1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4   * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5   */
6  
7  #include <stdlib.h>
8  #include <stdbool.h>
9  #include <unistd.h>
10  #include <sched.h>
11  #include <errno.h>
12  #include <string.h>
13  #include <sys/mman.h>
14  #include <sys/wait.h>
15  #include <asm/unistd.h>
16  #include <as-layout.h>
17  #include <init.h>
18  #include <kern_util.h>
19  #include <mem.h>
20  #include <os.h>
21  #include <ptrace_user.h>
22  #include <registers.h>
23  #include <skas.h>
24  #include <sysdep/stub.h>
25  #include <linux/threads.h>
26  #include <timetravel.h>
27  #include "../internal.h"
28  
is_skas_winch(int pid,int fd,void * data)29  int is_skas_winch(int pid, int fd, void *data)
30  {
31  	return pid == getpgrp();
32  }
33  
ptrace_reg_name(int idx)34  static const char *ptrace_reg_name(int idx)
35  {
36  #define R(n) case HOST_##n: return #n
37  
38  	switch (idx) {
39  #ifdef __x86_64__
40  	R(BX);
41  	R(CX);
42  	R(DI);
43  	R(SI);
44  	R(DX);
45  	R(BP);
46  	R(AX);
47  	R(R8);
48  	R(R9);
49  	R(R10);
50  	R(R11);
51  	R(R12);
52  	R(R13);
53  	R(R14);
54  	R(R15);
55  	R(ORIG_AX);
56  	R(CS);
57  	R(SS);
58  	R(EFLAGS);
59  #elif defined(__i386__)
60  	R(IP);
61  	R(SP);
62  	R(EFLAGS);
63  	R(AX);
64  	R(BX);
65  	R(CX);
66  	R(DX);
67  	R(SI);
68  	R(DI);
69  	R(BP);
70  	R(CS);
71  	R(SS);
72  	R(DS);
73  	R(FS);
74  	R(ES);
75  	R(GS);
76  	R(ORIG_AX);
77  #endif
78  	}
79  	return "";
80  }
81  
ptrace_dump_regs(int pid)82  static int ptrace_dump_regs(int pid)
83  {
84  	unsigned long regs[MAX_REG_NR];
85  	int i;
86  
87  	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
88  		return -errno;
89  
90  	printk(UM_KERN_ERR "Stub registers -\n");
91  	for (i = 0; i < ARRAY_SIZE(regs); i++) {
92  		const char *regname = ptrace_reg_name(i);
93  
94  		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
95  	}
96  
97  	return 0;
98  }
99  
100  /*
101   * Signals that are OK to receive in the stub - we'll just continue it.
102   * SIGWINCH will happen when UML is inside a detached screen.
103   */
104  #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
105  
106  /* Signals that the stub will finish with - anything else is an error */
107  #define STUB_DONE_MASK (1 << SIGTRAP)
108  
wait_stub_done(int pid)109  void wait_stub_done(int pid)
110  {
111  	int n, status, err;
112  
113  	while (1) {
114  		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
115  		if ((n < 0) || !WIFSTOPPED(status))
116  			goto bad_wait;
117  
118  		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
119  			break;
120  
121  		err = ptrace(PTRACE_CONT, pid, 0, 0);
122  		if (err) {
123  			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
124  			       __func__, errno);
125  			fatal_sigsegv();
126  		}
127  	}
128  
129  	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
130  		return;
131  
132  bad_wait:
133  	err = ptrace_dump_regs(pid);
134  	if (err)
135  		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
136  		       -err);
137  	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
138  	       __func__, pid, n, errno, status);
139  	fatal_sigsegv();
140  }
141  
142  extern unsigned long current_stub_stack(void);
143  
get_skas_faultinfo(int pid,struct faultinfo * fi,unsigned long * aux_fp_regs)144  static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
145  {
146  	int err;
147  
148  	err = get_fp_registers(pid, aux_fp_regs);
149  	if (err < 0) {
150  		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
151  		       err);
152  		fatal_sigsegv();
153  	}
154  	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
155  	if (err) {
156  		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
157  		       "errno = %d\n", pid, errno);
158  		fatal_sigsegv();
159  	}
160  	wait_stub_done(pid);
161  
162  	/*
163  	 * faultinfo is prepared by the stub_segv_handler at start of
164  	 * the stub stack page. We just have to copy it.
165  	 */
166  	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
167  
168  	err = put_fp_registers(pid, aux_fp_regs);
169  	if (err < 0) {
170  		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
171  		       err);
172  		fatal_sigsegv();
173  	}
174  }
175  
handle_segv(int pid,struct uml_pt_regs * regs,unsigned long * aux_fp_regs)176  static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
177  {
178  	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
179  	segv(regs->faultinfo, 0, 1, NULL);
180  }
181  
handle_trap(int pid,struct uml_pt_regs * regs)182  static void handle_trap(int pid, struct uml_pt_regs *regs)
183  {
184  	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
185  		fatal_sigsegv();
186  
187  	handle_syscall(regs);
188  }
189  
190  extern char __syscall_stub_start[];
191  
192  /**
193   * userspace_tramp() - userspace trampoline
194   * @stack:	pointer to the new userspace stack page
195   *
196   * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
197   * This function will run on a temporary stack page.
198   * It ptrace()'es itself, then
199   * Two pages are mapped into the userspace address space:
200   * - STUB_CODE (with EXEC), which contains the skas stub code
201   * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
202   * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
203   * And last the process stops itself to give control to the UML kernel for this userspace process.
204   *
205   * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
206   */
userspace_tramp(void * stack)207  static int userspace_tramp(void *stack)
208  {
209  	struct sigaction sa;
210  	void *addr;
211  	int fd;
212  	unsigned long long offset;
213  	unsigned long segv_handler = STUB_CODE +
214  				     (unsigned long) stub_segv_handler -
215  				     (unsigned long) __syscall_stub_start;
216  
217  	ptrace(PTRACE_TRACEME, 0, 0, 0);
218  
219  	signal(SIGTERM, SIG_DFL);
220  	signal(SIGWINCH, SIG_IGN);
221  
222  	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
223  	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
224  		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
225  	if (addr == MAP_FAILED) {
226  		os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
227  			STUB_CODE, errno);
228  		exit(1);
229  	}
230  
231  	fd = phys_mapping(uml_to_phys(stack), &offset);
232  	addr = mmap((void *) STUB_DATA,
233  		    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
234  		    MAP_FIXED | MAP_SHARED, fd, offset);
235  	if (addr == MAP_FAILED) {
236  		os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
237  			STUB_DATA, errno);
238  		exit(1);
239  	}
240  
241  	set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
242  	sigemptyset(&sa.sa_mask);
243  	sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
244  	sa.sa_sigaction = (void *) segv_handler;
245  	sa.sa_restorer = NULL;
246  	if (sigaction(SIGSEGV, &sa, NULL) < 0) {
247  		os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
248  			__func__, errno);
249  		exit(1);
250  	}
251  
252  	kill(os_getpid(), SIGSTOP);
253  	return 0;
254  }
255  
256  int userspace_pid[NR_CPUS];
257  
258  /**
259   * start_userspace() - prepare a new userspace process
260   * @stub_stack:	pointer to the stub stack.
261   *
262   * Setups a new temporary stack page that is used while userspace_tramp() runs
263   * Clones the kernel process into a new userspace process, with FDs only.
264   *
265   * Return: When positive: the process id of the new userspace process,
266   *         when negative: an error number.
267   * FIXME: can PIDs become negative?!
268   */
start_userspace(unsigned long stub_stack)269  int start_userspace(unsigned long stub_stack)
270  {
271  	void *stack;
272  	unsigned long sp;
273  	int pid, status, n, flags, err;
274  
275  	/* setup a temporary stack page */
276  	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
277  		     PROT_READ | PROT_WRITE | PROT_EXEC,
278  		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
279  	if (stack == MAP_FAILED) {
280  		err = -errno;
281  		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
282  		       __func__, errno);
283  		return err;
284  	}
285  
286  	/* set stack pointer to the end of the stack page, so it can grow downwards */
287  	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
288  
289  	flags = CLONE_FILES | SIGCHLD;
290  
291  	/* clone into new userspace process */
292  	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
293  	if (pid < 0) {
294  		err = -errno;
295  		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
296  		       __func__, errno);
297  		return err;
298  	}
299  
300  	do {
301  		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
302  		if (n < 0) {
303  			err = -errno;
304  			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
305  			       __func__, errno);
306  			goto out_kill;
307  		}
308  	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
309  
310  	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
311  		err = -EINVAL;
312  		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
313  		       __func__, status);
314  		goto out_kill;
315  	}
316  
317  	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
318  		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
319  		err = -errno;
320  		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
321  		       __func__, errno);
322  		goto out_kill;
323  	}
324  
325  	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
326  		err = -errno;
327  		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
328  		       __func__, errno);
329  		goto out_kill;
330  	}
331  
332  	return pid;
333  
334   out_kill:
335  	os_kill_ptraced_process(pid, 1);
336  	return err;
337  }
338  
userspace(struct uml_pt_regs * regs,unsigned long * aux_fp_regs)339  void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
340  {
341  	int err, status, op, pid = userspace_pid[0];
342  	siginfo_t si;
343  
344  	/* Handle any immediate reschedules or signals */
345  	interrupt_end();
346  
347  	while (1) {
348  		time_travel_print_bc_msg();
349  
350  		current_mm_sync();
351  
352  		/* Flush out any pending syscalls */
353  		err = syscall_stub_flush(current_mm_id());
354  		if (err) {
355  			if (err == -ENOMEM)
356  				report_enomem();
357  
358  			printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
359  				__func__, -err);
360  			fatal_sigsegv();
361  		}
362  
363  		/*
364  		 * This can legitimately fail if the process loads a
365  		 * bogus value into a segment register.  It will
366  		 * segfault and PTRACE_GETREGS will read that value
367  		 * out of the process.  However, PTRACE_SETREGS will
368  		 * fail.  In this case, there is nothing to do but
369  		 * just kill the process.
370  		 */
371  		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
372  			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
373  			       __func__, errno);
374  			fatal_sigsegv();
375  		}
376  
377  		if (put_fp_registers(pid, regs->fp)) {
378  			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
379  			       __func__, errno);
380  			fatal_sigsegv();
381  		}
382  
383  		if (singlestepping())
384  			op = PTRACE_SYSEMU_SINGLESTEP;
385  		else
386  			op = PTRACE_SYSEMU;
387  
388  		if (ptrace(op, pid, 0, 0)) {
389  			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
390  			       __func__, op, errno);
391  			fatal_sigsegv();
392  		}
393  
394  		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
395  		if (err < 0) {
396  			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
397  			       __func__, errno);
398  			fatal_sigsegv();
399  		}
400  
401  		regs->is_user = 1;
402  		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
403  			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
404  			       __func__, errno);
405  			fatal_sigsegv();
406  		}
407  
408  		if (get_fp_registers(pid, regs->fp)) {
409  			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
410  			       __func__, errno);
411  			fatal_sigsegv();
412  		}
413  
414  		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
415  
416  		if (WIFSTOPPED(status)) {
417  			int sig = WSTOPSIG(status);
418  
419  			/* These signal handlers need the si argument.
420  			 * The SIGIO and SIGALARM handlers which constitute the
421  			 * majority of invocations, do not use it.
422  			 */
423  			switch (sig) {
424  			case SIGSEGV:
425  			case SIGTRAP:
426  			case SIGILL:
427  			case SIGBUS:
428  			case SIGFPE:
429  			case SIGWINCH:
430  				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
431  				break;
432  			}
433  
434  			switch (sig) {
435  			case SIGSEGV:
436  				if (PTRACE_FULL_FAULTINFO) {
437  					get_skas_faultinfo(pid,
438  							   &regs->faultinfo, aux_fp_regs);
439  					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
440  							     regs);
441  				}
442  				else handle_segv(pid, regs, aux_fp_regs);
443  				break;
444  			case SIGTRAP + 0x80:
445  				handle_trap(pid, regs);
446  				break;
447  			case SIGTRAP:
448  				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
449  				break;
450  			case SIGALRM:
451  				break;
452  			case SIGIO:
453  			case SIGILL:
454  			case SIGBUS:
455  			case SIGFPE:
456  			case SIGWINCH:
457  				block_signals_trace();
458  				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
459  				unblock_signals_trace();
460  				break;
461  			default:
462  				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
463  				       __func__, sig);
464  				fatal_sigsegv();
465  			}
466  			pid = userspace_pid[0];
467  			interrupt_end();
468  
469  			/* Avoid -ERESTARTSYS handling in host */
470  			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
471  				PT_SYSCALL_NR(regs->gp) = -1;
472  		}
473  	}
474  }
475  
new_thread(void * stack,jmp_buf * buf,void (* handler)(void))476  void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
477  {
478  	(*buf)[0].JB_IP = (unsigned long) handler;
479  	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
480  		sizeof(void *);
481  }
482  
483  #define INIT_JMP_NEW_THREAD 0
484  #define INIT_JMP_CALLBACK 1
485  #define INIT_JMP_HALT 2
486  #define INIT_JMP_REBOOT 3
487  
switch_threads(jmp_buf * me,jmp_buf * you)488  void switch_threads(jmp_buf *me, jmp_buf *you)
489  {
490  	if (UML_SETJMP(me) == 0)
491  		UML_LONGJMP(you, 1);
492  }
493  
494  static jmp_buf initial_jmpbuf;
495  
496  /* XXX Make these percpu */
497  static void (*cb_proc)(void *arg);
498  static void *cb_arg;
499  static jmp_buf *cb_back;
500  
start_idle_thread(void * stack,jmp_buf * switch_buf)501  int start_idle_thread(void *stack, jmp_buf *switch_buf)
502  {
503  	int n;
504  
505  	set_handler(SIGWINCH);
506  
507  	/*
508  	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
509  	 * and restore signals, with the possible side-effect of
510  	 * trying to handle any signals which came when they were
511  	 * blocked, which can't be done on this stack.
512  	 * Signals must be blocked when jumping back here and restored
513  	 * after returning to the jumper.
514  	 */
515  	n = setjmp(initial_jmpbuf);
516  	switch (n) {
517  	case INIT_JMP_NEW_THREAD:
518  		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
519  		(*switch_buf)[0].JB_SP = (unsigned long) stack +
520  			UM_THREAD_SIZE - sizeof(void *);
521  		break;
522  	case INIT_JMP_CALLBACK:
523  		(*cb_proc)(cb_arg);
524  		longjmp(*cb_back, 1);
525  		break;
526  	case INIT_JMP_HALT:
527  		kmalloc_ok = 0;
528  		return 0;
529  	case INIT_JMP_REBOOT:
530  		kmalloc_ok = 0;
531  		return 1;
532  	default:
533  		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
534  		       __func__, n);
535  		fatal_sigsegv();
536  	}
537  	longjmp(*switch_buf, 1);
538  
539  	/* unreachable */
540  	printk(UM_KERN_ERR "impossible long jump!");
541  	fatal_sigsegv();
542  	return 0;
543  }
544  
initial_thread_cb_skas(void (* proc)(void *),void * arg)545  void initial_thread_cb_skas(void (*proc)(void *), void *arg)
546  {
547  	jmp_buf here;
548  
549  	cb_proc = proc;
550  	cb_arg = arg;
551  	cb_back = &here;
552  
553  	block_signals_trace();
554  	if (UML_SETJMP(&here) == 0)
555  		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
556  	unblock_signals_trace();
557  
558  	cb_proc = NULL;
559  	cb_arg = NULL;
560  	cb_back = NULL;
561  }
562  
halt_skas(void)563  void halt_skas(void)
564  {
565  	block_signals_trace();
566  	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
567  }
568  
569  static bool noreboot;
570  
noreboot_cmd_param(char * str,int * add)571  static int __init noreboot_cmd_param(char *str, int *add)
572  {
573  	noreboot = true;
574  	return 0;
575  }
576  
577  __uml_setup("noreboot", noreboot_cmd_param,
578  "noreboot\n"
579  "    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
580  "    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
581  "    crashes in CI\n");
582  
reboot_skas(void)583  void reboot_skas(void)
584  {
585  	block_signals_trace();
586  	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
587  }
588  
__switch_mm(struct mm_id * mm_idp)589  void __switch_mm(struct mm_id *mm_idp)
590  {
591  	userspace_pid[0] = mm_idp->pid;
592  }
593