1 // SPDX-License-Identifier: GPL-2.0
2 /* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <linux/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 #include <asm/softirq_stack.h>
46
47 #include "entry.h"
48 #include "cpumap.h"
49 #include "kstack.h"
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
bucket_get_chain_pa(unsigned long bucket_pa)58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70 }
71
bucket_clear_chain_pa(unsigned long bucket_pa)72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80 }
81
bucket_get_irq(unsigned long bucket_pa)82 static unsigned int bucket_get_irq(unsigned long bucket_pa)
83 {
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94 }
95
bucket_set_irq(unsigned long bucket_pa,unsigned int irq)96 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
97 {
98 __asm__ __volatile__("stwa %0, [%1] %2"
99 : /* no outputs */
100 : "r" (irq),
101 "r" (bucket_pa +
102 offsetof(struct ino_bucket,
103 __irq)),
104 "i" (ASI_PHYS_USE_EC));
105 }
106
107 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
108
109 static unsigned long hvirq_major __initdata;
early_hvirq_major(char * p)110 static int __init early_hvirq_major(char *p)
111 {
112 int rc = kstrtoul(p, 10, &hvirq_major);
113
114 return rc;
115 }
116 early_param("hvirq", early_hvirq_major);
117
118 static int hv_irq_version;
119
120 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
122 *
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 * negotiating version 1.0 (or failing to negotiate at all). So the
125 * hypervisor has a workaround that provides the VIRQ interfaces even
126 * when only verion 1.0 of the API is in use.
127 *
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 * interfaces only were actually hooked up for LDC interrupts, even
130 * though the Hypervisor specification clearly stated:
131 *
132 * The new interrupt API functions will be available to a guest
133 * when it negotiates version 2.0 in the interrupt API group 0x2. When
134 * a guest negotiates version 2.0, all interrupt sources will only
135 * support using the cookie interface, and any attempt to use the
136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 * ENOTSUPPORTED error being returned.
138 *
139 * with an emphasis on "all interrupt sources".
140 *
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices). So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
145 */
sun4v_cookie_only_virqs(void)146 static bool sun4v_cookie_only_virqs(void)
147 {
148 if (hv_irq_version >= 3)
149 return true;
150 return false;
151 }
152
irq_init_hv(void)153 static void __init irq_init_hv(void)
154 {
155 unsigned long hv_error, major, minor = 0;
156
157 if (tlb_type != hypervisor)
158 return;
159
160 if (hvirq_major)
161 major = hvirq_major;
162 else
163 major = 3;
164
165 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166 if (!hv_error)
167 hv_irq_version = major;
168 else
169 hv_irq_version = 1;
170
171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172 hv_irq_version,
173 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174 }
175
176 /* This function is for the timer interrupt.*/
arch_probe_nr_irqs(void)177 int __init arch_probe_nr_irqs(void)
178 {
179 return 1;
180 }
181
182 #define DEFAULT_NUM_IVECS (0xfffU)
183 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184 #define NUM_IVECS (nr_ivec)
185
size_nr_ivec(void)186 static unsigned int __init size_nr_ivec(void)
187 {
188 if (tlb_type == hypervisor) {
189 switch (sun4v_chip_type) {
190 /* Athena's devhandle|devino is large.*/
191 case SUN4V_CHIP_SPARC64X:
192 nr_ivec = 0xffff;
193 break;
194 }
195 }
196 return nr_ivec;
197 }
198
199 struct irq_handler_data {
200 union {
201 struct {
202 unsigned int dev_handle;
203 unsigned int dev_ino;
204 };
205 unsigned long sysino;
206 };
207 struct ino_bucket bucket;
208 unsigned long iclr;
209 unsigned long imap;
210 };
211
irq_data_to_handle(struct irq_data * data)212 static inline unsigned int irq_data_to_handle(struct irq_data *data)
213 {
214 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215
216 return ihd->dev_handle;
217 }
218
irq_data_to_ino(struct irq_data * data)219 static inline unsigned int irq_data_to_ino(struct irq_data *data)
220 {
221 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222
223 return ihd->dev_ino;
224 }
225
irq_data_to_sysino(struct irq_data * data)226 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227 {
228 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229
230 return ihd->sysino;
231 }
232
irq_free(unsigned int irq)233 void irq_free(unsigned int irq)
234 {
235 void *data = irq_get_handler_data(irq);
236
237 kfree(data);
238 irq_set_handler_data(irq, NULL);
239 irq_free_descs(irq, 1);
240 }
241
irq_alloc(unsigned int dev_handle,unsigned int dev_ino)242 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243 {
244 int irq;
245
246 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247 if (irq <= 0)
248 goto out;
249
250 return irq;
251 out:
252 return 0;
253 }
254
cookie_exists(u32 devhandle,unsigned int devino)255 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256 {
257 unsigned long hv_err, cookie;
258 struct ino_bucket *bucket;
259 unsigned int irq = 0U;
260
261 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262 if (hv_err) {
263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264 goto out;
265 }
266
267 if (cookie & ((1UL << 63UL))) {
268 cookie = ~cookie;
269 bucket = (struct ino_bucket *) __va(cookie);
270 irq = bucket->__irq;
271 }
272 out:
273 return irq;
274 }
275
sysino_exists(u32 devhandle,unsigned int devino)276 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277 {
278 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279 struct ino_bucket *bucket;
280 unsigned int irq;
281
282 bucket = &ivector_table[sysino];
283 irq = bucket_get_irq(__pa(bucket));
284
285 return irq;
286 }
287
ack_bad_irq(unsigned int irq)288 void ack_bad_irq(unsigned int irq)
289 {
290 pr_crit("BAD IRQ ack %d\n", irq);
291 }
292
irq_install_pre_handler(int irq,void (* func)(unsigned int,void *,void *),void * arg1,void * arg2)293 void irq_install_pre_handler(int irq,
294 void (*func)(unsigned int, void *, void *),
295 void *arg1, void *arg2)
296 {
297 pr_warn("IRQ pre handler NOT supported.\n");
298 }
299
300 /*
301 * /proc/interrupts printing:
302 */
arch_show_interrupts(struct seq_file * p,int prec)303 int arch_show_interrupts(struct seq_file *p, int prec)
304 {
305 int j;
306
307 seq_printf(p, "NMI: ");
308 for_each_online_cpu(j)
309 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310 seq_printf(p, " Non-maskable interrupts\n");
311 return 0;
312 }
313
sun4u_compute_tid(unsigned long imap,unsigned long cpuid)314 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315 {
316 unsigned int tid;
317
318 if (this_is_starfire) {
319 tid = starfire_translate(imap, cpuid);
320 tid <<= IMAP_TID_SHIFT;
321 tid &= IMAP_TID_UPA;
322 } else {
323 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324 unsigned long ver;
325
326 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
327 if ((ver >> 32UL) == __JALAPENO_ID ||
328 (ver >> 32UL) == __SERRANO_ID) {
329 tid = cpuid << IMAP_TID_SHIFT;
330 tid &= IMAP_TID_JBUS;
331 } else {
332 unsigned int a = cpuid & 0x1f;
333 unsigned int n = (cpuid >> 5) & 0x1f;
334
335 tid = ((a << IMAP_AID_SHIFT) |
336 (n << IMAP_NID_SHIFT));
337 tid &= (IMAP_AID_SAFARI |
338 IMAP_NID_SAFARI);
339 }
340 } else {
341 tid = cpuid << IMAP_TID_SHIFT;
342 tid &= IMAP_TID_UPA;
343 }
344 }
345
346 return tid;
347 }
348
349 #ifdef CONFIG_SMP
irq_choose_cpu(unsigned int irq,const struct cpumask * affinity)350 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351 {
352 int cpuid;
353
354 if (cpumask_equal(affinity, cpu_online_mask)) {
355 cpuid = map_to_cpu(irq);
356 } else {
357 cpuid = cpumask_first_and(affinity, cpu_online_mask);
358 cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
359 }
360
361 return cpuid;
362 }
363 #else
364 #define irq_choose_cpu(irq, affinity) \
365 real_hard_smp_processor_id()
366 #endif
367
sun4u_irq_enable(struct irq_data * data)368 static void sun4u_irq_enable(struct irq_data *data)
369 {
370 struct irq_handler_data *handler_data;
371
372 handler_data = irq_data_get_irq_handler_data(data);
373 if (likely(handler_data)) {
374 unsigned long cpuid, imap, val;
375 unsigned int tid;
376
377 cpuid = irq_choose_cpu(data->irq,
378 irq_data_get_affinity_mask(data));
379 imap = handler_data->imap;
380
381 tid = sun4u_compute_tid(imap, cpuid);
382
383 val = upa_readq(imap);
384 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
385 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
386 val |= tid | IMAP_VALID;
387 upa_writeq(val, imap);
388 upa_writeq(ICLR_IDLE, handler_data->iclr);
389 }
390 }
391
sun4u_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)392 static int sun4u_set_affinity(struct irq_data *data,
393 const struct cpumask *mask, bool force)
394 {
395 struct irq_handler_data *handler_data;
396
397 handler_data = irq_data_get_irq_handler_data(data);
398 if (likely(handler_data)) {
399 unsigned long cpuid, imap, val;
400 unsigned int tid;
401
402 cpuid = irq_choose_cpu(data->irq, mask);
403 imap = handler_data->imap;
404
405 tid = sun4u_compute_tid(imap, cpuid);
406
407 val = upa_readq(imap);
408 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410 val |= tid | IMAP_VALID;
411 upa_writeq(val, imap);
412 upa_writeq(ICLR_IDLE, handler_data->iclr);
413 }
414
415 return 0;
416 }
417
418 /* Don't do anything. The desc->status check for IRQ_DISABLED in
419 * handler_irq() will skip the handler call and that will leave the
420 * interrupt in the sent state. The next ->enable() call will hit the
421 * ICLR register to reset the state machine.
422 *
423 * This scheme is necessary, instead of clearing the Valid bit in the
424 * IMAP register, to handle the case of IMAP registers being shared by
425 * multiple INOs (and thus ICLR registers). Since we use a different
426 * virtual IRQ for each shared IMAP instance, the generic code thinks
427 * there is only one user so it prematurely calls ->disable() on
428 * free_irq().
429 *
430 * We have to provide an explicit ->disable() method instead of using
431 * NULL to get the default. The reason is that if the generic code
432 * sees that, it also hooks up a default ->shutdown method which
433 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
434 */
sun4u_irq_disable(struct irq_data * data)435 static void sun4u_irq_disable(struct irq_data *data)
436 {
437 }
438
sun4u_irq_eoi(struct irq_data * data)439 static void sun4u_irq_eoi(struct irq_data *data)
440 {
441 struct irq_handler_data *handler_data;
442
443 handler_data = irq_data_get_irq_handler_data(data);
444 if (likely(handler_data))
445 upa_writeq(ICLR_IDLE, handler_data->iclr);
446 }
447
sun4v_irq_enable(struct irq_data * data)448 static void sun4v_irq_enable(struct irq_data *data)
449 {
450 unsigned long cpuid = irq_choose_cpu(data->irq,
451 irq_data_get_affinity_mask(data));
452 unsigned int ino = irq_data_to_sysino(data);
453 int err;
454
455 err = sun4v_intr_settarget(ino, cpuid);
456 if (err != HV_EOK)
457 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
458 "err(%d)\n", ino, cpuid, err);
459 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_intr_setstate(%x): "
462 "err(%d)\n", ino, err);
463 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
464 if (err != HV_EOK)
465 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
466 ino, err);
467 }
468
sun4v_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)469 static int sun4v_set_affinity(struct irq_data *data,
470 const struct cpumask *mask, bool force)
471 {
472 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
473 unsigned int ino = irq_data_to_sysino(data);
474 int err;
475
476 err = sun4v_intr_settarget(ino, cpuid);
477 if (err != HV_EOK)
478 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
479 "err(%d)\n", ino, cpuid, err);
480
481 return 0;
482 }
483
sun4v_irq_disable(struct irq_data * data)484 static void sun4v_irq_disable(struct irq_data *data)
485 {
486 unsigned int ino = irq_data_to_sysino(data);
487 int err;
488
489 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
490 if (err != HV_EOK)
491 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
492 "err(%d)\n", ino, err);
493 }
494
sun4v_irq_eoi(struct irq_data * data)495 static void sun4v_irq_eoi(struct irq_data *data)
496 {
497 unsigned int ino = irq_data_to_sysino(data);
498 int err;
499
500 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
501 if (err != HV_EOK)
502 printk(KERN_ERR "sun4v_intr_setstate(%x): "
503 "err(%d)\n", ino, err);
504 }
505
sun4v_virq_enable(struct irq_data * data)506 static void sun4v_virq_enable(struct irq_data *data)
507 {
508 unsigned long dev_handle = irq_data_to_handle(data);
509 unsigned long dev_ino = irq_data_to_ino(data);
510 unsigned long cpuid;
511 int err;
512
513 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
514
515 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
516 if (err != HV_EOK)
517 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
518 "err(%d)\n",
519 dev_handle, dev_ino, cpuid, err);
520 err = sun4v_vintr_set_state(dev_handle, dev_ino,
521 HV_INTR_STATE_IDLE);
522 if (err != HV_EOK)
523 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
524 "HV_INTR_STATE_IDLE): err(%d)\n",
525 dev_handle, dev_ino, err);
526 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
527 HV_INTR_ENABLED);
528 if (err != HV_EOK)
529 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
530 "HV_INTR_ENABLED): err(%d)\n",
531 dev_handle, dev_ino, err);
532 }
533
sun4v_virt_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)534 static int sun4v_virt_set_affinity(struct irq_data *data,
535 const struct cpumask *mask, bool force)
536 {
537 unsigned long dev_handle = irq_data_to_handle(data);
538 unsigned long dev_ino = irq_data_to_ino(data);
539 unsigned long cpuid;
540 int err;
541
542 cpuid = irq_choose_cpu(data->irq, mask);
543
544 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
545 if (err != HV_EOK)
546 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
547 "err(%d)\n",
548 dev_handle, dev_ino, cpuid, err);
549
550 return 0;
551 }
552
sun4v_virq_disable(struct irq_data * data)553 static void sun4v_virq_disable(struct irq_data *data)
554 {
555 unsigned long dev_handle = irq_data_to_handle(data);
556 unsigned long dev_ino = irq_data_to_ino(data);
557 int err;
558
559
560 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
561 HV_INTR_DISABLED);
562 if (err != HV_EOK)
563 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
564 "HV_INTR_DISABLED): err(%d)\n",
565 dev_handle, dev_ino, err);
566 }
567
sun4v_virq_eoi(struct irq_data * data)568 static void sun4v_virq_eoi(struct irq_data *data)
569 {
570 unsigned long dev_handle = irq_data_to_handle(data);
571 unsigned long dev_ino = irq_data_to_ino(data);
572 int err;
573
574 err = sun4v_vintr_set_state(dev_handle, dev_ino,
575 HV_INTR_STATE_IDLE);
576 if (err != HV_EOK)
577 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
578 "HV_INTR_STATE_IDLE): err(%d)\n",
579 dev_handle, dev_ino, err);
580 }
581
582 static struct irq_chip sun4u_irq = {
583 .name = "sun4u",
584 .irq_enable = sun4u_irq_enable,
585 .irq_disable = sun4u_irq_disable,
586 .irq_eoi = sun4u_irq_eoi,
587 .irq_set_affinity = sun4u_set_affinity,
588 .flags = IRQCHIP_EOI_IF_HANDLED,
589 };
590
591 static struct irq_chip sun4v_irq = {
592 .name = "sun4v",
593 .irq_enable = sun4v_irq_enable,
594 .irq_disable = sun4v_irq_disable,
595 .irq_eoi = sun4v_irq_eoi,
596 .irq_set_affinity = sun4v_set_affinity,
597 .flags = IRQCHIP_EOI_IF_HANDLED,
598 };
599
600 static struct irq_chip sun4v_virq = {
601 .name = "vsun4v",
602 .irq_enable = sun4v_virq_enable,
603 .irq_disable = sun4v_virq_disable,
604 .irq_eoi = sun4v_virq_eoi,
605 .irq_set_affinity = sun4v_virt_set_affinity,
606 .flags = IRQCHIP_EOI_IF_HANDLED,
607 };
608
build_irq(int inofixup,unsigned long iclr,unsigned long imap)609 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
610 {
611 struct irq_handler_data *handler_data;
612 struct ino_bucket *bucket;
613 unsigned int irq;
614 int ino;
615
616 BUG_ON(tlb_type == hypervisor);
617
618 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
619 bucket = &ivector_table[ino];
620 irq = bucket_get_irq(__pa(bucket));
621 if (!irq) {
622 irq = irq_alloc(0, ino);
623 bucket_set_irq(__pa(bucket), irq);
624 irq_set_chip_and_handler_name(irq, &sun4u_irq,
625 handle_fasteoi_irq, "IVEC");
626 }
627
628 handler_data = irq_get_handler_data(irq);
629 if (unlikely(handler_data))
630 goto out;
631
632 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
633 if (unlikely(!handler_data)) {
634 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
635 prom_halt();
636 }
637 irq_set_handler_data(irq, handler_data);
638
639 handler_data->imap = imap;
640 handler_data->iclr = iclr;
641
642 out:
643 return irq;
644 }
645
sun4v_build_common(u32 devhandle,unsigned int devino,void (* handler_data_init)(struct irq_handler_data * data,u32 devhandle,unsigned int devino),struct irq_chip * chip)646 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
647 void (*handler_data_init)(struct irq_handler_data *data,
648 u32 devhandle, unsigned int devino),
649 struct irq_chip *chip)
650 {
651 struct irq_handler_data *data;
652 unsigned int irq;
653
654 irq = irq_alloc(devhandle, devino);
655 if (!irq)
656 goto out;
657
658 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
659 if (unlikely(!data)) {
660 pr_err("IRQ handler data allocation failed.\n");
661 irq_free(irq);
662 irq = 0;
663 goto out;
664 }
665
666 irq_set_handler_data(irq, data);
667 handler_data_init(data, devhandle, devino);
668 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
669 data->imap = ~0UL;
670 data->iclr = ~0UL;
671 out:
672 return irq;
673 }
674
cookie_assign(unsigned int irq,u32 devhandle,unsigned int devino)675 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
676 unsigned int devino)
677 {
678 struct irq_handler_data *ihd = irq_get_handler_data(irq);
679 unsigned long hv_error, cookie;
680
681 /* handler_irq needs to find the irq. cookie is seen signed in
682 * sun4v_dev_mondo and treated as a non ivector_table delivery.
683 */
684 ihd->bucket.__irq = irq;
685 cookie = ~__pa(&ihd->bucket);
686
687 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
688 if (hv_error)
689 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
690
691 return hv_error;
692 }
693
cookie_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)694 static void cookie_handler_data(struct irq_handler_data *data,
695 u32 devhandle, unsigned int devino)
696 {
697 data->dev_handle = devhandle;
698 data->dev_ino = devino;
699 }
700
cookie_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)701 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
702 struct irq_chip *chip)
703 {
704 unsigned long hv_error;
705 unsigned int irq;
706
707 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
708
709 hv_error = cookie_assign(irq, devhandle, devino);
710 if (hv_error) {
711 irq_free(irq);
712 irq = 0;
713 }
714
715 return irq;
716 }
717
sun4v_build_cookie(u32 devhandle,unsigned int devino)718 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
719 {
720 unsigned int irq;
721
722 irq = cookie_exists(devhandle, devino);
723 if (irq)
724 goto out;
725
726 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
727
728 out:
729 return irq;
730 }
731
sysino_set_bucket(unsigned int irq)732 static void sysino_set_bucket(unsigned int irq)
733 {
734 struct irq_handler_data *ihd = irq_get_handler_data(irq);
735 struct ino_bucket *bucket;
736 unsigned long sysino;
737
738 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
739 BUG_ON(sysino >= nr_ivec);
740 bucket = &ivector_table[sysino];
741 bucket_set_irq(__pa(bucket), irq);
742 }
743
sysino_handler_data(struct irq_handler_data * data,u32 devhandle,unsigned int devino)744 static void sysino_handler_data(struct irq_handler_data *data,
745 u32 devhandle, unsigned int devino)
746 {
747 unsigned long sysino;
748
749 sysino = sun4v_devino_to_sysino(devhandle, devino);
750 data->sysino = sysino;
751 }
752
sysino_build_irq(u32 devhandle,unsigned int devino,struct irq_chip * chip)753 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
754 struct irq_chip *chip)
755 {
756 unsigned int irq;
757
758 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
759 if (!irq)
760 goto out;
761
762 sysino_set_bucket(irq);
763 out:
764 return irq;
765 }
766
sun4v_build_sysino(u32 devhandle,unsigned int devino)767 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
768 {
769 int irq;
770
771 irq = sysino_exists(devhandle, devino);
772 if (irq)
773 goto out;
774
775 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
776 out:
777 return irq;
778 }
779
sun4v_build_irq(u32 devhandle,unsigned int devino)780 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
781 {
782 unsigned int irq;
783
784 if (sun4v_cookie_only_virqs())
785 irq = sun4v_build_cookie(devhandle, devino);
786 else
787 irq = sun4v_build_sysino(devhandle, devino);
788
789 return irq;
790 }
791
sun4v_build_virq(u32 devhandle,unsigned int devino)792 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
793 {
794 int irq;
795
796 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
797 if (!irq)
798 goto out;
799
800 /* This is borrowed from the original function.
801 */
802 irq_set_status_flags(irq, IRQ_NOAUTOEN);
803
804 out:
805 return irq;
806 }
807
808 void *hardirq_stack[NR_CPUS];
809 void *softirq_stack[NR_CPUS];
810
handler_irq(int pil,struct pt_regs * regs)811 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
812 {
813 unsigned long pstate, bucket_pa;
814 struct pt_regs *old_regs;
815 void *orig_sp;
816
817 clear_softint(1 << pil);
818
819 old_regs = set_irq_regs(regs);
820 irq_enter();
821
822 /* Grab an atomic snapshot of the pending IVECs. */
823 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
824 "wrpr %0, %3, %%pstate\n\t"
825 "ldx [%2], %1\n\t"
826 "stx %%g0, [%2]\n\t"
827 "wrpr %0, 0x0, %%pstate\n\t"
828 : "=&r" (pstate), "=&r" (bucket_pa)
829 : "r" (irq_work_pa(smp_processor_id())),
830 "i" (PSTATE_IE)
831 : "memory");
832
833 orig_sp = set_hardirq_stack();
834
835 while (bucket_pa) {
836 unsigned long next_pa;
837 unsigned int irq;
838
839 next_pa = bucket_get_chain_pa(bucket_pa);
840 irq = bucket_get_irq(bucket_pa);
841 bucket_clear_chain_pa(bucket_pa);
842
843 generic_handle_irq(irq);
844
845 bucket_pa = next_pa;
846 }
847
848 restore_hardirq_stack(orig_sp);
849
850 irq_exit();
851 set_irq_regs(old_regs);
852 }
853
854 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
do_softirq_own_stack(void)855 void do_softirq_own_stack(void)
856 {
857 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
858
859 sp += THREAD_SIZE - 192 - STACK_BIAS;
860
861 __asm__ __volatile__("mov %%sp, %0\n\t"
862 "mov %1, %%sp"
863 : "=&r" (orig_sp)
864 : "r" (sp));
865 __do_softirq();
866 __asm__ __volatile__("mov %0, %%sp"
867 : : "r" (orig_sp));
868 }
869 #endif
870
871 #ifdef CONFIG_HOTPLUG_CPU
fixup_irqs(void)872 void fixup_irqs(void)
873 {
874 unsigned int irq;
875
876 for (irq = 0; irq < NR_IRQS; irq++) {
877 struct irq_desc *desc = irq_to_desc(irq);
878 struct irq_data *data;
879 unsigned long flags;
880
881 if (!desc)
882 continue;
883 data = irq_desc_get_irq_data(desc);
884 raw_spin_lock_irqsave(&desc->lock, flags);
885 if (desc->action && !irqd_is_per_cpu(data)) {
886 if (data->chip->irq_set_affinity)
887 data->chip->irq_set_affinity(data,
888 irq_data_get_affinity_mask(data),
889 false);
890 }
891 raw_spin_unlock_irqrestore(&desc->lock, flags);
892 }
893
894 tick_ops->disable_irq();
895 }
896 #endif
897
898 struct sun5_timer {
899 u64 count0;
900 u64 limit0;
901 u64 count1;
902 u64 limit1;
903 };
904
905 static struct sun5_timer *prom_timers;
906 static u64 prom_limit0, prom_limit1;
907
map_prom_timers(void)908 static void map_prom_timers(void)
909 {
910 struct device_node *dp;
911 const unsigned int *addr;
912
913 /* PROM timer node hangs out in the top level of device siblings... */
914 dp = of_find_node_by_path("/");
915 dp = dp->child;
916 while (dp) {
917 if (of_node_name_eq(dp, "counter-timer"))
918 break;
919 dp = dp->sibling;
920 }
921
922 /* Assume if node is not present, PROM uses different tick mechanism
923 * which we should not care about.
924 */
925 if (!dp) {
926 prom_timers = (struct sun5_timer *) 0;
927 return;
928 }
929
930 /* If PROM is really using this, it must be mapped by him. */
931 addr = of_get_property(dp, "address", NULL);
932 if (!addr) {
933 prom_printf("PROM does not have timer mapped, trying to continue.\n");
934 prom_timers = (struct sun5_timer *) 0;
935 return;
936 }
937 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
938 }
939
kill_prom_timer(void)940 static void kill_prom_timer(void)
941 {
942 if (!prom_timers)
943 return;
944
945 /* Save them away for later. */
946 prom_limit0 = prom_timers->limit0;
947 prom_limit1 = prom_timers->limit1;
948
949 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
950 * We turn both off here just to be paranoid.
951 */
952 prom_timers->limit0 = 0;
953 prom_timers->limit1 = 0;
954
955 /* Wheee, eat the interrupt packet too... */
956 __asm__ __volatile__(
957 " mov 0x40, %%g2\n"
958 " ldxa [%%g0] %0, %%g1\n"
959 " ldxa [%%g2] %1, %%g1\n"
960 " stxa %%g0, [%%g0] %0\n"
961 " membar #Sync\n"
962 : /* no outputs */
963 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
964 : "g1", "g2");
965 }
966
init_irqwork_curcpu(void)967 void notrace init_irqwork_curcpu(void)
968 {
969 int cpu = hard_smp_processor_id();
970
971 trap_block[cpu].irq_worklist_pa = 0UL;
972 }
973
974 /* Please be very careful with register_one_mondo() and
975 * sun4v_register_mondo_queues().
976 *
977 * On SMP this gets invoked from the CPU trampoline before
978 * the cpu has fully taken over the trap table from OBP,
979 * and its kernel stack + %g6 thread register state is
980 * not fully cooked yet.
981 *
982 * Therefore you cannot make any OBP calls, not even prom_printf,
983 * from these two routines.
984 */
register_one_mondo(unsigned long paddr,unsigned long type,unsigned long qmask)985 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
986 unsigned long qmask)
987 {
988 unsigned long num_entries = (qmask + 1) / 64;
989 unsigned long status;
990
991 status = sun4v_cpu_qconf(type, paddr, num_entries);
992 if (status != HV_EOK) {
993 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
994 "err %lu\n", type, paddr, num_entries, status);
995 prom_halt();
996 }
997 }
998
sun4v_register_mondo_queues(int this_cpu)999 void notrace sun4v_register_mondo_queues(int this_cpu)
1000 {
1001 struct trap_per_cpu *tb = &trap_block[this_cpu];
1002
1003 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1004 tb->cpu_mondo_qmask);
1005 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1006 tb->dev_mondo_qmask);
1007 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1008 tb->resum_qmask);
1009 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1010 tb->nonresum_qmask);
1011 }
1012
1013 /* Each queue region must be a power of 2 multiple of 64 bytes in
1014 * size. The base real address must be aligned to the size of the
1015 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1016 */
alloc_one_queue(unsigned long * pa_ptr,unsigned long qmask)1017 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1018 {
1019 unsigned long size = PAGE_ALIGN(qmask + 1);
1020 unsigned long order = get_order(size);
1021 unsigned long p;
1022
1023 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1024 if (!p) {
1025 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1026 prom_halt();
1027 }
1028
1029 *pa_ptr = __pa(p);
1030 }
1031
init_cpu_send_mondo_info(struct trap_per_cpu * tb)1032 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1033 {
1034 #ifdef CONFIG_SMP
1035 unsigned long page;
1036 void *mondo, *p;
1037
1038 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1039
1040 /* Make sure mondo block is 64byte aligned */
1041 p = kzalloc(127, GFP_KERNEL);
1042 if (!p) {
1043 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1044 prom_halt();
1045 }
1046 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1047 tb->cpu_mondo_block_pa = __pa(mondo);
1048
1049 page = get_zeroed_page(GFP_KERNEL);
1050 if (!page) {
1051 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1052 prom_halt();
1053 }
1054
1055 tb->cpu_list_pa = __pa(page);
1056 #endif
1057 }
1058
1059 /* Allocate mondo and error queues for all possible cpus. */
sun4v_init_mondo_queues(void)1060 static void __init sun4v_init_mondo_queues(void)
1061 {
1062 int cpu;
1063
1064 for_each_possible_cpu(cpu) {
1065 struct trap_per_cpu *tb = &trap_block[cpu];
1066
1067 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1068 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1069 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1070 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1071 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1072 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1073 tb->nonresum_qmask);
1074 }
1075 }
1076
init_send_mondo_info(void)1077 static void __init init_send_mondo_info(void)
1078 {
1079 int cpu;
1080
1081 for_each_possible_cpu(cpu) {
1082 struct trap_per_cpu *tb = &trap_block[cpu];
1083
1084 init_cpu_send_mondo_info(tb);
1085 }
1086 }
1087
1088 static struct irqaction timer_irq_action = {
1089 .name = "timer",
1090 };
1091
irq_ivector_init(void)1092 static void __init irq_ivector_init(void)
1093 {
1094 unsigned long size, order;
1095 unsigned int ivecs;
1096
1097 /* If we are doing cookie only VIRQs then we do not need the ivector
1098 * table to process interrupts.
1099 */
1100 if (sun4v_cookie_only_virqs())
1101 return;
1102
1103 ivecs = size_nr_ivec();
1104 size = sizeof(struct ino_bucket) * ivecs;
1105 order = get_order(size);
1106 ivector_table = (struct ino_bucket *)
1107 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1108 if (!ivector_table) {
1109 prom_printf("Fatal error, cannot allocate ivector_table\n");
1110 prom_halt();
1111 }
1112 __flush_dcache_range((unsigned long) ivector_table,
1113 ((unsigned long) ivector_table) + size);
1114
1115 ivector_table_pa = __pa(ivector_table);
1116 }
1117
1118 /* Only invoked on boot processor.*/
init_IRQ(void)1119 void __init init_IRQ(void)
1120 {
1121 irq_init_hv();
1122 irq_ivector_init();
1123 map_prom_timers();
1124 kill_prom_timer();
1125
1126 if (tlb_type == hypervisor)
1127 sun4v_init_mondo_queues();
1128
1129 init_send_mondo_info();
1130
1131 if (tlb_type == hypervisor) {
1132 /* Load up the boot cpu's entries. */
1133 sun4v_register_mondo_queues(hard_smp_processor_id());
1134 }
1135
1136 /* We need to clear any IRQ's pending in the soft interrupt
1137 * registers, a spurious one could be left around from the
1138 * PROM timer which we just disabled.
1139 */
1140 clear_softint(get_softint());
1141
1142 /* Now that ivector table is initialized, it is safe
1143 * to receive IRQ vector traps. We will normally take
1144 * one or two right now, in case some device PROM used
1145 * to boot us wants to speak to us. We just ignore them.
1146 */
1147 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1148 "or %%g1, %0, %%g1\n\t"
1149 "wrpr %%g1, 0x0, %%pstate"
1150 : /* No outputs */
1151 : "i" (PSTATE_IE)
1152 : "g1");
1153
1154 irq_to_desc(0)->action = &timer_irq_action;
1155 }
1156