1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2013-2015 Analog Devices Inc.
4 * Author: Lars-Peter Clausen <lars@metafoo.de>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/cleanup.h>
9 #include <linux/slab.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/device.h>
13 #include <linux/workqueue.h>
14 #include <linux/mutex.h>
15 #include <linux/sched.h>
16 #include <linux/poll.h>
17 #include <linux/iio/buffer_impl.h>
18 #include <linux/iio/buffer-dma.h>
19 #include <linux/dma-buf.h>
20 #include <linux/dma-fence.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/sizes.h>
23
24 /*
25 * For DMA buffers the storage is sub-divided into so called blocks. Each block
26 * has its own memory buffer. The size of the block is the granularity at which
27 * memory is exchanged between the hardware and the application. Increasing the
28 * basic unit of data exchange from one sample to one block decreases the
29 * management overhead that is associated with each sample. E.g. if we say the
30 * management overhead for one exchange is x and the unit of exchange is one
31 * sample the overhead will be x for each sample. Whereas when using a block
32 * which contains n samples the overhead per sample is reduced to x/n. This
33 * allows to achieve much higher samplerates than what can be sustained with
34 * the one sample approach.
35 *
36 * Blocks are exchanged between the DMA controller and the application via the
37 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
38 * incoming queue are waiting for the DMA controller to pick them up and fill
39 * them with data. Block on the outgoing queue have been filled with data and
40 * are waiting for the application to dequeue them and read the data.
41 *
42 * A block can be in one of the following states:
43 * * Owned by the application. In this state the application can read data from
44 * the block.
45 * * On the incoming list: Blocks on the incoming list are queued up to be
46 * processed by the DMA controller.
47 * * Owned by the DMA controller: The DMA controller is processing the block
48 * and filling it with data.
49 * * On the outgoing list: Blocks on the outgoing list have been successfully
50 * processed by the DMA controller and contain data. They can be dequeued by
51 * the application.
52 * * Dead: A block that is dead has been marked as to be freed. It might still
53 * be owned by either the application or the DMA controller at the moment.
54 * But once they are done processing it instead of going to either the
55 * incoming or outgoing queue the block will be freed.
56 *
57 * In addition to this blocks are reference counted and the memory associated
58 * with both the block structure as well as the storage memory for the block
59 * will be freed when the last reference to the block is dropped. This means a
60 * block must not be accessed without holding a reference.
61 *
62 * The iio_dma_buffer implementation provides a generic infrastructure for
63 * managing the blocks.
64 *
65 * A driver for a specific piece of hardware that has DMA capabilities need to
66 * implement the submit() callback from the iio_dma_buffer_ops structure. This
67 * callback is supposed to initiate the DMA transfer copying data from the
68 * converter to the memory region of the block. Once the DMA transfer has been
69 * completed the driver must call iio_dma_buffer_block_done() for the completed
70 * block.
71 *
72 * Prior to this it must set the bytes_used field of the block contains
73 * the actual number of bytes in the buffer. Typically this will be equal to the
74 * size of the block, but if the DMA hardware has certain alignment requirements
75 * for the transfer length it might choose to use less than the full size. In
76 * either case it is expected that bytes_used is a multiple of the bytes per
77 * datum, i.e. the block must not contain partial samples.
78 *
79 * The driver must call iio_dma_buffer_block_done() for each block it has
80 * received through its submit_block() callback, even if it does not actually
81 * perform a DMA transfer for the block, e.g. because the buffer was disabled
82 * before the block transfer was started. In this case it should set bytes_used
83 * to 0.
84 *
85 * In addition it is recommended that a driver implements the abort() callback.
86 * It will be called when the buffer is disabled and can be used to cancel
87 * pending and stop active transfers.
88 *
89 * The specific driver implementation should use the default callback
90 * implementations provided by this module for the iio_buffer_access_funcs
91 * struct. It may overload some callbacks with custom variants if the hardware
92 * has special requirements that are not handled by the generic functions. If a
93 * driver chooses to overload a callback it has to ensure that the generic
94 * callback is called from within the custom callback.
95 */
96
iio_buffer_block_release(struct kref * kref)97 static void iio_buffer_block_release(struct kref *kref)
98 {
99 struct iio_dma_buffer_block *block = container_of(kref,
100 struct iio_dma_buffer_block, kref);
101 struct iio_dma_buffer_queue *queue = block->queue;
102
103 WARN_ON(block->fileio && block->state != IIO_BLOCK_STATE_DEAD);
104
105 if (block->fileio) {
106 dma_free_coherent(queue->dev, PAGE_ALIGN(block->size),
107 block->vaddr, block->phys_addr);
108 } else {
109 atomic_dec(&queue->num_dmabufs);
110 }
111
112 iio_buffer_put(&queue->buffer);
113 kfree(block);
114 }
115
iio_buffer_block_get(struct iio_dma_buffer_block * block)116 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
117 {
118 kref_get(&block->kref);
119 }
120
iio_buffer_block_put(struct iio_dma_buffer_block * block)121 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
122 {
123 kref_put(&block->kref, iio_buffer_block_release);
124 }
125
126 /*
127 * dma_free_coherent can sleep, hence we need to take some special care to be
128 * able to drop a reference from an atomic context.
129 */
130 static LIST_HEAD(iio_dma_buffer_dead_blocks);
131 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
132
iio_dma_buffer_cleanup_worker(struct work_struct * work)133 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
134 {
135 struct iio_dma_buffer_block *block, *_block;
136 LIST_HEAD(block_list);
137
138 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
139 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
140 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
141
142 list_for_each_entry_safe(block, _block, &block_list, head)
143 iio_buffer_block_release(&block->kref);
144 }
145 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
146
iio_buffer_block_release_atomic(struct kref * kref)147 static void iio_buffer_block_release_atomic(struct kref *kref)
148 {
149 struct iio_dma_buffer_block *block;
150 unsigned long flags;
151
152 block = container_of(kref, struct iio_dma_buffer_block, kref);
153
154 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
155 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
156 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
157
158 schedule_work(&iio_dma_buffer_cleanup_work);
159 }
160
161 /*
162 * Version of iio_buffer_block_put() that can be called from atomic context
163 */
iio_buffer_block_put_atomic(struct iio_dma_buffer_block * block)164 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
165 {
166 kref_put(&block->kref, iio_buffer_block_release_atomic);
167 }
168
iio_buffer_to_queue(struct iio_buffer * buf)169 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
170 {
171 return container_of(buf, struct iio_dma_buffer_queue, buffer);
172 }
173
iio_dma_buffer_alloc_block(struct iio_dma_buffer_queue * queue,size_t size,bool fileio)174 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
175 struct iio_dma_buffer_queue *queue, size_t size, bool fileio)
176 {
177 struct iio_dma_buffer_block *block;
178
179 block = kzalloc(sizeof(*block), GFP_KERNEL);
180 if (!block)
181 return NULL;
182
183 if (fileio) {
184 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
185 &block->phys_addr, GFP_KERNEL);
186 if (!block->vaddr) {
187 kfree(block);
188 return NULL;
189 }
190 }
191
192 block->fileio = fileio;
193 block->size = size;
194 block->state = IIO_BLOCK_STATE_DONE;
195 block->queue = queue;
196 INIT_LIST_HEAD(&block->head);
197 kref_init(&block->kref);
198
199 iio_buffer_get(&queue->buffer);
200
201 if (!fileio)
202 atomic_inc(&queue->num_dmabufs);
203
204 return block;
205 }
206
_iio_dma_buffer_block_done(struct iio_dma_buffer_block * block)207 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
208 {
209 if (block->state != IIO_BLOCK_STATE_DEAD)
210 block->state = IIO_BLOCK_STATE_DONE;
211 }
212
iio_dma_buffer_queue_wake(struct iio_dma_buffer_queue * queue)213 static void iio_dma_buffer_queue_wake(struct iio_dma_buffer_queue *queue)
214 {
215 __poll_t flags;
216
217 if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN)
218 flags = EPOLLIN | EPOLLRDNORM;
219 else
220 flags = EPOLLOUT | EPOLLWRNORM;
221
222 wake_up_interruptible_poll(&queue->buffer.pollq, flags);
223 }
224
225 /**
226 * iio_dma_buffer_block_done() - Indicate that a block has been completed
227 * @block: The completed block
228 *
229 * Should be called when the DMA controller has finished handling the block to
230 * pass back ownership of the block to the queue.
231 */
iio_dma_buffer_block_done(struct iio_dma_buffer_block * block)232 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
233 {
234 struct iio_dma_buffer_queue *queue = block->queue;
235 unsigned long flags;
236 bool cookie;
237
238 cookie = dma_fence_begin_signalling();
239
240 spin_lock_irqsave(&queue->list_lock, flags);
241 _iio_dma_buffer_block_done(block);
242 spin_unlock_irqrestore(&queue->list_lock, flags);
243
244 if (!block->fileio)
245 iio_buffer_signal_dmabuf_done(block->fence, 0);
246
247 iio_buffer_block_put_atomic(block);
248 iio_dma_buffer_queue_wake(queue);
249 dma_fence_end_signalling(cookie);
250 }
251 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_block_done, IIO_DMA_BUFFER);
252
253 /**
254 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
255 * aborted
256 * @queue: Queue for which to complete blocks.
257 * @list: List of aborted blocks. All blocks in this list must be from @queue.
258 *
259 * Typically called from the abort() callback after the DMA controller has been
260 * stopped. This will set bytes_used to 0 for each block in the list and then
261 * hand the blocks back to the queue.
262 */
iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue * queue,struct list_head * list)263 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
264 struct list_head *list)
265 {
266 struct iio_dma_buffer_block *block, *_block;
267 unsigned long flags;
268 bool cookie;
269
270 cookie = dma_fence_begin_signalling();
271
272 spin_lock_irqsave(&queue->list_lock, flags);
273 list_for_each_entry_safe(block, _block, list, head) {
274 list_del(&block->head);
275 block->bytes_used = 0;
276 _iio_dma_buffer_block_done(block);
277
278 if (!block->fileio)
279 iio_buffer_signal_dmabuf_done(block->fence, -EINTR);
280 iio_buffer_block_put_atomic(block);
281 }
282 spin_unlock_irqrestore(&queue->list_lock, flags);
283
284 if (queue->fileio.enabled)
285 queue->fileio.enabled = false;
286
287 iio_dma_buffer_queue_wake(queue);
288 dma_fence_end_signalling(cookie);
289 }
290 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_block_list_abort, IIO_DMA_BUFFER);
291
iio_dma_block_reusable(struct iio_dma_buffer_block * block)292 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
293 {
294 /*
295 * If the core owns the block it can be re-used. This should be the
296 * default case when enabling the buffer, unless the DMA controller does
297 * not support abort and has not given back the block yet.
298 */
299 switch (block->state) {
300 case IIO_BLOCK_STATE_QUEUED:
301 case IIO_BLOCK_STATE_DONE:
302 return true;
303 default:
304 return false;
305 }
306 }
307
iio_dma_buffer_can_use_fileio(struct iio_dma_buffer_queue * queue)308 static bool iio_dma_buffer_can_use_fileio(struct iio_dma_buffer_queue *queue)
309 {
310 /*
311 * Note that queue->num_dmabufs cannot increase while the queue is
312 * locked, it can only decrease, so it does not race against
313 * iio_dma_buffer_alloc_block().
314 */
315 return queue->fileio.enabled || !atomic_read(&queue->num_dmabufs);
316 }
317
318 /**
319 * iio_dma_buffer_request_update() - DMA buffer request_update callback
320 * @buffer: The buffer which to request an update
321 *
322 * Should be used as the iio_dma_buffer_request_update() callback for
323 * iio_buffer_access_ops struct for DMA buffers.
324 */
iio_dma_buffer_request_update(struct iio_buffer * buffer)325 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
326 {
327 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
328 struct iio_dma_buffer_block *block;
329 bool try_reuse = false;
330 size_t size;
331 int ret = 0;
332 int i;
333
334 /*
335 * Split the buffer into two even parts. This is used as a double
336 * buffering scheme with usually one block at a time being used by the
337 * DMA and the other one by the application.
338 */
339 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
340 queue->buffer.length, 2);
341
342 mutex_lock(&queue->lock);
343
344 queue->fileio.enabled = iio_dma_buffer_can_use_fileio(queue);
345
346 /* If DMABUFs were created, disable fileio interface */
347 if (!queue->fileio.enabled)
348 goto out_unlock;
349
350 /* Allocations are page aligned */
351 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
352 try_reuse = true;
353
354 queue->fileio.block_size = size;
355 queue->fileio.active_block = NULL;
356
357 spin_lock_irq(&queue->list_lock);
358 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
359 block = queue->fileio.blocks[i];
360
361 /* If we can't re-use it free it */
362 if (block && (!iio_dma_block_reusable(block) || !try_reuse))
363 block->state = IIO_BLOCK_STATE_DEAD;
364 }
365
366 /*
367 * At this point all blocks are either owned by the core or marked as
368 * dead. This means we can reset the lists without having to fear
369 * corrution.
370 */
371 spin_unlock_irq(&queue->list_lock);
372
373 INIT_LIST_HEAD(&queue->incoming);
374
375 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
376 if (queue->fileio.blocks[i]) {
377 block = queue->fileio.blocks[i];
378 if (block->state == IIO_BLOCK_STATE_DEAD) {
379 /* Could not reuse it */
380 iio_buffer_block_put(block);
381 block = NULL;
382 } else {
383 block->size = size;
384 }
385 } else {
386 block = NULL;
387 }
388
389 if (!block) {
390 block = iio_dma_buffer_alloc_block(queue, size, true);
391 if (!block) {
392 ret = -ENOMEM;
393 goto out_unlock;
394 }
395 queue->fileio.blocks[i] = block;
396 }
397
398 /*
399 * block->bytes_used may have been modified previously, e.g. by
400 * iio_dma_buffer_block_list_abort(). Reset it here to the
401 * block's so that iio_dma_buffer_io() will work.
402 */
403 block->bytes_used = block->size;
404
405 /*
406 * If it's an input buffer, mark the block as queued, and
407 * iio_dma_buffer_enable() will submit it. Otherwise mark it as
408 * done, which means it's ready to be dequeued.
409 */
410 if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN) {
411 block->state = IIO_BLOCK_STATE_QUEUED;
412 list_add_tail(&block->head, &queue->incoming);
413 } else {
414 block->state = IIO_BLOCK_STATE_DONE;
415 }
416 }
417
418 out_unlock:
419 mutex_unlock(&queue->lock);
420
421 return ret;
422 }
423 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_request_update, IIO_DMA_BUFFER);
424
iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue * queue)425 static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue)
426 {
427 unsigned int i;
428
429 spin_lock_irq(&queue->list_lock);
430 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
431 if (!queue->fileio.blocks[i])
432 continue;
433 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
434 }
435 spin_unlock_irq(&queue->list_lock);
436
437 INIT_LIST_HEAD(&queue->incoming);
438
439 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
440 if (!queue->fileio.blocks[i])
441 continue;
442 iio_buffer_block_put(queue->fileio.blocks[i]);
443 queue->fileio.blocks[i] = NULL;
444 }
445 queue->fileio.active_block = NULL;
446 }
447
iio_dma_buffer_submit_block(struct iio_dma_buffer_queue * queue,struct iio_dma_buffer_block * block)448 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
449 struct iio_dma_buffer_block *block)
450 {
451 int ret;
452
453 /*
454 * If the hardware has already been removed we put the block into
455 * limbo. It will neither be on the incoming nor outgoing list, nor will
456 * it ever complete. It will just wait to be freed eventually.
457 */
458 if (!queue->ops)
459 return;
460
461 block->state = IIO_BLOCK_STATE_ACTIVE;
462 iio_buffer_block_get(block);
463
464 ret = queue->ops->submit(queue, block);
465 if (ret) {
466 if (!block->fileio)
467 iio_buffer_signal_dmabuf_done(block->fence, ret);
468
469 /*
470 * This is a bit of a problem and there is not much we can do
471 * other then wait for the buffer to be disabled and re-enabled
472 * and try again. But it should not really happen unless we run
473 * out of memory or something similar.
474 *
475 * TODO: Implement support in the IIO core to allow buffers to
476 * notify consumers that something went wrong and the buffer
477 * should be disabled.
478 */
479 iio_buffer_block_put(block);
480 }
481 }
482
483 /**
484 * iio_dma_buffer_enable() - Enable DMA buffer
485 * @buffer: IIO buffer to enable
486 * @indio_dev: IIO device the buffer is attached to
487 *
488 * Needs to be called when the device that the buffer is attached to starts
489 * sampling. Typically should be the iio_buffer_access_ops enable callback.
490 *
491 * This will allocate the DMA buffers and start the DMA transfers.
492 */
iio_dma_buffer_enable(struct iio_buffer * buffer,struct iio_dev * indio_dev)493 int iio_dma_buffer_enable(struct iio_buffer *buffer,
494 struct iio_dev *indio_dev)
495 {
496 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
497 struct iio_dma_buffer_block *block, *_block;
498
499 mutex_lock(&queue->lock);
500 queue->active = true;
501 list_for_each_entry_safe(block, _block, &queue->incoming, head) {
502 list_del(&block->head);
503 iio_dma_buffer_submit_block(queue, block);
504 }
505 mutex_unlock(&queue->lock);
506
507 return 0;
508 }
509 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_enable, IIO_DMA_BUFFER);
510
511 /**
512 * iio_dma_buffer_disable() - Disable DMA buffer
513 * @buffer: IIO DMA buffer to disable
514 * @indio_dev: IIO device the buffer is attached to
515 *
516 * Needs to be called when the device that the buffer is attached to stops
517 * sampling. Typically should be the iio_buffer_access_ops disable callback.
518 */
iio_dma_buffer_disable(struct iio_buffer * buffer,struct iio_dev * indio_dev)519 int iio_dma_buffer_disable(struct iio_buffer *buffer,
520 struct iio_dev *indio_dev)
521 {
522 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
523
524 mutex_lock(&queue->lock);
525 queue->active = false;
526
527 if (queue->ops && queue->ops->abort)
528 queue->ops->abort(queue);
529 mutex_unlock(&queue->lock);
530
531 return 0;
532 }
533 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_disable, IIO_DMA_BUFFER);
534
iio_dma_buffer_enqueue(struct iio_dma_buffer_queue * queue,struct iio_dma_buffer_block * block)535 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
536 struct iio_dma_buffer_block *block)
537 {
538 if (block->state == IIO_BLOCK_STATE_DEAD) {
539 iio_buffer_block_put(block);
540 } else if (queue->active) {
541 iio_dma_buffer_submit_block(queue, block);
542 } else {
543 block->state = IIO_BLOCK_STATE_QUEUED;
544 list_add_tail(&block->head, &queue->incoming);
545 }
546 }
547
iio_dma_buffer_dequeue(struct iio_dma_buffer_queue * queue)548 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
549 struct iio_dma_buffer_queue *queue)
550 {
551 struct iio_dma_buffer_block *block;
552 unsigned int idx;
553
554 spin_lock_irq(&queue->list_lock);
555
556 idx = queue->fileio.next_dequeue;
557 block = queue->fileio.blocks[idx];
558
559 if (block->state == IIO_BLOCK_STATE_DONE) {
560 idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks);
561 queue->fileio.next_dequeue = idx;
562 } else {
563 block = NULL;
564 }
565
566 spin_unlock_irq(&queue->list_lock);
567
568 return block;
569 }
570
iio_dma_buffer_io(struct iio_buffer * buffer,size_t n,char __user * user_buffer,bool is_from_user)571 static int iio_dma_buffer_io(struct iio_buffer *buffer, size_t n,
572 char __user *user_buffer, bool is_from_user)
573 {
574 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
575 struct iio_dma_buffer_block *block;
576 void *addr;
577 int ret;
578
579 if (n < buffer->bytes_per_datum)
580 return -EINVAL;
581
582 mutex_lock(&queue->lock);
583
584 if (!queue->fileio.active_block) {
585 block = iio_dma_buffer_dequeue(queue);
586 if (block == NULL) {
587 ret = 0;
588 goto out_unlock;
589 }
590 queue->fileio.pos = 0;
591 queue->fileio.active_block = block;
592 } else {
593 block = queue->fileio.active_block;
594 }
595
596 n = rounddown(n, buffer->bytes_per_datum);
597 if (n > block->bytes_used - queue->fileio.pos)
598 n = block->bytes_used - queue->fileio.pos;
599 addr = block->vaddr + queue->fileio.pos;
600
601 if (is_from_user)
602 ret = copy_from_user(addr, user_buffer, n);
603 else
604 ret = copy_to_user(user_buffer, addr, n);
605 if (ret) {
606 ret = -EFAULT;
607 goto out_unlock;
608 }
609
610 queue->fileio.pos += n;
611
612 if (queue->fileio.pos == block->bytes_used) {
613 queue->fileio.active_block = NULL;
614 iio_dma_buffer_enqueue(queue, block);
615 }
616
617 ret = n;
618
619 out_unlock:
620 mutex_unlock(&queue->lock);
621
622 return ret;
623 }
624
625 /**
626 * iio_dma_buffer_read() - DMA buffer read callback
627 * @buffer: Buffer to read form
628 * @n: Number of bytes to read
629 * @user_buffer: Userspace buffer to copy the data to
630 *
631 * Should be used as the read callback for iio_buffer_access_ops
632 * struct for DMA buffers.
633 */
iio_dma_buffer_read(struct iio_buffer * buffer,size_t n,char __user * user_buffer)634 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
635 char __user *user_buffer)
636 {
637 return iio_dma_buffer_io(buffer, n, user_buffer, false);
638 }
639 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_read, IIO_DMA_BUFFER);
640
641 /**
642 * iio_dma_buffer_write() - DMA buffer write callback
643 * @buffer: Buffer to read form
644 * @n: Number of bytes to read
645 * @user_buffer: Userspace buffer to copy the data from
646 *
647 * Should be used as the write callback for iio_buffer_access_ops
648 * struct for DMA buffers.
649 */
iio_dma_buffer_write(struct iio_buffer * buffer,size_t n,const char __user * user_buffer)650 int iio_dma_buffer_write(struct iio_buffer *buffer, size_t n,
651 const char __user *user_buffer)
652 {
653 return iio_dma_buffer_io(buffer, n,
654 (__force __user char *)user_buffer, true);
655 }
656 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_write, IIO_DMA_BUFFER);
657
658 /**
659 * iio_dma_buffer_usage() - DMA buffer data_available and
660 * space_available callback
661 * @buf: Buffer to check for data availability
662 *
663 * Should be used as the data_available and space_available callbacks for
664 * iio_buffer_access_ops struct for DMA buffers.
665 */
iio_dma_buffer_usage(struct iio_buffer * buf)666 size_t iio_dma_buffer_usage(struct iio_buffer *buf)
667 {
668 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
669 struct iio_dma_buffer_block *block;
670 size_t data_available = 0;
671 unsigned int i;
672
673 /*
674 * For counting the available bytes we'll use the size of the block not
675 * the number of actual bytes available in the block. Otherwise it is
676 * possible that we end up with a value that is lower than the watermark
677 * but won't increase since all blocks are in use.
678 */
679
680 mutex_lock(&queue->lock);
681 if (queue->fileio.active_block)
682 data_available += queue->fileio.active_block->size;
683
684 spin_lock_irq(&queue->list_lock);
685
686 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
687 block = queue->fileio.blocks[i];
688
689 if (block != queue->fileio.active_block
690 && block->state == IIO_BLOCK_STATE_DONE)
691 data_available += block->size;
692 }
693
694 spin_unlock_irq(&queue->list_lock);
695 mutex_unlock(&queue->lock);
696
697 return data_available;
698 }
699 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_usage, IIO_DMA_BUFFER);
700
701 struct iio_dma_buffer_block *
iio_dma_buffer_attach_dmabuf(struct iio_buffer * buffer,struct dma_buf_attachment * attach)702 iio_dma_buffer_attach_dmabuf(struct iio_buffer *buffer,
703 struct dma_buf_attachment *attach)
704 {
705 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
706 struct iio_dma_buffer_block *block;
707
708 guard(mutex)(&queue->lock);
709
710 /*
711 * If the buffer is enabled and in fileio mode new blocks can't be
712 * allocated.
713 */
714 if (queue->fileio.enabled)
715 return ERR_PTR(-EBUSY);
716
717 block = iio_dma_buffer_alloc_block(queue, attach->dmabuf->size, false);
718 if (!block)
719 return ERR_PTR(-ENOMEM);
720
721 /* Free memory that might be in use for fileio mode */
722 iio_dma_buffer_fileio_free(queue);
723
724 return block;
725 }
726 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_attach_dmabuf, IIO_DMA_BUFFER);
727
iio_dma_buffer_detach_dmabuf(struct iio_buffer * buffer,struct iio_dma_buffer_block * block)728 void iio_dma_buffer_detach_dmabuf(struct iio_buffer *buffer,
729 struct iio_dma_buffer_block *block)
730 {
731 block->state = IIO_BLOCK_STATE_DEAD;
732 iio_buffer_block_put_atomic(block);
733 }
734 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_detach_dmabuf, IIO_DMA_BUFFER);
735
iio_dma_can_enqueue_block(struct iio_dma_buffer_block * block)736 static int iio_dma_can_enqueue_block(struct iio_dma_buffer_block *block)
737 {
738 struct iio_dma_buffer_queue *queue = block->queue;
739
740 /* If in fileio mode buffers can't be enqueued. */
741 if (queue->fileio.enabled)
742 return -EBUSY;
743
744 switch (block->state) {
745 case IIO_BLOCK_STATE_QUEUED:
746 return -EPERM;
747 case IIO_BLOCK_STATE_ACTIVE:
748 case IIO_BLOCK_STATE_DEAD:
749 return -EBUSY;
750 case IIO_BLOCK_STATE_DONE:
751 break;
752 }
753
754 return 0;
755 }
756
iio_dma_buffer_enqueue_dmabuf(struct iio_buffer * buffer,struct iio_dma_buffer_block * block,struct dma_fence * fence,struct sg_table * sgt,size_t size,bool cyclic)757 int iio_dma_buffer_enqueue_dmabuf(struct iio_buffer *buffer,
758 struct iio_dma_buffer_block *block,
759 struct dma_fence *fence,
760 struct sg_table *sgt,
761 size_t size, bool cyclic)
762 {
763 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
764 bool cookie;
765 int ret;
766
767 WARN_ON(!mutex_is_locked(&queue->lock));
768
769 cookie = dma_fence_begin_signalling();
770
771 ret = iio_dma_can_enqueue_block(block);
772 if (ret < 0)
773 goto out_end_signalling;
774
775 block->bytes_used = size;
776 block->cyclic = cyclic;
777 block->sg_table = sgt;
778 block->fence = fence;
779
780 iio_dma_buffer_enqueue(queue, block);
781
782 out_end_signalling:
783 dma_fence_end_signalling(cookie);
784
785 return ret;
786 }
787 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_enqueue_dmabuf, IIO_DMA_BUFFER);
788
iio_dma_buffer_lock_queue(struct iio_buffer * buffer)789 void iio_dma_buffer_lock_queue(struct iio_buffer *buffer)
790 {
791 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
792
793 mutex_lock(&queue->lock);
794 }
795 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_lock_queue, IIO_DMA_BUFFER);
796
iio_dma_buffer_unlock_queue(struct iio_buffer * buffer)797 void iio_dma_buffer_unlock_queue(struct iio_buffer *buffer)
798 {
799 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
800
801 mutex_unlock(&queue->lock);
802 }
803 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_unlock_queue, IIO_DMA_BUFFER);
804
805 /**
806 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
807 * @buffer: Buffer to set the bytes-per-datum for
808 * @bpd: The new bytes-per-datum value
809 *
810 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
811 * struct for DMA buffers.
812 */
iio_dma_buffer_set_bytes_per_datum(struct iio_buffer * buffer,size_t bpd)813 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
814 {
815 buffer->bytes_per_datum = bpd;
816
817 return 0;
818 }
819 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_set_bytes_per_datum, IIO_DMA_BUFFER);
820
821 /**
822 * iio_dma_buffer_set_length - DMA buffer set_length callback
823 * @buffer: Buffer to set the length for
824 * @length: The new buffer length
825 *
826 * Should be used as the set_length callback for iio_buffer_access_ops
827 * struct for DMA buffers.
828 */
iio_dma_buffer_set_length(struct iio_buffer * buffer,unsigned int length)829 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
830 {
831 /* Avoid an invalid state */
832 if (length < 2)
833 length = 2;
834 buffer->length = length;
835 buffer->watermark = length / 2;
836
837 return 0;
838 }
839 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_set_length, IIO_DMA_BUFFER);
840
841 /**
842 * iio_dma_buffer_init() - Initialize DMA buffer queue
843 * @queue: Buffer to initialize
844 * @dev: DMA device
845 * @ops: DMA buffer queue callback operations
846 *
847 * The DMA device will be used by the queue to do DMA memory allocations. So it
848 * should refer to the device that will perform the DMA to ensure that
849 * allocations are done from a memory region that can be accessed by the device.
850 */
iio_dma_buffer_init(struct iio_dma_buffer_queue * queue,struct device * dev,const struct iio_dma_buffer_ops * ops)851 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
852 struct device *dev, const struct iio_dma_buffer_ops *ops)
853 {
854 iio_buffer_init(&queue->buffer);
855 queue->buffer.length = PAGE_SIZE;
856 queue->buffer.watermark = queue->buffer.length / 2;
857 queue->dev = dev;
858 queue->ops = ops;
859
860 INIT_LIST_HEAD(&queue->incoming);
861
862 mutex_init(&queue->lock);
863 spin_lock_init(&queue->list_lock);
864
865 return 0;
866 }
867 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_init, IIO_DMA_BUFFER);
868
869 /**
870 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
871 * @queue: Buffer to cleanup
872 *
873 * After this function has completed it is safe to free any resources that are
874 * associated with the buffer and are accessed inside the callback operations.
875 */
iio_dma_buffer_exit(struct iio_dma_buffer_queue * queue)876 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
877 {
878 mutex_lock(&queue->lock);
879
880 iio_dma_buffer_fileio_free(queue);
881 queue->ops = NULL;
882
883 mutex_unlock(&queue->lock);
884 }
885 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_exit, IIO_DMA_BUFFER);
886
887 /**
888 * iio_dma_buffer_release() - Release final buffer resources
889 * @queue: Buffer to release
890 *
891 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
892 * called in the buffers release callback implementation right before freeing
893 * the memory associated with the buffer.
894 */
iio_dma_buffer_release(struct iio_dma_buffer_queue * queue)895 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
896 {
897 mutex_destroy(&queue->lock);
898 }
899 EXPORT_SYMBOL_NS_GPL(iio_dma_buffer_release, IIO_DMA_BUFFER);
900
901 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
902 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
903 MODULE_LICENSE("GPL v2");
904