1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)274 static void set_task_reclaim_state(struct task_struct *task,
275 				   struct reclaim_state *rs)
276 {
277 	/* Check for an overwrite */
278 	WARN_ON_ONCE(rs && task->reclaim_state);
279 
280 	/* Check for the nulling of an already-nulled member */
281 	WARN_ON_ONCE(!rs && !task->reclaim_state);
282 
283 	task->reclaim_state = rs;
284 }
285 
286 /*
287  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288  * scan_control->nr_reclaimed.
289  */
flush_reclaim_state(struct scan_control * sc)290 static void flush_reclaim_state(struct scan_control *sc)
291 {
292 	/*
293 	 * Currently, reclaim_state->reclaimed includes three types of pages
294 	 * freed outside of vmscan:
295 	 * (1) Slab pages.
296 	 * (2) Clean file pages from pruned inodes (on highmem systems).
297 	 * (3) XFS freed buffer pages.
298 	 *
299 	 * For all of these cases, we cannot universally link the pages to a
300 	 * single memcg. For example, a memcg-aware shrinker can free one object
301 	 * charged to the target memcg, causing an entire page to be freed.
302 	 * If we count the entire page as reclaimed from the memcg, we end up
303 	 * overestimating the reclaimed amount (potentially under-reclaiming).
304 	 *
305 	 * Only count such pages for global reclaim to prevent under-reclaiming
306 	 * from the target memcg; preventing unnecessary retries during memcg
307 	 * charging and false positives from proactive reclaim.
308 	 *
309 	 * For uncommon cases where the freed pages were actually mostly
310 	 * charged to the target memcg, we end up underestimating the reclaimed
311 	 * amount. This should be fine. The freed pages will be uncharged
312 	 * anyway, even if they are not counted here properly, and we will be
313 	 * able to make forward progress in charging (which is usually in a
314 	 * retry loop).
315 	 *
316 	 * We can go one step further, and report the uncharged objcg pages in
317 	 * memcg reclaim, to make reporting more accurate and reduce
318 	 * underestimation, but it's probably not worth the complexity for now.
319 	 */
320 	if (current->reclaim_state && root_reclaim(sc)) {
321 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
322 		current->reclaim_state->reclaimed = 0;
323 	}
324 }
325 
can_demote(int nid,struct scan_control * sc)326 static bool can_demote(int nid, struct scan_control *sc)
327 {
328 	if (!numa_demotion_enabled)
329 		return false;
330 	if (sc && sc->no_demotion)
331 		return false;
332 	if (next_demotion_node(nid) == NUMA_NO_NODE)
333 		return false;
334 
335 	return true;
336 }
337 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
339 					  int nid,
340 					  struct scan_control *sc)
341 {
342 	if (memcg == NULL) {
343 		/*
344 		 * For non-memcg reclaim, is there
345 		 * space in any swap device?
346 		 */
347 		if (get_nr_swap_pages() > 0)
348 			return true;
349 	} else {
350 		/* Is the memcg below its swap limit? */
351 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
352 			return true;
353 	}
354 
355 	/*
356 	 * The page can not be swapped.
357 	 *
358 	 * Can it be reclaimed from this node via demotion?
359 	 */
360 	return can_demote(nid, sc);
361 }
362 
363 /*
364  * This misses isolated folios which are not accounted for to save counters.
365  * As the data only determines if reclaim or compaction continues, it is
366  * not expected that isolated folios will be a dominating factor.
367  */
zone_reclaimable_pages(struct zone * zone)368 unsigned long zone_reclaimable_pages(struct zone *zone)
369 {
370 	unsigned long nr;
371 
372 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
373 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
374 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
375 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
376 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
377 
378 	return nr;
379 }
380 
381 /**
382  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
383  * @lruvec: lru vector
384  * @lru: lru to use
385  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
386  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)387 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
388 				     int zone_idx)
389 {
390 	unsigned long size = 0;
391 	int zid;
392 
393 	for (zid = 0; zid <= zone_idx; zid++) {
394 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
395 
396 		if (!managed_zone(zone))
397 			continue;
398 
399 		if (!mem_cgroup_disabled())
400 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
401 		else
402 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
403 	}
404 	return size;
405 }
406 
drop_slab_node(int nid)407 static unsigned long drop_slab_node(int nid)
408 {
409 	unsigned long freed = 0;
410 	struct mem_cgroup *memcg = NULL;
411 
412 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
413 	do {
414 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
415 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
416 
417 	return freed;
418 }
419 
drop_slab(void)420 void drop_slab(void)
421 {
422 	int nid;
423 	int shift = 0;
424 	unsigned long freed;
425 
426 	do {
427 		freed = 0;
428 		for_each_online_node(nid) {
429 			if (fatal_signal_pending(current))
430 				return;
431 
432 			freed += drop_slab_node(nid);
433 		}
434 	} while ((freed >> shift++) > 1);
435 }
436 
reclaimer_offset(void)437 static int reclaimer_offset(void)
438 {
439 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
440 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
441 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
442 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
443 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
444 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
445 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
446 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
447 
448 	if (current_is_kswapd())
449 		return 0;
450 	if (current_is_khugepaged())
451 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
452 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
453 }
454 
is_page_cache_freeable(struct folio * folio)455 static inline int is_page_cache_freeable(struct folio *folio)
456 {
457 	/*
458 	 * A freeable page cache folio is referenced only by the caller
459 	 * that isolated the folio, the page cache and optional filesystem
460 	 * private data at folio->private.
461 	 */
462 	return folio_ref_count(folio) - folio_test_private(folio) ==
463 		1 + folio_nr_pages(folio);
464 }
465 
466 /*
467  * We detected a synchronous write error writing a folio out.  Probably
468  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
469  * fsync(), msync() or close().
470  *
471  * The tricky part is that after writepage we cannot touch the mapping: nothing
472  * prevents it from being freed up.  But we have a ref on the folio and once
473  * that folio is locked, the mapping is pinned.
474  *
475  * We're allowed to run sleeping folio_lock() here because we know the caller has
476  * __GFP_FS.
477  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)478 static void handle_write_error(struct address_space *mapping,
479 				struct folio *folio, int error)
480 {
481 	folio_lock(folio);
482 	if (folio_mapping(folio) == mapping)
483 		mapping_set_error(mapping, error);
484 	folio_unlock(folio);
485 }
486 
skip_throttle_noprogress(pg_data_t * pgdat)487 static bool skip_throttle_noprogress(pg_data_t *pgdat)
488 {
489 	int reclaimable = 0, write_pending = 0;
490 	int i;
491 
492 	/*
493 	 * If kswapd is disabled, reschedule if necessary but do not
494 	 * throttle as the system is likely near OOM.
495 	 */
496 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
497 		return true;
498 
499 	/*
500 	 * If there are a lot of dirty/writeback folios then do not
501 	 * throttle as throttling will occur when the folios cycle
502 	 * towards the end of the LRU if still under writeback.
503 	 */
504 	for (i = 0; i < MAX_NR_ZONES; i++) {
505 		struct zone *zone = pgdat->node_zones + i;
506 
507 		if (!managed_zone(zone))
508 			continue;
509 
510 		reclaimable += zone_reclaimable_pages(zone);
511 		write_pending += zone_page_state_snapshot(zone,
512 						  NR_ZONE_WRITE_PENDING);
513 	}
514 	if (2 * write_pending <= reclaimable)
515 		return true;
516 
517 	return false;
518 }
519 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)520 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
521 {
522 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
523 	long timeout, ret;
524 	DEFINE_WAIT(wait);
525 
526 	/*
527 	 * Do not throttle user workers, kthreads other than kswapd or
528 	 * workqueues. They may be required for reclaim to make
529 	 * forward progress (e.g. journalling workqueues or kthreads).
530 	 */
531 	if (!current_is_kswapd() &&
532 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
533 		cond_resched();
534 		return;
535 	}
536 
537 	/*
538 	 * These figures are pulled out of thin air.
539 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
540 	 * parallel reclaimers which is a short-lived event so the timeout is
541 	 * short. Failing to make progress or waiting on writeback are
542 	 * potentially long-lived events so use a longer timeout. This is shaky
543 	 * logic as a failure to make progress could be due to anything from
544 	 * writeback to a slow device to excessive referenced folios at the tail
545 	 * of the inactive LRU.
546 	 */
547 	switch(reason) {
548 	case VMSCAN_THROTTLE_WRITEBACK:
549 		timeout = HZ/10;
550 
551 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
552 			WRITE_ONCE(pgdat->nr_reclaim_start,
553 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
554 		}
555 
556 		break;
557 	case VMSCAN_THROTTLE_CONGESTED:
558 		fallthrough;
559 	case VMSCAN_THROTTLE_NOPROGRESS:
560 		if (skip_throttle_noprogress(pgdat)) {
561 			cond_resched();
562 			return;
563 		}
564 
565 		timeout = 1;
566 
567 		break;
568 	case VMSCAN_THROTTLE_ISOLATED:
569 		timeout = HZ/50;
570 		break;
571 	default:
572 		WARN_ON_ONCE(1);
573 		timeout = HZ;
574 		break;
575 	}
576 
577 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
578 	ret = schedule_timeout(timeout);
579 	finish_wait(wqh, &wait);
580 
581 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
582 		atomic_dec(&pgdat->nr_writeback_throttled);
583 
584 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
585 				jiffies_to_usecs(timeout - ret),
586 				reason);
587 }
588 
589 /*
590  * Account for folios written if tasks are throttled waiting on dirty
591  * folios to clean. If enough folios have been cleaned since throttling
592  * started then wakeup the throttled tasks.
593  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)594 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
595 							int nr_throttled)
596 {
597 	unsigned long nr_written;
598 
599 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
600 
601 	/*
602 	 * This is an inaccurate read as the per-cpu deltas may not
603 	 * be synchronised. However, given that the system is
604 	 * writeback throttled, it is not worth taking the penalty
605 	 * of getting an accurate count. At worst, the throttle
606 	 * timeout guarantees forward progress.
607 	 */
608 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
609 		READ_ONCE(pgdat->nr_reclaim_start);
610 
611 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
612 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
613 }
614 
615 /* possible outcome of pageout() */
616 typedef enum {
617 	/* failed to write folio out, folio is locked */
618 	PAGE_KEEP,
619 	/* move folio to the active list, folio is locked */
620 	PAGE_ACTIVATE,
621 	/* folio has been sent to the disk successfully, folio is unlocked */
622 	PAGE_SUCCESS,
623 	/* folio is clean and locked */
624 	PAGE_CLEAN,
625 } pageout_t;
626 
627 /*
628  * pageout is called by shrink_folio_list() for each dirty folio.
629  * Calls ->writepage().
630  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)631 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
632 			 struct swap_iocb **plug, struct list_head *folio_list)
633 {
634 	/*
635 	 * If the folio is dirty, only perform writeback if that write
636 	 * will be non-blocking.  To prevent this allocation from being
637 	 * stalled by pagecache activity.  But note that there may be
638 	 * stalls if we need to run get_block().  We could test
639 	 * PagePrivate for that.
640 	 *
641 	 * If this process is currently in __generic_file_write_iter() against
642 	 * this folio's queue, we can perform writeback even if that
643 	 * will block.
644 	 *
645 	 * If the folio is swapcache, write it back even if that would
646 	 * block, for some throttling. This happens by accident, because
647 	 * swap_backing_dev_info is bust: it doesn't reflect the
648 	 * congestion state of the swapdevs.  Easy to fix, if needed.
649 	 */
650 	if (!is_page_cache_freeable(folio))
651 		return PAGE_KEEP;
652 	if (!mapping) {
653 		/*
654 		 * Some data journaling orphaned folios can have
655 		 * folio->mapping == NULL while being dirty with clean buffers.
656 		 */
657 		if (folio_test_private(folio)) {
658 			if (try_to_free_buffers(folio)) {
659 				folio_clear_dirty(folio);
660 				pr_info("%s: orphaned folio\n", __func__);
661 				return PAGE_CLEAN;
662 			}
663 		}
664 		return PAGE_KEEP;
665 	}
666 	if (mapping->a_ops->writepage == NULL)
667 		return PAGE_ACTIVATE;
668 
669 	if (folio_clear_dirty_for_io(folio)) {
670 		int res;
671 		struct writeback_control wbc = {
672 			.sync_mode = WB_SYNC_NONE,
673 			.nr_to_write = SWAP_CLUSTER_MAX,
674 			.range_start = 0,
675 			.range_end = LLONG_MAX,
676 			.for_reclaim = 1,
677 			.swap_plug = plug,
678 		};
679 
680 		/*
681 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
682 		 * not enabled or contiguous swap entries are failed to
683 		 * allocate.
684 		 */
685 		if (shmem_mapping(mapping) && folio_test_large(folio))
686 			wbc.list = folio_list;
687 
688 		folio_set_reclaim(folio);
689 		res = mapping->a_ops->writepage(&folio->page, &wbc);
690 		if (res < 0)
691 			handle_write_error(mapping, folio, res);
692 		if (res == AOP_WRITEPAGE_ACTIVATE) {
693 			folio_clear_reclaim(folio);
694 			return PAGE_ACTIVATE;
695 		}
696 
697 		if (!folio_test_writeback(folio)) {
698 			/* synchronous write or broken a_ops? */
699 			folio_clear_reclaim(folio);
700 		}
701 		trace_mm_vmscan_write_folio(folio);
702 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
703 		return PAGE_SUCCESS;
704 	}
705 
706 	return PAGE_CLEAN;
707 }
708 
709 /*
710  * Same as remove_mapping, but if the folio is removed from the mapping, it
711  * gets returned with a refcount of 0.
712  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)713 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
714 			    bool reclaimed, struct mem_cgroup *target_memcg)
715 {
716 	int refcount;
717 	void *shadow = NULL;
718 
719 	BUG_ON(!folio_test_locked(folio));
720 	BUG_ON(mapping != folio_mapping(folio));
721 
722 	if (!folio_test_swapcache(folio))
723 		spin_lock(&mapping->host->i_lock);
724 	xa_lock_irq(&mapping->i_pages);
725 	/*
726 	 * The non racy check for a busy folio.
727 	 *
728 	 * Must be careful with the order of the tests. When someone has
729 	 * a ref to the folio, it may be possible that they dirty it then
730 	 * drop the reference. So if the dirty flag is tested before the
731 	 * refcount here, then the following race may occur:
732 	 *
733 	 * get_user_pages(&page);
734 	 * [user mapping goes away]
735 	 * write_to(page);
736 	 *				!folio_test_dirty(folio)    [good]
737 	 * folio_set_dirty(folio);
738 	 * folio_put(folio);
739 	 *				!refcount(folio)   [good, discard it]
740 	 *
741 	 * [oops, our write_to data is lost]
742 	 *
743 	 * Reversing the order of the tests ensures such a situation cannot
744 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
745 	 * load is not satisfied before that of folio->_refcount.
746 	 *
747 	 * Note that if the dirty flag is always set via folio_mark_dirty,
748 	 * and thus under the i_pages lock, then this ordering is not required.
749 	 */
750 	refcount = 1 + folio_nr_pages(folio);
751 	if (!folio_ref_freeze(folio, refcount))
752 		goto cannot_free;
753 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
754 	if (unlikely(folio_test_dirty(folio))) {
755 		folio_ref_unfreeze(folio, refcount);
756 		goto cannot_free;
757 	}
758 
759 	if (folio_test_swapcache(folio)) {
760 		swp_entry_t swap = folio->swap;
761 
762 		if (reclaimed && !mapping_exiting(mapping))
763 			shadow = workingset_eviction(folio, target_memcg);
764 		__delete_from_swap_cache(folio, swap, shadow);
765 		mem_cgroup_swapout(folio, swap);
766 		xa_unlock_irq(&mapping->i_pages);
767 		put_swap_folio(folio, swap);
768 	} else {
769 		void (*free_folio)(struct folio *);
770 
771 		free_folio = mapping->a_ops->free_folio;
772 		/*
773 		 * Remember a shadow entry for reclaimed file cache in
774 		 * order to detect refaults, thus thrashing, later on.
775 		 *
776 		 * But don't store shadows in an address space that is
777 		 * already exiting.  This is not just an optimization,
778 		 * inode reclaim needs to empty out the radix tree or
779 		 * the nodes are lost.  Don't plant shadows behind its
780 		 * back.
781 		 *
782 		 * We also don't store shadows for DAX mappings because the
783 		 * only page cache folios found in these are zero pages
784 		 * covering holes, and because we don't want to mix DAX
785 		 * exceptional entries and shadow exceptional entries in the
786 		 * same address_space.
787 		 */
788 		if (reclaimed && folio_is_file_lru(folio) &&
789 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
790 			shadow = workingset_eviction(folio, target_memcg);
791 		__filemap_remove_folio(folio, shadow);
792 		xa_unlock_irq(&mapping->i_pages);
793 		if (mapping_shrinkable(mapping))
794 			inode_add_lru(mapping->host);
795 		spin_unlock(&mapping->host->i_lock);
796 
797 		if (free_folio)
798 			free_folio(folio);
799 	}
800 
801 	return 1;
802 
803 cannot_free:
804 	xa_unlock_irq(&mapping->i_pages);
805 	if (!folio_test_swapcache(folio))
806 		spin_unlock(&mapping->host->i_lock);
807 	return 0;
808 }
809 
810 /**
811  * remove_mapping() - Attempt to remove a folio from its mapping.
812  * @mapping: The address space.
813  * @folio: The folio to remove.
814  *
815  * If the folio is dirty, under writeback or if someone else has a ref
816  * on it, removal will fail.
817  * Return: The number of pages removed from the mapping.  0 if the folio
818  * could not be removed.
819  * Context: The caller should have a single refcount on the folio and
820  * hold its lock.
821  */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 	if (__remove_mapping(mapping, folio, false, NULL)) {
825 		/*
826 		 * Unfreezing the refcount with 1 effectively
827 		 * drops the pagecache ref for us without requiring another
828 		 * atomic operation.
829 		 */
830 		folio_ref_unfreeze(folio, 1);
831 		return folio_nr_pages(folio);
832 	}
833 	return 0;
834 }
835 
836 /**
837  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838  * @folio: Folio to be returned to an LRU list.
839  *
840  * Add previously isolated @folio to appropriate LRU list.
841  * The folio may still be unevictable for other reasons.
842  *
843  * Context: lru_lock must not be held, interrupts must be enabled.
844  */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 	folio_add_lru(folio);
848 	folio_put(folio);		/* drop ref from isolate */
849 }
850 
851 enum folio_references {
852 	FOLIOREF_RECLAIM,
853 	FOLIOREF_RECLAIM_CLEAN,
854 	FOLIOREF_KEEP,
855 	FOLIOREF_ACTIVATE,
856 };
857 
folio_check_references(struct folio * folio,struct scan_control * sc)858 static enum folio_references folio_check_references(struct folio *folio,
859 						  struct scan_control *sc)
860 {
861 	int referenced_ptes, referenced_folio;
862 	unsigned long vm_flags;
863 
864 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
865 					   &vm_flags);
866 	referenced_folio = folio_test_clear_referenced(folio);
867 
868 	/*
869 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
870 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
871 	 */
872 	if (vm_flags & VM_LOCKED)
873 		return FOLIOREF_ACTIVATE;
874 
875 	/*
876 	 * There are two cases to consider.
877 	 * 1) Rmap lock contention: rotate.
878 	 * 2) Skip the non-shared swapbacked folio mapped solely by
879 	 *    the exiting or OOM-reaped process.
880 	 */
881 	if (referenced_ptes == -1)
882 		return FOLIOREF_KEEP;
883 
884 	if (referenced_ptes) {
885 		/*
886 		 * All mapped folios start out with page table
887 		 * references from the instantiating fault, so we need
888 		 * to look twice if a mapped file/anon folio is used more
889 		 * than once.
890 		 *
891 		 * Mark it and spare it for another trip around the
892 		 * inactive list.  Another page table reference will
893 		 * lead to its activation.
894 		 *
895 		 * Note: the mark is set for activated folios as well
896 		 * so that recently deactivated but used folios are
897 		 * quickly recovered.
898 		 */
899 		folio_set_referenced(folio);
900 
901 		if (referenced_folio || referenced_ptes > 1)
902 			return FOLIOREF_ACTIVATE;
903 
904 		/*
905 		 * Activate file-backed executable folios after first usage.
906 		 */
907 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
908 			return FOLIOREF_ACTIVATE;
909 
910 		return FOLIOREF_KEEP;
911 	}
912 
913 	/* Reclaim if clean, defer dirty folios to writeback */
914 	if (referenced_folio && folio_is_file_lru(folio))
915 		return FOLIOREF_RECLAIM_CLEAN;
916 
917 	return FOLIOREF_RECLAIM;
918 }
919 
920 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)921 static void folio_check_dirty_writeback(struct folio *folio,
922 				       bool *dirty, bool *writeback)
923 {
924 	struct address_space *mapping;
925 
926 	/*
927 	 * Anonymous folios are not handled by flushers and must be written
928 	 * from reclaim context. Do not stall reclaim based on them.
929 	 * MADV_FREE anonymous folios are put into inactive file list too.
930 	 * They could be mistakenly treated as file lru. So further anon
931 	 * test is needed.
932 	 */
933 	if (!folio_is_file_lru(folio) ||
934 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
935 		*dirty = false;
936 		*writeback = false;
937 		return;
938 	}
939 
940 	/* By default assume that the folio flags are accurate */
941 	*dirty = folio_test_dirty(folio);
942 	*writeback = folio_test_writeback(folio);
943 
944 	/* Verify dirty/writeback state if the filesystem supports it */
945 	if (!folio_test_private(folio))
946 		return;
947 
948 	mapping = folio_mapping(folio);
949 	if (mapping && mapping->a_ops->is_dirty_writeback)
950 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
951 }
952 
alloc_migrate_folio(struct folio * src,unsigned long private)953 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
954 {
955 	struct folio *dst;
956 	nodemask_t *allowed_mask;
957 	struct migration_target_control *mtc;
958 
959 	mtc = (struct migration_target_control *)private;
960 
961 	allowed_mask = mtc->nmask;
962 	/*
963 	 * make sure we allocate from the target node first also trying to
964 	 * demote or reclaim pages from the target node via kswapd if we are
965 	 * low on free memory on target node. If we don't do this and if
966 	 * we have free memory on the slower(lower) memtier, we would start
967 	 * allocating pages from slower(lower) memory tiers without even forcing
968 	 * a demotion of cold pages from the target memtier. This can result
969 	 * in the kernel placing hot pages in slower(lower) memory tiers.
970 	 */
971 	mtc->nmask = NULL;
972 	mtc->gfp_mask |= __GFP_THISNODE;
973 	dst = alloc_migration_target(src, (unsigned long)mtc);
974 	if (dst)
975 		return dst;
976 
977 	mtc->gfp_mask &= ~__GFP_THISNODE;
978 	mtc->nmask = allowed_mask;
979 
980 	return alloc_migration_target(src, (unsigned long)mtc);
981 }
982 
983 /*
984  * Take folios on @demote_folios and attempt to demote them to another node.
985  * Folios which are not demoted are left on @demote_folios.
986  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)987 static unsigned int demote_folio_list(struct list_head *demote_folios,
988 				     struct pglist_data *pgdat)
989 {
990 	int target_nid = next_demotion_node(pgdat->node_id);
991 	unsigned int nr_succeeded;
992 	nodemask_t allowed_mask;
993 
994 	struct migration_target_control mtc = {
995 		/*
996 		 * Allocate from 'node', or fail quickly and quietly.
997 		 * When this happens, 'page' will likely just be discarded
998 		 * instead of migrated.
999 		 */
1000 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1001 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1002 		.nid = target_nid,
1003 		.nmask = &allowed_mask,
1004 		.reason = MR_DEMOTION,
1005 	};
1006 
1007 	if (list_empty(demote_folios))
1008 		return 0;
1009 
1010 	if (target_nid == NUMA_NO_NODE)
1011 		return 0;
1012 
1013 	node_get_allowed_targets(pgdat, &allowed_mask);
1014 
1015 	/* Demotion ignores all cpuset and mempolicy settings */
1016 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1017 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1018 		      &nr_succeeded);
1019 
1020 	return nr_succeeded;
1021 }
1022 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1023 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1024 {
1025 	if (gfp_mask & __GFP_FS)
1026 		return true;
1027 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1028 		return false;
1029 	/*
1030 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1031 	 * providing this isn't SWP_FS_OPS.
1032 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1033 	 * but that will never affect SWP_FS_OPS, so the data_race
1034 	 * is safe.
1035 	 */
1036 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1037 }
1038 
1039 /*
1040  * shrink_folio_list() returns the number of reclaimed pages
1041  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1042 static unsigned int shrink_folio_list(struct list_head *folio_list,
1043 		struct pglist_data *pgdat, struct scan_control *sc,
1044 		struct reclaim_stat *stat, bool ignore_references)
1045 {
1046 	struct folio_batch free_folios;
1047 	LIST_HEAD(ret_folios);
1048 	LIST_HEAD(demote_folios);
1049 	unsigned int nr_reclaimed = 0;
1050 	unsigned int pgactivate = 0;
1051 	bool do_demote_pass;
1052 	struct swap_iocb *plug = NULL;
1053 
1054 	folio_batch_init(&free_folios);
1055 	memset(stat, 0, sizeof(*stat));
1056 	cond_resched();
1057 	do_demote_pass = can_demote(pgdat->node_id, sc);
1058 
1059 retry:
1060 	while (!list_empty(folio_list)) {
1061 		struct address_space *mapping;
1062 		struct folio *folio;
1063 		enum folio_references references = FOLIOREF_RECLAIM;
1064 		bool dirty, writeback;
1065 		unsigned int nr_pages;
1066 
1067 		cond_resched();
1068 
1069 		folio = lru_to_folio(folio_list);
1070 		list_del(&folio->lru);
1071 
1072 		if (!folio_trylock(folio))
1073 			goto keep;
1074 
1075 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1076 
1077 		nr_pages = folio_nr_pages(folio);
1078 
1079 		/* Account the number of base pages */
1080 		sc->nr_scanned += nr_pages;
1081 
1082 		if (unlikely(!folio_evictable(folio)))
1083 			goto activate_locked;
1084 
1085 		if (!sc->may_unmap && folio_mapped(folio))
1086 			goto keep_locked;
1087 
1088 		/* folio_update_gen() tried to promote this page? */
1089 		if (lru_gen_enabled() && !ignore_references &&
1090 		    folio_mapped(folio) && folio_test_referenced(folio))
1091 			goto keep_locked;
1092 
1093 		/*
1094 		 * The number of dirty pages determines if a node is marked
1095 		 * reclaim_congested. kswapd will stall and start writing
1096 		 * folios if the tail of the LRU is all dirty unqueued folios.
1097 		 */
1098 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1099 		if (dirty || writeback)
1100 			stat->nr_dirty += nr_pages;
1101 
1102 		if (dirty && !writeback)
1103 			stat->nr_unqueued_dirty += nr_pages;
1104 
1105 		/*
1106 		 * Treat this folio as congested if folios are cycling
1107 		 * through the LRU so quickly that the folios marked
1108 		 * for immediate reclaim are making it to the end of
1109 		 * the LRU a second time.
1110 		 */
1111 		if (writeback && folio_test_reclaim(folio))
1112 			stat->nr_congested += nr_pages;
1113 
1114 		/*
1115 		 * If a folio at the tail of the LRU is under writeback, there
1116 		 * are three cases to consider.
1117 		 *
1118 		 * 1) If reclaim is encountering an excessive number
1119 		 *    of folios under writeback and this folio has both
1120 		 *    the writeback and reclaim flags set, then it
1121 		 *    indicates that folios are being queued for I/O but
1122 		 *    are being recycled through the LRU before the I/O
1123 		 *    can complete. Waiting on the folio itself risks an
1124 		 *    indefinite stall if it is impossible to writeback
1125 		 *    the folio due to I/O error or disconnected storage
1126 		 *    so instead note that the LRU is being scanned too
1127 		 *    quickly and the caller can stall after the folio
1128 		 *    list has been processed.
1129 		 *
1130 		 * 2) Global or new memcg reclaim encounters a folio that is
1131 		 *    not marked for immediate reclaim, or the caller does not
1132 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1133 		 *    not to fs). In this case mark the folio for immediate
1134 		 *    reclaim and continue scanning.
1135 		 *
1136 		 *    Require may_enter_fs() because we would wait on fs, which
1137 		 *    may not have submitted I/O yet. And the loop driver might
1138 		 *    enter reclaim, and deadlock if it waits on a folio for
1139 		 *    which it is needed to do the write (loop masks off
1140 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1141 		 *    would probably show more reasons.
1142 		 *
1143 		 * 3) Legacy memcg encounters a folio that already has the
1144 		 *    reclaim flag set. memcg does not have any dirty folio
1145 		 *    throttling so we could easily OOM just because too many
1146 		 *    folios are in writeback and there is nothing else to
1147 		 *    reclaim. Wait for the writeback to complete.
1148 		 *
1149 		 * In cases 1) and 2) we activate the folios to get them out of
1150 		 * the way while we continue scanning for clean folios on the
1151 		 * inactive list and refilling from the active list. The
1152 		 * observation here is that waiting for disk writes is more
1153 		 * expensive than potentially causing reloads down the line.
1154 		 * Since they're marked for immediate reclaim, they won't put
1155 		 * memory pressure on the cache working set any longer than it
1156 		 * takes to write them to disk.
1157 		 */
1158 		if (folio_test_writeback(folio)) {
1159 			/* Case 1 above */
1160 			if (current_is_kswapd() &&
1161 			    folio_test_reclaim(folio) &&
1162 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1163 				stat->nr_immediate += nr_pages;
1164 				goto activate_locked;
1165 
1166 			/* Case 2 above */
1167 			} else if (writeback_throttling_sane(sc) ||
1168 			    !folio_test_reclaim(folio) ||
1169 			    !may_enter_fs(folio, sc->gfp_mask)) {
1170 				/*
1171 				 * This is slightly racy -
1172 				 * folio_end_writeback() might have
1173 				 * just cleared the reclaim flag, then
1174 				 * setting the reclaim flag here ends up
1175 				 * interpreted as the readahead flag - but
1176 				 * that does not matter enough to care.
1177 				 * What we do want is for this folio to
1178 				 * have the reclaim flag set next time
1179 				 * memcg reclaim reaches the tests above,
1180 				 * so it will then wait for writeback to
1181 				 * avoid OOM; and it's also appropriate
1182 				 * in global reclaim.
1183 				 */
1184 				folio_set_reclaim(folio);
1185 				stat->nr_writeback += nr_pages;
1186 				goto activate_locked;
1187 
1188 			/* Case 3 above */
1189 			} else {
1190 				folio_unlock(folio);
1191 				folio_wait_writeback(folio);
1192 				/* then go back and try same folio again */
1193 				list_add_tail(&folio->lru, folio_list);
1194 				continue;
1195 			}
1196 		}
1197 
1198 		if (!ignore_references)
1199 			references = folio_check_references(folio, sc);
1200 
1201 		switch (references) {
1202 		case FOLIOREF_ACTIVATE:
1203 			goto activate_locked;
1204 		case FOLIOREF_KEEP:
1205 			stat->nr_ref_keep += nr_pages;
1206 			goto keep_locked;
1207 		case FOLIOREF_RECLAIM:
1208 		case FOLIOREF_RECLAIM_CLEAN:
1209 			; /* try to reclaim the folio below */
1210 		}
1211 
1212 		/*
1213 		 * Before reclaiming the folio, try to relocate
1214 		 * its contents to another node.
1215 		 */
1216 		if (do_demote_pass &&
1217 		    (thp_migration_supported() || !folio_test_large(folio))) {
1218 			list_add(&folio->lru, &demote_folios);
1219 			folio_unlock(folio);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Anonymous process memory has backing store?
1225 		 * Try to allocate it some swap space here.
1226 		 * Lazyfree folio could be freed directly
1227 		 */
1228 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1229 			if (!folio_test_swapcache(folio)) {
1230 				if (!(sc->gfp_mask & __GFP_IO))
1231 					goto keep_locked;
1232 				if (folio_maybe_dma_pinned(folio))
1233 					goto keep_locked;
1234 				if (folio_test_large(folio)) {
1235 					/* cannot split folio, skip it */
1236 					if (!can_split_folio(folio, 1, NULL))
1237 						goto activate_locked;
1238 					/*
1239 					 * Split partially mapped folios right away.
1240 					 * We can free the unmapped pages without IO.
1241 					 */
1242 					if (data_race(!list_empty(&folio->_deferred_list) &&
1243 					    folio_test_partially_mapped(folio)) &&
1244 					    split_folio_to_list(folio, folio_list))
1245 						goto activate_locked;
1246 				}
1247 				if (!add_to_swap(folio)) {
1248 					int __maybe_unused order = folio_order(folio);
1249 
1250 					if (!folio_test_large(folio))
1251 						goto activate_locked_split;
1252 					/* Fallback to swap normal pages */
1253 					if (split_folio_to_list(folio, folio_list))
1254 						goto activate_locked;
1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 					if (nr_pages >= HPAGE_PMD_NR) {
1257 						count_memcg_folio_events(folio,
1258 							THP_SWPOUT_FALLBACK, 1);
1259 						count_vm_event(THP_SWPOUT_FALLBACK);
1260 					}
1261 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1262 #endif
1263 					if (!add_to_swap(folio))
1264 						goto activate_locked_split;
1265 				}
1266 			}
1267 		}
1268 
1269 		/*
1270 		 * If the folio was split above, the tail pages will make
1271 		 * their own pass through this function and be accounted
1272 		 * then.
1273 		 */
1274 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1275 			sc->nr_scanned -= (nr_pages - 1);
1276 			nr_pages = 1;
1277 		}
1278 
1279 		/*
1280 		 * The folio is mapped into the page tables of one or more
1281 		 * processes. Try to unmap it here.
1282 		 */
1283 		if (folio_mapped(folio)) {
1284 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1285 			bool was_swapbacked = folio_test_swapbacked(folio);
1286 
1287 			if (folio_test_pmd_mappable(folio))
1288 				flags |= TTU_SPLIT_HUGE_PMD;
1289 			/*
1290 			 * Without TTU_SYNC, try_to_unmap will only begin to
1291 			 * hold PTL from the first present PTE within a large
1292 			 * folio. Some initial PTEs might be skipped due to
1293 			 * races with parallel PTE writes in which PTEs can be
1294 			 * cleared temporarily before being written new present
1295 			 * values. This will lead to a large folio is still
1296 			 * mapped while some subpages have been partially
1297 			 * unmapped after try_to_unmap; TTU_SYNC helps
1298 			 * try_to_unmap acquire PTL from the first PTE,
1299 			 * eliminating the influence of temporary PTE values.
1300 			 */
1301 			if (folio_test_large(folio))
1302 				flags |= TTU_SYNC;
1303 
1304 			try_to_unmap(folio, flags);
1305 			if (folio_mapped(folio)) {
1306 				stat->nr_unmap_fail += nr_pages;
1307 				if (!was_swapbacked &&
1308 				    folio_test_swapbacked(folio))
1309 					stat->nr_lazyfree_fail += nr_pages;
1310 				goto activate_locked;
1311 			}
1312 		}
1313 
1314 		/*
1315 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1316 		 * No point in trying to reclaim folio if it is pinned.
1317 		 * Furthermore we don't want to reclaim underlying fs metadata
1318 		 * if the folio is pinned and thus potentially modified by the
1319 		 * pinning process as that may upset the filesystem.
1320 		 */
1321 		if (folio_maybe_dma_pinned(folio))
1322 			goto activate_locked;
1323 
1324 		mapping = folio_mapping(folio);
1325 		if (folio_test_dirty(folio)) {
1326 			/*
1327 			 * Only kswapd can writeback filesystem folios
1328 			 * to avoid risk of stack overflow. But avoid
1329 			 * injecting inefficient single-folio I/O into
1330 			 * flusher writeback as much as possible: only
1331 			 * write folios when we've encountered many
1332 			 * dirty folios, and when we've already scanned
1333 			 * the rest of the LRU for clean folios and see
1334 			 * the same dirty folios again (with the reclaim
1335 			 * flag set).
1336 			 */
1337 			if (folio_is_file_lru(folio) &&
1338 			    (!current_is_kswapd() ||
1339 			     !folio_test_reclaim(folio) ||
1340 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 				/*
1342 				 * Immediately reclaim when written back.
1343 				 * Similar in principle to folio_deactivate()
1344 				 * except we already have the folio isolated
1345 				 * and know it's dirty
1346 				 */
1347 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1348 						nr_pages);
1349 				folio_set_reclaim(folio);
1350 
1351 				goto activate_locked;
1352 			}
1353 
1354 			if (references == FOLIOREF_RECLAIM_CLEAN)
1355 				goto keep_locked;
1356 			if (!may_enter_fs(folio, sc->gfp_mask))
1357 				goto keep_locked;
1358 			if (!sc->may_writepage)
1359 				goto keep_locked;
1360 
1361 			/*
1362 			 * Folio is dirty. Flush the TLB if a writable entry
1363 			 * potentially exists to avoid CPU writes after I/O
1364 			 * starts and then write it out here.
1365 			 */
1366 			try_to_unmap_flush_dirty();
1367 			switch (pageout(folio, mapping, &plug, folio_list)) {
1368 			case PAGE_KEEP:
1369 				goto keep_locked;
1370 			case PAGE_ACTIVATE:
1371 				/*
1372 				 * If shmem folio is split when writeback to swap,
1373 				 * the tail pages will make their own pass through
1374 				 * this function and be accounted then.
1375 				 */
1376 				if (nr_pages > 1 && !folio_test_large(folio)) {
1377 					sc->nr_scanned -= (nr_pages - 1);
1378 					nr_pages = 1;
1379 				}
1380 				goto activate_locked;
1381 			case PAGE_SUCCESS:
1382 				if (nr_pages > 1 && !folio_test_large(folio)) {
1383 					sc->nr_scanned -= (nr_pages - 1);
1384 					nr_pages = 1;
1385 				}
1386 				stat->nr_pageout += nr_pages;
1387 
1388 				if (folio_test_writeback(folio))
1389 					goto keep;
1390 				if (folio_test_dirty(folio))
1391 					goto keep;
1392 
1393 				/*
1394 				 * A synchronous write - probably a ramdisk.  Go
1395 				 * ahead and try to reclaim the folio.
1396 				 */
1397 				if (!folio_trylock(folio))
1398 					goto keep;
1399 				if (folio_test_dirty(folio) ||
1400 				    folio_test_writeback(folio))
1401 					goto keep_locked;
1402 				mapping = folio_mapping(folio);
1403 				fallthrough;
1404 			case PAGE_CLEAN:
1405 				; /* try to free the folio below */
1406 			}
1407 		}
1408 
1409 		/*
1410 		 * If the folio has buffers, try to free the buffer
1411 		 * mappings associated with this folio. If we succeed
1412 		 * we try to free the folio as well.
1413 		 *
1414 		 * We do this even if the folio is dirty.
1415 		 * filemap_release_folio() does not perform I/O, but it
1416 		 * is possible for a folio to have the dirty flag set,
1417 		 * but it is actually clean (all its buffers are clean).
1418 		 * This happens if the buffers were written out directly,
1419 		 * with submit_bh(). ext3 will do this, as well as
1420 		 * the blockdev mapping.  filemap_release_folio() will
1421 		 * discover that cleanness and will drop the buffers
1422 		 * and mark the folio clean - it can be freed.
1423 		 *
1424 		 * Rarely, folios can have buffers and no ->mapping.
1425 		 * These are the folios which were not successfully
1426 		 * invalidated in truncate_cleanup_folio().  We try to
1427 		 * drop those buffers here and if that worked, and the
1428 		 * folio is no longer mapped into process address space
1429 		 * (refcount == 1) it can be freed.  Otherwise, leave
1430 		 * the folio on the LRU so it is swappable.
1431 		 */
1432 		if (folio_needs_release(folio)) {
1433 			if (!filemap_release_folio(folio, sc->gfp_mask))
1434 				goto activate_locked;
1435 			if (!mapping && folio_ref_count(folio) == 1) {
1436 				folio_unlock(folio);
1437 				if (folio_put_testzero(folio))
1438 					goto free_it;
1439 				else {
1440 					/*
1441 					 * rare race with speculative reference.
1442 					 * the speculative reference will free
1443 					 * this folio shortly, so we may
1444 					 * increment nr_reclaimed here (and
1445 					 * leave it off the LRU).
1446 					 */
1447 					nr_reclaimed += nr_pages;
1448 					continue;
1449 				}
1450 			}
1451 		}
1452 
1453 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1454 			/* follow __remove_mapping for reference */
1455 			if (!folio_ref_freeze(folio, 1))
1456 				goto keep_locked;
1457 			/*
1458 			 * The folio has only one reference left, which is
1459 			 * from the isolation. After the caller puts the
1460 			 * folio back on the lru and drops the reference, the
1461 			 * folio will be freed anyway. It doesn't matter
1462 			 * which lru it goes on. So we don't bother checking
1463 			 * the dirty flag here.
1464 			 */
1465 			count_vm_events(PGLAZYFREED, nr_pages);
1466 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1467 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1468 							 sc->target_mem_cgroup))
1469 			goto keep_locked;
1470 
1471 		folio_unlock(folio);
1472 free_it:
1473 		/*
1474 		 * Folio may get swapped out as a whole, need to account
1475 		 * all pages in it.
1476 		 */
1477 		nr_reclaimed += nr_pages;
1478 
1479 		folio_unqueue_deferred_split(folio);
1480 		if (folio_batch_add(&free_folios, folio) == 0) {
1481 			mem_cgroup_uncharge_folios(&free_folios);
1482 			try_to_unmap_flush();
1483 			free_unref_folios(&free_folios);
1484 		}
1485 		continue;
1486 
1487 activate_locked_split:
1488 		/*
1489 		 * The tail pages that are failed to add into swap cache
1490 		 * reach here.  Fixup nr_scanned and nr_pages.
1491 		 */
1492 		if (nr_pages > 1) {
1493 			sc->nr_scanned -= (nr_pages - 1);
1494 			nr_pages = 1;
1495 		}
1496 activate_locked:
1497 		/* Not a candidate for swapping, so reclaim swap space. */
1498 		if (folio_test_swapcache(folio) &&
1499 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1500 			folio_free_swap(folio);
1501 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1502 		if (!folio_test_mlocked(folio)) {
1503 			int type = folio_is_file_lru(folio);
1504 			folio_set_active(folio);
1505 			stat->nr_activate[type] += nr_pages;
1506 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1507 		}
1508 keep_locked:
1509 		folio_unlock(folio);
1510 keep:
1511 		list_add(&folio->lru, &ret_folios);
1512 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1513 				folio_test_unevictable(folio), folio);
1514 	}
1515 	/* 'folio_list' is always empty here */
1516 
1517 	/* Migrate folios selected for demotion */
1518 	stat->nr_demoted = demote_folio_list(&demote_folios, pgdat);
1519 	nr_reclaimed += stat->nr_demoted;
1520 	/* Folios that could not be demoted are still in @demote_folios */
1521 	if (!list_empty(&demote_folios)) {
1522 		/* Folios which weren't demoted go back on @folio_list */
1523 		list_splice_init(&demote_folios, folio_list);
1524 
1525 		/*
1526 		 * goto retry to reclaim the undemoted folios in folio_list if
1527 		 * desired.
1528 		 *
1529 		 * Reclaiming directly from top tier nodes is not often desired
1530 		 * due to it breaking the LRU ordering: in general memory
1531 		 * should be reclaimed from lower tier nodes and demoted from
1532 		 * top tier nodes.
1533 		 *
1534 		 * However, disabling reclaim from top tier nodes entirely
1535 		 * would cause ooms in edge scenarios where lower tier memory
1536 		 * is unreclaimable for whatever reason, eg memory being
1537 		 * mlocked or too hot to reclaim. We can disable reclaim
1538 		 * from top tier nodes in proactive reclaim though as that is
1539 		 * not real memory pressure.
1540 		 */
1541 		if (!sc->proactive) {
1542 			do_demote_pass = false;
1543 			goto retry;
1544 		}
1545 	}
1546 
1547 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1548 
1549 	mem_cgroup_uncharge_folios(&free_folios);
1550 	try_to_unmap_flush();
1551 	free_unref_folios(&free_folios);
1552 
1553 	list_splice(&ret_folios, folio_list);
1554 	count_vm_events(PGACTIVATE, pgactivate);
1555 
1556 	if (plug)
1557 		swap_write_unplug(plug);
1558 	return nr_reclaimed;
1559 }
1560 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1561 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1562 					   struct list_head *folio_list)
1563 {
1564 	struct scan_control sc = {
1565 		.gfp_mask = GFP_KERNEL,
1566 		.may_unmap = 1,
1567 	};
1568 	struct reclaim_stat stat;
1569 	unsigned int nr_reclaimed;
1570 	struct folio *folio, *next;
1571 	LIST_HEAD(clean_folios);
1572 	unsigned int noreclaim_flag;
1573 
1574 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1575 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1576 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1577 		    !folio_test_unevictable(folio)) {
1578 			folio_clear_active(folio);
1579 			list_move(&folio->lru, &clean_folios);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * We should be safe here since we are only dealing with file pages and
1585 	 * we are not kswapd and therefore cannot write dirty file pages. But
1586 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1587 	 * change in the future.
1588 	 */
1589 	noreclaim_flag = memalloc_noreclaim_save();
1590 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1591 					&stat, true);
1592 	memalloc_noreclaim_restore(noreclaim_flag);
1593 
1594 	list_splice(&clean_folios, folio_list);
1595 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1596 			    -(long)nr_reclaimed);
1597 	/*
1598 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1599 	 * they will rotate back to anonymous LRU in the end if it failed to
1600 	 * discard so isolated count will be mismatched.
1601 	 * Compensate the isolated count for both LRU lists.
1602 	 */
1603 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1604 			    stat.nr_lazyfree_fail);
1605 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1606 			    -(long)stat.nr_lazyfree_fail);
1607 	return nr_reclaimed;
1608 }
1609 
1610 /*
1611  * Update LRU sizes after isolating pages. The LRU size updates must
1612  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1613  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1615 			enum lru_list lru, unsigned long *nr_zone_taken)
1616 {
1617 	int zid;
1618 
1619 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 		if (!nr_zone_taken[zid])
1621 			continue;
1622 
1623 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1624 	}
1625 
1626 }
1627 
1628 /*
1629  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1630  *
1631  * lruvec->lru_lock is heavily contended.  Some of the functions that
1632  * shrink the lists perform better by taking out a batch of pages
1633  * and working on them outside the LRU lock.
1634  *
1635  * For pagecache intensive workloads, this function is the hottest
1636  * spot in the kernel (apart from copy_*_user functions).
1637  *
1638  * Lru_lock must be held before calling this function.
1639  *
1640  * @nr_to_scan:	The number of eligible pages to look through on the list.
1641  * @lruvec:	The LRU vector to pull pages from.
1642  * @dst:	The temp list to put pages on to.
1643  * @nr_scanned:	The number of pages that were scanned.
1644  * @sc:		The scan_control struct for this reclaim session
1645  * @lru:	LRU list id for isolating
1646  *
1647  * returns how many pages were moved onto *@dst.
1648  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1649 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1650 		struct lruvec *lruvec, struct list_head *dst,
1651 		unsigned long *nr_scanned, struct scan_control *sc,
1652 		enum lru_list lru)
1653 {
1654 	struct list_head *src = &lruvec->lists[lru];
1655 	unsigned long nr_taken = 0;
1656 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1657 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1658 	unsigned long skipped = 0;
1659 	unsigned long scan, total_scan, nr_pages;
1660 	LIST_HEAD(folios_skipped);
1661 
1662 	total_scan = 0;
1663 	scan = 0;
1664 	while (scan < nr_to_scan && !list_empty(src)) {
1665 		struct list_head *move_to = src;
1666 		struct folio *folio;
1667 
1668 		folio = lru_to_folio(src);
1669 		prefetchw_prev_lru_folio(folio, src, flags);
1670 
1671 		nr_pages = folio_nr_pages(folio);
1672 		total_scan += nr_pages;
1673 
1674 		if (folio_zonenum(folio) > sc->reclaim_idx) {
1675 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1676 			move_to = &folios_skipped;
1677 			goto move;
1678 		}
1679 
1680 		/*
1681 		 * Do not count skipped folios because that makes the function
1682 		 * return with no isolated folios if the LRU mostly contains
1683 		 * ineligible folios.  This causes the VM to not reclaim any
1684 		 * folios, triggering a premature OOM.
1685 		 * Account all pages in a folio.
1686 		 */
1687 		scan += nr_pages;
1688 
1689 		if (!folio_test_lru(folio))
1690 			goto move;
1691 		if (!sc->may_unmap && folio_mapped(folio))
1692 			goto move;
1693 
1694 		/*
1695 		 * Be careful not to clear the lru flag until after we're
1696 		 * sure the folio is not being freed elsewhere -- the
1697 		 * folio release code relies on it.
1698 		 */
1699 		if (unlikely(!folio_try_get(folio)))
1700 			goto move;
1701 
1702 		if (!folio_test_clear_lru(folio)) {
1703 			/* Another thread is already isolating this folio */
1704 			folio_put(folio);
1705 			goto move;
1706 		}
1707 
1708 		nr_taken += nr_pages;
1709 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1710 		move_to = dst;
1711 move:
1712 		list_move(&folio->lru, move_to);
1713 	}
1714 
1715 	/*
1716 	 * Splice any skipped folios to the start of the LRU list. Note that
1717 	 * this disrupts the LRU order when reclaiming for lower zones but
1718 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1719 	 * scanning would soon rescan the same folios to skip and waste lots
1720 	 * of cpu cycles.
1721 	 */
1722 	if (!list_empty(&folios_skipped)) {
1723 		int zid;
1724 
1725 		list_splice(&folios_skipped, src);
1726 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1727 			if (!nr_skipped[zid])
1728 				continue;
1729 
1730 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1731 			skipped += nr_skipped[zid];
1732 		}
1733 	}
1734 	*nr_scanned = total_scan;
1735 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1736 				    total_scan, skipped, nr_taken, lru);
1737 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1738 	return nr_taken;
1739 }
1740 
1741 /**
1742  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1743  * @folio: Folio to isolate from its LRU list.
1744  *
1745  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1746  * corresponding to whatever LRU list the folio was on.
1747  *
1748  * The folio will have its LRU flag cleared.  If it was found on the
1749  * active list, it will have the Active flag set.  If it was found on the
1750  * unevictable list, it will have the Unevictable flag set.  These flags
1751  * may need to be cleared by the caller before letting the page go.
1752  *
1753  * Context:
1754  *
1755  * (1) Must be called with an elevated refcount on the folio. This is a
1756  *     fundamental difference from isolate_lru_folios() (which is called
1757  *     without a stable reference).
1758  * (2) The lru_lock must not be held.
1759  * (3) Interrupts must be enabled.
1760  *
1761  * Return: true if the folio was removed from an LRU list.
1762  * false if the folio was not on an LRU list.
1763  */
folio_isolate_lru(struct folio * folio)1764 bool folio_isolate_lru(struct folio *folio)
1765 {
1766 	bool ret = false;
1767 
1768 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1769 
1770 	if (folio_test_clear_lru(folio)) {
1771 		struct lruvec *lruvec;
1772 
1773 		folio_get(folio);
1774 		lruvec = folio_lruvec_lock_irq(folio);
1775 		lruvec_del_folio(lruvec, folio);
1776 		unlock_page_lruvec_irq(lruvec);
1777 		ret = true;
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1785  * then get rescheduled. When there are massive number of tasks doing page
1786  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1787  * the LRU list will go small and be scanned faster than necessary, leading to
1788  * unnecessary swapping, thrashing and OOM.
1789  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1790 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1791 		struct scan_control *sc)
1792 {
1793 	unsigned long inactive, isolated;
1794 	bool too_many;
1795 
1796 	if (current_is_kswapd())
1797 		return false;
1798 
1799 	if (!writeback_throttling_sane(sc))
1800 		return false;
1801 
1802 	if (file) {
1803 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 	} else {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 	}
1809 
1810 	/*
1811 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 	 * won't get blocked by normal direct-reclaimers, forming a circular
1813 	 * deadlock.
1814 	 */
1815 	if (gfp_has_io_fs(sc->gfp_mask))
1816 		inactive >>= 3;
1817 
1818 	too_many = isolated > inactive;
1819 
1820 	/* Wake up tasks throttled due to too_many_isolated. */
1821 	if (!too_many)
1822 		wake_throttle_isolated(pgdat);
1823 
1824 	return too_many;
1825 }
1826 
1827 /*
1828  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1829  *
1830  * Returns the number of pages moved to the given lruvec.
1831  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1832 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1833 		struct list_head *list)
1834 {
1835 	int nr_pages, nr_moved = 0;
1836 	struct folio_batch free_folios;
1837 
1838 	folio_batch_init(&free_folios);
1839 	while (!list_empty(list)) {
1840 		struct folio *folio = lru_to_folio(list);
1841 
1842 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1843 		list_del(&folio->lru);
1844 		if (unlikely(!folio_evictable(folio))) {
1845 			spin_unlock_irq(&lruvec->lru_lock);
1846 			folio_putback_lru(folio);
1847 			spin_lock_irq(&lruvec->lru_lock);
1848 			continue;
1849 		}
1850 
1851 		/*
1852 		 * The folio_set_lru needs to be kept here for list integrity.
1853 		 * Otherwise:
1854 		 *   #0 move_folios_to_lru             #1 release_pages
1855 		 *   if (!folio_put_testzero())
1856 		 *				      if (folio_put_testzero())
1857 		 *				        !lru //skip lru_lock
1858 		 *     folio_set_lru()
1859 		 *     list_add(&folio->lru,)
1860 		 *                                        list_add(&folio->lru,)
1861 		 */
1862 		folio_set_lru(folio);
1863 
1864 		if (unlikely(folio_put_testzero(folio))) {
1865 			__folio_clear_lru_flags(folio);
1866 
1867 			folio_unqueue_deferred_split(folio);
1868 			if (folio_batch_add(&free_folios, folio) == 0) {
1869 				spin_unlock_irq(&lruvec->lru_lock);
1870 				mem_cgroup_uncharge_folios(&free_folios);
1871 				free_unref_folios(&free_folios);
1872 				spin_lock_irq(&lruvec->lru_lock);
1873 			}
1874 
1875 			continue;
1876 		}
1877 
1878 		/*
1879 		 * All pages were isolated from the same lruvec (and isolation
1880 		 * inhibits memcg migration).
1881 		 */
1882 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1883 		lruvec_add_folio(lruvec, folio);
1884 		nr_pages = folio_nr_pages(folio);
1885 		nr_moved += nr_pages;
1886 		if (folio_test_active(folio))
1887 			workingset_age_nonresident(lruvec, nr_pages);
1888 	}
1889 
1890 	if (free_folios.nr) {
1891 		spin_unlock_irq(&lruvec->lru_lock);
1892 		mem_cgroup_uncharge_folios(&free_folios);
1893 		free_unref_folios(&free_folios);
1894 		spin_lock_irq(&lruvec->lru_lock);
1895 	}
1896 
1897 	return nr_moved;
1898 }
1899 
1900 /*
1901  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1902  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1903  * we should not throttle.  Otherwise it is safe to do so.
1904  */
current_may_throttle(void)1905 static int current_may_throttle(void)
1906 {
1907 	return !(current->flags & PF_LOCAL_THROTTLE);
1908 }
1909 
1910 /*
1911  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1912  * of reclaimed pages
1913  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1914 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1915 		struct lruvec *lruvec, struct scan_control *sc,
1916 		enum lru_list lru)
1917 {
1918 	LIST_HEAD(folio_list);
1919 	unsigned long nr_scanned;
1920 	unsigned int nr_reclaimed = 0;
1921 	unsigned long nr_taken;
1922 	struct reclaim_stat stat;
1923 	bool file = is_file_lru(lru);
1924 	enum vm_event_item item;
1925 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926 	bool stalled = false;
1927 
1928 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1929 		if (stalled)
1930 			return 0;
1931 
1932 		/* wait a bit for the reclaimer. */
1933 		stalled = true;
1934 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1935 
1936 		/* We are about to die and free our memory. Return now. */
1937 		if (fatal_signal_pending(current))
1938 			return SWAP_CLUSTER_MAX;
1939 	}
1940 
1941 	lru_add_drain();
1942 
1943 	spin_lock_irq(&lruvec->lru_lock);
1944 
1945 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1946 				     &nr_scanned, sc, lru);
1947 
1948 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949 	item = PGSCAN_KSWAPD + reclaimer_offset();
1950 	if (!cgroup_reclaim(sc))
1951 		__count_vm_events(item, nr_scanned);
1952 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1953 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1954 
1955 	spin_unlock_irq(&lruvec->lru_lock);
1956 
1957 	if (nr_taken == 0)
1958 		return 0;
1959 
1960 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1961 
1962 	spin_lock_irq(&lruvec->lru_lock);
1963 	move_folios_to_lru(lruvec, &folio_list);
1964 
1965 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1966 					stat.nr_demoted);
1967 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1968 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1969 	if (!cgroup_reclaim(sc))
1970 		__count_vm_events(item, nr_reclaimed);
1971 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1972 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1973 	spin_unlock_irq(&lruvec->lru_lock);
1974 
1975 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1976 
1977 	/*
1978 	 * If dirty folios are scanned that are not queued for IO, it
1979 	 * implies that flushers are not doing their job. This can
1980 	 * happen when memory pressure pushes dirty folios to the end of
1981 	 * the LRU before the dirty limits are breached and the dirty
1982 	 * data has expired. It can also happen when the proportion of
1983 	 * dirty folios grows not through writes but through memory
1984 	 * pressure reclaiming all the clean cache. And in some cases,
1985 	 * the flushers simply cannot keep up with the allocation
1986 	 * rate. Nudge the flusher threads in case they are asleep.
1987 	 */
1988 	if (stat.nr_unqueued_dirty == nr_taken) {
1989 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1990 		/*
1991 		 * For cgroupv1 dirty throttling is achieved by waking up
1992 		 * the kernel flusher here and later waiting on folios
1993 		 * which are in writeback to finish (see shrink_folio_list()).
1994 		 *
1995 		 * Flusher may not be able to issue writeback quickly
1996 		 * enough for cgroupv1 writeback throttling to work
1997 		 * on a large system.
1998 		 */
1999 		if (!writeback_throttling_sane(sc))
2000 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2001 	}
2002 
2003 	sc->nr.dirty += stat.nr_dirty;
2004 	sc->nr.congested += stat.nr_congested;
2005 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2006 	sc->nr.writeback += stat.nr_writeback;
2007 	sc->nr.immediate += stat.nr_immediate;
2008 	sc->nr.taken += nr_taken;
2009 	if (file)
2010 		sc->nr.file_taken += nr_taken;
2011 
2012 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014 	return nr_reclaimed;
2015 }
2016 
2017 /*
2018  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2019  *
2020  * We move them the other way if the folio is referenced by one or more
2021  * processes.
2022  *
2023  * If the folios are mostly unmapped, the processing is fast and it is
2024  * appropriate to hold lru_lock across the whole operation.  But if
2025  * the folios are mapped, the processing is slow (folio_referenced()), so
2026  * we should drop lru_lock around each folio.  It's impossible to balance
2027  * this, so instead we remove the folios from the LRU while processing them.
2028  * It is safe to rely on the active flag against the non-LRU folios in here
2029  * because nobody will play with that bit on a non-LRU folio.
2030  *
2031  * The downside is that we have to touch folio->_refcount against each folio.
2032  * But we had to alter folio->flags anyway.
2033  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2034 static void shrink_active_list(unsigned long nr_to_scan,
2035 			       struct lruvec *lruvec,
2036 			       struct scan_control *sc,
2037 			       enum lru_list lru)
2038 {
2039 	unsigned long nr_taken;
2040 	unsigned long nr_scanned;
2041 	unsigned long vm_flags;
2042 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2043 	LIST_HEAD(l_active);
2044 	LIST_HEAD(l_inactive);
2045 	unsigned nr_deactivate, nr_activate;
2046 	unsigned nr_rotated = 0;
2047 	bool file = is_file_lru(lru);
2048 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2049 
2050 	lru_add_drain();
2051 
2052 	spin_lock_irq(&lruvec->lru_lock);
2053 
2054 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2055 				     &nr_scanned, sc, lru);
2056 
2057 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2058 
2059 	if (!cgroup_reclaim(sc))
2060 		__count_vm_events(PGREFILL, nr_scanned);
2061 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2062 
2063 	spin_unlock_irq(&lruvec->lru_lock);
2064 
2065 	while (!list_empty(&l_hold)) {
2066 		struct folio *folio;
2067 
2068 		cond_resched();
2069 		folio = lru_to_folio(&l_hold);
2070 		list_del(&folio->lru);
2071 
2072 		if (unlikely(!folio_evictable(folio))) {
2073 			folio_putback_lru(folio);
2074 			continue;
2075 		}
2076 
2077 		if (unlikely(buffer_heads_over_limit)) {
2078 			if (folio_needs_release(folio) &&
2079 			    folio_trylock(folio)) {
2080 				filemap_release_folio(folio, 0);
2081 				folio_unlock(folio);
2082 			}
2083 		}
2084 
2085 		/* Referenced or rmap lock contention: rotate */
2086 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2087 				     &vm_flags) != 0) {
2088 			/*
2089 			 * Identify referenced, file-backed active folios and
2090 			 * give them one more trip around the active list. So
2091 			 * that executable code get better chances to stay in
2092 			 * memory under moderate memory pressure.  Anon folios
2093 			 * are not likely to be evicted by use-once streaming
2094 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2095 			 * so we ignore them here.
2096 			 */
2097 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2098 				nr_rotated += folio_nr_pages(folio);
2099 				list_add(&folio->lru, &l_active);
2100 				continue;
2101 			}
2102 		}
2103 
2104 		folio_clear_active(folio);	/* we are de-activating */
2105 		folio_set_workingset(folio);
2106 		list_add(&folio->lru, &l_inactive);
2107 	}
2108 
2109 	/*
2110 	 * Move folios back to the lru list.
2111 	 */
2112 	spin_lock_irq(&lruvec->lru_lock);
2113 
2114 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2115 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2116 
2117 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2119 
2120 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 	spin_unlock_irq(&lruvec->lru_lock);
2122 
2123 	if (nr_rotated)
2124 		lru_note_cost(lruvec, file, 0, nr_rotated);
2125 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 			nr_deactivate, nr_rotated, sc->priority, file);
2127 }
2128 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2129 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2130 				      struct pglist_data *pgdat)
2131 {
2132 	struct reclaim_stat dummy_stat;
2133 	unsigned int nr_reclaimed;
2134 	struct folio *folio;
2135 	struct scan_control sc = {
2136 		.gfp_mask = GFP_KERNEL,
2137 		.may_writepage = 1,
2138 		.may_unmap = 1,
2139 		.may_swap = 1,
2140 		.no_demotion = 1,
2141 	};
2142 
2143 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true);
2144 	while (!list_empty(folio_list)) {
2145 		folio = lru_to_folio(folio_list);
2146 		list_del(&folio->lru);
2147 		folio_putback_lru(folio);
2148 	}
2149 
2150 	return nr_reclaimed;
2151 }
2152 
reclaim_pages(struct list_head * folio_list)2153 unsigned long reclaim_pages(struct list_head *folio_list)
2154 {
2155 	int nid;
2156 	unsigned int nr_reclaimed = 0;
2157 	LIST_HEAD(node_folio_list);
2158 	unsigned int noreclaim_flag;
2159 
2160 	if (list_empty(folio_list))
2161 		return nr_reclaimed;
2162 
2163 	noreclaim_flag = memalloc_noreclaim_save();
2164 
2165 	nid = folio_nid(lru_to_folio(folio_list));
2166 	do {
2167 		struct folio *folio = lru_to_folio(folio_list);
2168 
2169 		if (nid == folio_nid(folio)) {
2170 			folio_clear_active(folio);
2171 			list_move(&folio->lru, &node_folio_list);
2172 			continue;
2173 		}
2174 
2175 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2176 		nid = folio_nid(lru_to_folio(folio_list));
2177 	} while (!list_empty(folio_list));
2178 
2179 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2180 
2181 	memalloc_noreclaim_restore(noreclaim_flag);
2182 
2183 	return nr_reclaimed;
2184 }
2185 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2186 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2187 				 struct lruvec *lruvec, struct scan_control *sc)
2188 {
2189 	if (is_active_lru(lru)) {
2190 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2191 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2192 		else
2193 			sc->skipped_deactivate = 1;
2194 		return 0;
2195 	}
2196 
2197 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2198 }
2199 
2200 /*
2201  * The inactive anon list should be small enough that the VM never has
2202  * to do too much work.
2203  *
2204  * The inactive file list should be small enough to leave most memory
2205  * to the established workingset on the scan-resistant active list,
2206  * but large enough to avoid thrashing the aggregate readahead window.
2207  *
2208  * Both inactive lists should also be large enough that each inactive
2209  * folio has a chance to be referenced again before it is reclaimed.
2210  *
2211  * If that fails and refaulting is observed, the inactive list grows.
2212  *
2213  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2214  * on this LRU, maintained by the pageout code. An inactive_ratio
2215  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2216  *
2217  * total     target    max
2218  * memory    ratio     inactive
2219  * -------------------------------------
2220  *   10MB       1         5MB
2221  *  100MB       1        50MB
2222  *    1GB       3       250MB
2223  *   10GB      10       0.9GB
2224  *  100GB      31         3GB
2225  *    1TB     101        10GB
2226  *   10TB     320        32GB
2227  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2228 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2229 {
2230 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2231 	unsigned long inactive, active;
2232 	unsigned long inactive_ratio;
2233 	unsigned long gb;
2234 
2235 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2236 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2237 
2238 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2239 	if (gb)
2240 		inactive_ratio = int_sqrt(10 * gb);
2241 	else
2242 		inactive_ratio = 1;
2243 
2244 	return inactive * inactive_ratio < active;
2245 }
2246 
2247 enum scan_balance {
2248 	SCAN_EQUAL,
2249 	SCAN_FRACT,
2250 	SCAN_ANON,
2251 	SCAN_FILE,
2252 };
2253 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2254 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2255 {
2256 	unsigned long file;
2257 	struct lruvec *target_lruvec;
2258 
2259 	if (lru_gen_enabled())
2260 		return;
2261 
2262 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2263 
2264 	/*
2265 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2266 	 * most accurate stats here. We may switch to regular stats flushing
2267 	 * in the future once it is cheap enough.
2268 	 */
2269 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2270 
2271 	/*
2272 	 * Determine the scan balance between anon and file LRUs.
2273 	 */
2274 	spin_lock_irq(&target_lruvec->lru_lock);
2275 	sc->anon_cost = target_lruvec->anon_cost;
2276 	sc->file_cost = target_lruvec->file_cost;
2277 	spin_unlock_irq(&target_lruvec->lru_lock);
2278 
2279 	/*
2280 	 * Target desirable inactive:active list ratios for the anon
2281 	 * and file LRU lists.
2282 	 */
2283 	if (!sc->force_deactivate) {
2284 		unsigned long refaults;
2285 
2286 		/*
2287 		 * When refaults are being observed, it means a new
2288 		 * workingset is being established. Deactivate to get
2289 		 * rid of any stale active pages quickly.
2290 		 */
2291 		refaults = lruvec_page_state(target_lruvec,
2292 				WORKINGSET_ACTIVATE_ANON);
2293 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2294 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2295 			sc->may_deactivate |= DEACTIVATE_ANON;
2296 		else
2297 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2298 
2299 		refaults = lruvec_page_state(target_lruvec,
2300 				WORKINGSET_ACTIVATE_FILE);
2301 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2302 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2303 			sc->may_deactivate |= DEACTIVATE_FILE;
2304 		else
2305 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2306 	} else
2307 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2308 
2309 	/*
2310 	 * If we have plenty of inactive file pages that aren't
2311 	 * thrashing, try to reclaim those first before touching
2312 	 * anonymous pages.
2313 	 */
2314 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2315 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2316 	    !sc->no_cache_trim_mode)
2317 		sc->cache_trim_mode = 1;
2318 	else
2319 		sc->cache_trim_mode = 0;
2320 
2321 	/*
2322 	 * Prevent the reclaimer from falling into the cache trap: as
2323 	 * cache pages start out inactive, every cache fault will tip
2324 	 * the scan balance towards the file LRU.  And as the file LRU
2325 	 * shrinks, so does the window for rotation from references.
2326 	 * This means we have a runaway feedback loop where a tiny
2327 	 * thrashing file LRU becomes infinitely more attractive than
2328 	 * anon pages.  Try to detect this based on file LRU size.
2329 	 */
2330 	if (!cgroup_reclaim(sc)) {
2331 		unsigned long total_high_wmark = 0;
2332 		unsigned long free, anon;
2333 		int z;
2334 
2335 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2336 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2337 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2338 
2339 		for (z = 0; z < MAX_NR_ZONES; z++) {
2340 			struct zone *zone = &pgdat->node_zones[z];
2341 
2342 			if (!managed_zone(zone))
2343 				continue;
2344 
2345 			total_high_wmark += high_wmark_pages(zone);
2346 		}
2347 
2348 		/*
2349 		 * Consider anon: if that's low too, this isn't a
2350 		 * runaway file reclaim problem, but rather just
2351 		 * extreme pressure. Reclaim as per usual then.
2352 		 */
2353 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2354 
2355 		sc->file_is_tiny =
2356 			file + free <= total_high_wmark &&
2357 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2358 			anon >> sc->priority;
2359 	}
2360 }
2361 
2362 /*
2363  * Determine how aggressively the anon and file LRU lists should be
2364  * scanned.
2365  *
2366  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2367  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2368  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2369 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2370 			   unsigned long *nr)
2371 {
2372 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2373 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2374 	unsigned long anon_cost, file_cost, total_cost;
2375 	int swappiness = sc_swappiness(sc, memcg);
2376 	u64 fraction[ANON_AND_FILE];
2377 	u64 denominator = 0;	/* gcc */
2378 	enum scan_balance scan_balance;
2379 	unsigned long ap, fp;
2380 	enum lru_list lru;
2381 
2382 	/* If we have no swap space, do not bother scanning anon folios. */
2383 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2384 		scan_balance = SCAN_FILE;
2385 		goto out;
2386 	}
2387 
2388 	/*
2389 	 * Global reclaim will swap to prevent OOM even with no
2390 	 * swappiness, but memcg users want to use this knob to
2391 	 * disable swapping for individual groups completely when
2392 	 * using the memory controller's swap limit feature would be
2393 	 * too expensive.
2394 	 */
2395 	if (cgroup_reclaim(sc) && !swappiness) {
2396 		scan_balance = SCAN_FILE;
2397 		goto out;
2398 	}
2399 
2400 	/*
2401 	 * Do not apply any pressure balancing cleverness when the
2402 	 * system is close to OOM, scan both anon and file equally
2403 	 * (unless the swappiness setting disagrees with swapping).
2404 	 */
2405 	if (!sc->priority && swappiness) {
2406 		scan_balance = SCAN_EQUAL;
2407 		goto out;
2408 	}
2409 
2410 	/*
2411 	 * If the system is almost out of file pages, force-scan anon.
2412 	 */
2413 	if (sc->file_is_tiny) {
2414 		scan_balance = SCAN_ANON;
2415 		goto out;
2416 	}
2417 
2418 	/*
2419 	 * If there is enough inactive page cache, we do not reclaim
2420 	 * anything from the anonymous working right now.
2421 	 */
2422 	if (sc->cache_trim_mode) {
2423 		scan_balance = SCAN_FILE;
2424 		goto out;
2425 	}
2426 
2427 	scan_balance = SCAN_FRACT;
2428 	/*
2429 	 * Calculate the pressure balance between anon and file pages.
2430 	 *
2431 	 * The amount of pressure we put on each LRU is inversely
2432 	 * proportional to the cost of reclaiming each list, as
2433 	 * determined by the share of pages that are refaulting, times
2434 	 * the relative IO cost of bringing back a swapped out
2435 	 * anonymous page vs reloading a filesystem page (swappiness).
2436 	 *
2437 	 * Although we limit that influence to ensure no list gets
2438 	 * left behind completely: at least a third of the pressure is
2439 	 * applied, before swappiness.
2440 	 *
2441 	 * With swappiness at 100, anon and file have equal IO cost.
2442 	 */
2443 	total_cost = sc->anon_cost + sc->file_cost;
2444 	anon_cost = total_cost + sc->anon_cost;
2445 	file_cost = total_cost + sc->file_cost;
2446 	total_cost = anon_cost + file_cost;
2447 
2448 	ap = swappiness * (total_cost + 1);
2449 	ap /= anon_cost + 1;
2450 
2451 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2452 	fp /= file_cost + 1;
2453 
2454 	fraction[0] = ap;
2455 	fraction[1] = fp;
2456 	denominator = ap + fp;
2457 out:
2458 	for_each_evictable_lru(lru) {
2459 		bool file = is_file_lru(lru);
2460 		unsigned long lruvec_size;
2461 		unsigned long low, min;
2462 		unsigned long scan;
2463 
2464 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2465 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2466 				      &min, &low);
2467 
2468 		if (min || low) {
2469 			/*
2470 			 * Scale a cgroup's reclaim pressure by proportioning
2471 			 * its current usage to its memory.low or memory.min
2472 			 * setting.
2473 			 *
2474 			 * This is important, as otherwise scanning aggression
2475 			 * becomes extremely binary -- from nothing as we
2476 			 * approach the memory protection threshold, to totally
2477 			 * nominal as we exceed it.  This results in requiring
2478 			 * setting extremely liberal protection thresholds. It
2479 			 * also means we simply get no protection at all if we
2480 			 * set it too low, which is not ideal.
2481 			 *
2482 			 * If there is any protection in place, we reduce scan
2483 			 * pressure by how much of the total memory used is
2484 			 * within protection thresholds.
2485 			 *
2486 			 * There is one special case: in the first reclaim pass,
2487 			 * we skip over all groups that are within their low
2488 			 * protection. If that fails to reclaim enough pages to
2489 			 * satisfy the reclaim goal, we come back and override
2490 			 * the best-effort low protection. However, we still
2491 			 * ideally want to honor how well-behaved groups are in
2492 			 * that case instead of simply punishing them all
2493 			 * equally. As such, we reclaim them based on how much
2494 			 * memory they are using, reducing the scan pressure
2495 			 * again by how much of the total memory used is under
2496 			 * hard protection.
2497 			 */
2498 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2499 			unsigned long protection;
2500 
2501 			/* memory.low scaling, make sure we retry before OOM */
2502 			if (!sc->memcg_low_reclaim && low > min) {
2503 				protection = low;
2504 				sc->memcg_low_skipped = 1;
2505 			} else {
2506 				protection = min;
2507 			}
2508 
2509 			/* Avoid TOCTOU with earlier protection check */
2510 			cgroup_size = max(cgroup_size, protection);
2511 
2512 			scan = lruvec_size - lruvec_size * protection /
2513 				(cgroup_size + 1);
2514 
2515 			/*
2516 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2517 			 * reclaim moving forwards, avoiding decrementing
2518 			 * sc->priority further than desirable.
2519 			 */
2520 			scan = max(scan, SWAP_CLUSTER_MAX);
2521 		} else {
2522 			scan = lruvec_size;
2523 		}
2524 
2525 		scan >>= sc->priority;
2526 
2527 		/*
2528 		 * If the cgroup's already been deleted, make sure to
2529 		 * scrape out the remaining cache.
2530 		 */
2531 		if (!scan && !mem_cgroup_online(memcg))
2532 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2533 
2534 		switch (scan_balance) {
2535 		case SCAN_EQUAL:
2536 			/* Scan lists relative to size */
2537 			break;
2538 		case SCAN_FRACT:
2539 			/*
2540 			 * Scan types proportional to swappiness and
2541 			 * their relative recent reclaim efficiency.
2542 			 * Make sure we don't miss the last page on
2543 			 * the offlined memory cgroups because of a
2544 			 * round-off error.
2545 			 */
2546 			scan = mem_cgroup_online(memcg) ?
2547 			       div64_u64(scan * fraction[file], denominator) :
2548 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2549 						  denominator);
2550 			break;
2551 		case SCAN_FILE:
2552 		case SCAN_ANON:
2553 			/* Scan one type exclusively */
2554 			if ((scan_balance == SCAN_FILE) != file)
2555 				scan = 0;
2556 			break;
2557 		default:
2558 			/* Look ma, no brain */
2559 			BUG();
2560 		}
2561 
2562 		nr[lru] = scan;
2563 	}
2564 }
2565 
2566 /*
2567  * Anonymous LRU management is a waste if there is
2568  * ultimately no way to reclaim the memory.
2569  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2570 static bool can_age_anon_pages(struct pglist_data *pgdat,
2571 			       struct scan_control *sc)
2572 {
2573 	/* Aging the anon LRU is valuable if swap is present: */
2574 	if (total_swap_pages > 0)
2575 		return true;
2576 
2577 	/* Also valuable if anon pages can be demoted: */
2578 	return can_demote(pgdat->node_id, sc);
2579 }
2580 
2581 #ifdef CONFIG_LRU_GEN
2582 
2583 #ifdef CONFIG_LRU_GEN_ENABLED
2584 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2585 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2586 #else
2587 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2588 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2589 #endif
2590 
should_walk_mmu(void)2591 static bool should_walk_mmu(void)
2592 {
2593 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2594 }
2595 
should_clear_pmd_young(void)2596 static bool should_clear_pmd_young(void)
2597 {
2598 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2599 }
2600 
2601 /******************************************************************************
2602  *                          shorthand helpers
2603  ******************************************************************************/
2604 
2605 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2606 
2607 #define DEFINE_MAX_SEQ(lruvec)						\
2608 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2609 
2610 #define DEFINE_MIN_SEQ(lruvec)						\
2611 	unsigned long min_seq[ANON_AND_FILE] = {			\
2612 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2613 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2614 	}
2615 
2616 #define for_each_gen_type_zone(gen, type, zone)				\
2617 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2618 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2619 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2620 
2621 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2622 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2623 
get_lruvec(struct mem_cgroup * memcg,int nid)2624 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2625 {
2626 	struct pglist_data *pgdat = NODE_DATA(nid);
2627 
2628 #ifdef CONFIG_MEMCG
2629 	if (memcg) {
2630 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2631 
2632 		/* see the comment in mem_cgroup_lruvec() */
2633 		if (!lruvec->pgdat)
2634 			lruvec->pgdat = pgdat;
2635 
2636 		return lruvec;
2637 	}
2638 #endif
2639 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2640 
2641 	return &pgdat->__lruvec;
2642 }
2643 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2644 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2645 {
2646 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2647 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2648 
2649 	if (!sc->may_swap)
2650 		return 0;
2651 
2652 	if (!can_demote(pgdat->node_id, sc) &&
2653 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2654 		return 0;
2655 
2656 	return sc_swappiness(sc, memcg);
2657 }
2658 
get_nr_gens(struct lruvec * lruvec,int type)2659 static int get_nr_gens(struct lruvec *lruvec, int type)
2660 {
2661 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2662 }
2663 
seq_is_valid(struct lruvec * lruvec)2664 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2665 {
2666 	/* see the comment on lru_gen_folio */
2667 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2668 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2669 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2670 }
2671 
2672 /******************************************************************************
2673  *                          Bloom filters
2674  ******************************************************************************/
2675 
2676 /*
2677  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2678  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2679  * bits in a bitmap, k is the number of hash functions and n is the number of
2680  * inserted items.
2681  *
2682  * Page table walkers use one of the two filters to reduce their search space.
2683  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2684  * aging uses the double-buffering technique to flip to the other filter each
2685  * time it produces a new generation. For non-leaf entries that have enough
2686  * leaf entries, the aging carries them over to the next generation in
2687  * walk_pmd_range(); the eviction also report them when walking the rmap
2688  * in lru_gen_look_around().
2689  *
2690  * For future optimizations:
2691  * 1. It's not necessary to keep both filters all the time. The spare one can be
2692  *    freed after the RCU grace period and reallocated if needed again.
2693  * 2. And when reallocating, it's worth scaling its size according to the number
2694  *    of inserted entries in the other filter, to reduce the memory overhead on
2695  *    small systems and false positives on large systems.
2696  * 3. Jenkins' hash function is an alternative to Knuth's.
2697  */
2698 #define BLOOM_FILTER_SHIFT	15
2699 
filter_gen_from_seq(unsigned long seq)2700 static inline int filter_gen_from_seq(unsigned long seq)
2701 {
2702 	return seq % NR_BLOOM_FILTERS;
2703 }
2704 
get_item_key(void * item,int * key)2705 static void get_item_key(void *item, int *key)
2706 {
2707 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2708 
2709 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2710 
2711 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2712 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2713 }
2714 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2715 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2716 			      void *item)
2717 {
2718 	int key[2];
2719 	unsigned long *filter;
2720 	int gen = filter_gen_from_seq(seq);
2721 
2722 	filter = READ_ONCE(mm_state->filters[gen]);
2723 	if (!filter)
2724 		return true;
2725 
2726 	get_item_key(item, key);
2727 
2728 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2729 }
2730 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2731 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2732 				void *item)
2733 {
2734 	int key[2];
2735 	unsigned long *filter;
2736 	int gen = filter_gen_from_seq(seq);
2737 
2738 	filter = READ_ONCE(mm_state->filters[gen]);
2739 	if (!filter)
2740 		return;
2741 
2742 	get_item_key(item, key);
2743 
2744 	if (!test_bit(key[0], filter))
2745 		set_bit(key[0], filter);
2746 	if (!test_bit(key[1], filter))
2747 		set_bit(key[1], filter);
2748 }
2749 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2750 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2751 {
2752 	unsigned long *filter;
2753 	int gen = filter_gen_from_seq(seq);
2754 
2755 	filter = mm_state->filters[gen];
2756 	if (filter) {
2757 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2758 		return;
2759 	}
2760 
2761 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2762 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2763 	WRITE_ONCE(mm_state->filters[gen], filter);
2764 }
2765 
2766 /******************************************************************************
2767  *                          mm_struct list
2768  ******************************************************************************/
2769 
2770 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2771 
get_mm_list(struct mem_cgroup * memcg)2772 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2773 {
2774 	static struct lru_gen_mm_list mm_list = {
2775 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2776 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2777 	};
2778 
2779 #ifdef CONFIG_MEMCG
2780 	if (memcg)
2781 		return &memcg->mm_list;
2782 #endif
2783 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2784 
2785 	return &mm_list;
2786 }
2787 
get_mm_state(struct lruvec * lruvec)2788 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2789 {
2790 	return &lruvec->mm_state;
2791 }
2792 
get_next_mm(struct lru_gen_mm_walk * walk)2793 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2794 {
2795 	int key;
2796 	struct mm_struct *mm;
2797 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2798 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2799 
2800 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2801 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2802 
2803 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2804 		return NULL;
2805 
2806 	clear_bit(key, &mm->lru_gen.bitmap);
2807 
2808 	return mmget_not_zero(mm) ? mm : NULL;
2809 }
2810 
lru_gen_add_mm(struct mm_struct * mm)2811 void lru_gen_add_mm(struct mm_struct *mm)
2812 {
2813 	int nid;
2814 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2815 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2816 
2817 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2818 #ifdef CONFIG_MEMCG
2819 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2820 	mm->lru_gen.memcg = memcg;
2821 #endif
2822 	spin_lock(&mm_list->lock);
2823 
2824 	for_each_node_state(nid, N_MEMORY) {
2825 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2826 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2827 
2828 		/* the first addition since the last iteration */
2829 		if (mm_state->tail == &mm_list->fifo)
2830 			mm_state->tail = &mm->lru_gen.list;
2831 	}
2832 
2833 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2834 
2835 	spin_unlock(&mm_list->lock);
2836 }
2837 
lru_gen_del_mm(struct mm_struct * mm)2838 void lru_gen_del_mm(struct mm_struct *mm)
2839 {
2840 	int nid;
2841 	struct lru_gen_mm_list *mm_list;
2842 	struct mem_cgroup *memcg = NULL;
2843 
2844 	if (list_empty(&mm->lru_gen.list))
2845 		return;
2846 
2847 #ifdef CONFIG_MEMCG
2848 	memcg = mm->lru_gen.memcg;
2849 #endif
2850 	mm_list = get_mm_list(memcg);
2851 
2852 	spin_lock(&mm_list->lock);
2853 
2854 	for_each_node(nid) {
2855 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2856 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2857 
2858 		/* where the current iteration continues after */
2859 		if (mm_state->head == &mm->lru_gen.list)
2860 			mm_state->head = mm_state->head->prev;
2861 
2862 		/* where the last iteration ended before */
2863 		if (mm_state->tail == &mm->lru_gen.list)
2864 			mm_state->tail = mm_state->tail->next;
2865 	}
2866 
2867 	list_del_init(&mm->lru_gen.list);
2868 
2869 	spin_unlock(&mm_list->lock);
2870 
2871 #ifdef CONFIG_MEMCG
2872 	mem_cgroup_put(mm->lru_gen.memcg);
2873 	mm->lru_gen.memcg = NULL;
2874 #endif
2875 }
2876 
2877 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2878 void lru_gen_migrate_mm(struct mm_struct *mm)
2879 {
2880 	struct mem_cgroup *memcg;
2881 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2882 
2883 	VM_WARN_ON_ONCE(task->mm != mm);
2884 	lockdep_assert_held(&task->alloc_lock);
2885 
2886 	/* for mm_update_next_owner() */
2887 	if (mem_cgroup_disabled())
2888 		return;
2889 
2890 	/* migration can happen before addition */
2891 	if (!mm->lru_gen.memcg)
2892 		return;
2893 
2894 	rcu_read_lock();
2895 	memcg = mem_cgroup_from_task(task);
2896 	rcu_read_unlock();
2897 	if (memcg == mm->lru_gen.memcg)
2898 		return;
2899 
2900 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2901 
2902 	lru_gen_del_mm(mm);
2903 	lru_gen_add_mm(mm);
2904 }
2905 #endif
2906 
2907 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2908 
get_mm_list(struct mem_cgroup * memcg)2909 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2910 {
2911 	return NULL;
2912 }
2913 
get_mm_state(struct lruvec * lruvec)2914 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2915 {
2916 	return NULL;
2917 }
2918 
get_next_mm(struct lru_gen_mm_walk * walk)2919 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2920 {
2921 	return NULL;
2922 }
2923 
2924 #endif
2925 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)2926 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2927 {
2928 	int i;
2929 	int hist;
2930 	struct lruvec *lruvec = walk->lruvec;
2931 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2932 
2933 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2934 
2935 	hist = lru_hist_from_seq(walk->seq);
2936 
2937 	for (i = 0; i < NR_MM_STATS; i++) {
2938 		WRITE_ONCE(mm_state->stats[hist][i],
2939 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2940 		walk->mm_stats[i] = 0;
2941 	}
2942 
2943 	if (NR_HIST_GENS > 1 && last) {
2944 		hist = lru_hist_from_seq(walk->seq + 1);
2945 
2946 		for (i = 0; i < NR_MM_STATS; i++)
2947 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2948 	}
2949 }
2950 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)2951 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2952 {
2953 	bool first = false;
2954 	bool last = false;
2955 	struct mm_struct *mm = NULL;
2956 	struct lruvec *lruvec = walk->lruvec;
2957 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2958 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2959 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2960 
2961 	/*
2962 	 * mm_state->seq is incremented after each iteration of mm_list. There
2963 	 * are three interesting cases for this page table walker:
2964 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2965 	 *    nothing left to do.
2966 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2967 	 *    so that a fresh set of PTE tables can be recorded.
2968 	 * 3. It ended the current iteration: it needs to reset the mm stats
2969 	 *    counters and tell its caller to increment max_seq.
2970 	 */
2971 	spin_lock(&mm_list->lock);
2972 
2973 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2974 
2975 	if (walk->seq <= mm_state->seq)
2976 		goto done;
2977 
2978 	if (!mm_state->head)
2979 		mm_state->head = &mm_list->fifo;
2980 
2981 	if (mm_state->head == &mm_list->fifo)
2982 		first = true;
2983 
2984 	do {
2985 		mm_state->head = mm_state->head->next;
2986 		if (mm_state->head == &mm_list->fifo) {
2987 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2988 			last = true;
2989 			break;
2990 		}
2991 
2992 		/* force scan for those added after the last iteration */
2993 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2994 			mm_state->tail = mm_state->head->next;
2995 			walk->force_scan = true;
2996 		}
2997 	} while (!(mm = get_next_mm(walk)));
2998 done:
2999 	if (*iter || last)
3000 		reset_mm_stats(walk, last);
3001 
3002 	spin_unlock(&mm_list->lock);
3003 
3004 	if (mm && first)
3005 		reset_bloom_filter(mm_state, walk->seq + 1);
3006 
3007 	if (*iter)
3008 		mmput_async(*iter);
3009 
3010 	*iter = mm;
3011 
3012 	return last;
3013 }
3014 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3015 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3016 {
3017 	bool success = false;
3018 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3019 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3020 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3021 
3022 	spin_lock(&mm_list->lock);
3023 
3024 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3025 
3026 	if (seq > mm_state->seq) {
3027 		mm_state->head = NULL;
3028 		mm_state->tail = NULL;
3029 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3030 		success = true;
3031 	}
3032 
3033 	spin_unlock(&mm_list->lock);
3034 
3035 	return success;
3036 }
3037 
3038 /******************************************************************************
3039  *                          PID controller
3040  ******************************************************************************/
3041 
3042 /*
3043  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3044  *
3045  * The P term is refaulted/(evicted+protected) from a tier in the generation
3046  * currently being evicted; the I term is the exponential moving average of the
3047  * P term over the generations previously evicted, using the smoothing factor
3048  * 1/2; the D term isn't supported.
3049  *
3050  * The setpoint (SP) is always the first tier of one type; the process variable
3051  * (PV) is either any tier of the other type or any other tier of the same
3052  * type.
3053  *
3054  * The error is the difference between the SP and the PV; the correction is to
3055  * turn off protection when SP>PV or turn on protection when SP<PV.
3056  *
3057  * For future optimizations:
3058  * 1. The D term may discount the other two terms over time so that long-lived
3059  *    generations can resist stale information.
3060  */
3061 struct ctrl_pos {
3062 	unsigned long refaulted;
3063 	unsigned long total;
3064 	int gain;
3065 };
3066 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3067 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3068 			  struct ctrl_pos *pos)
3069 {
3070 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3071 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3072 
3073 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3074 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3075 	pos->total = lrugen->avg_total[type][tier] +
3076 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3077 	if (tier)
3078 		pos->total += lrugen->protected[hist][type][tier - 1];
3079 	pos->gain = gain;
3080 }
3081 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3082 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3083 {
3084 	int hist, tier;
3085 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3086 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3087 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3088 
3089 	lockdep_assert_held(&lruvec->lru_lock);
3090 
3091 	if (!carryover && !clear)
3092 		return;
3093 
3094 	hist = lru_hist_from_seq(seq);
3095 
3096 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3097 		if (carryover) {
3098 			unsigned long sum;
3099 
3100 			sum = lrugen->avg_refaulted[type][tier] +
3101 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3102 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3103 
3104 			sum = lrugen->avg_total[type][tier] +
3105 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3106 			if (tier)
3107 				sum += lrugen->protected[hist][type][tier - 1];
3108 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3109 		}
3110 
3111 		if (clear) {
3112 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3113 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3114 			if (tier)
3115 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3116 		}
3117 	}
3118 }
3119 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3120 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3121 {
3122 	/*
3123 	 * Return true if the PV has a limited number of refaults or a lower
3124 	 * refaulted/total than the SP.
3125 	 */
3126 	return pv->refaulted < MIN_LRU_BATCH ||
3127 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3128 	       (sp->refaulted + 1) * pv->total * pv->gain;
3129 }
3130 
3131 /******************************************************************************
3132  *                          the aging
3133  ******************************************************************************/
3134 
3135 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3136 static int folio_update_gen(struct folio *folio, int gen)
3137 {
3138 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3139 
3140 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3141 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3142 
3143 	do {
3144 		/* lru_gen_del_folio() has isolated this page? */
3145 		if (!(old_flags & LRU_GEN_MASK)) {
3146 			/* for shrink_folio_list() */
3147 			new_flags = old_flags | BIT(PG_referenced);
3148 			continue;
3149 		}
3150 
3151 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3152 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3153 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3154 
3155 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3156 }
3157 
3158 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3159 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3160 {
3161 	int type = folio_is_file_lru(folio);
3162 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3163 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3164 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3165 
3166 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3167 
3168 	do {
3169 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3170 		/* folio_update_gen() has promoted this page? */
3171 		if (new_gen >= 0 && new_gen != old_gen)
3172 			return new_gen;
3173 
3174 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3175 
3176 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3177 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3178 		/* for folio_end_writeback() */
3179 		if (reclaiming)
3180 			new_flags |= BIT(PG_reclaim);
3181 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3182 
3183 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3184 
3185 	return new_gen;
3186 }
3187 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3188 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3189 			      int old_gen, int new_gen)
3190 {
3191 	int type = folio_is_file_lru(folio);
3192 	int zone = folio_zonenum(folio);
3193 	int delta = folio_nr_pages(folio);
3194 
3195 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3196 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3197 
3198 	walk->batched++;
3199 
3200 	walk->nr_pages[old_gen][type][zone] -= delta;
3201 	walk->nr_pages[new_gen][type][zone] += delta;
3202 }
3203 
reset_batch_size(struct lru_gen_mm_walk * walk)3204 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3205 {
3206 	int gen, type, zone;
3207 	struct lruvec *lruvec = walk->lruvec;
3208 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3209 
3210 	walk->batched = 0;
3211 
3212 	for_each_gen_type_zone(gen, type, zone) {
3213 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3214 		int delta = walk->nr_pages[gen][type][zone];
3215 
3216 		if (!delta)
3217 			continue;
3218 
3219 		walk->nr_pages[gen][type][zone] = 0;
3220 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3221 			   lrugen->nr_pages[gen][type][zone] + delta);
3222 
3223 		if (lru_gen_is_active(lruvec, gen))
3224 			lru += LRU_ACTIVE;
3225 		__update_lru_size(lruvec, lru, zone, delta);
3226 	}
3227 }
3228 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3229 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3230 {
3231 	struct address_space *mapping;
3232 	struct vm_area_struct *vma = args->vma;
3233 	struct lru_gen_mm_walk *walk = args->private;
3234 
3235 	if (!vma_is_accessible(vma))
3236 		return true;
3237 
3238 	if (is_vm_hugetlb_page(vma))
3239 		return true;
3240 
3241 	if (!vma_has_recency(vma))
3242 		return true;
3243 
3244 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3245 		return true;
3246 
3247 	if (vma == get_gate_vma(vma->vm_mm))
3248 		return true;
3249 
3250 	if (vma_is_anonymous(vma))
3251 		return !walk->can_swap;
3252 
3253 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3254 		return true;
3255 
3256 	mapping = vma->vm_file->f_mapping;
3257 	if (mapping_unevictable(mapping))
3258 		return true;
3259 
3260 	if (shmem_mapping(mapping))
3261 		return !walk->can_swap;
3262 
3263 	/* to exclude special mappings like dax, etc. */
3264 	return !mapping->a_ops->read_folio;
3265 }
3266 
3267 /*
3268  * Some userspace memory allocators map many single-page VMAs. Instead of
3269  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3270  * table to reduce zigzags and improve cache performance.
3271  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3272 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3273 			 unsigned long *vm_start, unsigned long *vm_end)
3274 {
3275 	unsigned long start = round_up(*vm_end, size);
3276 	unsigned long end = (start | ~mask) + 1;
3277 	VMA_ITERATOR(vmi, args->mm, start);
3278 
3279 	VM_WARN_ON_ONCE(mask & size);
3280 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3281 
3282 	for_each_vma(vmi, args->vma) {
3283 		if (end && end <= args->vma->vm_start)
3284 			return false;
3285 
3286 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3287 			continue;
3288 
3289 		*vm_start = max(start, args->vma->vm_start);
3290 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3291 
3292 		return true;
3293 	}
3294 
3295 	return false;
3296 }
3297 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3298 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3299 				 struct pglist_data *pgdat)
3300 {
3301 	unsigned long pfn = pte_pfn(pte);
3302 
3303 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3304 
3305 	if (!pte_present(pte) || is_zero_pfn(pfn))
3306 		return -1;
3307 
3308 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3309 		return -1;
3310 
3311 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3312 		return -1;
3313 
3314 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3315 		return -1;
3316 
3317 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3318 		return -1;
3319 
3320 	return pfn;
3321 }
3322 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3323 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3324 				 struct pglist_data *pgdat)
3325 {
3326 	unsigned long pfn = pmd_pfn(pmd);
3327 
3328 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3329 
3330 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3331 		return -1;
3332 
3333 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3334 		return -1;
3335 
3336 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3337 		return -1;
3338 
3339 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3340 		return -1;
3341 
3342 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3343 		return -1;
3344 
3345 	return pfn;
3346 }
3347 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3348 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3349 				   struct pglist_data *pgdat, bool can_swap)
3350 {
3351 	struct folio *folio;
3352 
3353 	folio = pfn_folio(pfn);
3354 	if (folio_nid(folio) != pgdat->node_id)
3355 		return NULL;
3356 
3357 	if (folio_memcg_rcu(folio) != memcg)
3358 		return NULL;
3359 
3360 	/* file VMAs can contain anon pages from COW */
3361 	if (!folio_is_file_lru(folio) && !can_swap)
3362 		return NULL;
3363 
3364 	return folio;
3365 }
3366 
suitable_to_scan(int total,int young)3367 static bool suitable_to_scan(int total, int young)
3368 {
3369 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3370 
3371 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3372 	return young * n >= total;
3373 }
3374 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3375 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3376 			   struct mm_walk *args)
3377 {
3378 	int i;
3379 	pte_t *pte;
3380 	spinlock_t *ptl;
3381 	unsigned long addr;
3382 	int total = 0;
3383 	int young = 0;
3384 	struct lru_gen_mm_walk *walk = args->private;
3385 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3386 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3387 	DEFINE_MAX_SEQ(walk->lruvec);
3388 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3389 
3390 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3391 	if (!pte)
3392 		return false;
3393 	if (!spin_trylock(ptl)) {
3394 		pte_unmap(pte);
3395 		return false;
3396 	}
3397 
3398 	arch_enter_lazy_mmu_mode();
3399 restart:
3400 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3401 		unsigned long pfn;
3402 		struct folio *folio;
3403 		pte_t ptent = ptep_get(pte + i);
3404 
3405 		total++;
3406 		walk->mm_stats[MM_LEAF_TOTAL]++;
3407 
3408 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3409 		if (pfn == -1)
3410 			continue;
3411 
3412 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3413 		if (!folio)
3414 			continue;
3415 
3416 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3417 			continue;
3418 
3419 		young++;
3420 		walk->mm_stats[MM_LEAF_YOUNG]++;
3421 
3422 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3423 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3424 		      !folio_test_swapcache(folio)))
3425 			folio_mark_dirty(folio);
3426 
3427 		old_gen = folio_update_gen(folio, new_gen);
3428 		if (old_gen >= 0 && old_gen != new_gen)
3429 			update_batch_size(walk, folio, old_gen, new_gen);
3430 	}
3431 
3432 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3433 		goto restart;
3434 
3435 	arch_leave_lazy_mmu_mode();
3436 	pte_unmap_unlock(pte, ptl);
3437 
3438 	return suitable_to_scan(total, young);
3439 }
3440 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3441 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3442 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3443 {
3444 	int i;
3445 	pmd_t *pmd;
3446 	spinlock_t *ptl;
3447 	struct lru_gen_mm_walk *walk = args->private;
3448 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3449 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3450 	DEFINE_MAX_SEQ(walk->lruvec);
3451 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3452 
3453 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3454 
3455 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3456 	if (*first == -1) {
3457 		*first = addr;
3458 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3459 		return;
3460 	}
3461 
3462 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3463 	if (i && i <= MIN_LRU_BATCH) {
3464 		__set_bit(i - 1, bitmap);
3465 		return;
3466 	}
3467 
3468 	pmd = pmd_offset(pud, *first);
3469 
3470 	ptl = pmd_lockptr(args->mm, pmd);
3471 	if (!spin_trylock(ptl))
3472 		goto done;
3473 
3474 	arch_enter_lazy_mmu_mode();
3475 
3476 	do {
3477 		unsigned long pfn;
3478 		struct folio *folio;
3479 
3480 		/* don't round down the first address */
3481 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3482 
3483 		if (!pmd_present(pmd[i]))
3484 			goto next;
3485 
3486 		if (!pmd_trans_huge(pmd[i])) {
3487 			if (!walk->force_scan && should_clear_pmd_young() &&
3488 			    !mm_has_notifiers(args->mm))
3489 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3490 			goto next;
3491 		}
3492 
3493 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3494 		if (pfn == -1)
3495 			goto next;
3496 
3497 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3498 		if (!folio)
3499 			goto next;
3500 
3501 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3502 			goto next;
3503 
3504 		walk->mm_stats[MM_LEAF_YOUNG]++;
3505 
3506 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3507 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3508 		      !folio_test_swapcache(folio)))
3509 			folio_mark_dirty(folio);
3510 
3511 		old_gen = folio_update_gen(folio, new_gen);
3512 		if (old_gen >= 0 && old_gen != new_gen)
3513 			update_batch_size(walk, folio, old_gen, new_gen);
3514 next:
3515 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3516 	} while (i <= MIN_LRU_BATCH);
3517 
3518 	arch_leave_lazy_mmu_mode();
3519 	spin_unlock(ptl);
3520 done:
3521 	*first = -1;
3522 }
3523 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3524 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3525 			   struct mm_walk *args)
3526 {
3527 	int i;
3528 	pmd_t *pmd;
3529 	unsigned long next;
3530 	unsigned long addr;
3531 	struct vm_area_struct *vma;
3532 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3533 	unsigned long first = -1;
3534 	struct lru_gen_mm_walk *walk = args->private;
3535 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3536 
3537 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3538 
3539 	/*
3540 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3541 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3542 	 * the PMD lock to clear the accessed bit in PMD entries.
3543 	 */
3544 	pmd = pmd_offset(pud, start & PUD_MASK);
3545 restart:
3546 	/* walk_pte_range() may call get_next_vma() */
3547 	vma = args->vma;
3548 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3549 		pmd_t val = pmdp_get_lockless(pmd + i);
3550 
3551 		next = pmd_addr_end(addr, end);
3552 
3553 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3554 			walk->mm_stats[MM_LEAF_TOTAL]++;
3555 			continue;
3556 		}
3557 
3558 		if (pmd_trans_huge(val)) {
3559 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3560 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3561 
3562 			walk->mm_stats[MM_LEAF_TOTAL]++;
3563 
3564 			if (pfn != -1)
3565 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3566 			continue;
3567 		}
3568 
3569 		if (!walk->force_scan && should_clear_pmd_young() &&
3570 		    !mm_has_notifiers(args->mm)) {
3571 			if (!pmd_young(val))
3572 				continue;
3573 
3574 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3575 		}
3576 
3577 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3578 			continue;
3579 
3580 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3581 
3582 		if (!walk_pte_range(&val, addr, next, args))
3583 			continue;
3584 
3585 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3586 
3587 		/* carry over to the next generation */
3588 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3589 	}
3590 
3591 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3592 
3593 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3594 		goto restart;
3595 }
3596 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3597 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3598 			  struct mm_walk *args)
3599 {
3600 	int i;
3601 	pud_t *pud;
3602 	unsigned long addr;
3603 	unsigned long next;
3604 	struct lru_gen_mm_walk *walk = args->private;
3605 
3606 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3607 
3608 	pud = pud_offset(p4d, start & P4D_MASK);
3609 restart:
3610 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3611 		pud_t val = READ_ONCE(pud[i]);
3612 
3613 		next = pud_addr_end(addr, end);
3614 
3615 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3616 			continue;
3617 
3618 		walk_pmd_range(&val, addr, next, args);
3619 
3620 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3621 			end = (addr | ~PUD_MASK) + 1;
3622 			goto done;
3623 		}
3624 	}
3625 
3626 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3627 		goto restart;
3628 
3629 	end = round_up(end, P4D_SIZE);
3630 done:
3631 	if (!end || !args->vma)
3632 		return 1;
3633 
3634 	walk->next_addr = max(end, args->vma->vm_start);
3635 
3636 	return -EAGAIN;
3637 }
3638 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3639 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3640 {
3641 	static const struct mm_walk_ops mm_walk_ops = {
3642 		.test_walk = should_skip_vma,
3643 		.p4d_entry = walk_pud_range,
3644 		.walk_lock = PGWALK_RDLOCK,
3645 	};
3646 
3647 	int err;
3648 	struct lruvec *lruvec = walk->lruvec;
3649 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3650 
3651 	walk->next_addr = FIRST_USER_ADDRESS;
3652 
3653 	do {
3654 		DEFINE_MAX_SEQ(lruvec);
3655 
3656 		err = -EBUSY;
3657 
3658 		/* another thread might have called inc_max_seq() */
3659 		if (walk->seq != max_seq)
3660 			break;
3661 
3662 		/* folio_update_gen() requires stable folio_memcg() */
3663 		if (!mem_cgroup_trylock_pages(memcg))
3664 			break;
3665 
3666 		/* the caller might be holding the lock for write */
3667 		if (mmap_read_trylock(mm)) {
3668 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3669 
3670 			mmap_read_unlock(mm);
3671 		}
3672 
3673 		mem_cgroup_unlock_pages();
3674 
3675 		if (walk->batched) {
3676 			spin_lock_irq(&lruvec->lru_lock);
3677 			reset_batch_size(walk);
3678 			spin_unlock_irq(&lruvec->lru_lock);
3679 		}
3680 
3681 		cond_resched();
3682 	} while (err == -EAGAIN);
3683 }
3684 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3685 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3686 {
3687 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3688 
3689 	if (pgdat && current_is_kswapd()) {
3690 		VM_WARN_ON_ONCE(walk);
3691 
3692 		walk = &pgdat->mm_walk;
3693 	} else if (!walk && force_alloc) {
3694 		VM_WARN_ON_ONCE(current_is_kswapd());
3695 
3696 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3697 	}
3698 
3699 	current->reclaim_state->mm_walk = walk;
3700 
3701 	return walk;
3702 }
3703 
clear_mm_walk(void)3704 static void clear_mm_walk(void)
3705 {
3706 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3707 
3708 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3709 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3710 
3711 	current->reclaim_state->mm_walk = NULL;
3712 
3713 	if (!current_is_kswapd())
3714 		kfree(walk);
3715 }
3716 
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)3717 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3718 {
3719 	int zone;
3720 	int remaining = MAX_LRU_BATCH;
3721 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3722 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3723 
3724 	if (type == LRU_GEN_ANON && !can_swap)
3725 		goto done;
3726 
3727 	/* prevent cold/hot inversion if force_scan is true */
3728 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3729 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3730 
3731 		while (!list_empty(head)) {
3732 			struct folio *folio = lru_to_folio(head);
3733 
3734 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3735 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3736 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3737 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3738 
3739 			new_gen = folio_inc_gen(lruvec, folio, false);
3740 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3741 
3742 			if (!--remaining)
3743 				return false;
3744 		}
3745 	}
3746 done:
3747 	reset_ctrl_pos(lruvec, type, true);
3748 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3749 
3750 	return true;
3751 }
3752 
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)3753 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3754 {
3755 	int gen, type, zone;
3756 	bool success = false;
3757 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3758 	DEFINE_MIN_SEQ(lruvec);
3759 
3760 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3761 
3762 	/* find the oldest populated generation */
3763 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3764 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3765 			gen = lru_gen_from_seq(min_seq[type]);
3766 
3767 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3768 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3769 					goto next;
3770 			}
3771 
3772 			min_seq[type]++;
3773 		}
3774 next:
3775 		;
3776 	}
3777 
3778 	/* see the comment on lru_gen_folio */
3779 	if (can_swap) {
3780 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3781 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3782 	}
3783 
3784 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3785 		if (min_seq[type] == lrugen->min_seq[type])
3786 			continue;
3787 
3788 		reset_ctrl_pos(lruvec, type, true);
3789 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3790 		success = true;
3791 	}
3792 
3793 	return success;
3794 }
3795 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3796 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3797 			bool can_swap, bool force_scan)
3798 {
3799 	bool success;
3800 	int prev, next;
3801 	int type, zone;
3802 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3803 restart:
3804 	if (seq < READ_ONCE(lrugen->max_seq))
3805 		return false;
3806 
3807 	spin_lock_irq(&lruvec->lru_lock);
3808 
3809 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3810 
3811 	success = seq == lrugen->max_seq;
3812 	if (!success)
3813 		goto unlock;
3814 
3815 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3816 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3817 			continue;
3818 
3819 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3820 
3821 		if (inc_min_seq(lruvec, type, can_swap))
3822 			continue;
3823 
3824 		spin_unlock_irq(&lruvec->lru_lock);
3825 		cond_resched();
3826 		goto restart;
3827 	}
3828 
3829 	/*
3830 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3831 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3832 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3833 	 * overlap, cold/hot inversion happens.
3834 	 */
3835 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3836 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3837 
3838 	for (type = 0; type < ANON_AND_FILE; type++) {
3839 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3840 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3841 			long delta = lrugen->nr_pages[prev][type][zone] -
3842 				     lrugen->nr_pages[next][type][zone];
3843 
3844 			if (!delta)
3845 				continue;
3846 
3847 			__update_lru_size(lruvec, lru, zone, delta);
3848 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3849 		}
3850 	}
3851 
3852 	for (type = 0; type < ANON_AND_FILE; type++)
3853 		reset_ctrl_pos(lruvec, type, false);
3854 
3855 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3856 	/* make sure preceding modifications appear */
3857 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3858 unlock:
3859 	spin_unlock_irq(&lruvec->lru_lock);
3860 
3861 	return success;
3862 }
3863 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3864 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3865 			       bool can_swap, bool force_scan)
3866 {
3867 	bool success;
3868 	struct lru_gen_mm_walk *walk;
3869 	struct mm_struct *mm = NULL;
3870 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3871 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3872 
3873 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3874 
3875 	if (!mm_state)
3876 		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3877 
3878 	/* see the comment in iterate_mm_list() */
3879 	if (seq <= READ_ONCE(mm_state->seq))
3880 		return false;
3881 
3882 	/*
3883 	 * If the hardware doesn't automatically set the accessed bit, fallback
3884 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3885 	 * handful of PTEs. Spreading the work out over a period of time usually
3886 	 * is less efficient, but it avoids bursty page faults.
3887 	 */
3888 	if (!should_walk_mmu()) {
3889 		success = iterate_mm_list_nowalk(lruvec, seq);
3890 		goto done;
3891 	}
3892 
3893 	walk = set_mm_walk(NULL, true);
3894 	if (!walk) {
3895 		success = iterate_mm_list_nowalk(lruvec, seq);
3896 		goto done;
3897 	}
3898 
3899 	walk->lruvec = lruvec;
3900 	walk->seq = seq;
3901 	walk->can_swap = can_swap;
3902 	walk->force_scan = force_scan;
3903 
3904 	do {
3905 		success = iterate_mm_list(walk, &mm);
3906 		if (mm)
3907 			walk_mm(mm, walk);
3908 	} while (mm);
3909 done:
3910 	if (success) {
3911 		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3912 		WARN_ON_ONCE(!success);
3913 	}
3914 
3915 	return success;
3916 }
3917 
3918 /******************************************************************************
3919  *                          working set protection
3920  ******************************************************************************/
3921 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)3922 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3923 {
3924 	int priority;
3925 	unsigned long reclaimable;
3926 
3927 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3928 		return;
3929 	/*
3930 	 * Determine the initial priority based on
3931 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3932 	 * where reclaimed_to_scanned_ratio = inactive / total.
3933 	 */
3934 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3935 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3936 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3937 
3938 	/* round down reclaimable and round up sc->nr_to_reclaim */
3939 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3940 
3941 	/*
3942 	 * The estimation is based on LRU pages only, so cap it to prevent
3943 	 * overshoots of shrinker objects by large margins.
3944 	 */
3945 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3946 }
3947 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)3948 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3949 {
3950 	int gen, type, zone;
3951 	unsigned long total = 0;
3952 	bool can_swap = get_swappiness(lruvec, sc);
3953 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3954 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3955 	DEFINE_MAX_SEQ(lruvec);
3956 	DEFINE_MIN_SEQ(lruvec);
3957 
3958 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3959 		unsigned long seq;
3960 
3961 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3962 			gen = lru_gen_from_seq(seq);
3963 
3964 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3965 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3966 		}
3967 	}
3968 
3969 	/* whether the size is big enough to be helpful */
3970 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3971 }
3972 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)3973 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3974 				  unsigned long min_ttl)
3975 {
3976 	int gen;
3977 	unsigned long birth;
3978 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3979 	DEFINE_MIN_SEQ(lruvec);
3980 
3981 	if (mem_cgroup_below_min(NULL, memcg))
3982 		return false;
3983 
3984 	if (!lruvec_is_sizable(lruvec, sc))
3985 		return false;
3986 
3987 	/* see the comment on lru_gen_folio */
3988 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3989 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3990 
3991 	return time_is_before_jiffies(birth + min_ttl);
3992 }
3993 
3994 /* to protect the working set of the last N jiffies */
3995 static unsigned long lru_gen_min_ttl __read_mostly;
3996 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)3997 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3998 {
3999 	struct mem_cgroup *memcg;
4000 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4001 	bool reclaimable = !min_ttl;
4002 
4003 	VM_WARN_ON_ONCE(!current_is_kswapd());
4004 
4005 	set_initial_priority(pgdat, sc);
4006 
4007 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4008 	do {
4009 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4010 
4011 		mem_cgroup_calculate_protection(NULL, memcg);
4012 
4013 		if (!reclaimable)
4014 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4015 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4016 
4017 	/*
4018 	 * The main goal is to OOM kill if every generation from all memcgs is
4019 	 * younger than min_ttl. However, another possibility is all memcgs are
4020 	 * either too small or below min.
4021 	 */
4022 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4023 		struct oom_control oc = {
4024 			.gfp_mask = sc->gfp_mask,
4025 		};
4026 
4027 		out_of_memory(&oc);
4028 
4029 		mutex_unlock(&oom_lock);
4030 	}
4031 }
4032 
4033 /******************************************************************************
4034  *                          rmap/PT walk feedback
4035  ******************************************************************************/
4036 
4037 /*
4038  * This function exploits spatial locality when shrink_folio_list() walks the
4039  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4040  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4041  * the PTE table to the Bloom filter. This forms a feedback loop between the
4042  * eviction and the aging.
4043  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4044 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4045 {
4046 	int i;
4047 	unsigned long start;
4048 	unsigned long end;
4049 	struct lru_gen_mm_walk *walk;
4050 	int young = 1;
4051 	pte_t *pte = pvmw->pte;
4052 	unsigned long addr = pvmw->address;
4053 	struct vm_area_struct *vma = pvmw->vma;
4054 	struct folio *folio = pfn_folio(pvmw->pfn);
4055 	bool can_swap = !folio_is_file_lru(folio);
4056 	struct mem_cgroup *memcg = folio_memcg(folio);
4057 	struct pglist_data *pgdat = folio_pgdat(folio);
4058 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4059 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4060 	DEFINE_MAX_SEQ(lruvec);
4061 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4062 
4063 	lockdep_assert_held(pvmw->ptl);
4064 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4065 
4066 	if (!ptep_clear_young_notify(vma, addr, pte))
4067 		return false;
4068 
4069 	if (spin_is_contended(pvmw->ptl))
4070 		return true;
4071 
4072 	/* exclude special VMAs containing anon pages from COW */
4073 	if (vma->vm_flags & VM_SPECIAL)
4074 		return true;
4075 
4076 	/* avoid taking the LRU lock under the PTL when possible */
4077 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4078 
4079 	start = max(addr & PMD_MASK, vma->vm_start);
4080 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4081 
4082 	if (end - start == PAGE_SIZE)
4083 		return true;
4084 
4085 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4086 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4087 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4088 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4089 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4090 		else {
4091 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4092 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4093 		}
4094 	}
4095 
4096 	/* folio_update_gen() requires stable folio_memcg() */
4097 	if (!mem_cgroup_trylock_pages(memcg))
4098 		return true;
4099 
4100 	arch_enter_lazy_mmu_mode();
4101 
4102 	pte -= (addr - start) / PAGE_SIZE;
4103 
4104 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4105 		unsigned long pfn;
4106 		pte_t ptent = ptep_get(pte + i);
4107 
4108 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4109 		if (pfn == -1)
4110 			continue;
4111 
4112 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4113 		if (!folio)
4114 			continue;
4115 
4116 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4117 			continue;
4118 
4119 		young++;
4120 
4121 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4122 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4123 		      !folio_test_swapcache(folio)))
4124 			folio_mark_dirty(folio);
4125 
4126 		if (walk) {
4127 			old_gen = folio_update_gen(folio, new_gen);
4128 			if (old_gen >= 0 && old_gen != new_gen)
4129 				update_batch_size(walk, folio, old_gen, new_gen);
4130 
4131 			continue;
4132 		}
4133 
4134 		old_gen = folio_lru_gen(folio);
4135 		if (old_gen < 0)
4136 			folio_set_referenced(folio);
4137 		else if (old_gen != new_gen)
4138 			folio_activate(folio);
4139 	}
4140 
4141 	arch_leave_lazy_mmu_mode();
4142 	mem_cgroup_unlock_pages();
4143 
4144 	/* feedback from rmap walkers to page table walkers */
4145 	if (mm_state && suitable_to_scan(i, young))
4146 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4147 
4148 	return true;
4149 }
4150 
4151 /******************************************************************************
4152  *                          memcg LRU
4153  ******************************************************************************/
4154 
4155 /* see the comment on MEMCG_NR_GENS */
4156 enum {
4157 	MEMCG_LRU_NOP,
4158 	MEMCG_LRU_HEAD,
4159 	MEMCG_LRU_TAIL,
4160 	MEMCG_LRU_OLD,
4161 	MEMCG_LRU_YOUNG,
4162 };
4163 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4164 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4165 {
4166 	int seg;
4167 	int old, new;
4168 	unsigned long flags;
4169 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4170 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4171 
4172 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4173 
4174 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4175 
4176 	seg = 0;
4177 	new = old = lruvec->lrugen.gen;
4178 
4179 	/* see the comment on MEMCG_NR_GENS */
4180 	if (op == MEMCG_LRU_HEAD)
4181 		seg = MEMCG_LRU_HEAD;
4182 	else if (op == MEMCG_LRU_TAIL)
4183 		seg = MEMCG_LRU_TAIL;
4184 	else if (op == MEMCG_LRU_OLD)
4185 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4186 	else if (op == MEMCG_LRU_YOUNG)
4187 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4188 	else
4189 		VM_WARN_ON_ONCE(true);
4190 
4191 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4192 	WRITE_ONCE(lruvec->lrugen.gen, new);
4193 
4194 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4195 
4196 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4197 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4198 	else
4199 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4200 
4201 	pgdat->memcg_lru.nr_memcgs[old]--;
4202 	pgdat->memcg_lru.nr_memcgs[new]++;
4203 
4204 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4205 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4206 
4207 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4208 }
4209 
4210 #ifdef CONFIG_MEMCG
4211 
lru_gen_online_memcg(struct mem_cgroup * memcg)4212 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4213 {
4214 	int gen;
4215 	int nid;
4216 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4217 
4218 	for_each_node(nid) {
4219 		struct pglist_data *pgdat = NODE_DATA(nid);
4220 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4221 
4222 		spin_lock_irq(&pgdat->memcg_lru.lock);
4223 
4224 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4225 
4226 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4227 
4228 		lruvec->lrugen.gen = gen;
4229 
4230 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4231 		pgdat->memcg_lru.nr_memcgs[gen]++;
4232 
4233 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4234 	}
4235 }
4236 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4237 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4238 {
4239 	int nid;
4240 
4241 	for_each_node(nid) {
4242 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4243 
4244 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4245 	}
4246 }
4247 
lru_gen_release_memcg(struct mem_cgroup * memcg)4248 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4249 {
4250 	int gen;
4251 	int nid;
4252 
4253 	for_each_node(nid) {
4254 		struct pglist_data *pgdat = NODE_DATA(nid);
4255 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4256 
4257 		spin_lock_irq(&pgdat->memcg_lru.lock);
4258 
4259 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4260 			goto unlock;
4261 
4262 		gen = lruvec->lrugen.gen;
4263 
4264 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4265 		pgdat->memcg_lru.nr_memcgs[gen]--;
4266 
4267 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4268 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4269 unlock:
4270 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4271 	}
4272 }
4273 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4274 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4275 {
4276 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4277 
4278 	/* see the comment on MEMCG_NR_GENS */
4279 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4280 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4281 }
4282 
4283 #endif /* CONFIG_MEMCG */
4284 
4285 /******************************************************************************
4286  *                          the eviction
4287  ******************************************************************************/
4288 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4289 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4290 		       int tier_idx)
4291 {
4292 	bool success;
4293 	int gen = folio_lru_gen(folio);
4294 	int type = folio_is_file_lru(folio);
4295 	int zone = folio_zonenum(folio);
4296 	int delta = folio_nr_pages(folio);
4297 	int refs = folio_lru_refs(folio);
4298 	int tier = lru_tier_from_refs(refs);
4299 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4300 
4301 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4302 
4303 	/* unevictable */
4304 	if (!folio_evictable(folio)) {
4305 		success = lru_gen_del_folio(lruvec, folio, true);
4306 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4307 		folio_set_unevictable(folio);
4308 		lruvec_add_folio(lruvec, folio);
4309 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4310 		return true;
4311 	}
4312 
4313 	/* promoted */
4314 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4315 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4316 		return true;
4317 	}
4318 
4319 	/* protected */
4320 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4321 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4322 
4323 		gen = folio_inc_gen(lruvec, folio, false);
4324 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4325 
4326 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4327 			   lrugen->protected[hist][type][tier - 1] + delta);
4328 		return true;
4329 	}
4330 
4331 	/* ineligible */
4332 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4333 		gen = folio_inc_gen(lruvec, folio, false);
4334 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4335 		return true;
4336 	}
4337 
4338 	/* waiting for writeback */
4339 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4340 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4341 		gen = folio_inc_gen(lruvec, folio, true);
4342 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4343 		return true;
4344 	}
4345 
4346 	return false;
4347 }
4348 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4349 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4350 {
4351 	bool success;
4352 
4353 	/* swap constrained */
4354 	if (!(sc->gfp_mask & __GFP_IO) &&
4355 	    (folio_test_dirty(folio) ||
4356 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4357 		return false;
4358 
4359 	/* raced with release_pages() */
4360 	if (!folio_try_get(folio))
4361 		return false;
4362 
4363 	/* raced with another isolation */
4364 	if (!folio_test_clear_lru(folio)) {
4365 		folio_put(folio);
4366 		return false;
4367 	}
4368 
4369 	/* see the comment on MAX_NR_TIERS */
4370 	if (!folio_test_referenced(folio))
4371 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4372 
4373 	/* for shrink_folio_list() */
4374 	folio_clear_reclaim(folio);
4375 	folio_clear_referenced(folio);
4376 
4377 	success = lru_gen_del_folio(lruvec, folio, true);
4378 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4379 
4380 	return true;
4381 }
4382 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4383 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4384 		       int type, int tier, struct list_head *list)
4385 {
4386 	int i;
4387 	int gen;
4388 	enum vm_event_item item;
4389 	int sorted = 0;
4390 	int scanned = 0;
4391 	int isolated = 0;
4392 	int skipped = 0;
4393 	int remaining = MAX_LRU_BATCH;
4394 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4395 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4396 
4397 	VM_WARN_ON_ONCE(!list_empty(list));
4398 
4399 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4400 		return 0;
4401 
4402 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4403 
4404 	for (i = MAX_NR_ZONES; i > 0; i--) {
4405 		LIST_HEAD(moved);
4406 		int skipped_zone = 0;
4407 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4408 		struct list_head *head = &lrugen->folios[gen][type][zone];
4409 
4410 		while (!list_empty(head)) {
4411 			struct folio *folio = lru_to_folio(head);
4412 			int delta = folio_nr_pages(folio);
4413 
4414 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4415 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4416 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4417 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4418 
4419 			scanned += delta;
4420 
4421 			if (sort_folio(lruvec, folio, sc, tier))
4422 				sorted += delta;
4423 			else if (isolate_folio(lruvec, folio, sc)) {
4424 				list_add(&folio->lru, list);
4425 				isolated += delta;
4426 			} else {
4427 				list_move(&folio->lru, &moved);
4428 				skipped_zone += delta;
4429 			}
4430 
4431 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4432 				break;
4433 		}
4434 
4435 		if (skipped_zone) {
4436 			list_splice(&moved, head);
4437 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4438 			skipped += skipped_zone;
4439 		}
4440 
4441 		if (!remaining || isolated >= MIN_LRU_BATCH)
4442 			break;
4443 	}
4444 
4445 	item = PGSCAN_KSWAPD + reclaimer_offset();
4446 	if (!cgroup_reclaim(sc)) {
4447 		__count_vm_events(item, isolated);
4448 		__count_vm_events(PGREFILL, sorted);
4449 	}
4450 	__count_memcg_events(memcg, item, isolated);
4451 	__count_memcg_events(memcg, PGREFILL, sorted);
4452 	__count_vm_events(PGSCAN_ANON + type, isolated);
4453 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4454 				scanned, skipped, isolated,
4455 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4456 
4457 	/*
4458 	 * There might not be eligible folios due to reclaim_idx. Check the
4459 	 * remaining to prevent livelock if it's not making progress.
4460 	 */
4461 	return isolated || !remaining ? scanned : 0;
4462 }
4463 
get_tier_idx(struct lruvec * lruvec,int type)4464 static int get_tier_idx(struct lruvec *lruvec, int type)
4465 {
4466 	int tier;
4467 	struct ctrl_pos sp, pv;
4468 
4469 	/*
4470 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4471 	 * This value is chosen because any other tier would have at least twice
4472 	 * as many refaults as the first tier.
4473 	 */
4474 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4475 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4476 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4477 		if (!positive_ctrl_err(&sp, &pv))
4478 			break;
4479 	}
4480 
4481 	return tier - 1;
4482 }
4483 
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)4484 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4485 {
4486 	int type, tier;
4487 	struct ctrl_pos sp, pv;
4488 	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4489 
4490 	/*
4491 	 * Compare the first tier of anon with that of file to determine which
4492 	 * type to scan. Also need to compare other tiers of the selected type
4493 	 * with the first tier of the other type to determine the last tier (of
4494 	 * the selected type) to evict.
4495 	 */
4496 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4497 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4498 	type = positive_ctrl_err(&sp, &pv);
4499 
4500 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4501 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4502 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4503 		if (!positive_ctrl_err(&sp, &pv))
4504 			break;
4505 	}
4506 
4507 	*tier_idx = tier - 1;
4508 
4509 	return type;
4510 }
4511 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4512 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4513 			  int *type_scanned, struct list_head *list)
4514 {
4515 	int i;
4516 	int type;
4517 	int scanned;
4518 	int tier = -1;
4519 	DEFINE_MIN_SEQ(lruvec);
4520 
4521 	/*
4522 	 * Try to make the obvious choice first, and if anon and file are both
4523 	 * available from the same generation,
4524 	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4525 	 *    first.
4526 	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4527 	 *    exist than clean swapcache.
4528 	 */
4529 	if (!swappiness)
4530 		type = LRU_GEN_FILE;
4531 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4532 		type = LRU_GEN_ANON;
4533 	else if (swappiness == 1)
4534 		type = LRU_GEN_FILE;
4535 	else if (swappiness == MAX_SWAPPINESS)
4536 		type = LRU_GEN_ANON;
4537 	else if (!(sc->gfp_mask & __GFP_IO))
4538 		type = LRU_GEN_FILE;
4539 	else
4540 		type = get_type_to_scan(lruvec, swappiness, &tier);
4541 
4542 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4543 		if (tier < 0)
4544 			tier = get_tier_idx(lruvec, type);
4545 
4546 		scanned = scan_folios(lruvec, sc, type, tier, list);
4547 		if (scanned)
4548 			break;
4549 
4550 		type = !type;
4551 		tier = -1;
4552 	}
4553 
4554 	*type_scanned = type;
4555 
4556 	return scanned;
4557 }
4558 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4559 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4560 {
4561 	int type;
4562 	int scanned;
4563 	int reclaimed;
4564 	LIST_HEAD(list);
4565 	LIST_HEAD(clean);
4566 	struct folio *folio;
4567 	struct folio *next;
4568 	enum vm_event_item item;
4569 	struct reclaim_stat stat;
4570 	struct lru_gen_mm_walk *walk;
4571 	bool skip_retry = false;
4572 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4573 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4574 
4575 	spin_lock_irq(&lruvec->lru_lock);
4576 
4577 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4578 
4579 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4580 
4581 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4582 		scanned = 0;
4583 
4584 	spin_unlock_irq(&lruvec->lru_lock);
4585 
4586 	if (list_empty(&list))
4587 		return scanned;
4588 retry:
4589 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4590 	sc->nr_reclaimed += reclaimed;
4591 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4592 			scanned, reclaimed, &stat, sc->priority,
4593 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4594 
4595 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4596 		if (!folio_evictable(folio)) {
4597 			list_del(&folio->lru);
4598 			folio_putback_lru(folio);
4599 			continue;
4600 		}
4601 
4602 		if (folio_test_reclaim(folio) &&
4603 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4604 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4605 			if (folio_test_workingset(folio))
4606 				folio_set_referenced(folio);
4607 			continue;
4608 		}
4609 
4610 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4611 		    folio_mapped(folio) || folio_test_locked(folio) ||
4612 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4613 			/* don't add rejected folios to the oldest generation */
4614 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4615 				      BIT(PG_active));
4616 			continue;
4617 		}
4618 
4619 		/* retry folios that may have missed folio_rotate_reclaimable() */
4620 		list_move(&folio->lru, &clean);
4621 	}
4622 
4623 	spin_lock_irq(&lruvec->lru_lock);
4624 
4625 	move_folios_to_lru(lruvec, &list);
4626 
4627 	walk = current->reclaim_state->mm_walk;
4628 	if (walk && walk->batched) {
4629 		walk->lruvec = lruvec;
4630 		reset_batch_size(walk);
4631 	}
4632 
4633 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4634 	if (!cgroup_reclaim(sc))
4635 		__count_vm_events(item, reclaimed);
4636 	__count_memcg_events(memcg, item, reclaimed);
4637 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4638 
4639 	spin_unlock_irq(&lruvec->lru_lock);
4640 
4641 	list_splice_init(&clean, &list);
4642 
4643 	if (!list_empty(&list)) {
4644 		skip_retry = true;
4645 		goto retry;
4646 	}
4647 
4648 	return scanned;
4649 }
4650 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,bool can_swap,unsigned long * nr_to_scan)4651 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4652 			     bool can_swap, unsigned long *nr_to_scan)
4653 {
4654 	int gen, type, zone;
4655 	unsigned long old = 0;
4656 	unsigned long young = 0;
4657 	unsigned long total = 0;
4658 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4659 	DEFINE_MIN_SEQ(lruvec);
4660 
4661 	/* whether this lruvec is completely out of cold folios */
4662 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4663 		*nr_to_scan = 0;
4664 		return true;
4665 	}
4666 
4667 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4668 		unsigned long seq;
4669 
4670 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4671 			unsigned long size = 0;
4672 
4673 			gen = lru_gen_from_seq(seq);
4674 
4675 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4676 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4677 
4678 			total += size;
4679 			if (seq == max_seq)
4680 				young += size;
4681 			else if (seq + MIN_NR_GENS == max_seq)
4682 				old += size;
4683 		}
4684 	}
4685 
4686 	*nr_to_scan = total;
4687 
4688 	/*
4689 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4690 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4691 	 * ideal number of generations is MIN_NR_GENS+1.
4692 	 */
4693 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4694 		return false;
4695 
4696 	/*
4697 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4698 	 * of the total number of pages for each generation. A reasonable range
4699 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4700 	 * aging cares about the upper bound of hot pages, while the eviction
4701 	 * cares about the lower bound of cold pages.
4702 	 */
4703 	if (young * MIN_NR_GENS > total)
4704 		return true;
4705 	if (old * (MIN_NR_GENS + 2) < total)
4706 		return true;
4707 
4708 	return false;
4709 }
4710 
4711 /*
4712  * For future optimizations:
4713  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4714  *    reclaim.
4715  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)4716 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4717 {
4718 	bool success;
4719 	unsigned long nr_to_scan;
4720 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4721 	DEFINE_MAX_SEQ(lruvec);
4722 
4723 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4724 		return -1;
4725 
4726 	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4727 
4728 	/* try to scrape all its memory if this memcg was deleted */
4729 	if (nr_to_scan && !mem_cgroup_online(memcg))
4730 		return nr_to_scan;
4731 
4732 	/* try to get away with not aging at the default priority */
4733 	if (!success || sc->priority == DEF_PRIORITY)
4734 		return nr_to_scan >> sc->priority;
4735 
4736 	/* stop scanning this lruvec as it's low on cold folios */
4737 	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4738 }
4739 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4740 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4741 {
4742 	int i;
4743 	enum zone_watermarks mark;
4744 
4745 	/* don't abort memcg reclaim to ensure fairness */
4746 	if (!root_reclaim(sc))
4747 		return false;
4748 
4749 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4750 		return true;
4751 
4752 	/* check the order to exclude compaction-induced reclaim */
4753 	if (!current_is_kswapd() || sc->order)
4754 		return false;
4755 
4756 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4757 	       WMARK_PROMO : WMARK_HIGH;
4758 
4759 	for (i = 0; i <= sc->reclaim_idx; i++) {
4760 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4761 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4762 
4763 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4764 			return false;
4765 	}
4766 
4767 	/* kswapd should abort if all eligible zones are safe */
4768 	return true;
4769 }
4770 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4771 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4772 {
4773 	long nr_to_scan;
4774 	unsigned long scanned = 0;
4775 	int swappiness = get_swappiness(lruvec, sc);
4776 
4777 	while (true) {
4778 		int delta;
4779 
4780 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4781 		if (nr_to_scan <= 0)
4782 			break;
4783 
4784 		delta = evict_folios(lruvec, sc, swappiness);
4785 		if (!delta)
4786 			break;
4787 
4788 		scanned += delta;
4789 		if (scanned >= nr_to_scan)
4790 			break;
4791 
4792 		if (should_abort_scan(lruvec, sc))
4793 			break;
4794 
4795 		cond_resched();
4796 	}
4797 
4798 	/* whether this lruvec should be rotated */
4799 	return nr_to_scan < 0;
4800 }
4801 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4802 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4803 {
4804 	bool success;
4805 	unsigned long scanned = sc->nr_scanned;
4806 	unsigned long reclaimed = sc->nr_reclaimed;
4807 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4808 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4809 
4810 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4811 	if (mem_cgroup_below_min(NULL, memcg))
4812 		return MEMCG_LRU_YOUNG;
4813 
4814 	if (mem_cgroup_below_low(NULL, memcg)) {
4815 		/* see the comment on MEMCG_NR_GENS */
4816 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4817 			return MEMCG_LRU_TAIL;
4818 
4819 		memcg_memory_event(memcg, MEMCG_LOW);
4820 	}
4821 
4822 	success = try_to_shrink_lruvec(lruvec, sc);
4823 
4824 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4825 
4826 	if (!sc->proactive)
4827 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4828 			   sc->nr_reclaimed - reclaimed);
4829 
4830 	flush_reclaim_state(sc);
4831 
4832 	if (success && mem_cgroup_online(memcg))
4833 		return MEMCG_LRU_YOUNG;
4834 
4835 	if (!success && lruvec_is_sizable(lruvec, sc))
4836 		return 0;
4837 
4838 	/* one retry if offlined or too small */
4839 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4840 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4841 }
4842 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4843 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4844 {
4845 	int op;
4846 	int gen;
4847 	int bin;
4848 	int first_bin;
4849 	struct lruvec *lruvec;
4850 	struct lru_gen_folio *lrugen;
4851 	struct mem_cgroup *memcg;
4852 	struct hlist_nulls_node *pos;
4853 
4854 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4855 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4856 restart:
4857 	op = 0;
4858 	memcg = NULL;
4859 
4860 	rcu_read_lock();
4861 
4862 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4863 		if (op) {
4864 			lru_gen_rotate_memcg(lruvec, op);
4865 			op = 0;
4866 		}
4867 
4868 		mem_cgroup_put(memcg);
4869 		memcg = NULL;
4870 
4871 		if (gen != READ_ONCE(lrugen->gen))
4872 			continue;
4873 
4874 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4875 		memcg = lruvec_memcg(lruvec);
4876 
4877 		if (!mem_cgroup_tryget(memcg)) {
4878 			lru_gen_release_memcg(memcg);
4879 			memcg = NULL;
4880 			continue;
4881 		}
4882 
4883 		rcu_read_unlock();
4884 
4885 		op = shrink_one(lruvec, sc);
4886 
4887 		rcu_read_lock();
4888 
4889 		if (should_abort_scan(lruvec, sc))
4890 			break;
4891 	}
4892 
4893 	rcu_read_unlock();
4894 
4895 	if (op)
4896 		lru_gen_rotate_memcg(lruvec, op);
4897 
4898 	mem_cgroup_put(memcg);
4899 
4900 	if (!is_a_nulls(pos))
4901 		return;
4902 
4903 	/* restart if raced with lru_gen_rotate_memcg() */
4904 	if (gen != get_nulls_value(pos))
4905 		goto restart;
4906 
4907 	/* try the rest of the bins of the current generation */
4908 	bin = get_memcg_bin(bin + 1);
4909 	if (bin != first_bin)
4910 		goto restart;
4911 }
4912 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4913 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4914 {
4915 	struct blk_plug plug;
4916 
4917 	VM_WARN_ON_ONCE(root_reclaim(sc));
4918 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4919 
4920 	lru_add_drain();
4921 
4922 	blk_start_plug(&plug);
4923 
4924 	set_mm_walk(NULL, sc->proactive);
4925 
4926 	if (try_to_shrink_lruvec(lruvec, sc))
4927 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4928 
4929 	clear_mm_walk();
4930 
4931 	blk_finish_plug(&plug);
4932 }
4933 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)4934 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4935 {
4936 	struct blk_plug plug;
4937 	unsigned long reclaimed = sc->nr_reclaimed;
4938 
4939 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4940 
4941 	/*
4942 	 * Unmapped clean folios are already prioritized. Scanning for more of
4943 	 * them is likely futile and can cause high reclaim latency when there
4944 	 * is a large number of memcgs.
4945 	 */
4946 	if (!sc->may_writepage || !sc->may_unmap)
4947 		goto done;
4948 
4949 	lru_add_drain();
4950 
4951 	blk_start_plug(&plug);
4952 
4953 	set_mm_walk(pgdat, sc->proactive);
4954 
4955 	set_initial_priority(pgdat, sc);
4956 
4957 	if (current_is_kswapd())
4958 		sc->nr_reclaimed = 0;
4959 
4960 	if (mem_cgroup_disabled())
4961 		shrink_one(&pgdat->__lruvec, sc);
4962 	else
4963 		shrink_many(pgdat, sc);
4964 
4965 	if (current_is_kswapd())
4966 		sc->nr_reclaimed += reclaimed;
4967 
4968 	clear_mm_walk();
4969 
4970 	blk_finish_plug(&plug);
4971 done:
4972 	if (sc->nr_reclaimed > reclaimed)
4973 		pgdat->kswapd_failures = 0;
4974 }
4975 
4976 /******************************************************************************
4977  *                          state change
4978  ******************************************************************************/
4979 
state_is_valid(struct lruvec * lruvec)4980 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4981 {
4982 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4983 
4984 	if (lrugen->enabled) {
4985 		enum lru_list lru;
4986 
4987 		for_each_evictable_lru(lru) {
4988 			if (!list_empty(&lruvec->lists[lru]))
4989 				return false;
4990 		}
4991 	} else {
4992 		int gen, type, zone;
4993 
4994 		for_each_gen_type_zone(gen, type, zone) {
4995 			if (!list_empty(&lrugen->folios[gen][type][zone]))
4996 				return false;
4997 		}
4998 	}
4999 
5000 	return true;
5001 }
5002 
fill_evictable(struct lruvec * lruvec)5003 static bool fill_evictable(struct lruvec *lruvec)
5004 {
5005 	enum lru_list lru;
5006 	int remaining = MAX_LRU_BATCH;
5007 
5008 	for_each_evictable_lru(lru) {
5009 		int type = is_file_lru(lru);
5010 		bool active = is_active_lru(lru);
5011 		struct list_head *head = &lruvec->lists[lru];
5012 
5013 		while (!list_empty(head)) {
5014 			bool success;
5015 			struct folio *folio = lru_to_folio(head);
5016 
5017 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5018 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5019 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5020 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5021 
5022 			lruvec_del_folio(lruvec, folio);
5023 			success = lru_gen_add_folio(lruvec, folio, false);
5024 			VM_WARN_ON_ONCE(!success);
5025 
5026 			if (!--remaining)
5027 				return false;
5028 		}
5029 	}
5030 
5031 	return true;
5032 }
5033 
drain_evictable(struct lruvec * lruvec)5034 static bool drain_evictable(struct lruvec *lruvec)
5035 {
5036 	int gen, type, zone;
5037 	int remaining = MAX_LRU_BATCH;
5038 
5039 	for_each_gen_type_zone(gen, type, zone) {
5040 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5041 
5042 		while (!list_empty(head)) {
5043 			bool success;
5044 			struct folio *folio = lru_to_folio(head);
5045 
5046 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5047 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5048 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5049 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5050 
5051 			success = lru_gen_del_folio(lruvec, folio, false);
5052 			VM_WARN_ON_ONCE(!success);
5053 			lruvec_add_folio(lruvec, folio);
5054 
5055 			if (!--remaining)
5056 				return false;
5057 		}
5058 	}
5059 
5060 	return true;
5061 }
5062 
lru_gen_change_state(bool enabled)5063 static void lru_gen_change_state(bool enabled)
5064 {
5065 	static DEFINE_MUTEX(state_mutex);
5066 
5067 	struct mem_cgroup *memcg;
5068 
5069 	cgroup_lock();
5070 	cpus_read_lock();
5071 	get_online_mems();
5072 	mutex_lock(&state_mutex);
5073 
5074 	if (enabled == lru_gen_enabled())
5075 		goto unlock;
5076 
5077 	if (enabled)
5078 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5079 	else
5080 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5081 
5082 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5083 	do {
5084 		int nid;
5085 
5086 		for_each_node(nid) {
5087 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5088 
5089 			spin_lock_irq(&lruvec->lru_lock);
5090 
5091 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5092 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5093 
5094 			lruvec->lrugen.enabled = enabled;
5095 
5096 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5097 				spin_unlock_irq(&lruvec->lru_lock);
5098 				cond_resched();
5099 				spin_lock_irq(&lruvec->lru_lock);
5100 			}
5101 
5102 			spin_unlock_irq(&lruvec->lru_lock);
5103 		}
5104 
5105 		cond_resched();
5106 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5107 unlock:
5108 	mutex_unlock(&state_mutex);
5109 	put_online_mems();
5110 	cpus_read_unlock();
5111 	cgroup_unlock();
5112 }
5113 
5114 /******************************************************************************
5115  *                          sysfs interface
5116  ******************************************************************************/
5117 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5118 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5119 {
5120 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5121 }
5122 
5123 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5124 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5125 				const char *buf, size_t len)
5126 {
5127 	unsigned int msecs;
5128 
5129 	if (kstrtouint(buf, 0, &msecs))
5130 		return -EINVAL;
5131 
5132 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5133 
5134 	return len;
5135 }
5136 
5137 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5138 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5139 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5140 {
5141 	unsigned int caps = 0;
5142 
5143 	if (get_cap(LRU_GEN_CORE))
5144 		caps |= BIT(LRU_GEN_CORE);
5145 
5146 	if (should_walk_mmu())
5147 		caps |= BIT(LRU_GEN_MM_WALK);
5148 
5149 	if (should_clear_pmd_young())
5150 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5151 
5152 	return sysfs_emit(buf, "0x%04x\n", caps);
5153 }
5154 
5155 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5156 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5157 			     const char *buf, size_t len)
5158 {
5159 	int i;
5160 	unsigned int caps;
5161 
5162 	if (tolower(*buf) == 'n')
5163 		caps = 0;
5164 	else if (tolower(*buf) == 'y')
5165 		caps = -1;
5166 	else if (kstrtouint(buf, 0, &caps))
5167 		return -EINVAL;
5168 
5169 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5170 		bool enabled = caps & BIT(i);
5171 
5172 		if (i == LRU_GEN_CORE)
5173 			lru_gen_change_state(enabled);
5174 		else if (enabled)
5175 			static_branch_enable(&lru_gen_caps[i]);
5176 		else
5177 			static_branch_disable(&lru_gen_caps[i]);
5178 	}
5179 
5180 	return len;
5181 }
5182 
5183 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5184 
5185 static struct attribute *lru_gen_attrs[] = {
5186 	&lru_gen_min_ttl_attr.attr,
5187 	&lru_gen_enabled_attr.attr,
5188 	NULL
5189 };
5190 
5191 static const struct attribute_group lru_gen_attr_group = {
5192 	.name = "lru_gen",
5193 	.attrs = lru_gen_attrs,
5194 };
5195 
5196 /******************************************************************************
5197  *                          debugfs interface
5198  ******************************************************************************/
5199 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5200 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5201 {
5202 	struct mem_cgroup *memcg;
5203 	loff_t nr_to_skip = *pos;
5204 
5205 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5206 	if (!m->private)
5207 		return ERR_PTR(-ENOMEM);
5208 
5209 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5210 	do {
5211 		int nid;
5212 
5213 		for_each_node_state(nid, N_MEMORY) {
5214 			if (!nr_to_skip--)
5215 				return get_lruvec(memcg, nid);
5216 		}
5217 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5218 
5219 	return NULL;
5220 }
5221 
lru_gen_seq_stop(struct seq_file * m,void * v)5222 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5223 {
5224 	if (!IS_ERR_OR_NULL(v))
5225 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5226 
5227 	kvfree(m->private);
5228 	m->private = NULL;
5229 }
5230 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5231 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5232 {
5233 	int nid = lruvec_pgdat(v)->node_id;
5234 	struct mem_cgroup *memcg = lruvec_memcg(v);
5235 
5236 	++*pos;
5237 
5238 	nid = next_memory_node(nid);
5239 	if (nid == MAX_NUMNODES) {
5240 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5241 		if (!memcg)
5242 			return NULL;
5243 
5244 		nid = first_memory_node;
5245 	}
5246 
5247 	return get_lruvec(memcg, nid);
5248 }
5249 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5250 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5251 				  unsigned long max_seq, unsigned long *min_seq,
5252 				  unsigned long seq)
5253 {
5254 	int i;
5255 	int type, tier;
5256 	int hist = lru_hist_from_seq(seq);
5257 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5258 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5259 
5260 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5261 		seq_printf(m, "            %10d", tier);
5262 		for (type = 0; type < ANON_AND_FILE; type++) {
5263 			const char *s = "xxx";
5264 			unsigned long n[3] = {};
5265 
5266 			if (seq == max_seq) {
5267 				s = "RTx";
5268 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5269 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5270 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5271 				s = "rep";
5272 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5273 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5274 				if (tier)
5275 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5276 			}
5277 
5278 			for (i = 0; i < 3; i++)
5279 				seq_printf(m, " %10lu%c", n[i], s[i]);
5280 		}
5281 		seq_putc(m, '\n');
5282 	}
5283 
5284 	if (!mm_state)
5285 		return;
5286 
5287 	seq_puts(m, "                      ");
5288 	for (i = 0; i < NR_MM_STATS; i++) {
5289 		const char *s = "xxxx";
5290 		unsigned long n = 0;
5291 
5292 		if (seq == max_seq && NR_HIST_GENS == 1) {
5293 			s = "TYFA";
5294 			n = READ_ONCE(mm_state->stats[hist][i]);
5295 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5296 			s = "tyfa";
5297 			n = READ_ONCE(mm_state->stats[hist][i]);
5298 		}
5299 
5300 		seq_printf(m, " %10lu%c", n, s[i]);
5301 	}
5302 	seq_putc(m, '\n');
5303 }
5304 
5305 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5306 static int lru_gen_seq_show(struct seq_file *m, void *v)
5307 {
5308 	unsigned long seq;
5309 	bool full = !debugfs_real_fops(m->file)->write;
5310 	struct lruvec *lruvec = v;
5311 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5312 	int nid = lruvec_pgdat(lruvec)->node_id;
5313 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5314 	DEFINE_MAX_SEQ(lruvec);
5315 	DEFINE_MIN_SEQ(lruvec);
5316 
5317 	if (nid == first_memory_node) {
5318 		const char *path = memcg ? m->private : "";
5319 
5320 #ifdef CONFIG_MEMCG
5321 		if (memcg)
5322 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5323 #endif
5324 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5325 	}
5326 
5327 	seq_printf(m, " node %5d\n", nid);
5328 
5329 	if (!full)
5330 		seq = min_seq[LRU_GEN_ANON];
5331 	else if (max_seq >= MAX_NR_GENS)
5332 		seq = max_seq - MAX_NR_GENS + 1;
5333 	else
5334 		seq = 0;
5335 
5336 	for (; seq <= max_seq; seq++) {
5337 		int type, zone;
5338 		int gen = lru_gen_from_seq(seq);
5339 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5340 
5341 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5342 
5343 		for (type = 0; type < ANON_AND_FILE; type++) {
5344 			unsigned long size = 0;
5345 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5346 
5347 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5348 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5349 
5350 			seq_printf(m, " %10lu%c", size, mark);
5351 		}
5352 
5353 		seq_putc(m, '\n');
5354 
5355 		if (full)
5356 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5357 	}
5358 
5359 	return 0;
5360 }
5361 
5362 static const struct seq_operations lru_gen_seq_ops = {
5363 	.start = lru_gen_seq_start,
5364 	.stop = lru_gen_seq_stop,
5365 	.next = lru_gen_seq_next,
5366 	.show = lru_gen_seq_show,
5367 };
5368 
run_aging(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)5369 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5370 		     bool can_swap, bool force_scan)
5371 {
5372 	DEFINE_MAX_SEQ(lruvec);
5373 	DEFINE_MIN_SEQ(lruvec);
5374 
5375 	if (seq < max_seq)
5376 		return 0;
5377 
5378 	if (seq > max_seq)
5379 		return -EINVAL;
5380 
5381 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5382 		return -ERANGE;
5383 
5384 	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5385 
5386 	return 0;
5387 }
5388 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5389 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5390 			int swappiness, unsigned long nr_to_reclaim)
5391 {
5392 	DEFINE_MAX_SEQ(lruvec);
5393 
5394 	if (seq + MIN_NR_GENS > max_seq)
5395 		return -EINVAL;
5396 
5397 	sc->nr_reclaimed = 0;
5398 
5399 	while (!signal_pending(current)) {
5400 		DEFINE_MIN_SEQ(lruvec);
5401 
5402 		if (seq < min_seq[!swappiness])
5403 			return 0;
5404 
5405 		if (sc->nr_reclaimed >= nr_to_reclaim)
5406 			return 0;
5407 
5408 		if (!evict_folios(lruvec, sc, swappiness))
5409 			return 0;
5410 
5411 		cond_resched();
5412 	}
5413 
5414 	return -EINTR;
5415 }
5416 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5417 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5418 		   struct scan_control *sc, int swappiness, unsigned long opt)
5419 {
5420 	struct lruvec *lruvec;
5421 	int err = -EINVAL;
5422 	struct mem_cgroup *memcg = NULL;
5423 
5424 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5425 		return -EINVAL;
5426 
5427 	if (!mem_cgroup_disabled()) {
5428 		rcu_read_lock();
5429 
5430 		memcg = mem_cgroup_from_id(memcg_id);
5431 		if (!mem_cgroup_tryget(memcg))
5432 			memcg = NULL;
5433 
5434 		rcu_read_unlock();
5435 
5436 		if (!memcg)
5437 			return -EINVAL;
5438 	}
5439 
5440 	if (memcg_id != mem_cgroup_id(memcg))
5441 		goto done;
5442 
5443 	lruvec = get_lruvec(memcg, nid);
5444 
5445 	if (swappiness < MIN_SWAPPINESS)
5446 		swappiness = get_swappiness(lruvec, sc);
5447 	else if (swappiness > MAX_SWAPPINESS)
5448 		goto done;
5449 
5450 	switch (cmd) {
5451 	case '+':
5452 		err = run_aging(lruvec, seq, swappiness, opt);
5453 		break;
5454 	case '-':
5455 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5456 		break;
5457 	}
5458 done:
5459 	mem_cgroup_put(memcg);
5460 
5461 	return err;
5462 }
5463 
5464 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5465 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5466 				 size_t len, loff_t *pos)
5467 {
5468 	void *buf;
5469 	char *cur, *next;
5470 	unsigned int flags;
5471 	struct blk_plug plug;
5472 	int err = -EINVAL;
5473 	struct scan_control sc = {
5474 		.may_writepage = true,
5475 		.may_unmap = true,
5476 		.may_swap = true,
5477 		.reclaim_idx = MAX_NR_ZONES - 1,
5478 		.gfp_mask = GFP_KERNEL,
5479 	};
5480 
5481 	buf = kvmalloc(len + 1, GFP_KERNEL);
5482 	if (!buf)
5483 		return -ENOMEM;
5484 
5485 	if (copy_from_user(buf, src, len)) {
5486 		kvfree(buf);
5487 		return -EFAULT;
5488 	}
5489 
5490 	set_task_reclaim_state(current, &sc.reclaim_state);
5491 	flags = memalloc_noreclaim_save();
5492 	blk_start_plug(&plug);
5493 	if (!set_mm_walk(NULL, true)) {
5494 		err = -ENOMEM;
5495 		goto done;
5496 	}
5497 
5498 	next = buf;
5499 	next[len] = '\0';
5500 
5501 	while ((cur = strsep(&next, ",;\n"))) {
5502 		int n;
5503 		int end;
5504 		char cmd;
5505 		unsigned int memcg_id;
5506 		unsigned int nid;
5507 		unsigned long seq;
5508 		unsigned int swappiness = -1;
5509 		unsigned long opt = -1;
5510 
5511 		cur = skip_spaces(cur);
5512 		if (!*cur)
5513 			continue;
5514 
5515 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5516 			   &seq, &end, &swappiness, &end, &opt, &end);
5517 		if (n < 4 || cur[end]) {
5518 			err = -EINVAL;
5519 			break;
5520 		}
5521 
5522 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5523 		if (err)
5524 			break;
5525 	}
5526 done:
5527 	clear_mm_walk();
5528 	blk_finish_plug(&plug);
5529 	memalloc_noreclaim_restore(flags);
5530 	set_task_reclaim_state(current, NULL);
5531 
5532 	kvfree(buf);
5533 
5534 	return err ? : len;
5535 }
5536 
lru_gen_seq_open(struct inode * inode,struct file * file)5537 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5538 {
5539 	return seq_open(file, &lru_gen_seq_ops);
5540 }
5541 
5542 static const struct file_operations lru_gen_rw_fops = {
5543 	.open = lru_gen_seq_open,
5544 	.read = seq_read,
5545 	.write = lru_gen_seq_write,
5546 	.llseek = seq_lseek,
5547 	.release = seq_release,
5548 };
5549 
5550 static const struct file_operations lru_gen_ro_fops = {
5551 	.open = lru_gen_seq_open,
5552 	.read = seq_read,
5553 	.llseek = seq_lseek,
5554 	.release = seq_release,
5555 };
5556 
5557 /******************************************************************************
5558  *                          initialization
5559  ******************************************************************************/
5560 
lru_gen_init_pgdat(struct pglist_data * pgdat)5561 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5562 {
5563 	int i, j;
5564 
5565 	spin_lock_init(&pgdat->memcg_lru.lock);
5566 
5567 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5568 		for (j = 0; j < MEMCG_NR_BINS; j++)
5569 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5570 	}
5571 }
5572 
lru_gen_init_lruvec(struct lruvec * lruvec)5573 void lru_gen_init_lruvec(struct lruvec *lruvec)
5574 {
5575 	int i;
5576 	int gen, type, zone;
5577 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5578 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5579 
5580 	lrugen->max_seq = MIN_NR_GENS + 1;
5581 	lrugen->enabled = lru_gen_enabled();
5582 
5583 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5584 		lrugen->timestamps[i] = jiffies;
5585 
5586 	for_each_gen_type_zone(gen, type, zone)
5587 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5588 
5589 	if (mm_state)
5590 		mm_state->seq = MIN_NR_GENS;
5591 }
5592 
5593 #ifdef CONFIG_MEMCG
5594 
lru_gen_init_memcg(struct mem_cgroup * memcg)5595 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5596 {
5597 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5598 
5599 	if (!mm_list)
5600 		return;
5601 
5602 	INIT_LIST_HEAD(&mm_list->fifo);
5603 	spin_lock_init(&mm_list->lock);
5604 }
5605 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5606 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5607 {
5608 	int i;
5609 	int nid;
5610 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5611 
5612 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5613 
5614 	for_each_node(nid) {
5615 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5616 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5617 
5618 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5619 					   sizeof(lruvec->lrugen.nr_pages)));
5620 
5621 		lruvec->lrugen.list.next = LIST_POISON1;
5622 
5623 		if (!mm_state)
5624 			continue;
5625 
5626 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5627 			bitmap_free(mm_state->filters[i]);
5628 			mm_state->filters[i] = NULL;
5629 		}
5630 	}
5631 }
5632 
5633 #endif /* CONFIG_MEMCG */
5634 
init_lru_gen(void)5635 static int __init init_lru_gen(void)
5636 {
5637 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5638 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5639 
5640 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5641 		pr_err("lru_gen: failed to create sysfs group\n");
5642 
5643 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5644 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5645 
5646 	return 0;
5647 };
5648 late_initcall(init_lru_gen);
5649 
5650 #else /* !CONFIG_LRU_GEN */
5651 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5652 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5653 {
5654 	BUILD_BUG();
5655 }
5656 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5657 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5658 {
5659 	BUILD_BUG();
5660 }
5661 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5662 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5663 {
5664 	BUILD_BUG();
5665 }
5666 
5667 #endif /* CONFIG_LRU_GEN */
5668 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5669 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5670 {
5671 	unsigned long nr[NR_LRU_LISTS];
5672 	unsigned long targets[NR_LRU_LISTS];
5673 	unsigned long nr_to_scan;
5674 	enum lru_list lru;
5675 	unsigned long nr_reclaimed = 0;
5676 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5677 	bool proportional_reclaim;
5678 	struct blk_plug plug;
5679 
5680 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5681 		lru_gen_shrink_lruvec(lruvec, sc);
5682 		return;
5683 	}
5684 
5685 	get_scan_count(lruvec, sc, nr);
5686 
5687 	/* Record the original scan target for proportional adjustments later */
5688 	memcpy(targets, nr, sizeof(nr));
5689 
5690 	/*
5691 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5692 	 * event that can occur when there is little memory pressure e.g.
5693 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5694 	 * when the requested number of pages are reclaimed when scanning at
5695 	 * DEF_PRIORITY on the assumption that the fact we are direct
5696 	 * reclaiming implies that kswapd is not keeping up and it is best to
5697 	 * do a batch of work at once. For memcg reclaim one check is made to
5698 	 * abort proportional reclaim if either the file or anon lru has already
5699 	 * dropped to zero at the first pass.
5700 	 */
5701 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5702 				sc->priority == DEF_PRIORITY);
5703 
5704 	blk_start_plug(&plug);
5705 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5706 					nr[LRU_INACTIVE_FILE]) {
5707 		unsigned long nr_anon, nr_file, percentage;
5708 		unsigned long nr_scanned;
5709 
5710 		for_each_evictable_lru(lru) {
5711 			if (nr[lru]) {
5712 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5713 				nr[lru] -= nr_to_scan;
5714 
5715 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5716 							    lruvec, sc);
5717 			}
5718 		}
5719 
5720 		cond_resched();
5721 
5722 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5723 			continue;
5724 
5725 		/*
5726 		 * For kswapd and memcg, reclaim at least the number of pages
5727 		 * requested. Ensure that the anon and file LRUs are scanned
5728 		 * proportionally what was requested by get_scan_count(). We
5729 		 * stop reclaiming one LRU and reduce the amount scanning
5730 		 * proportional to the original scan target.
5731 		 */
5732 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5733 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5734 
5735 		/*
5736 		 * It's just vindictive to attack the larger once the smaller
5737 		 * has gone to zero.  And given the way we stop scanning the
5738 		 * smaller below, this makes sure that we only make one nudge
5739 		 * towards proportionality once we've got nr_to_reclaim.
5740 		 */
5741 		if (!nr_file || !nr_anon)
5742 			break;
5743 
5744 		if (nr_file > nr_anon) {
5745 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5746 						targets[LRU_ACTIVE_ANON] + 1;
5747 			lru = LRU_BASE;
5748 			percentage = nr_anon * 100 / scan_target;
5749 		} else {
5750 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5751 						targets[LRU_ACTIVE_FILE] + 1;
5752 			lru = LRU_FILE;
5753 			percentage = nr_file * 100 / scan_target;
5754 		}
5755 
5756 		/* Stop scanning the smaller of the LRU */
5757 		nr[lru] = 0;
5758 		nr[lru + LRU_ACTIVE] = 0;
5759 
5760 		/*
5761 		 * Recalculate the other LRU scan count based on its original
5762 		 * scan target and the percentage scanning already complete
5763 		 */
5764 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5765 		nr_scanned = targets[lru] - nr[lru];
5766 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5767 		nr[lru] -= min(nr[lru], nr_scanned);
5768 
5769 		lru += LRU_ACTIVE;
5770 		nr_scanned = targets[lru] - nr[lru];
5771 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5772 		nr[lru] -= min(nr[lru], nr_scanned);
5773 	}
5774 	blk_finish_plug(&plug);
5775 	sc->nr_reclaimed += nr_reclaimed;
5776 
5777 	/*
5778 	 * Even if we did not try to evict anon pages at all, we want to
5779 	 * rebalance the anon lru active/inactive ratio.
5780 	 */
5781 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5782 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5783 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5784 				   sc, LRU_ACTIVE_ANON);
5785 }
5786 
5787 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5788 static bool in_reclaim_compaction(struct scan_control *sc)
5789 {
5790 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5791 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5792 			 sc->priority < DEF_PRIORITY - 2))
5793 		return true;
5794 
5795 	return false;
5796 }
5797 
5798 /*
5799  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5800  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5801  * true if more pages should be reclaimed such that when the page allocator
5802  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5803  * It will give up earlier than that if there is difficulty reclaiming pages.
5804  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5805 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5806 					unsigned long nr_reclaimed,
5807 					struct scan_control *sc)
5808 {
5809 	unsigned long pages_for_compaction;
5810 	unsigned long inactive_lru_pages;
5811 	int z;
5812 
5813 	/* If not in reclaim/compaction mode, stop */
5814 	if (!in_reclaim_compaction(sc))
5815 		return false;
5816 
5817 	/*
5818 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5819 	 * number of pages that were scanned. This will return to the caller
5820 	 * with the risk reclaim/compaction and the resulting allocation attempt
5821 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5822 	 * allocations through requiring that the full LRU list has been scanned
5823 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5824 	 * scan, but that approximation was wrong, and there were corner cases
5825 	 * where always a non-zero amount of pages were scanned.
5826 	 */
5827 	if (!nr_reclaimed)
5828 		return false;
5829 
5830 	/* If compaction would go ahead or the allocation would succeed, stop */
5831 	for (z = 0; z <= sc->reclaim_idx; z++) {
5832 		struct zone *zone = &pgdat->node_zones[z];
5833 		if (!managed_zone(zone))
5834 			continue;
5835 
5836 		/* Allocation can already succeed, nothing to do */
5837 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5838 				      sc->reclaim_idx, 0))
5839 			return false;
5840 
5841 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5842 			return false;
5843 	}
5844 
5845 	/*
5846 	 * If we have not reclaimed enough pages for compaction and the
5847 	 * inactive lists are large enough, continue reclaiming
5848 	 */
5849 	pages_for_compaction = compact_gap(sc->order);
5850 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5851 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5852 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5853 
5854 	return inactive_lru_pages > pages_for_compaction;
5855 }
5856 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5857 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5858 {
5859 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5860 	struct mem_cgroup_reclaim_cookie reclaim = {
5861 		.pgdat = pgdat,
5862 	};
5863 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5864 	struct mem_cgroup *memcg;
5865 
5866 	/*
5867 	 * In most cases, direct reclaimers can do partial walks
5868 	 * through the cgroup tree, using an iterator state that
5869 	 * persists across invocations. This strikes a balance between
5870 	 * fairness and allocation latency.
5871 	 *
5872 	 * For kswapd, reliable forward progress is more important
5873 	 * than a quick return to idle. Always do full walks.
5874 	 */
5875 	if (current_is_kswapd() || sc->memcg_full_walk)
5876 		partial = NULL;
5877 
5878 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5879 	do {
5880 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5881 		unsigned long reclaimed;
5882 		unsigned long scanned;
5883 
5884 		/*
5885 		 * This loop can become CPU-bound when target memcgs
5886 		 * aren't eligible for reclaim - either because they
5887 		 * don't have any reclaimable pages, or because their
5888 		 * memory is explicitly protected. Avoid soft lockups.
5889 		 */
5890 		cond_resched();
5891 
5892 		mem_cgroup_calculate_protection(target_memcg, memcg);
5893 
5894 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5895 			/*
5896 			 * Hard protection.
5897 			 * If there is no reclaimable memory, OOM.
5898 			 */
5899 			continue;
5900 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5901 			/*
5902 			 * Soft protection.
5903 			 * Respect the protection only as long as
5904 			 * there is an unprotected supply
5905 			 * of reclaimable memory from other cgroups.
5906 			 */
5907 			if (!sc->memcg_low_reclaim) {
5908 				sc->memcg_low_skipped = 1;
5909 				continue;
5910 			}
5911 			memcg_memory_event(memcg, MEMCG_LOW);
5912 		}
5913 
5914 		reclaimed = sc->nr_reclaimed;
5915 		scanned = sc->nr_scanned;
5916 
5917 		shrink_lruvec(lruvec, sc);
5918 
5919 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5920 			    sc->priority);
5921 
5922 		/* Record the group's reclaim efficiency */
5923 		if (!sc->proactive)
5924 			vmpressure(sc->gfp_mask, memcg, false,
5925 				   sc->nr_scanned - scanned,
5926 				   sc->nr_reclaimed - reclaimed);
5927 
5928 		/* If partial walks are allowed, bail once goal is reached */
5929 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5930 			mem_cgroup_iter_break(target_memcg, memcg);
5931 			break;
5932 		}
5933 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5934 }
5935 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)5936 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5937 {
5938 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5939 	struct lruvec *target_lruvec;
5940 	bool reclaimable = false;
5941 
5942 	if (lru_gen_enabled() && root_reclaim(sc)) {
5943 		lru_gen_shrink_node(pgdat, sc);
5944 		return;
5945 	}
5946 
5947 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5948 
5949 again:
5950 	memset(&sc->nr, 0, sizeof(sc->nr));
5951 
5952 	nr_reclaimed = sc->nr_reclaimed;
5953 	nr_scanned = sc->nr_scanned;
5954 
5955 	prepare_scan_control(pgdat, sc);
5956 
5957 	shrink_node_memcgs(pgdat, sc);
5958 
5959 	flush_reclaim_state(sc);
5960 
5961 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5962 
5963 	/* Record the subtree's reclaim efficiency */
5964 	if (!sc->proactive)
5965 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5966 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5967 
5968 	if (nr_node_reclaimed)
5969 		reclaimable = true;
5970 
5971 	if (current_is_kswapd()) {
5972 		/*
5973 		 * If reclaim is isolating dirty pages under writeback,
5974 		 * it implies that the long-lived page allocation rate
5975 		 * is exceeding the page laundering rate. Either the
5976 		 * global limits are not being effective at throttling
5977 		 * processes due to the page distribution throughout
5978 		 * zones or there is heavy usage of a slow backing
5979 		 * device. The only option is to throttle from reclaim
5980 		 * context which is not ideal as there is no guarantee
5981 		 * the dirtying process is throttled in the same way
5982 		 * balance_dirty_pages() manages.
5983 		 *
5984 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5985 		 * count the number of pages under pages flagged for
5986 		 * immediate reclaim and stall if any are encountered
5987 		 * in the nr_immediate check below.
5988 		 */
5989 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5990 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5991 
5992 		/* Allow kswapd to start writing pages during reclaim.*/
5993 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5994 			set_bit(PGDAT_DIRTY, &pgdat->flags);
5995 
5996 		/*
5997 		 * If kswapd scans pages marked for immediate
5998 		 * reclaim and under writeback (nr_immediate), it
5999 		 * implies that pages are cycling through the LRU
6000 		 * faster than they are written so forcibly stall
6001 		 * until some pages complete writeback.
6002 		 */
6003 		if (sc->nr.immediate)
6004 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6005 	}
6006 
6007 	/*
6008 	 * Tag a node/memcg as congested if all the dirty pages were marked
6009 	 * for writeback and immediate reclaim (counted in nr.congested).
6010 	 *
6011 	 * Legacy memcg will stall in page writeback so avoid forcibly
6012 	 * stalling in reclaim_throttle().
6013 	 */
6014 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6015 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6016 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6017 
6018 		if (current_is_kswapd())
6019 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6020 	}
6021 
6022 	/*
6023 	 * Stall direct reclaim for IO completions if the lruvec is
6024 	 * node is congested. Allow kswapd to continue until it
6025 	 * starts encountering unqueued dirty pages or cycling through
6026 	 * the LRU too quickly.
6027 	 */
6028 	if (!current_is_kswapd() && current_may_throttle() &&
6029 	    !sc->hibernation_mode &&
6030 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6031 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6032 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6033 
6034 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6035 		goto again;
6036 
6037 	/*
6038 	 * Kswapd gives up on balancing particular nodes after too
6039 	 * many failures to reclaim anything from them and goes to
6040 	 * sleep. On reclaim progress, reset the failure counter. A
6041 	 * successful direct reclaim run will revive a dormant kswapd.
6042 	 */
6043 	if (reclaimable)
6044 		pgdat->kswapd_failures = 0;
6045 	else if (sc->cache_trim_mode)
6046 		sc->cache_trim_mode_failed = 1;
6047 }
6048 
6049 /*
6050  * Returns true if compaction should go ahead for a costly-order request, or
6051  * the allocation would already succeed without compaction. Return false if we
6052  * should reclaim first.
6053  */
compaction_ready(struct zone * zone,struct scan_control * sc)6054 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6055 {
6056 	unsigned long watermark;
6057 
6058 	if (!gfp_compaction_allowed(sc->gfp_mask))
6059 		return false;
6060 
6061 	/* Allocation can already succeed, nothing to do */
6062 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6063 			      sc->reclaim_idx, 0))
6064 		return true;
6065 
6066 	/* Compaction cannot yet proceed. Do reclaim. */
6067 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6068 		return false;
6069 
6070 	/*
6071 	 * Compaction is already possible, but it takes time to run and there
6072 	 * are potentially other callers using the pages just freed. So proceed
6073 	 * with reclaim to make a buffer of free pages available to give
6074 	 * compaction a reasonable chance of completing and allocating the page.
6075 	 * Note that we won't actually reclaim the whole buffer in one attempt
6076 	 * as the target watermark in should_continue_reclaim() is lower. But if
6077 	 * we are already above the high+gap watermark, don't reclaim at all.
6078 	 */
6079 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6080 
6081 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6082 }
6083 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6084 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6085 {
6086 	/*
6087 	 * If reclaim is making progress greater than 12% efficiency then
6088 	 * wake all the NOPROGRESS throttled tasks.
6089 	 */
6090 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6091 		wait_queue_head_t *wqh;
6092 
6093 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6094 		if (waitqueue_active(wqh))
6095 			wake_up(wqh);
6096 
6097 		return;
6098 	}
6099 
6100 	/*
6101 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6102 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6103 	 * under writeback and marked for immediate reclaim at the tail of the
6104 	 * LRU.
6105 	 */
6106 	if (current_is_kswapd() || cgroup_reclaim(sc))
6107 		return;
6108 
6109 	/* Throttle if making no progress at high prioities. */
6110 	if (sc->priority == 1 && !sc->nr_reclaimed)
6111 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6112 }
6113 
6114 /*
6115  * This is the direct reclaim path, for page-allocating processes.  We only
6116  * try to reclaim pages from zones which will satisfy the caller's allocation
6117  * request.
6118  *
6119  * If a zone is deemed to be full of pinned pages then just give it a light
6120  * scan then give up on it.
6121  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6122 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6123 {
6124 	struct zoneref *z;
6125 	struct zone *zone;
6126 	unsigned long nr_soft_reclaimed;
6127 	unsigned long nr_soft_scanned;
6128 	gfp_t orig_mask;
6129 	pg_data_t *last_pgdat = NULL;
6130 	pg_data_t *first_pgdat = NULL;
6131 
6132 	/*
6133 	 * If the number of buffer_heads in the machine exceeds the maximum
6134 	 * allowed level, force direct reclaim to scan the highmem zone as
6135 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6136 	 */
6137 	orig_mask = sc->gfp_mask;
6138 	if (buffer_heads_over_limit) {
6139 		sc->gfp_mask |= __GFP_HIGHMEM;
6140 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6141 	}
6142 
6143 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6144 					sc->reclaim_idx, sc->nodemask) {
6145 		/*
6146 		 * Take care memory controller reclaiming has small influence
6147 		 * to global LRU.
6148 		 */
6149 		if (!cgroup_reclaim(sc)) {
6150 			if (!cpuset_zone_allowed(zone,
6151 						 GFP_KERNEL | __GFP_HARDWALL))
6152 				continue;
6153 
6154 			/*
6155 			 * If we already have plenty of memory free for
6156 			 * compaction in this zone, don't free any more.
6157 			 * Even though compaction is invoked for any
6158 			 * non-zero order, only frequent costly order
6159 			 * reclamation is disruptive enough to become a
6160 			 * noticeable problem, like transparent huge
6161 			 * page allocations.
6162 			 */
6163 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6164 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6165 			    compaction_ready(zone, sc)) {
6166 				sc->compaction_ready = true;
6167 				continue;
6168 			}
6169 
6170 			/*
6171 			 * Shrink each node in the zonelist once. If the
6172 			 * zonelist is ordered by zone (not the default) then a
6173 			 * node may be shrunk multiple times but in that case
6174 			 * the user prefers lower zones being preserved.
6175 			 */
6176 			if (zone->zone_pgdat == last_pgdat)
6177 				continue;
6178 
6179 			/*
6180 			 * This steals pages from memory cgroups over softlimit
6181 			 * and returns the number of reclaimed pages and
6182 			 * scanned pages. This works for global memory pressure
6183 			 * and balancing, not for a memcg's limit.
6184 			 */
6185 			nr_soft_scanned = 0;
6186 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6187 								      sc->order, sc->gfp_mask,
6188 								      &nr_soft_scanned);
6189 			sc->nr_reclaimed += nr_soft_reclaimed;
6190 			sc->nr_scanned += nr_soft_scanned;
6191 			/* need some check for avoid more shrink_zone() */
6192 		}
6193 
6194 		if (!first_pgdat)
6195 			first_pgdat = zone->zone_pgdat;
6196 
6197 		/* See comment about same check for global reclaim above */
6198 		if (zone->zone_pgdat == last_pgdat)
6199 			continue;
6200 		last_pgdat = zone->zone_pgdat;
6201 		shrink_node(zone->zone_pgdat, sc);
6202 	}
6203 
6204 	if (first_pgdat)
6205 		consider_reclaim_throttle(first_pgdat, sc);
6206 
6207 	/*
6208 	 * Restore to original mask to avoid the impact on the caller if we
6209 	 * promoted it to __GFP_HIGHMEM.
6210 	 */
6211 	sc->gfp_mask = orig_mask;
6212 }
6213 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6214 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6215 {
6216 	struct lruvec *target_lruvec;
6217 	unsigned long refaults;
6218 
6219 	if (lru_gen_enabled())
6220 		return;
6221 
6222 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6223 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6224 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6225 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6226 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6227 }
6228 
6229 /*
6230  * This is the main entry point to direct page reclaim.
6231  *
6232  * If a full scan of the inactive list fails to free enough memory then we
6233  * are "out of memory" and something needs to be killed.
6234  *
6235  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6236  * high - the zone may be full of dirty or under-writeback pages, which this
6237  * caller can't do much about.  We kick the writeback threads and take explicit
6238  * naps in the hope that some of these pages can be written.  But if the
6239  * allocating task holds filesystem locks which prevent writeout this might not
6240  * work, and the allocation attempt will fail.
6241  *
6242  * returns:	0, if no pages reclaimed
6243  * 		else, the number of pages reclaimed
6244  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6245 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6246 					  struct scan_control *sc)
6247 {
6248 	int initial_priority = sc->priority;
6249 	pg_data_t *last_pgdat;
6250 	struct zoneref *z;
6251 	struct zone *zone;
6252 retry:
6253 	delayacct_freepages_start();
6254 
6255 	if (!cgroup_reclaim(sc))
6256 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6257 
6258 	do {
6259 		if (!sc->proactive)
6260 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6261 					sc->priority);
6262 		sc->nr_scanned = 0;
6263 		shrink_zones(zonelist, sc);
6264 
6265 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6266 			break;
6267 
6268 		if (sc->compaction_ready)
6269 			break;
6270 
6271 		/*
6272 		 * If we're getting trouble reclaiming, start doing
6273 		 * writepage even in laptop mode.
6274 		 */
6275 		if (sc->priority < DEF_PRIORITY - 2)
6276 			sc->may_writepage = 1;
6277 	} while (--sc->priority >= 0);
6278 
6279 	last_pgdat = NULL;
6280 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6281 					sc->nodemask) {
6282 		if (zone->zone_pgdat == last_pgdat)
6283 			continue;
6284 		last_pgdat = zone->zone_pgdat;
6285 
6286 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6287 
6288 		if (cgroup_reclaim(sc)) {
6289 			struct lruvec *lruvec;
6290 
6291 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6292 						   zone->zone_pgdat);
6293 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6294 		}
6295 	}
6296 
6297 	delayacct_freepages_end();
6298 
6299 	if (sc->nr_reclaimed)
6300 		return sc->nr_reclaimed;
6301 
6302 	/* Aborted reclaim to try compaction? don't OOM, then */
6303 	if (sc->compaction_ready)
6304 		return 1;
6305 
6306 	/*
6307 	 * In most cases, direct reclaimers can do partial walks
6308 	 * through the cgroup tree to meet the reclaim goal while
6309 	 * keeping latency low. Since the iterator state is shared
6310 	 * among all direct reclaim invocations (to retain fairness
6311 	 * among cgroups), though, high concurrency can result in
6312 	 * individual threads not seeing enough cgroups to make
6313 	 * meaningful forward progress. Avoid false OOMs in this case.
6314 	 */
6315 	if (!sc->memcg_full_walk) {
6316 		sc->priority = initial_priority;
6317 		sc->memcg_full_walk = 1;
6318 		goto retry;
6319 	}
6320 
6321 	/*
6322 	 * We make inactive:active ratio decisions based on the node's
6323 	 * composition of memory, but a restrictive reclaim_idx or a
6324 	 * memory.low cgroup setting can exempt large amounts of
6325 	 * memory from reclaim. Neither of which are very common, so
6326 	 * instead of doing costly eligibility calculations of the
6327 	 * entire cgroup subtree up front, we assume the estimates are
6328 	 * good, and retry with forcible deactivation if that fails.
6329 	 */
6330 	if (sc->skipped_deactivate) {
6331 		sc->priority = initial_priority;
6332 		sc->force_deactivate = 1;
6333 		sc->skipped_deactivate = 0;
6334 		goto retry;
6335 	}
6336 
6337 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6338 	if (sc->memcg_low_skipped) {
6339 		sc->priority = initial_priority;
6340 		sc->force_deactivate = 0;
6341 		sc->memcg_low_reclaim = 1;
6342 		sc->memcg_low_skipped = 0;
6343 		goto retry;
6344 	}
6345 
6346 	return 0;
6347 }
6348 
allow_direct_reclaim(pg_data_t * pgdat)6349 static bool allow_direct_reclaim(pg_data_t *pgdat)
6350 {
6351 	struct zone *zone;
6352 	unsigned long pfmemalloc_reserve = 0;
6353 	unsigned long free_pages = 0;
6354 	int i;
6355 	bool wmark_ok;
6356 
6357 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6358 		return true;
6359 
6360 	for (i = 0; i <= ZONE_NORMAL; i++) {
6361 		zone = &pgdat->node_zones[i];
6362 		if (!managed_zone(zone))
6363 			continue;
6364 
6365 		if (!zone_reclaimable_pages(zone))
6366 			continue;
6367 
6368 		pfmemalloc_reserve += min_wmark_pages(zone);
6369 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6370 	}
6371 
6372 	/* If there are no reserves (unexpected config) then do not throttle */
6373 	if (!pfmemalloc_reserve)
6374 		return true;
6375 
6376 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6377 
6378 	/* kswapd must be awake if processes are being throttled */
6379 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6380 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6381 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6382 
6383 		wake_up_interruptible(&pgdat->kswapd_wait);
6384 	}
6385 
6386 	return wmark_ok;
6387 }
6388 
6389 /*
6390  * Throttle direct reclaimers if backing storage is backed by the network
6391  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6392  * depleted. kswapd will continue to make progress and wake the processes
6393  * when the low watermark is reached.
6394  *
6395  * Returns true if a fatal signal was delivered during throttling. If this
6396  * happens, the page allocator should not consider triggering the OOM killer.
6397  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6398 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6399 					nodemask_t *nodemask)
6400 {
6401 	struct zoneref *z;
6402 	struct zone *zone;
6403 	pg_data_t *pgdat = NULL;
6404 
6405 	/*
6406 	 * Kernel threads should not be throttled as they may be indirectly
6407 	 * responsible for cleaning pages necessary for reclaim to make forward
6408 	 * progress. kjournald for example may enter direct reclaim while
6409 	 * committing a transaction where throttling it could forcing other
6410 	 * processes to block on log_wait_commit().
6411 	 */
6412 	if (current->flags & PF_KTHREAD)
6413 		goto out;
6414 
6415 	/*
6416 	 * If a fatal signal is pending, this process should not throttle.
6417 	 * It should return quickly so it can exit and free its memory
6418 	 */
6419 	if (fatal_signal_pending(current))
6420 		goto out;
6421 
6422 	/*
6423 	 * Check if the pfmemalloc reserves are ok by finding the first node
6424 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6425 	 * GFP_KERNEL will be required for allocating network buffers when
6426 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6427 	 *
6428 	 * Throttling is based on the first usable node and throttled processes
6429 	 * wait on a queue until kswapd makes progress and wakes them. There
6430 	 * is an affinity then between processes waking up and where reclaim
6431 	 * progress has been made assuming the process wakes on the same node.
6432 	 * More importantly, processes running on remote nodes will not compete
6433 	 * for remote pfmemalloc reserves and processes on different nodes
6434 	 * should make reasonable progress.
6435 	 */
6436 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6437 					gfp_zone(gfp_mask), nodemask) {
6438 		if (zone_idx(zone) > ZONE_NORMAL)
6439 			continue;
6440 
6441 		/* Throttle based on the first usable node */
6442 		pgdat = zone->zone_pgdat;
6443 		if (allow_direct_reclaim(pgdat))
6444 			goto out;
6445 		break;
6446 	}
6447 
6448 	/* If no zone was usable by the allocation flags then do not throttle */
6449 	if (!pgdat)
6450 		goto out;
6451 
6452 	/* Account for the throttling */
6453 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6454 
6455 	/*
6456 	 * If the caller cannot enter the filesystem, it's possible that it
6457 	 * is due to the caller holding an FS lock or performing a journal
6458 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6459 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6460 	 * blocked waiting on the same lock. Instead, throttle for up to a
6461 	 * second before continuing.
6462 	 */
6463 	if (!(gfp_mask & __GFP_FS))
6464 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6465 			allow_direct_reclaim(pgdat), HZ);
6466 	else
6467 		/* Throttle until kswapd wakes the process */
6468 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6469 			allow_direct_reclaim(pgdat));
6470 
6471 	if (fatal_signal_pending(current))
6472 		return true;
6473 
6474 out:
6475 	return false;
6476 }
6477 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6478 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6479 				gfp_t gfp_mask, nodemask_t *nodemask)
6480 {
6481 	unsigned long nr_reclaimed;
6482 	struct scan_control sc = {
6483 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6484 		.gfp_mask = current_gfp_context(gfp_mask),
6485 		.reclaim_idx = gfp_zone(gfp_mask),
6486 		.order = order,
6487 		.nodemask = nodemask,
6488 		.priority = DEF_PRIORITY,
6489 		.may_writepage = !laptop_mode,
6490 		.may_unmap = 1,
6491 		.may_swap = 1,
6492 	};
6493 
6494 	/*
6495 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6496 	 * Confirm they are large enough for max values.
6497 	 */
6498 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6499 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6500 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6501 
6502 	/*
6503 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6504 	 * 1 is returned so that the page allocator does not OOM kill at this
6505 	 * point.
6506 	 */
6507 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6508 		return 1;
6509 
6510 	set_task_reclaim_state(current, &sc.reclaim_state);
6511 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6512 
6513 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6514 
6515 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6516 	set_task_reclaim_state(current, NULL);
6517 
6518 	return nr_reclaimed;
6519 }
6520 
6521 #ifdef CONFIG_MEMCG
6522 
6523 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6524 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6525 						gfp_t gfp_mask, bool noswap,
6526 						pg_data_t *pgdat,
6527 						unsigned long *nr_scanned)
6528 {
6529 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6530 	struct scan_control sc = {
6531 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6532 		.target_mem_cgroup = memcg,
6533 		.may_writepage = !laptop_mode,
6534 		.may_unmap = 1,
6535 		.reclaim_idx = MAX_NR_ZONES - 1,
6536 		.may_swap = !noswap,
6537 	};
6538 
6539 	WARN_ON_ONCE(!current->reclaim_state);
6540 
6541 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6542 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6543 
6544 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6545 						      sc.gfp_mask);
6546 
6547 	/*
6548 	 * NOTE: Although we can get the priority field, using it
6549 	 * here is not a good idea, since it limits the pages we can scan.
6550 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6551 	 * will pick up pages from other mem cgroup's as well. We hack
6552 	 * the priority and make it zero.
6553 	 */
6554 	shrink_lruvec(lruvec, &sc);
6555 
6556 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6557 
6558 	*nr_scanned = sc.nr_scanned;
6559 
6560 	return sc.nr_reclaimed;
6561 }
6562 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6563 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6564 					   unsigned long nr_pages,
6565 					   gfp_t gfp_mask,
6566 					   unsigned int reclaim_options,
6567 					   int *swappiness)
6568 {
6569 	unsigned long nr_reclaimed;
6570 	unsigned int noreclaim_flag;
6571 	struct scan_control sc = {
6572 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6573 		.proactive_swappiness = swappiness,
6574 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6575 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6576 		.reclaim_idx = MAX_NR_ZONES - 1,
6577 		.target_mem_cgroup = memcg,
6578 		.priority = DEF_PRIORITY,
6579 		.may_writepage = !laptop_mode,
6580 		.may_unmap = 1,
6581 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6582 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6583 	};
6584 	/*
6585 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6586 	 * equal pressure on all the nodes. This is based on the assumption that
6587 	 * the reclaim does not bail out early.
6588 	 */
6589 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6590 
6591 	set_task_reclaim_state(current, &sc.reclaim_state);
6592 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6593 	noreclaim_flag = memalloc_noreclaim_save();
6594 
6595 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6596 
6597 	memalloc_noreclaim_restore(noreclaim_flag);
6598 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6599 	set_task_reclaim_state(current, NULL);
6600 
6601 	return nr_reclaimed;
6602 }
6603 #endif
6604 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6605 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6606 {
6607 	struct mem_cgroup *memcg;
6608 	struct lruvec *lruvec;
6609 
6610 	if (lru_gen_enabled()) {
6611 		lru_gen_age_node(pgdat, sc);
6612 		return;
6613 	}
6614 
6615 	if (!can_age_anon_pages(pgdat, sc))
6616 		return;
6617 
6618 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6619 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6620 		return;
6621 
6622 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6623 	do {
6624 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6625 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6626 				   sc, LRU_ACTIVE_ANON);
6627 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6628 	} while (memcg);
6629 }
6630 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6631 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6632 {
6633 	int i;
6634 	struct zone *zone;
6635 
6636 	/*
6637 	 * Check for watermark boosts top-down as the higher zones
6638 	 * are more likely to be boosted. Both watermarks and boosts
6639 	 * should not be checked at the same time as reclaim would
6640 	 * start prematurely when there is no boosting and a lower
6641 	 * zone is balanced.
6642 	 */
6643 	for (i = highest_zoneidx; i >= 0; i--) {
6644 		zone = pgdat->node_zones + i;
6645 		if (!managed_zone(zone))
6646 			continue;
6647 
6648 		if (zone->watermark_boost)
6649 			return true;
6650 	}
6651 
6652 	return false;
6653 }
6654 
6655 /*
6656  * Returns true if there is an eligible zone balanced for the request order
6657  * and highest_zoneidx
6658  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6659 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6660 {
6661 	int i;
6662 	unsigned long mark = -1;
6663 	struct zone *zone;
6664 
6665 	/*
6666 	 * Check watermarks bottom-up as lower zones are more likely to
6667 	 * meet watermarks.
6668 	 */
6669 	for (i = 0; i <= highest_zoneidx; i++) {
6670 		zone = pgdat->node_zones + i;
6671 
6672 		if (!managed_zone(zone))
6673 			continue;
6674 
6675 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6676 			mark = promo_wmark_pages(zone);
6677 		else
6678 			mark = high_wmark_pages(zone);
6679 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6680 			return true;
6681 	}
6682 
6683 	/*
6684 	 * If a node has no managed zone within highest_zoneidx, it does not
6685 	 * need balancing by definition. This can happen if a zone-restricted
6686 	 * allocation tries to wake a remote kswapd.
6687 	 */
6688 	if (mark == -1)
6689 		return true;
6690 
6691 	return false;
6692 }
6693 
6694 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6695 static void clear_pgdat_congested(pg_data_t *pgdat)
6696 {
6697 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6698 
6699 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6700 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6701 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6702 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6703 }
6704 
6705 /*
6706  * Prepare kswapd for sleeping. This verifies that there are no processes
6707  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6708  *
6709  * Returns true if kswapd is ready to sleep
6710  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6711 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6712 				int highest_zoneidx)
6713 {
6714 	/*
6715 	 * The throttled processes are normally woken up in balance_pgdat() as
6716 	 * soon as allow_direct_reclaim() is true. But there is a potential
6717 	 * race between when kswapd checks the watermarks and a process gets
6718 	 * throttled. There is also a potential race if processes get
6719 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6720 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6721 	 * the wake up checks. If kswapd is going to sleep, no process should
6722 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6723 	 * the wake up is premature, processes will wake kswapd and get
6724 	 * throttled again. The difference from wake ups in balance_pgdat() is
6725 	 * that here we are under prepare_to_wait().
6726 	 */
6727 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6728 		wake_up_all(&pgdat->pfmemalloc_wait);
6729 
6730 	/* Hopeless node, leave it to direct reclaim */
6731 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6732 		return true;
6733 
6734 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6735 		clear_pgdat_congested(pgdat);
6736 		return true;
6737 	}
6738 
6739 	return false;
6740 }
6741 
6742 /*
6743  * kswapd shrinks a node of pages that are at or below the highest usable
6744  * zone that is currently unbalanced.
6745  *
6746  * Returns true if kswapd scanned at least the requested number of pages to
6747  * reclaim or if the lack of progress was due to pages under writeback.
6748  * This is used to determine if the scanning priority needs to be raised.
6749  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6750 static bool kswapd_shrink_node(pg_data_t *pgdat,
6751 			       struct scan_control *sc)
6752 {
6753 	struct zone *zone;
6754 	int z;
6755 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6756 
6757 	/* Reclaim a number of pages proportional to the number of zones */
6758 	sc->nr_to_reclaim = 0;
6759 	for (z = 0; z <= sc->reclaim_idx; z++) {
6760 		zone = pgdat->node_zones + z;
6761 		if (!managed_zone(zone))
6762 			continue;
6763 
6764 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6765 	}
6766 
6767 	/*
6768 	 * Historically care was taken to put equal pressure on all zones but
6769 	 * now pressure is applied based on node LRU order.
6770 	 */
6771 	shrink_node(pgdat, sc);
6772 
6773 	/*
6774 	 * Fragmentation may mean that the system cannot be rebalanced for
6775 	 * high-order allocations. If twice the allocation size has been
6776 	 * reclaimed then recheck watermarks only at order-0 to prevent
6777 	 * excessive reclaim. Assume that a process requested a high-order
6778 	 * can direct reclaim/compact.
6779 	 */
6780 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6781 		sc->order = 0;
6782 
6783 	/* account for progress from mm_account_reclaimed_pages() */
6784 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6785 }
6786 
6787 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6788 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6789 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6790 {
6791 	int i;
6792 	struct zone *zone;
6793 
6794 	for (i = 0; i <= highest_zoneidx; i++) {
6795 		zone = pgdat->node_zones + i;
6796 
6797 		if (!managed_zone(zone))
6798 			continue;
6799 
6800 		if (active)
6801 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6802 		else
6803 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6804 	}
6805 }
6806 
6807 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6808 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6809 {
6810 	update_reclaim_active(pgdat, highest_zoneidx, true);
6811 }
6812 
6813 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6814 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6815 {
6816 	update_reclaim_active(pgdat, highest_zoneidx, false);
6817 }
6818 
6819 /*
6820  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6821  * that are eligible for use by the caller until at least one zone is
6822  * balanced.
6823  *
6824  * Returns the order kswapd finished reclaiming at.
6825  *
6826  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6827  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6828  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6829  * or lower is eligible for reclaim until at least one usable zone is
6830  * balanced.
6831  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6832 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6833 {
6834 	int i;
6835 	unsigned long nr_soft_reclaimed;
6836 	unsigned long nr_soft_scanned;
6837 	unsigned long pflags;
6838 	unsigned long nr_boost_reclaim;
6839 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6840 	bool boosted;
6841 	struct zone *zone;
6842 	struct scan_control sc = {
6843 		.gfp_mask = GFP_KERNEL,
6844 		.order = order,
6845 		.may_unmap = 1,
6846 	};
6847 
6848 	set_task_reclaim_state(current, &sc.reclaim_state);
6849 	psi_memstall_enter(&pflags);
6850 	__fs_reclaim_acquire(_THIS_IP_);
6851 
6852 	count_vm_event(PAGEOUTRUN);
6853 
6854 	/*
6855 	 * Account for the reclaim boost. Note that the zone boost is left in
6856 	 * place so that parallel allocations that are near the watermark will
6857 	 * stall or direct reclaim until kswapd is finished.
6858 	 */
6859 	nr_boost_reclaim = 0;
6860 	for (i = 0; i <= highest_zoneidx; i++) {
6861 		zone = pgdat->node_zones + i;
6862 		if (!managed_zone(zone))
6863 			continue;
6864 
6865 		nr_boost_reclaim += zone->watermark_boost;
6866 		zone_boosts[i] = zone->watermark_boost;
6867 	}
6868 	boosted = nr_boost_reclaim;
6869 
6870 restart:
6871 	set_reclaim_active(pgdat, highest_zoneidx);
6872 	sc.priority = DEF_PRIORITY;
6873 	do {
6874 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6875 		bool raise_priority = true;
6876 		bool balanced;
6877 		bool ret;
6878 		bool was_frozen;
6879 
6880 		sc.reclaim_idx = highest_zoneidx;
6881 
6882 		/*
6883 		 * If the number of buffer_heads exceeds the maximum allowed
6884 		 * then consider reclaiming from all zones. This has a dual
6885 		 * purpose -- on 64-bit systems it is expected that
6886 		 * buffer_heads are stripped during active rotation. On 32-bit
6887 		 * systems, highmem pages can pin lowmem memory and shrinking
6888 		 * buffers can relieve lowmem pressure. Reclaim may still not
6889 		 * go ahead if all eligible zones for the original allocation
6890 		 * request are balanced to avoid excessive reclaim from kswapd.
6891 		 */
6892 		if (buffer_heads_over_limit) {
6893 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6894 				zone = pgdat->node_zones + i;
6895 				if (!managed_zone(zone))
6896 					continue;
6897 
6898 				sc.reclaim_idx = i;
6899 				break;
6900 			}
6901 		}
6902 
6903 		/*
6904 		 * If the pgdat is imbalanced then ignore boosting and preserve
6905 		 * the watermarks for a later time and restart. Note that the
6906 		 * zone watermarks will be still reset at the end of balancing
6907 		 * on the grounds that the normal reclaim should be enough to
6908 		 * re-evaluate if boosting is required when kswapd next wakes.
6909 		 */
6910 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6911 		if (!balanced && nr_boost_reclaim) {
6912 			nr_boost_reclaim = 0;
6913 			goto restart;
6914 		}
6915 
6916 		/*
6917 		 * If boosting is not active then only reclaim if there are no
6918 		 * eligible zones. Note that sc.reclaim_idx is not used as
6919 		 * buffer_heads_over_limit may have adjusted it.
6920 		 */
6921 		if (!nr_boost_reclaim && balanced)
6922 			goto out;
6923 
6924 		/* Limit the priority of boosting to avoid reclaim writeback */
6925 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6926 			raise_priority = false;
6927 
6928 		/*
6929 		 * Do not writeback or swap pages for boosted reclaim. The
6930 		 * intent is to relieve pressure not issue sub-optimal IO
6931 		 * from reclaim context. If no pages are reclaimed, the
6932 		 * reclaim will be aborted.
6933 		 */
6934 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6935 		sc.may_swap = !nr_boost_reclaim;
6936 
6937 		/*
6938 		 * Do some background aging, to give pages a chance to be
6939 		 * referenced before reclaiming. All pages are rotated
6940 		 * regardless of classzone as this is about consistent aging.
6941 		 */
6942 		kswapd_age_node(pgdat, &sc);
6943 
6944 		/*
6945 		 * If we're getting trouble reclaiming, start doing writepage
6946 		 * even in laptop mode.
6947 		 */
6948 		if (sc.priority < DEF_PRIORITY - 2)
6949 			sc.may_writepage = 1;
6950 
6951 		/* Call soft limit reclaim before calling shrink_node. */
6952 		sc.nr_scanned = 0;
6953 		nr_soft_scanned = 0;
6954 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6955 							      sc.gfp_mask, &nr_soft_scanned);
6956 		sc.nr_reclaimed += nr_soft_reclaimed;
6957 
6958 		/*
6959 		 * There should be no need to raise the scanning priority if
6960 		 * enough pages are already being scanned that that high
6961 		 * watermark would be met at 100% efficiency.
6962 		 */
6963 		if (kswapd_shrink_node(pgdat, &sc))
6964 			raise_priority = false;
6965 
6966 		/*
6967 		 * If the low watermark is met there is no need for processes
6968 		 * to be throttled on pfmemalloc_wait as they should not be
6969 		 * able to safely make forward progress. Wake them
6970 		 */
6971 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6972 				allow_direct_reclaim(pgdat))
6973 			wake_up_all(&pgdat->pfmemalloc_wait);
6974 
6975 		/* Check if kswapd should be suspending */
6976 		__fs_reclaim_release(_THIS_IP_);
6977 		ret = kthread_freezable_should_stop(&was_frozen);
6978 		__fs_reclaim_acquire(_THIS_IP_);
6979 		if (was_frozen || ret)
6980 			break;
6981 
6982 		/*
6983 		 * Raise priority if scanning rate is too low or there was no
6984 		 * progress in reclaiming pages
6985 		 */
6986 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6987 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6988 
6989 		/*
6990 		 * If reclaim made no progress for a boost, stop reclaim as
6991 		 * IO cannot be queued and it could be an infinite loop in
6992 		 * extreme circumstances.
6993 		 */
6994 		if (nr_boost_reclaim && !nr_reclaimed)
6995 			break;
6996 
6997 		if (raise_priority || !nr_reclaimed)
6998 			sc.priority--;
6999 	} while (sc.priority >= 1);
7000 
7001 	/*
7002 	 * Restart only if it went through the priority loop all the way,
7003 	 * but cache_trim_mode didn't work.
7004 	 */
7005 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7006 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7007 		sc.no_cache_trim_mode = 1;
7008 		goto restart;
7009 	}
7010 
7011 	if (!sc.nr_reclaimed)
7012 		pgdat->kswapd_failures++;
7013 
7014 out:
7015 	clear_reclaim_active(pgdat, highest_zoneidx);
7016 
7017 	/* If reclaim was boosted, account for the reclaim done in this pass */
7018 	if (boosted) {
7019 		unsigned long flags;
7020 
7021 		for (i = 0; i <= highest_zoneidx; i++) {
7022 			if (!zone_boosts[i])
7023 				continue;
7024 
7025 			/* Increments are under the zone lock */
7026 			zone = pgdat->node_zones + i;
7027 			spin_lock_irqsave(&zone->lock, flags);
7028 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7029 			spin_unlock_irqrestore(&zone->lock, flags);
7030 		}
7031 
7032 		/*
7033 		 * As there is now likely space, wakeup kcompact to defragment
7034 		 * pageblocks.
7035 		 */
7036 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7037 	}
7038 
7039 	snapshot_refaults(NULL, pgdat);
7040 	__fs_reclaim_release(_THIS_IP_);
7041 	psi_memstall_leave(&pflags);
7042 	set_task_reclaim_state(current, NULL);
7043 
7044 	/*
7045 	 * Return the order kswapd stopped reclaiming at as
7046 	 * prepare_kswapd_sleep() takes it into account. If another caller
7047 	 * entered the allocator slow path while kswapd was awake, order will
7048 	 * remain at the higher level.
7049 	 */
7050 	return sc.order;
7051 }
7052 
7053 /*
7054  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7055  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7056  * not a valid index then either kswapd runs for first time or kswapd couldn't
7057  * sleep after previous reclaim attempt (node is still unbalanced). In that
7058  * case return the zone index of the previous kswapd reclaim cycle.
7059  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7060 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7061 					   enum zone_type prev_highest_zoneidx)
7062 {
7063 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7064 
7065 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7066 }
7067 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7068 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7069 				unsigned int highest_zoneidx)
7070 {
7071 	long remaining = 0;
7072 	DEFINE_WAIT(wait);
7073 
7074 	if (freezing(current) || kthread_should_stop())
7075 		return;
7076 
7077 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7078 
7079 	/*
7080 	 * Try to sleep for a short interval. Note that kcompactd will only be
7081 	 * woken if it is possible to sleep for a short interval. This is
7082 	 * deliberate on the assumption that if reclaim cannot keep an
7083 	 * eligible zone balanced that it's also unlikely that compaction will
7084 	 * succeed.
7085 	 */
7086 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7087 		/*
7088 		 * Compaction records what page blocks it recently failed to
7089 		 * isolate pages from and skips them in the future scanning.
7090 		 * When kswapd is going to sleep, it is reasonable to assume
7091 		 * that pages and compaction may succeed so reset the cache.
7092 		 */
7093 		reset_isolation_suitable(pgdat);
7094 
7095 		/*
7096 		 * We have freed the memory, now we should compact it to make
7097 		 * allocation of the requested order possible.
7098 		 */
7099 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7100 
7101 		remaining = schedule_timeout(HZ/10);
7102 
7103 		/*
7104 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7105 		 * order. The values will either be from a wakeup request or
7106 		 * the previous request that slept prematurely.
7107 		 */
7108 		if (remaining) {
7109 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7110 					kswapd_highest_zoneidx(pgdat,
7111 							highest_zoneidx));
7112 
7113 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7114 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7115 		}
7116 
7117 		finish_wait(&pgdat->kswapd_wait, &wait);
7118 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7119 	}
7120 
7121 	/*
7122 	 * After a short sleep, check if it was a premature sleep. If not, then
7123 	 * go fully to sleep until explicitly woken up.
7124 	 */
7125 	if (!remaining &&
7126 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7127 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7128 
7129 		/*
7130 		 * vmstat counters are not perfectly accurate and the estimated
7131 		 * value for counters such as NR_FREE_PAGES can deviate from the
7132 		 * true value by nr_online_cpus * threshold. To avoid the zone
7133 		 * watermarks being breached while under pressure, we reduce the
7134 		 * per-cpu vmstat threshold while kswapd is awake and restore
7135 		 * them before going back to sleep.
7136 		 */
7137 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7138 
7139 		if (!kthread_should_stop())
7140 			schedule();
7141 
7142 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7143 	} else {
7144 		if (remaining)
7145 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7146 		else
7147 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7148 	}
7149 	finish_wait(&pgdat->kswapd_wait, &wait);
7150 }
7151 
7152 /*
7153  * The background pageout daemon, started as a kernel thread
7154  * from the init process.
7155  *
7156  * This basically trickles out pages so that we have _some_
7157  * free memory available even if there is no other activity
7158  * that frees anything up. This is needed for things like routing
7159  * etc, where we otherwise might have all activity going on in
7160  * asynchronous contexts that cannot page things out.
7161  *
7162  * If there are applications that are active memory-allocators
7163  * (most normal use), this basically shouldn't matter.
7164  */
kswapd(void * p)7165 static int kswapd(void *p)
7166 {
7167 	unsigned int alloc_order, reclaim_order;
7168 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7169 	pg_data_t *pgdat = (pg_data_t *)p;
7170 	struct task_struct *tsk = current;
7171 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7172 
7173 	if (!cpumask_empty(cpumask))
7174 		set_cpus_allowed_ptr(tsk, cpumask);
7175 
7176 	/*
7177 	 * Tell the memory management that we're a "memory allocator",
7178 	 * and that if we need more memory we should get access to it
7179 	 * regardless (see "__alloc_pages()"). "kswapd" should
7180 	 * never get caught in the normal page freeing logic.
7181 	 *
7182 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7183 	 * you need a small amount of memory in order to be able to
7184 	 * page out something else, and this flag essentially protects
7185 	 * us from recursively trying to free more memory as we're
7186 	 * trying to free the first piece of memory in the first place).
7187 	 */
7188 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7189 	set_freezable();
7190 
7191 	WRITE_ONCE(pgdat->kswapd_order, 0);
7192 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7193 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7194 	for ( ; ; ) {
7195 		bool was_frozen;
7196 
7197 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7198 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7199 							highest_zoneidx);
7200 
7201 kswapd_try_sleep:
7202 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7203 					highest_zoneidx);
7204 
7205 		/* Read the new order and highest_zoneidx */
7206 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7207 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7208 							highest_zoneidx);
7209 		WRITE_ONCE(pgdat->kswapd_order, 0);
7210 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7211 
7212 		if (kthread_freezable_should_stop(&was_frozen))
7213 			break;
7214 
7215 		/*
7216 		 * We can speed up thawing tasks if we don't call balance_pgdat
7217 		 * after returning from the refrigerator
7218 		 */
7219 		if (was_frozen)
7220 			continue;
7221 
7222 		/*
7223 		 * Reclaim begins at the requested order but if a high-order
7224 		 * reclaim fails then kswapd falls back to reclaiming for
7225 		 * order-0. If that happens, kswapd will consider sleeping
7226 		 * for the order it finished reclaiming at (reclaim_order)
7227 		 * but kcompactd is woken to compact for the original
7228 		 * request (alloc_order).
7229 		 */
7230 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7231 						alloc_order);
7232 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7233 						highest_zoneidx);
7234 		if (reclaim_order < alloc_order)
7235 			goto kswapd_try_sleep;
7236 	}
7237 
7238 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7239 
7240 	return 0;
7241 }
7242 
7243 /*
7244  * A zone is low on free memory or too fragmented for high-order memory.  If
7245  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7246  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7247  * has failed or is not needed, still wake up kcompactd if only compaction is
7248  * needed.
7249  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7250 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7251 		   enum zone_type highest_zoneidx)
7252 {
7253 	pg_data_t *pgdat;
7254 	enum zone_type curr_idx;
7255 
7256 	if (!managed_zone(zone))
7257 		return;
7258 
7259 	if (!cpuset_zone_allowed(zone, gfp_flags))
7260 		return;
7261 
7262 	pgdat = zone->zone_pgdat;
7263 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7264 
7265 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7266 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7267 
7268 	if (READ_ONCE(pgdat->kswapd_order) < order)
7269 		WRITE_ONCE(pgdat->kswapd_order, order);
7270 
7271 	if (!waitqueue_active(&pgdat->kswapd_wait))
7272 		return;
7273 
7274 	/* Hopeless node, leave it to direct reclaim if possible */
7275 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7276 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7277 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7278 		/*
7279 		 * There may be plenty of free memory available, but it's too
7280 		 * fragmented for high-order allocations.  Wake up kcompactd
7281 		 * and rely on compaction_suitable() to determine if it's
7282 		 * needed.  If it fails, it will defer subsequent attempts to
7283 		 * ratelimit its work.
7284 		 */
7285 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7286 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7287 		return;
7288 	}
7289 
7290 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7291 				      gfp_flags);
7292 	wake_up_interruptible(&pgdat->kswapd_wait);
7293 }
7294 
7295 #ifdef CONFIG_HIBERNATION
7296 /*
7297  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7298  * freed pages.
7299  *
7300  * Rather than trying to age LRUs the aim is to preserve the overall
7301  * LRU order by reclaiming preferentially
7302  * inactive > active > active referenced > active mapped
7303  */
shrink_all_memory(unsigned long nr_to_reclaim)7304 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7305 {
7306 	struct scan_control sc = {
7307 		.nr_to_reclaim = nr_to_reclaim,
7308 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7309 		.reclaim_idx = MAX_NR_ZONES - 1,
7310 		.priority = DEF_PRIORITY,
7311 		.may_writepage = 1,
7312 		.may_unmap = 1,
7313 		.may_swap = 1,
7314 		.hibernation_mode = 1,
7315 	};
7316 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7317 	unsigned long nr_reclaimed;
7318 	unsigned int noreclaim_flag;
7319 
7320 	fs_reclaim_acquire(sc.gfp_mask);
7321 	noreclaim_flag = memalloc_noreclaim_save();
7322 	set_task_reclaim_state(current, &sc.reclaim_state);
7323 
7324 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7325 
7326 	set_task_reclaim_state(current, NULL);
7327 	memalloc_noreclaim_restore(noreclaim_flag);
7328 	fs_reclaim_release(sc.gfp_mask);
7329 
7330 	return nr_reclaimed;
7331 }
7332 #endif /* CONFIG_HIBERNATION */
7333 
7334 /*
7335  * This kswapd start function will be called by init and node-hot-add.
7336  */
kswapd_run(int nid)7337 void __meminit kswapd_run(int nid)
7338 {
7339 	pg_data_t *pgdat = NODE_DATA(nid);
7340 
7341 	pgdat_kswapd_lock(pgdat);
7342 	if (!pgdat->kswapd) {
7343 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7344 		if (IS_ERR(pgdat->kswapd)) {
7345 			/* failure at boot is fatal */
7346 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7347 				   nid, PTR_ERR(pgdat->kswapd));
7348 			BUG_ON(system_state < SYSTEM_RUNNING);
7349 			pgdat->kswapd = NULL;
7350 		}
7351 	}
7352 	pgdat_kswapd_unlock(pgdat);
7353 }
7354 
7355 /*
7356  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7357  * be holding mem_hotplug_begin/done().
7358  */
kswapd_stop(int nid)7359 void __meminit kswapd_stop(int nid)
7360 {
7361 	pg_data_t *pgdat = NODE_DATA(nid);
7362 	struct task_struct *kswapd;
7363 
7364 	pgdat_kswapd_lock(pgdat);
7365 	kswapd = pgdat->kswapd;
7366 	if (kswapd) {
7367 		kthread_stop(kswapd);
7368 		pgdat->kswapd = NULL;
7369 	}
7370 	pgdat_kswapd_unlock(pgdat);
7371 }
7372 
kswapd_init(void)7373 static int __init kswapd_init(void)
7374 {
7375 	int nid;
7376 
7377 	swap_setup();
7378 	for_each_node_state(nid, N_MEMORY)
7379  		kswapd_run(nid);
7380 	return 0;
7381 }
7382 
7383 module_init(kswapd_init)
7384 
7385 #ifdef CONFIG_NUMA
7386 /*
7387  * Node reclaim mode
7388  *
7389  * If non-zero call node_reclaim when the number of free pages falls below
7390  * the watermarks.
7391  */
7392 int node_reclaim_mode __read_mostly;
7393 
7394 /*
7395  * Priority for NODE_RECLAIM. This determines the fraction of pages
7396  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7397  * a zone.
7398  */
7399 #define NODE_RECLAIM_PRIORITY 4
7400 
7401 /*
7402  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7403  * occur.
7404  */
7405 int sysctl_min_unmapped_ratio = 1;
7406 
7407 /*
7408  * If the number of slab pages in a zone grows beyond this percentage then
7409  * slab reclaim needs to occur.
7410  */
7411 int sysctl_min_slab_ratio = 5;
7412 
node_unmapped_file_pages(struct pglist_data * pgdat)7413 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7414 {
7415 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7416 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7417 		node_page_state(pgdat, NR_ACTIVE_FILE);
7418 
7419 	/*
7420 	 * It's possible for there to be more file mapped pages than
7421 	 * accounted for by the pages on the file LRU lists because
7422 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7423 	 */
7424 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7425 }
7426 
7427 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7428 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7429 {
7430 	unsigned long nr_pagecache_reclaimable;
7431 	unsigned long delta = 0;
7432 
7433 	/*
7434 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7435 	 * potentially reclaimable. Otherwise, we have to worry about
7436 	 * pages like swapcache and node_unmapped_file_pages() provides
7437 	 * a better estimate
7438 	 */
7439 	if (node_reclaim_mode & RECLAIM_UNMAP)
7440 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7441 	else
7442 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7443 
7444 	/* If we can't clean pages, remove dirty pages from consideration */
7445 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7446 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7447 
7448 	/* Watch for any possible underflows due to delta */
7449 	if (unlikely(delta > nr_pagecache_reclaimable))
7450 		delta = nr_pagecache_reclaimable;
7451 
7452 	return nr_pagecache_reclaimable - delta;
7453 }
7454 
7455 /*
7456  * Try to free up some pages from this node through reclaim.
7457  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7458 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7459 {
7460 	/* Minimum pages needed in order to stay on node */
7461 	const unsigned long nr_pages = 1 << order;
7462 	struct task_struct *p = current;
7463 	unsigned int noreclaim_flag;
7464 	struct scan_control sc = {
7465 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7466 		.gfp_mask = current_gfp_context(gfp_mask),
7467 		.order = order,
7468 		.priority = NODE_RECLAIM_PRIORITY,
7469 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7470 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7471 		.may_swap = 1,
7472 		.reclaim_idx = gfp_zone(gfp_mask),
7473 	};
7474 	unsigned long pflags;
7475 
7476 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7477 					   sc.gfp_mask);
7478 
7479 	cond_resched();
7480 	psi_memstall_enter(&pflags);
7481 	delayacct_freepages_start();
7482 	fs_reclaim_acquire(sc.gfp_mask);
7483 	/*
7484 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7485 	 */
7486 	noreclaim_flag = memalloc_noreclaim_save();
7487 	set_task_reclaim_state(p, &sc.reclaim_state);
7488 
7489 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7490 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7491 		/*
7492 		 * Free memory by calling shrink node with increasing
7493 		 * priorities until we have enough memory freed.
7494 		 */
7495 		do {
7496 			shrink_node(pgdat, &sc);
7497 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7498 	}
7499 
7500 	set_task_reclaim_state(p, NULL);
7501 	memalloc_noreclaim_restore(noreclaim_flag);
7502 	fs_reclaim_release(sc.gfp_mask);
7503 	psi_memstall_leave(&pflags);
7504 	delayacct_freepages_end();
7505 
7506 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7507 
7508 	return sc.nr_reclaimed >= nr_pages;
7509 }
7510 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7511 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7512 {
7513 	int ret;
7514 
7515 	/*
7516 	 * Node reclaim reclaims unmapped file backed pages and
7517 	 * slab pages if we are over the defined limits.
7518 	 *
7519 	 * A small portion of unmapped file backed pages is needed for
7520 	 * file I/O otherwise pages read by file I/O will be immediately
7521 	 * thrown out if the node is overallocated. So we do not reclaim
7522 	 * if less than a specified percentage of the node is used by
7523 	 * unmapped file backed pages.
7524 	 */
7525 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7526 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7527 	    pgdat->min_slab_pages)
7528 		return NODE_RECLAIM_FULL;
7529 
7530 	/*
7531 	 * Do not scan if the allocation should not be delayed.
7532 	 */
7533 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7534 		return NODE_RECLAIM_NOSCAN;
7535 
7536 	/*
7537 	 * Only run node reclaim on the local node or on nodes that do not
7538 	 * have associated processors. This will favor the local processor
7539 	 * over remote processors and spread off node memory allocations
7540 	 * as wide as possible.
7541 	 */
7542 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7543 		return NODE_RECLAIM_NOSCAN;
7544 
7545 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7546 		return NODE_RECLAIM_NOSCAN;
7547 
7548 	ret = __node_reclaim(pgdat, gfp_mask, order);
7549 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7550 
7551 	if (ret)
7552 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7553 	else
7554 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7555 
7556 	return ret;
7557 }
7558 #endif
7559 
7560 /**
7561  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7562  * lru list
7563  * @fbatch: Batch of lru folios to check.
7564  *
7565  * Checks folios for evictability, if an evictable folio is in the unevictable
7566  * lru list, moves it to the appropriate evictable lru list. This function
7567  * should be only used for lru folios.
7568  */
check_move_unevictable_folios(struct folio_batch * fbatch)7569 void check_move_unevictable_folios(struct folio_batch *fbatch)
7570 {
7571 	struct lruvec *lruvec = NULL;
7572 	int pgscanned = 0;
7573 	int pgrescued = 0;
7574 	int i;
7575 
7576 	for (i = 0; i < fbatch->nr; i++) {
7577 		struct folio *folio = fbatch->folios[i];
7578 		int nr_pages = folio_nr_pages(folio);
7579 
7580 		pgscanned += nr_pages;
7581 
7582 		/* block memcg migration while the folio moves between lrus */
7583 		if (!folio_test_clear_lru(folio))
7584 			continue;
7585 
7586 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7587 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7588 			lruvec_del_folio(lruvec, folio);
7589 			folio_clear_unevictable(folio);
7590 			lruvec_add_folio(lruvec, folio);
7591 			pgrescued += nr_pages;
7592 		}
7593 		folio_set_lru(folio);
7594 	}
7595 
7596 	if (lruvec) {
7597 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7598 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7599 		unlock_page_lruvec_irq(lruvec);
7600 	} else if (pgscanned) {
7601 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7602 	}
7603 }
7604 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7605