the modalias string, second one will try to trim key
1429 * data in case when buffer is too small for the entire modalias.
1430 * If the buffer is too small regardless, it will fill as much as it
1431 * can (without trimming key data) into the buffer and leave it to
1432 * the caller to figure out what to do with the result.
1433 */
1434 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1435 return input_print_modalias_parts(buf, size, full_len, id);
1436 }
1437
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1438 static ssize_t input_dev_show_modalias(struct device *dev,
1439 struct device_attribute *attr,
1440 char *buf)
1441 {
1442 struct input_dev *id = to_input_dev(dev);
1443 ssize_t len;
1444
1445 len = input_print_modalias(buf, PAGE_SIZE, id);
1446 if (len < PAGE_SIZE - 2)
1447 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1448
1449 return min_t(int, len, PAGE_SIZE);
1450 }
1451 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1452
1453 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1454 int max, int add_cr);
1455
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1456 static ssize_t input_dev_show_properties(struct device *dev,
1457 struct device_attribute *attr,
1458 char *buf)
1459 {
1460 struct input_dev *input_dev = to_input_dev(dev);
1461 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1462 INPUT_PROP_MAX, true);
1463 return min_t(int, len, PAGE_SIZE);
1464 }
1465 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1466
1467 static int input_inhibit_device(struct input_dev *dev);
1468 static int input_uninhibit_device(struct input_dev *dev);
1469
inhibited_show(struct device * dev,struct device_attribute * attr,char * buf)1470 static ssize_t inhibited_show(struct device *dev,
1471 struct device_attribute *attr,
1472 char *buf)
1473 {
1474 struct input_dev *input_dev = to_input_dev(dev);
1475
1476 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1477 }
1478
inhibited_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1479 static ssize_t inhibited_store(struct device *dev,
1480 struct device_attribute *attr, const char *buf,
1481 size_t len)
1482 {
1483 struct input_dev *input_dev = to_input_dev(dev);
1484 ssize_t rv;
1485 bool inhibited;
1486
1487 if (kstrtobool(buf, &inhibited))
1488 return -EINVAL;
1489
1490 if (inhibited)
1491 rv = input_inhibit_device(input_dev);
1492 else
1493 rv = input_uninhibit_device(input_dev);
1494
1495 if (rv != 0)
1496 return rv;
1497
1498 return len;
1499 }
1500
1501 static DEVICE_ATTR_RW(inhibited);
1502
1503 static struct attribute *input_dev_attrs[] = {
1504 &dev_attr_name.attr,
1505 &dev_attr_phys.attr,
1506 &dev_attr_uniq.attr,
1507 &dev_attr_modalias.attr,
1508 &dev_attr_properties.attr,
1509 &dev_attr_inhibited.attr,
1510 NULL
1511 };
1512
1513 static const struct attribute_group input_dev_attr_group = {
1514 .attrs = input_dev_attrs,
1515 };
1516
1517 #define INPUT_DEV_ID_ATTR(name) \
1518 static ssize_t input_dev_show_id_##name(struct device *dev, \
1519 struct device_attribute *attr, \
1520 char *buf) \
1521 { \
1522 struct input_dev *input_dev = to_input_dev(dev); \
1523 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1524 } \
1525 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1526
1527 INPUT_DEV_ID_ATTR(bustype);
1528 INPUT_DEV_ID_ATTR(vendor);
1529 INPUT_DEV_ID_ATTR(product);
1530 INPUT_DEV_ID_ATTR(version);
1531
1532 static struct attribute *input_dev_id_attrs[] = {
1533 &dev_attr_bustype.attr,
1534 &dev_attr_vendor.attr,
1535 &dev_attr_product.attr,
1536 &dev_attr_version.attr,
1537 NULL
1538 };
1539
1540 static const struct attribute_group input_dev_id_attr_group = {
1541 .name = "id",
1542 .attrs = input_dev_id_attrs,
1543 };
1544
input_print_bitmap(char * buf,int buf_size,const unsigned long * bitmap,int max,int add_cr)1545 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1546 int max, int add_cr)
1547 {
1548 int i;
1549 int len = 0;
1550 bool skip_empty = true;
1551
1552 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1553 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1554 bitmap[i], skip_empty);
1555 if (len) {
1556 skip_empty = false;
1557 if (i > 0)
1558 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1559 }
1560 }
1561
1562 /*
1563 * If no output was produced print a single 0.
1564 */
1565 if (len == 0)
1566 len = snprintf(buf, buf_size, "%d", 0);
1567
1568 if (add_cr)
1569 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1570
1571 return len;
1572 }
1573
1574 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1575 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1576 struct device_attribute *attr, \
1577 char *buf) \
1578 { \
1579 struct input_dev *input_dev = to_input_dev(dev); \
1580 int len = input_print_bitmap(buf, PAGE_SIZE, \
1581 input_dev->bm##bit, ev##_MAX, \
1582 true); \
1583 return min_t(int, len, PAGE_SIZE); \
1584 } \
1585 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1586
1587 INPUT_DEV_CAP_ATTR(EV, ev);
1588 INPUT_DEV_CAP_ATTR(KEY, key);
1589 INPUT_DEV_CAP_ATTR(REL, rel);
1590 INPUT_DEV_CAP_ATTR(ABS, abs);
1591 INPUT_DEV_CAP_ATTR(MSC, msc);
1592 INPUT_DEV_CAP_ATTR(LED, led);
1593 INPUT_DEV_CAP_ATTR(SND, snd);
1594 INPUT_DEV_CAP_ATTR(FF, ff);
1595 INPUT_DEV_CAP_ATTR(SW, sw);
1596
1597 static struct attribute *input_dev_caps_attrs[] = {
1598 &dev_attr_ev.attr,
1599 &dev_attr_key.attr,
1600 &dev_attr_rel.attr,
1601 &dev_attr_abs.attr,
1602 &dev_attr_msc.attr,
1603 &dev_attr_led.attr,
1604 &dev_attr_snd.attr,
1605 &dev_attr_ff.attr,
1606 &dev_attr_sw.attr,
1607 NULL
1608 };
1609
1610 static const struct attribute_group input_dev_caps_attr_group = {
1611 .name = "capabilities",
1612 .attrs = input_dev_caps_attrs,
1613 };
1614
1615 static const struct attribute_group *input_dev_attr_groups[] = {
1616 &input_dev_attr_group,
1617 &input_dev_id_attr_group,
1618 &input_dev_caps_attr_group,
1619 &input_poller_attribute_group,
1620 NULL
1621 };
1622
input_dev_release(struct device * device)1623 static void input_dev_release(struct device *device)
1624 {
1625 struct input_dev *dev = to_input_dev(device);
1626
1627 input_ff_destroy(dev);
1628 input_mt_destroy_slots(dev);
1629 kfree(dev->poller);
1630 kfree(dev->absinfo);
1631 kfree(dev->vals);
1632 kfree(dev);
1633
1634 module_put(THIS_MODULE);
1635 }
1636
1637 /*
1638 * Input uevent interface - loading event handlers based on
1639 * device bitfields.
1640 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,const unsigned long * bitmap,int max)1641 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1642 const char *name, const unsigned long *bitmap, int max)
1643 {
1644 int len;
1645
1646 if (add_uevent_var(env, "%s", name))
1647 return -ENOMEM;
1648
1649 len = input_print_bitmap(&env->buf[env->buflen - 1],
1650 sizeof(env->buf) - env->buflen,
1651 bitmap, max, false);
1652 if (len >= (sizeof(env->buf) - env->buflen))
1653 return -ENOMEM;
1654
1655 env->buflen += len;
1656 return 0;
1657 }
1658
1659 /*
1660 * This is a pretty gross hack. When building uevent data the driver core
1661 * may try adding more environment variables to kobj_uevent_env without
1662 * telling us, so we have no idea how much of the buffer we can use to
1663 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1664 * reduce amount of memory we will use for the modalias environment variable.
1665 *
1666 * The potential additions are:
1667 *
1668 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1669 * HOME=/ (6 bytes)
1670 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1671 *
1672 * 68 bytes total. Allow extra buffer - 96 bytes
1673 */
1674 #define UEVENT_ENV_EXTRA_LEN 96
1675
input_add_uevent_modalias_var(struct kobj_uevent_env * env,const struct input_dev * dev)1676 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1677 const struct input_dev *dev)
1678 {
1679 int len;
1680
1681 if (add_uevent_var(env, "MODALIAS="))
1682 return -ENOMEM;
1683
1684 len = input_print_modalias(&env->buf[env->buflen - 1],
1685 (int)sizeof(env->buf) - env->buflen -
1686 UEVENT_ENV_EXTRA_LEN,
1687 dev);
1688 if (len >= ((int)sizeof(env->buf) - env->buflen -
1689 UEVENT_ENV_EXTRA_LEN))
1690 return -ENOMEM;
1691
1692 env->buflen += len;
1693 return 0;
1694 }
1695
1696 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1697 do { \
1698 int err = add_uevent_var(env, fmt, val); \
1699 if (err) \
1700 return err; \
1701 } while (0)
1702
1703 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1704 do { \
1705 int err = input_add_uevent_bm_var(env, name, bm, max); \
1706 if (err) \
1707 return err; \
1708 } while (0)
1709
1710 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1711 do { \
1712 int err = input_add_uevent_modalias_var(env, dev); \
1713 if (err) \
1714 return err; \
1715 } while (0)
1716
input_dev_uevent(const struct device * device,struct kobj_uevent_env * env)1717 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1718 {
1719 const struct input_dev *dev = to_input_dev(device);
1720
1721 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1722 dev->id.bustype, dev->id.vendor,
1723 dev->id.product, dev->id.version);
1724 if (dev->name)
1725 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1726 if (dev->phys)
1727 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1728 if (dev->uniq)
1729 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1730
1731 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1732
1733 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1734 if (test_bit(EV_KEY, dev->evbit))
1735 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1736 if (test_bit(EV_REL, dev->evbit))
1737 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1738 if (test_bit(EV_ABS, dev->evbit))
1739 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1740 if (test_bit(EV_MSC, dev->evbit))
1741 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1742 if (test_bit(EV_LED, dev->evbit))
1743 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1744 if (test_bit(EV_SND, dev->evbit))
1745 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1746 if (test_bit(EV_FF, dev->evbit))
1747 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1748 if (test_bit(EV_SW, dev->evbit))
1749 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1750
1751 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1752
1753 return 0;
1754 }
1755
1756 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1757 do { \
1758 int i; \
1759 bool active; \
1760 \
1761 if (!test_bit(EV_##type, dev->evbit)) \
1762 break; \
1763 \
1764 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1765 active = test_bit(i, dev->bits); \
1766 if (!active && !on) \
1767 continue; \
1768 \
1769 dev->event(dev, EV_##type, i, on ? active : 0); \
1770 } \
1771 } while (0)
1772
input_dev_toggle(struct input_dev * dev,bool activate)1773 static void input_dev_toggle(struct input_dev *dev, bool activate)
1774 {
1775 if (!dev->event)
1776 return;
1777
1778 INPUT_DO_TOGGLE(dev, LED, led, activate);
1779 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1780
1781 if (activate && test_bit(EV_REP, dev->evbit)) {
1782 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1783 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1784 }
1785 }
1786
1787 /**
1788 * input_reset_device() - reset/restore the state of input device
1789 * @dev: input device whose state needs to be reset
1790 *
1791 * This function tries to reset the state of an opened input device and
1792 * bring internal state and state if the hardware in sync with each other.
1793 * We mark all keys as released, restore LED state, repeat rate, etc.
1794 */
input_reset_device(struct input_dev * dev)1795 void input_reset_device(struct input_dev *dev)
1796 {
1797 unsigned long flags;
1798
1799 mutex_lock(&dev->mutex);
1800 spin_lock_irqsave(&dev->event_lock, flags);
1801
1802 input_dev_toggle(dev, true);
1803 if (input_dev_release_keys(dev))
1804 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1805
1806 spin_unlock_irqrestore(&dev->event_lock, flags);
1807 mutex_unlock(&dev->mutex);
1808 }
1809 EXPORT_SYMBOL(input_reset_device);
1810
input_inhibit_device(struct input_dev * dev)1811 static int input_inhibit_device(struct input_dev *dev)
1812 {
1813 mutex_lock(&dev->mutex);
1814
1815 if (dev->inhibited)
1816 goto out;
1817
1818 if (dev->users) {
1819 if (dev->close)
1820 dev->close(dev);
1821 if (dev->poller)
1822 input_dev_poller_stop(dev->poller);
1823 }
1824
1825 spin_lock_irq(&dev->event_lock);
1826 input_mt_release_slots(dev);
1827 input_dev_release_keys(dev);
1828 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1829 input_dev_toggle(dev, false);
1830 spin_unlock_irq(&dev->event_lock);
1831
1832 dev->inhibited = true;
1833
1834 out:
1835 mutex_unlock(&dev->mutex);
1836 return 0;
1837 }
1838
input_uninhibit_device(struct input_dev * dev)1839 static int input_uninhibit_device(struct input_dev *dev)
1840 {
1841 int ret = 0;
1842
1843 mutex_lock(&dev->mutex);
1844
1845 if (!dev->inhibited)
1846 goto out;
1847
1848 if (dev->users) {
1849 if (dev->open) {
1850 ret = dev->open(dev);
1851 if (ret)
1852 goto out;
1853 }
1854 if (dev->poller)
1855 input_dev_poller_start(dev->poller);
1856 }
1857
1858 dev->inhibited = false;
1859 spin_lock_irq(&dev->event_lock);
1860 input_dev_toggle(dev, true);
1861 spin_unlock_irq(&dev->event_lock);
1862
1863 out:
1864 mutex_unlock(&dev->mutex);
1865 return ret;
1866 }
1867
input_dev_suspend(struct device * dev)1868 static int input_dev_suspend(struct device *dev)
1869 {
1870 struct input_dev *input_dev = to_input_dev(dev);
1871
1872 spin_lock_irq(&input_dev->event_lock);
1873
1874 /*
1875 * Keys that are pressed now are unlikely to be
1876 * still pressed when we resume.
1877 */
1878 if (input_dev_release_keys(input_dev))
1879 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1880
1881 /* Turn off LEDs and sounds, if any are active. */
1882 input_dev_toggle(input_dev, false);
1883
1884 spin_unlock_irq(&input_dev->event_lock);
1885
1886 return 0;
1887 }
1888
input_dev_resume(struct device * dev)1889 static int input_dev_resume(struct device *dev)
1890 {
1891 struct input_dev *input_dev = to_input_dev(dev);
1892
1893 spin_lock_irq(&input_dev->event_lock);
1894
1895 /* Restore state of LEDs and sounds, if any were active. */
1896 input_dev_toggle(input_dev, true);
1897
1898 spin_unlock_irq(&input_dev->event_lock);
1899
1900 return 0;
1901 }
1902
input_dev_freeze(struct device * dev)1903 static int input_dev_freeze(struct device *dev)
1904 {
1905 struct input_dev *input_dev = to_input_dev(dev);
1906
1907 spin_lock_irq(&input_dev->event_lock);
1908
1909 /*
1910 * Keys that are pressed now are unlikely to be
1911 * still pressed when we resume.
1912 */
1913 if (input_dev_release_keys(input_dev))
1914 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1915
1916 spin_unlock_irq(&input_dev->event_lock);
1917
1918 return 0;
1919 }
1920
input_dev_poweroff(struct device * dev)1921 static int input_dev_poweroff(struct device *dev)
1922 {
1923 struct input_dev *input_dev = to_input_dev(dev);
1924
1925 spin_lock_irq(&input_dev->event_lock);
1926
1927 /* Turn off LEDs and sounds, if any are active. */
1928 input_dev_toggle(input_dev, false);
1929
1930 spin_unlock_irq(&input_dev->event_lock);
1931
1932 return 0;
1933 }
1934
1935 static const struct dev_pm_ops input_dev_pm_ops = {
1936 .suspend = input_dev_suspend,
1937 .resume = input_dev_resume,
1938 .freeze = input_dev_freeze,
1939 .poweroff = input_dev_poweroff,
1940 .restore = input_dev_resume,
1941 };
1942
1943 static const struct device_type input_dev_type = {
1944 .groups = input_dev_attr_groups,
1945 .release = input_dev_release,
1946 .uevent = input_dev_uevent,
1947 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1948 };
1949
input_devnode(const struct device * dev,umode_t * mode)1950 static char *input_devnode(const struct device *dev, umode_t *mode)
1951 {
1952 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1953 }
1954
1955 const struct class input_class = {
1956 .name = "input",
1957 .devnode = input_devnode,
1958 };
1959 EXPORT_SYMBOL_GPL(input_class);
1960
1961 /**
1962 * input_allocate_device - allocate memory for new input device
1963 *
1964 * Returns prepared struct input_dev or %NULL.
1965 *
1966 * NOTE: Use input_free_device() to free devices that have not been
1967 * registered; input_unregister_device() should be used for already
1968 * registered devices.
1969 */
input_allocate_device(void)1970 struct input_dev *input_allocate_device(void)
1971 {
1972 static atomic_t input_no = ATOMIC_INIT(-1);
1973 struct input_dev *dev;
1974
1975 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1976 if (!dev)
1977 return NULL;
1978
1979 /*
1980 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1981 * see input_estimate_events_per_packet(). We will tune the number
1982 * when we register the device.
1983 */
1984 dev->max_vals = 10;
1985 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1986 if (!dev->vals) {
1987 kfree(dev);
1988 return NULL;
1989 }
1990
1991 mutex_init(&dev->mutex);
1992 spin_lock_init(&dev->event_lock);
1993 timer_setup(&dev->timer, NULL, 0);
1994 INIT_LIST_HEAD(&dev->h_list);
1995 INIT_LIST_HEAD(&dev->node);
1996
1997 dev->dev.type = &input_dev_type;
1998 dev->dev.class = &input_class;
1999 device_initialize(&dev->dev);
2000 /*
2001 * From this point on we can no longer simply "kfree(dev)", we need
2002 * to use input_free_device() so that device core properly frees its
2003 * resources associated with the input device.
2004 */
2005
2006 dev_set_name(&dev->dev, "input%lu",
2007 (unsigned long)atomic_inc_return(&input_no));
2008
2009 __module_get(THIS_MODULE);
2010
2011 return dev;
2012 }
2013 EXPORT_SYMBOL(input_allocate_device);
2014
2015 struct input_devres {
2016 struct input_dev *input;
2017 };
2018
devm_input_device_match(struct device * dev,void * res,void * data)2019 static int devm_input_device_match(struct device *dev, void *res, void *data)
2020 {
2021 struct input_devres *devres = res;
2022
2023 return devres->input == data;
2024 }
2025
devm_input_device_release(struct device * dev,void * res)2026 static void devm_input_device_release(struct device *dev, void *res)
2027 {
2028 struct input_devres *devres = res;
2029 struct input_dev *input = devres->input;
2030
2031 dev_dbg(dev, "%s: dropping reference to %s\n",
2032 __func__, dev_name(&input->dev));
2033 input_put_device(input);
2034 }
2035
2036 /**
2037 * devm_input_allocate_device - allocate managed input device
2038 * @dev: device owning the input device being created
2039 *
2040 * Returns prepared struct input_dev or %NULL.
2041 *
2042 * Managed input devices do not need to be explicitly unregistered or
2043 * freed as it will be done automatically when owner device unbinds from
2044 * its driver (or binding fails). Once managed input device is allocated,
2045 * it is ready to be set up and registered in the same fashion as regular
2046 * input device. There are no special devm_input_device_[un]register()
2047 * variants, regular ones work with both managed and unmanaged devices,
2048 * should you need them. In most cases however, managed input device need
2049 * not be explicitly unregistered or freed.
2050 *
2051 * NOTE: the owner device is set up as parent of input device and users
2052 * should not override it.
2053 */
devm_input_allocate_device(struct device * dev)2054 struct input_dev *devm_input_allocate_device(struct device *dev)
2055 {
2056 struct input_dev *input;
2057 struct input_devres *devres;
2058
2059 devres = devres_alloc(devm_input_device_release,
2060 sizeof(*devres), GFP_KERNEL);
2061 if (!devres)
2062 return NULL;
2063
2064 input = input_allocate_device();
2065 if (!input) {
2066 devres_free(devres);
2067 return NULL;
2068 }
2069
2070 input->dev.parent = dev;
2071 input->devres_managed = true;
2072
2073 devres->input = input;
2074 devres_add(dev, devres);
2075
2076 return input;
2077 }
2078 EXPORT_SYMBOL(devm_input_allocate_device);
2079
2080 /**
2081 * input_free_device - free memory occupied by input_dev structure
2082 * @dev: input device to free
2083 *
2084 * This function should only be used if input_register_device()
2085 * was not called yet or if it failed. Once device was registered
2086 * use input_unregister_device() and memory will be freed once last
2087 * reference to the device is dropped.
2088 *
2089 * Device should be allocated by input_allocate_device().
2090 *
2091 * NOTE: If there are references to the input device then memory
2092 * will not be freed until last reference is dropped.
2093 */
input_free_device(struct input_dev * dev)2094 void input_free_device(struct input_dev *dev)
2095 {
2096 if (dev) {
2097 if (dev->devres_managed)
2098 WARN_ON(devres_destroy(dev->dev.parent,
2099 devm_input_device_release,
2100 devm_input_device_match,
2101 dev));
2102 input_put_device(dev);
2103 }
2104 }
2105 EXPORT_SYMBOL(input_free_device);
2106
2107 /**
2108 * input_set_timestamp - set timestamp for input events
2109 * @dev: input device to set timestamp for
2110 * @timestamp: the time at which the event has occurred
2111 * in CLOCK_MONOTONIC
2112 *
2113 * This function is intended to provide to the input system a more
2114 * accurate time of when an event actually occurred. The driver should
2115 * call this function as soon as a timestamp is acquired ensuring
2116 * clock conversions in input_set_timestamp are done correctly.
2117 *
2118 * The system entering suspend state between timestamp acquisition and
2119 * calling input_set_timestamp can result in inaccurate conversions.
2120 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)2121 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2122 {
2123 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2124 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2125 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2126 TK_OFFS_BOOT);
2127 }
2128 EXPORT_SYMBOL(input_set_timestamp);
2129
2130 /**
2131 * input_get_timestamp - get timestamp for input events
2132 * @dev: input device to get timestamp from
2133 *
2134 * A valid timestamp is a timestamp of non-zero value.
2135 */
input_get_timestamp(struct input_dev * dev)2136 ktime_t *input_get_timestamp(struct input_dev *dev)
2137 {
2138 const ktime_t invalid_timestamp = ktime_set(0, 0);
2139
2140 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2141 input_set_timestamp(dev, ktime_get());
2142
2143 return dev->timestamp;
2144 }
2145 EXPORT_SYMBOL(input_get_timestamp);
2146
2147 /**
2148 * input_set_capability - mark device as capable of a certain event
2149 * @dev: device that is capable of emitting or accepting event
2150 * @type: type of the event (EV_KEY, EV_REL, etc...)
2151 * @code: event code
2152 *
2153 * In addition to setting up corresponding bit in appropriate capability
2154 * bitmap the function also adjusts dev->evbit.
2155 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)2156 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2157 {
2158 if (type < EV_CNT && input_max_code[type] &&
2159 code > input_max_code[type]) {
2160 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2161 type);
2162 dump_stack();
2163 return;
2164 }
2165
2166 switch (type) {
2167 case EV_KEY:
2168 __set_bit(code, dev->keybit);
2169 break;
2170
2171 case EV_REL:
2172 __set_bit(code, dev->relbit);
2173 break;
2174
2175 case EV_ABS:
2176 input_alloc_absinfo(dev);
2177 __set_bit(code, dev->absbit);
2178 break;
2179
2180 case EV_MSC:
2181 __set_bit(code, dev->mscbit);
2182 break;
2183
2184 case EV_SW:
2185 __set_bit(code, dev->swbit);
2186 break;
2187
2188 case EV_LED:
2189 __set_bit(code, dev->ledbit);
2190 break;
2191
2192 case EV_SND:
2193 __set_bit(code, dev->sndbit);
2194 break;
2195
2196 case EV_FF:
2197 __set_bit(code, dev->ffbit);
2198 break;
2199
2200 case EV_PWR:
2201 /* do nothing */
2202 break;
2203
2204 default:
2205 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2206 dump_stack();
2207 return;
2208 }
2209
2210 __set_bit(type, dev->evbit);
2211 }
2212 EXPORT_SYMBOL(input_set_capability);
2213
input_estimate_events_per_packet(struct input_dev * dev)2214 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2215 {
2216 int mt_slots;
2217 int i;
2218 unsigned int events;
2219
2220 if (dev->mt) {
2221 mt_slots = dev->mt->num_slots;
2222 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2223 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2224 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2225 mt_slots = clamp(mt_slots, 2, 32);
2226 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2227 mt_slots = 2;
2228 } else {
2229 mt_slots = 0;
2230 }
2231
2232 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2233
2234 if (test_bit(EV_ABS, dev->evbit))
2235 for_each_set_bit(i, dev->absbit, ABS_CNT)
2236 events += input_is_mt_axis(i) ? mt_slots : 1;
2237
2238 if (test_bit(EV_REL, dev->evbit))
2239 events += bitmap_weight(dev->relbit, REL_CNT);
2240
2241 /* Make room for KEY and MSC events */
2242 events += 7;
2243
2244 return events;
2245 }
2246
2247 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2248 do { \
2249 if (!test_bit(EV_##type, dev->evbit)) \
2250 memset(dev->bits##bit, 0, \
2251 sizeof(dev->bits##bit)); \
2252 } while (0)
2253
input_cleanse_bitmasks(struct input_dev * dev)2254 static void input_cleanse_bitmasks(struct input_dev *dev)
2255 {
2256 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2257 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2258 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2259 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2260 INPUT_CLEANSE_BITMASK(dev, LED, led);
2261 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2262 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2263 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2264 }
2265
__input_unregister_device(struct input_dev * dev)2266 static void __input_unregister_device(struct input_dev *dev)
2267 {
2268 struct input_handle *handle, *next;
2269
2270 input_disconnect_device(dev);
2271
2272 mutex_lock(&input_mutex);
2273
2274 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2275 handle->handler->disconnect(handle);
2276 WARN_ON(!list_empty(&dev->h_list));
2277
2278 del_timer_sync(&dev->timer);
2279 list_del_init(&dev->node);
2280
2281 input_wakeup_procfs_readers();
2282
2283 mutex_unlock(&input_mutex);
2284
2285 device_del(&dev->dev);
2286 }
2287
devm_input_device_unregister(struct device * dev,void * res)2288 static void devm_input_device_unregister(struct device *dev, void *res)
2289 {
2290 struct input_devres *devres = res;
2291 struct input_dev *input = devres->input;
2292
2293 dev_dbg(dev, "%s: unregistering device %s\n",
2294 __func__, dev_name(&input->dev));
2295 __input_unregister_device(input);
2296 }
2297
2298 /*
2299 * Generate software autorepeat event. Note that we take
2300 * dev->event_lock here to avoid racing with input_event
2301 * which may cause keys get "stuck".
2302 */
input_repeat_key(struct timer_list * t)2303 static void input_repeat_key(struct timer_list *t)
2304 {
2305 struct input_dev *dev = from_timer(dev, t, timer);
2306 unsigned long flags;
2307
2308 spin_lock_irqsave(&dev->event_lock, flags);
2309
2310 if (!dev->inhibited &&
2311 test_bit(dev->repeat_key, dev->key) &&
2312 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2313
2314 input_set_timestamp(dev, ktime_get());
2315 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2316 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2317
2318 if (dev->rep[REP_PERIOD])
2319 mod_timer(&dev->timer, jiffies +
2320 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2321 }
2322
2323 spin_unlock_irqrestore(&dev->event_lock, flags);
2324 }
2325
2326 /**
2327 * input_enable_softrepeat - enable software autorepeat
2328 * @dev: input device
2329 * @delay: repeat delay
2330 * @period: repeat period
2331 *
2332 * Enable software autorepeat on the input device.
2333 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2334 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2335 {
2336 dev->timer.function = input_repeat_key;
2337 dev->rep[REP_DELAY] = delay;
2338 dev->rep[REP_PERIOD] = period;
2339 }
2340 EXPORT_SYMBOL(input_enable_softrepeat);
2341
input_device_enabled(struct input_dev * dev)2342 bool input_device_enabled(struct input_dev *dev)
2343 {
2344 lockdep_assert_held(&dev->mutex);
2345
2346 return !dev->inhibited && dev->users > 0;
2347 }
2348 EXPORT_SYMBOL_GPL(input_device_enabled);
2349
input_device_tune_vals(struct input_dev * dev)2350 static int input_device_tune_vals(struct input_dev *dev)
2351 {
2352 struct input_value *vals;
2353 unsigned int packet_size;
2354 unsigned int max_vals;
2355
2356 packet_size = input_estimate_events_per_packet(dev);
2357 if (dev->hint_events_per_packet < packet_size)
2358 dev->hint_events_per_packet = packet_size;
2359
2360 max_vals = dev->hint_events_per_packet + 2;
2361 if (dev->max_vals >= max_vals)
2362 return 0;
2363
2364 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2365 if (!vals)
2366 return -ENOMEM;
2367
2368 spin_lock_irq(&dev->event_lock);
2369 dev->max_vals = max_vals;
2370 swap(dev->vals, vals);
2371 spin_unlock_irq(&dev->event_lock);
2372
2373 /* Because of swap() above, this frees the old vals memory */
2374 kfree(vals);
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * input_register_device - register device with input core
2381 * @dev: device to be registered
2382 *
2383 * This function registers device with input core. The device must be
2384 * allocated with input_allocate_device() and all it's capabilities
2385 * set up before registering.
2386 * If function fails the device must be freed with input_free_device().
2387 * Once device has been successfully registered it can be unregistered
2388 * with input_unregister_device(); input_free_device() should not be
2389 * called in this case.
2390 *
2391 * Note that this function is also used to register managed input devices
2392 * (ones allocated with devm_input_allocate_device()). Such managed input
2393 * devices need not be explicitly unregistered or freed, their tear down
2394 * is controlled by the devres infrastructure. It is also worth noting
2395 * that tear down of managed input devices is internally a 2-step process:
2396 * registered managed input device is first unregistered, but stays in
2397 * memory and can still handle input_event() calls (although events will
2398 * not be delivered anywhere). The freeing of managed input device will
2399 * happen later, when devres stack is unwound to the point where device
2400 * allocation was made.
2401 */
input_register_device(struct input_dev * dev)2402 int input_register_device(struct input_dev *dev)
2403 {
2404 struct input_devres *devres = NULL;
2405 struct input_handler *handler;
2406 const char *path;
2407 int error;
2408
2409 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2410 dev_err(&dev->dev,
2411 "Absolute device without dev->absinfo, refusing to register\n");
2412 return -EINVAL;
2413 }
2414
2415 if (dev->devres_managed) {
2416 devres = devres_alloc(devm_input_device_unregister,
2417 sizeof(*devres), GFP_KERNEL);
2418 if (!devres)
2419 return -ENOMEM;
2420
2421 devres->input = dev;
2422 }
2423
2424 /* Every input device generates EV_SYN/SYN_REPORT events. */
2425 __set_bit(EV_SYN, dev->evbit);
2426
2427 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2428 __clear_bit(KEY_RESERVED, dev->keybit);
2429
2430 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2431 input_cleanse_bitmasks(dev);
2432
2433 error = input_device_tune_vals(dev);
2434 if (error)
2435 goto err_devres_free;
2436
2437 /*
2438 * If delay and period are pre-set by the driver, then autorepeating
2439 * is handled by the driver itself and we don't do it in input.c.
2440 */
2441 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2442 input_enable_softrepeat(dev, 250, 33);
2443
2444 if (!dev->getkeycode)
2445 dev->getkeycode = input_default_getkeycode;
2446
2447 if (!dev->setkeycode)
2448 dev->setkeycode = input_default_setkeycode;
2449
2450 if (dev->poller)
2451 input_dev_poller_finalize(dev->poller);
2452
2453 error = device_add(&dev->dev);
2454 if (error)
2455 goto err_devres_free;
2456
2457 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2458 pr_info("%s as %s\n",
2459 dev->name ? dev->name : "Unspecified device",
2460 path ? path : "N/A");
2461 kfree(path);
2462
2463 error = mutex_lock_interruptible(&input_mutex);
2464 if (error)
2465 goto err_device_del;
2466
2467 list_add_tail(&dev->node, &input_dev_list);
2468
2469 list_for_each_entry(handler, &input_handler_list, node)
2470 input_attach_handler(dev, handler);
2471
2472 input_wakeup_procfs_readers();
2473
2474 mutex_unlock(&input_mutex);
2475
2476 if (dev->devres_managed) {
2477 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2478 __func__, dev_name(&dev->dev));
2479 devres_add(dev->dev.parent, devres);
2480 }
2481 return 0;
2482
2483 err_device_del:
2484 device_del(&dev->dev);
2485 err_devres_free:
2486 devres_free(devres);
2487 return error;
2488 }
2489 EXPORT_SYMBOL(input_register_device);
2490
2491 /**
2492 * input_unregister_device - unregister previously registered device
2493 * @dev: device to be unregistered
2494 *
2495 * This function unregisters an input device. Once device is unregistered
2496 * the caller should not try to access it as it may get freed at any moment.
2497 */
input_unregister_device(struct input_dev * dev)2498 void input_unregister_device(struct input_dev *dev)
2499 {
2500 if (dev->devres_managed) {
2501 WARN_ON(devres_destroy(dev->dev.parent,
2502 devm_input_device_unregister,
2503 devm_input_device_match,
2504 dev));
2505 __input_unregister_device(dev);
2506 /*
2507 * We do not do input_put_device() here because it will be done
2508 * when 2nd devres fires up.
2509 */
2510 } else {
2511 __input_unregister_device(dev);
2512 input_put_device(dev);
2513 }
2514 }
2515 EXPORT_SYMBOL(input_unregister_device);
2516
input_handler_check_methods(const struct input_handler * handler)2517 static int input_handler_check_methods(const struct input_handler *handler)
2518 {
2519 int count = 0;
2520
2521 if (handler->filter)
2522 count++;
2523 if (handler->events)
2524 count++;
2525 if (handler->event)
2526 count++;
2527
2528 if (count > 1) {
2529 pr_err("%s: only one event processing method can be defined (%s)\n",
2530 __func__, handler->name);
2531 return -EINVAL;
2532 }
2533
2534 return 0;
2535 }
2536
2537 /**
2538 * input_register_handler - register a new input handler
2539 * @handler: handler to be registered
2540 *
2541 * This function registers a new input handler (interface) for input
2542 * devices in the system and attaches it to all input devices that
2543 * are compatible with the handler.
2544 */
input_register_handler(struct input_handler * handler)2545 int input_register_handler(struct input_handler *handler)
2546 {
2547 struct input_dev *dev;
2548 int error;
2549
2550 error = input_handler_check_methods(handler);
2551 if (error)
2552 return error;
2553
2554 INIT_LIST_HEAD(&handler->h_list);
2555
2556 error = mutex_lock_interruptible(&input_mutex);
2557 if (error)
2558 return error;
2559
2560 list_add_tail(&handler->node, &input_handler_list);
2561
2562 list_for_each_entry(dev, &input_dev_list, node)
2563 input_attach_handler(dev, handler);
2564
2565 input_wakeup_procfs_readers();
2566
2567 mutex_unlock(&input_mutex);
2568 return 0;
2569 }
2570 EXPORT_SYMBOL(input_register_handler);
2571
2572 /**
2573 * input_unregister_handler - unregisters an input handler
2574 * @handler: handler to be unregistered
2575 *
2576 * This function disconnects a handler from its input devices and
2577 * removes it from lists of known handlers.
2578 */
input_unregister_handler(struct input_handler * handler)2579 void input_unregister_handler(struct input_handler *handler)
2580 {
2581 struct input_handle *handle, *next;
2582
2583 mutex_lock(&input_mutex);
2584
2585 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2586 handler->disconnect(handle);
2587 WARN_ON(!list_empty(&handler->h_list));
2588
2589 list_del_init(&handler->node);
2590
2591 input_wakeup_procfs_readers();
2592
2593 mutex_unlock(&input_mutex);
2594 }
2595 EXPORT_SYMBOL(input_unregister_handler);
2596
2597 /**
2598 * input_handler_for_each_handle - handle iterator
2599 * @handler: input handler to iterate
2600 * @data: data for the callback
2601 * @fn: function to be called for each handle
2602 *
2603 * Iterate over @bus's list of devices, and call @fn for each, passing
2604 * it @data and stop when @fn returns a non-zero value. The function is
2605 * using RCU to traverse the list and therefore may be using in atomic
2606 * contexts. The @fn callback is invoked from RCU critical section and
2607 * thus must not sleep.
2608 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2609 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2610 int (*fn)(struct input_handle *, void *))
2611 {
2612 struct input_handle *handle;
2613 int retval = 0;
2614
2615 rcu_read_lock();
2616
2617 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2618 retval = fn(handle, data);
2619 if (retval)
2620 break;
2621 }
2622
2623 rcu_read_unlock();
2624
2625 return retval;
2626 }
2627 EXPORT_SYMBOL(input_handler_for_each_handle);
2628
2629 /*
2630 * An implementation of input_handle's handle_events() method that simply
2631 * invokes handler->event() method for each event one by one.
2632 */
input_handle_events_default(struct input_handle * handle,struct input_value * vals,unsigned int count)2633 static unsigned int input_handle_events_default(struct input_handle *handle,
2634 struct input_value *vals,
2635 unsigned int count)
2636 {
2637 struct input_handler *handler = handle->handler;
2638 struct input_value *v;
2639
2640 for (v = vals; v != vals + count; v++)
2641 handler->event(handle, v->type, v->code, v->value);
2642
2643 return count;
2644 }
2645
2646 /*
2647 * An implementation of input_handle's handle_events() method that invokes
2648 * handler->filter() method for each event one by one and removes events
2649 * that were filtered out from the "vals" array.
2650 */
input_handle_events_filter(struct input_handle * handle,struct input_value * vals,unsigned int count)2651 static unsigned int input_handle_events_filter(struct input_handle *handle,
2652 struct input_value *vals,
2653 unsigned int count)
2654 {
2655 struct input_handler *handler = handle->handler;
2656 struct input_value *end = vals;
2657 struct input_value *v;
2658
2659 for (v = vals; v != vals + count; v++) {
2660 if (handler->filter(handle, v->type, v->code, v->value))
2661 continue;
2662 if (end != v)
2663 *end = *v;
2664 end++;
2665 }
2666
2667 return end - vals;
2668 }
2669
2670 /*
2671 * An implementation of input_handle's handle_events() method that does nothing.
2672 */
input_handle_events_null(struct input_handle * handle,struct input_value * vals,unsigned int count)2673 static unsigned int input_handle_events_null(struct input_handle *handle,
2674 struct input_value *vals,
2675 unsigned int count)
2676 {
2677 return count;
2678 }
2679
2680 /*
2681 * Sets up appropriate handle->event_handler based on the input_handler
2682 * associated with the handle.
2683 */
input_handle_setup_event_handler(struct input_handle * handle)2684 static void input_handle_setup_event_handler(struct input_handle *handle)
2685 {
2686 struct input_handler *handler = handle->handler;
2687
2688 if (handler->filter)
2689 handle->handle_events = input_handle_events_filter;
2690 else if (handler->event)
2691 handle->handle_events = input_handle_events_default;
2692 else if (handler->events)
2693 handle->handle_events = handler->events;
2694 else
2695 handle->handle_events = input_handle_events_null;
2696 }
2697
2698 /**
2699 * input_register_handle - register a new input handle
2700 * @handle: handle to register
2701 *
2702 * This function puts a new input handle onto device's
2703 * and handler's lists so that events can flow through
2704 * it once it is opened using input_open_device().
2705 *
2706 * This function is supposed to be called from handler's
2707 * connect() method.
2708 */
input_register_handle(struct input_handle * handle)2709 int input_register_handle(struct input_handle *handle)
2710 {
2711 struct input_handler *handler = handle->handler;
2712 struct input_dev *dev = handle->dev;
2713 int error;
2714
2715 input_handle_setup_event_handler(handle);
2716 /*
2717 * We take dev->mutex here to prevent race with
2718 * input_release_device().
2719 */
2720 error = mutex_lock_interruptible(&dev->mutex);
2721 if (error)
2722 return error;
2723
2724 /*
2725 * Filters go to the head of the list, normal handlers
2726 * to the tail.
2727 */
2728 if (handler->filter)
2729 list_add_rcu(&handle->d_node, &dev->h_list);
2730 else
2731 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2732
2733 mutex_unlock(&dev->mutex);
2734
2735 /*
2736 * Since we are supposed to be called from ->connect()
2737 * which is mutually exclusive with ->disconnect()
2738 * we can't be racing with input_unregister_handle()
2739 * and so separate lock is not needed here.
2740 */
2741 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2742
2743 if (handler->start)
2744 handler->start(handle);
2745
2746 return 0;
2747 }
2748 EXPORT_SYMBOL(input_register_handle);
2749
2750 /**
2751 * input_unregister_handle - unregister an input handle
2752 * @handle: handle to unregister
2753 *
2754 * This function removes input handle from device's
2755 * and handler's lists.
2756 *
2757 * This function is supposed to be called from handler's
2758 * disconnect() method.
2759 */
input_unregister_handle(struct input_handle * handle)2760 void input_unregister_handle(struct input_handle *handle)
2761 {
2762 struct input_dev *dev = handle->dev;
2763
2764 list_del_rcu(&handle->h_node);
2765
2766 /*
2767 * Take dev->mutex to prevent race with input_release_device().
2768 */
2769 mutex_lock(&dev->mutex);
2770 list_del_rcu(&handle->d_node);
2771 mutex_unlock(&dev->mutex);
2772
2773 synchronize_rcu();
2774 }
2775 EXPORT_SYMBOL(input_unregister_handle);
2776
2777 /**
2778 * input_get_new_minor - allocates a new input minor number
2779 * @legacy_base: beginning or the legacy range to be searched
2780 * @legacy_num: size of legacy range
2781 * @allow_dynamic: whether we can also take ID from the dynamic range
2782 *
2783 * This function allocates a new device minor for from input major namespace.
2784 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2785 * parameters and whether ID can be allocated from dynamic range if there are
2786 * no free IDs in legacy range.
2787 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2788 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2789 bool allow_dynamic)
2790 {
2791 /*
2792 * This function should be called from input handler's ->connect()
2793 * methods, which are serialized with input_mutex, so no additional
2794 * locking is needed here.
2795 */
2796 if (legacy_base >= 0) {
2797 int minor = ida_alloc_range(&input_ida, legacy_base,
2798 legacy_base + legacy_num - 1,
2799 GFP_KERNEL);
2800 if (minor >= 0 || !allow_dynamic)
2801 return minor;
2802 }
2803
2804 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2805 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2806 }
2807 EXPORT_SYMBOL(input_get_new_minor);
2808
2809 /**
2810 * input_free_minor - release previously allocated minor
2811 * @minor: minor to be released
2812 *
2813 * This function releases previously allocated input minor so that it can be
2814 * reused later.
2815 */
input_free_minor(unsigned int minor)2816 void input_free_minor(unsigned int minor)
2817 {
2818 ida_free(&input_ida, minor);
2819 }
2820 EXPORT_SYMBOL(input_free_minor);
2821
input_init(void)2822 static int __init input_init(void)
2823 {
2824 int err;
2825
2826 err = class_register(&input_class);
2827 if (err) {
2828 pr_err("unable to register input_dev class\n");
2829 return err;
2830 }
2831
2832 err = input_proc_init();
2833 if (err)
2834 goto fail1;
2835
2836 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2837 INPUT_MAX_CHAR_DEVICES, "input");
2838 if (err) {
2839 pr_err("unable to register char major %d", INPUT_MAJOR);
2840 goto fail2;
2841 }
2842
2843 return 0;
2844
2845 fail2: input_proc_exit();
2846 fail1: class_unregister(&input_class);
2847 return err;
2848 }
2849
input_exit(void)2850 static void __exit input_exit(void)
2851 {
2852 input_proc_exit();
2853 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2854 INPUT_MAX_CHAR_DEVICES);
2855 class_unregister(&input_class);
2856 }
2857
2858 subsys_initcall(input_init);
2859 module_exit(input_exit);
2860