1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c)  2019 Intel Corporation */
3  
4  #include "igc.h"
5  
6  #include <linux/module.h>
7  #include <linux/device.h>
8  #include <linux/pci.h>
9  #include <linux/ptp_classify.h>
10  #include <linux/clocksource.h>
11  #include <linux/ktime.h>
12  #include <linux/delay.h>
13  #include <linux/iopoll.h>
14  #include <net/xdp_sock_drv.h>
15  
16  #define INCVALUE_MASK		0x7fffffff
17  #define ISGN			0x80000000
18  
19  #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
20  
21  #define IGC_PTM_STAT_SLEEP		2
22  #define IGC_PTM_STAT_TIMEOUT		100
23  
24  /* SYSTIM read access for I225 */
igc_ptp_read(struct igc_adapter * adapter,struct timespec64 * ts)25  void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
26  {
27  	struct igc_hw *hw = &adapter->hw;
28  	u32 sec, nsec;
29  
30  	/* The timestamp is latched when SYSTIML is read. */
31  	nsec = rd32(IGC_SYSTIML);
32  	sec = rd32(IGC_SYSTIMH);
33  
34  	ts->tv_sec = sec;
35  	ts->tv_nsec = nsec;
36  }
37  
igc_ptp_write_i225(struct igc_adapter * adapter,const struct timespec64 * ts)38  static void igc_ptp_write_i225(struct igc_adapter *adapter,
39  			       const struct timespec64 *ts)
40  {
41  	struct igc_hw *hw = &adapter->hw;
42  
43  	wr32(IGC_SYSTIML, ts->tv_nsec);
44  	wr32(IGC_SYSTIMH, ts->tv_sec);
45  }
46  
igc_ptp_adjfine_i225(struct ptp_clock_info * ptp,long scaled_ppm)47  static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
48  {
49  	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
50  					       ptp_caps);
51  	struct igc_hw *hw = &igc->hw;
52  	int neg_adj = 0;
53  	u64 rate;
54  	u32 inca;
55  
56  	if (scaled_ppm < 0) {
57  		neg_adj = 1;
58  		scaled_ppm = -scaled_ppm;
59  	}
60  	rate = scaled_ppm;
61  	rate <<= 14;
62  	rate = div_u64(rate, 78125);
63  
64  	inca = rate & INCVALUE_MASK;
65  	if (neg_adj)
66  		inca |= ISGN;
67  
68  	wr32(IGC_TIMINCA, inca);
69  
70  	return 0;
71  }
72  
igc_ptp_adjtime_i225(struct ptp_clock_info * ptp,s64 delta)73  static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
74  {
75  	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
76  					       ptp_caps);
77  	struct timespec64 now, then = ns_to_timespec64(delta);
78  	unsigned long flags;
79  
80  	spin_lock_irqsave(&igc->tmreg_lock, flags);
81  
82  	igc_ptp_read(igc, &now);
83  	now = timespec64_add(now, then);
84  	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
85  
86  	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
87  
88  	return 0;
89  }
90  
igc_ptp_gettimex64_i225(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)91  static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
92  				   struct timespec64 *ts,
93  				   struct ptp_system_timestamp *sts)
94  {
95  	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
96  					       ptp_caps);
97  	struct igc_hw *hw = &igc->hw;
98  	unsigned long flags;
99  
100  	spin_lock_irqsave(&igc->tmreg_lock, flags);
101  
102  	ptp_read_system_prets(sts);
103  	ts->tv_nsec = rd32(IGC_SYSTIML);
104  	ts->tv_sec = rd32(IGC_SYSTIMH);
105  	ptp_read_system_postts(sts);
106  
107  	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
108  
109  	return 0;
110  }
111  
igc_ptp_settime_i225(struct ptp_clock_info * ptp,const struct timespec64 * ts)112  static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
113  				const struct timespec64 *ts)
114  {
115  	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
116  					       ptp_caps);
117  	unsigned long flags;
118  
119  	spin_lock_irqsave(&igc->tmreg_lock, flags);
120  
121  	igc_ptp_write_i225(igc, ts);
122  
123  	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
124  
125  	return 0;
126  }
127  
igc_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)128  static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
129  {
130  	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
131  	static const u32 mask[IGC_N_SDP] = {
132  		IGC_CTRL_SDP0_DIR,
133  		IGC_CTRL_SDP1_DIR,
134  		IGC_CTRL_EXT_SDP2_DIR,
135  		IGC_CTRL_EXT_SDP3_DIR,
136  	};
137  
138  	if (input)
139  		*ptr &= ~mask[pin];
140  	else
141  		*ptr |= mask[pin];
142  }
143  
igc_pin_perout(struct igc_adapter * igc,int chan,int pin,int freq)144  static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
145  {
146  	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
147  		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
148  	};
149  	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
150  		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
151  	};
152  	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
153  		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
154  	};
155  	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
156  		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
157  		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
158  	};
159  	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
160  		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
161  		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
162  	};
163  	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
164  		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
165  		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
166  	};
167  	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
168  		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
169  		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
170  	};
171  	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
172  		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
173  		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
174  	};
175  	struct igc_hw *hw = &igc->hw;
176  	u32 ctrl, ctrl_ext, tssdp = 0;
177  
178  	ctrl = rd32(IGC_CTRL);
179  	ctrl_ext = rd32(IGC_CTRL_EXT);
180  	tssdp = rd32(IGC_TSSDP);
181  
182  	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
183  
184  	/* Make sure this pin is not enabled as an input. */
185  	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
186  		tssdp &= ~IGC_AUX0_TS_SDP_EN;
187  
188  	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
189  		tssdp &= ~IGC_AUX1_TS_SDP_EN;
190  
191  	tssdp &= ~igc_ts_sdp_sel_clr[pin];
192  	if (freq) {
193  		if (chan == 1)
194  			tssdp |= igc_ts_sdp_sel_fc1[pin];
195  		else
196  			tssdp |= igc_ts_sdp_sel_fc0[pin];
197  	} else {
198  		if (chan == 1)
199  			tssdp |= igc_ts_sdp_sel_tt1[pin];
200  		else
201  			tssdp |= igc_ts_sdp_sel_tt0[pin];
202  	}
203  	tssdp |= igc_ts_sdp_en[pin];
204  
205  	wr32(IGC_TSSDP, tssdp);
206  	wr32(IGC_CTRL, ctrl);
207  	wr32(IGC_CTRL_EXT, ctrl_ext);
208  }
209  
igc_pin_extts(struct igc_adapter * igc,int chan,int pin)210  static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
211  {
212  	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
213  		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
214  	};
215  	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
216  		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
217  	};
218  	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
219  		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
220  	};
221  	struct igc_hw *hw = &igc->hw;
222  	u32 ctrl, ctrl_ext, tssdp = 0;
223  
224  	ctrl = rd32(IGC_CTRL);
225  	ctrl_ext = rd32(IGC_CTRL_EXT);
226  	tssdp = rd32(IGC_TSSDP);
227  
228  	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
229  
230  	/* Make sure this pin is not enabled as an output. */
231  	tssdp &= ~igc_ts_sdp_en[pin];
232  
233  	if (chan == 1) {
234  		tssdp &= ~IGC_AUX1_SEL_SDP3;
235  		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
236  	} else {
237  		tssdp &= ~IGC_AUX0_SEL_SDP3;
238  		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
239  	}
240  
241  	wr32(IGC_TSSDP, tssdp);
242  	wr32(IGC_CTRL, ctrl);
243  	wr32(IGC_CTRL_EXT, ctrl_ext);
244  }
245  
igc_ptp_feature_enable_i225(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)246  static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
247  				       struct ptp_clock_request *rq, int on)
248  {
249  	struct igc_adapter *igc =
250  		container_of(ptp, struct igc_adapter, ptp_caps);
251  	struct igc_hw *hw = &igc->hw;
252  	unsigned long flags;
253  	struct timespec64 ts;
254  	int use_freq = 0, pin = -1;
255  	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
256  	s64 ns;
257  
258  	switch (rq->type) {
259  	case PTP_CLK_REQ_EXTTS:
260  		/* Reject requests with unsupported flags */
261  		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
262  					PTP_RISING_EDGE |
263  					PTP_FALLING_EDGE |
264  					PTP_STRICT_FLAGS))
265  			return -EOPNOTSUPP;
266  
267  		/* Reject requests failing to enable both edges. */
268  		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
269  		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
270  		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
271  			return -EOPNOTSUPP;
272  
273  		if (on) {
274  			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
275  					   rq->extts.index);
276  			if (pin < 0)
277  				return -EBUSY;
278  		}
279  		if (rq->extts.index == 1) {
280  			tsauxc_mask = IGC_TSAUXC_EN_TS1;
281  			tsim_mask = IGC_TSICR_AUTT1;
282  		} else {
283  			tsauxc_mask = IGC_TSAUXC_EN_TS0;
284  			tsim_mask = IGC_TSICR_AUTT0;
285  		}
286  		spin_lock_irqsave(&igc->tmreg_lock, flags);
287  		tsauxc = rd32(IGC_TSAUXC);
288  		tsim = rd32(IGC_TSIM);
289  		if (on) {
290  			igc_pin_extts(igc, rq->extts.index, pin);
291  			tsauxc |= tsauxc_mask;
292  			tsim |= tsim_mask;
293  		} else {
294  			tsauxc &= ~tsauxc_mask;
295  			tsim &= ~tsim_mask;
296  		}
297  		wr32(IGC_TSAUXC, tsauxc);
298  		wr32(IGC_TSIM, tsim);
299  		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
300  		return 0;
301  
302  	case PTP_CLK_REQ_PEROUT:
303  		/* Reject requests with unsupported flags */
304  		if (rq->perout.flags)
305  			return -EOPNOTSUPP;
306  
307  		if (on) {
308  			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
309  					   rq->perout.index);
310  			if (pin < 0)
311  				return -EBUSY;
312  		}
313  		ts.tv_sec = rq->perout.period.sec;
314  		ts.tv_nsec = rq->perout.period.nsec;
315  		ns = timespec64_to_ns(&ts);
316  		ns = ns >> 1;
317  		if (on && (ns <= 70000000LL || ns == 125000000LL ||
318  			   ns == 250000000LL || ns == 500000000LL)) {
319  			if (ns < 8LL)
320  				return -EINVAL;
321  			use_freq = 1;
322  		}
323  		ts = ns_to_timespec64(ns);
324  		if (rq->perout.index == 1) {
325  			if (use_freq) {
326  				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
327  				tsim_mask = 0;
328  			} else {
329  				tsauxc_mask = IGC_TSAUXC_EN_TT1;
330  				tsim_mask = IGC_TSICR_TT1;
331  			}
332  			trgttiml = IGC_TRGTTIML1;
333  			trgttimh = IGC_TRGTTIMH1;
334  			freqout = IGC_FREQOUT1;
335  		} else {
336  			if (use_freq) {
337  				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
338  				tsim_mask = 0;
339  			} else {
340  				tsauxc_mask = IGC_TSAUXC_EN_TT0;
341  				tsim_mask = IGC_TSICR_TT0;
342  			}
343  			trgttiml = IGC_TRGTTIML0;
344  			trgttimh = IGC_TRGTTIMH0;
345  			freqout = IGC_FREQOUT0;
346  		}
347  		spin_lock_irqsave(&igc->tmreg_lock, flags);
348  		tsauxc = rd32(IGC_TSAUXC);
349  		tsim = rd32(IGC_TSIM);
350  		if (rq->perout.index == 1) {
351  			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
352  				    IGC_TSAUXC_ST1);
353  			tsim &= ~IGC_TSICR_TT1;
354  		} else {
355  			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
356  				    IGC_TSAUXC_ST0);
357  			tsim &= ~IGC_TSICR_TT0;
358  		}
359  		if (on) {
360  			struct timespec64 safe_start;
361  			int i = rq->perout.index;
362  
363  			igc_pin_perout(igc, i, pin, use_freq);
364  			igc_ptp_read(igc, &safe_start);
365  
366  			/* PPS output start time is triggered by Target time(TT)
367  			 * register. Programming any past time value into TT
368  			 * register will cause PPS to never start. Need to make
369  			 * sure we program the TT register a time ahead in
370  			 * future. There isn't a stringent need to fire PPS out
371  			 * right away. Adding +2 seconds should take care of
372  			 * corner cases. Let's say if the SYSTIML is close to
373  			 * wrap up and the timer keeps ticking as we program the
374  			 * register, adding +2seconds is safe bet.
375  			 */
376  			safe_start.tv_sec += 2;
377  
378  			if (rq->perout.start.sec < safe_start.tv_sec)
379  				igc->perout[i].start.tv_sec = safe_start.tv_sec;
380  			else
381  				igc->perout[i].start.tv_sec = rq->perout.start.sec;
382  			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
383  			igc->perout[i].period.tv_sec = ts.tv_sec;
384  			igc->perout[i].period.tv_nsec = ts.tv_nsec;
385  			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
386  			/* For now, always select timer 0 as source. */
387  			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
388  					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
389  			if (use_freq)
390  				wr32(freqout, ns);
391  			tsauxc |= tsauxc_mask;
392  			tsim |= tsim_mask;
393  		}
394  		wr32(IGC_TSAUXC, tsauxc);
395  		wr32(IGC_TSIM, tsim);
396  		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
397  		return 0;
398  
399  	case PTP_CLK_REQ_PPS:
400  		spin_lock_irqsave(&igc->tmreg_lock, flags);
401  		tsim = rd32(IGC_TSIM);
402  		if (on)
403  			tsim |= IGC_TSICR_SYS_WRAP;
404  		else
405  			tsim &= ~IGC_TSICR_SYS_WRAP;
406  		igc->pps_sys_wrap_on = on;
407  		wr32(IGC_TSIM, tsim);
408  		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
409  		return 0;
410  
411  	default:
412  		break;
413  	}
414  
415  	return -EOPNOTSUPP;
416  }
417  
igc_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)418  static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
419  			      enum ptp_pin_function func, unsigned int chan)
420  {
421  	switch (func) {
422  	case PTP_PF_NONE:
423  	case PTP_PF_EXTTS:
424  	case PTP_PF_PEROUT:
425  		break;
426  	case PTP_PF_PHYSYNC:
427  		return -1;
428  	}
429  	return 0;
430  }
431  
432  /**
433   * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
434   * @adapter: board private structure
435   * @hwtstamps: timestamp structure to update
436   * @systim: unsigned 64bit system time value
437   *
438   * We need to convert the system time value stored in the RX/TXSTMP registers
439   * into a hwtstamp which can be used by the upper level timestamping functions.
440   *
441   * Returns 0 on success.
442   **/
igc_ptp_systim_to_hwtstamp(struct igc_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)443  static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
444  				      struct skb_shared_hwtstamps *hwtstamps,
445  				      u64 systim)
446  {
447  	switch (adapter->hw.mac.type) {
448  	case igc_i225:
449  		memset(hwtstamps, 0, sizeof(*hwtstamps));
450  		/* Upper 32 bits contain s, lower 32 bits contain ns. */
451  		hwtstamps->hwtstamp = ktime_set(systim >> 32,
452  						systim & 0xFFFFFFFF);
453  		break;
454  	default:
455  		return -EINVAL;
456  	}
457  	return 0;
458  }
459  
460  /**
461   * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
462   * @adapter: Pointer to adapter the packet buffer belongs to
463   * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
464   *
465   * This function retrieves and converts the timestamp stored at @buf
466   * to ktime_t, adjusting for hardware latencies.
467   *
468   * Returns timestamp value.
469   */
igc_ptp_rx_pktstamp(struct igc_adapter * adapter,__le32 * buf)470  ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
471  {
472  	ktime_t timestamp;
473  	u32 secs, nsecs;
474  	int adjust;
475  
476  	nsecs = le32_to_cpu(buf[0]);
477  	secs = le32_to_cpu(buf[1]);
478  
479  	timestamp = ktime_set(secs, nsecs);
480  
481  	/* Adjust timestamp for the RX latency based on link speed */
482  	switch (adapter->link_speed) {
483  	case SPEED_10:
484  		adjust = IGC_I225_RX_LATENCY_10;
485  		break;
486  	case SPEED_100:
487  		adjust = IGC_I225_RX_LATENCY_100;
488  		break;
489  	case SPEED_1000:
490  		adjust = IGC_I225_RX_LATENCY_1000;
491  		break;
492  	case SPEED_2500:
493  		adjust = IGC_I225_RX_LATENCY_2500;
494  		break;
495  	default:
496  		adjust = 0;
497  		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
498  		break;
499  	}
500  
501  	return ktime_sub_ns(timestamp, adjust);
502  }
503  
igc_ptp_disable_rx_timestamp(struct igc_adapter * adapter)504  static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
505  {
506  	struct igc_hw *hw = &adapter->hw;
507  	u32 val;
508  	int i;
509  
510  	wr32(IGC_TSYNCRXCTL, 0);
511  
512  	for (i = 0; i < adapter->num_rx_queues; i++) {
513  		val = rd32(IGC_SRRCTL(i));
514  		val &= ~IGC_SRRCTL_TIMESTAMP;
515  		wr32(IGC_SRRCTL(i), val);
516  	}
517  
518  	val = rd32(IGC_RXPBS);
519  	val &= ~IGC_RXPBS_CFG_TS_EN;
520  	wr32(IGC_RXPBS, val);
521  }
522  
igc_ptp_enable_rx_timestamp(struct igc_adapter * adapter)523  static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
524  {
525  	struct igc_hw *hw = &adapter->hw;
526  	u32 val;
527  	int i;
528  
529  	val = rd32(IGC_RXPBS);
530  	val |= IGC_RXPBS_CFG_TS_EN;
531  	wr32(IGC_RXPBS, val);
532  
533  	for (i = 0; i < adapter->num_rx_queues; i++) {
534  		val = rd32(IGC_SRRCTL(i));
535  		/* Enable retrieving timestamps from timer 0, the
536  		 * "adjustable clock" and timer 1 the "free running
537  		 * clock".
538  		 */
539  		val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
540  		       IGC_SRRCTL_TIMESTAMP;
541  		wr32(IGC_SRRCTL(i), val);
542  	}
543  
544  	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
545  	      IGC_TSYNCRXCTL_RXSYNSIG;
546  	wr32(IGC_TSYNCRXCTL, val);
547  }
548  
igc_ptp_free_tx_buffer(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp)549  static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter,
550  				   struct igc_tx_timestamp_request *tstamp)
551  {
552  	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
553  		/* Release the transmit completion */
554  		tstamp->xsk_tx_buffer->xsk_pending_ts = false;
555  
556  		/* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union.
557  		 * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will
558  		 * become NULL as well.
559  		 */
560  		tstamp->xsk_tx_buffer = NULL;
561  		tstamp->buffer_type = 0;
562  
563  		/* Trigger txrx interrupt for transmit completion */
564  		igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0);
565  
566  		return;
567  	}
568  
569  	dev_kfree_skb_any(tstamp->skb);
570  	tstamp->skb = NULL;
571  }
572  
igc_ptp_clear_tx_tstamp(struct igc_adapter * adapter)573  static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
574  {
575  	unsigned long flags;
576  	int i;
577  
578  	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
579  
580  	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
581  		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
582  
583  		if (tstamp->skb)
584  			igc_ptp_free_tx_buffer(adapter, tstamp);
585  	}
586  
587  	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
588  }
589  
igc_ptp_disable_tx_timestamp(struct igc_adapter * adapter)590  static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
591  {
592  	struct igc_hw *hw = &adapter->hw;
593  	int i;
594  
595  	/* Clear the flags first to avoid new packets to be enqueued
596  	 * for TX timestamping.
597  	 */
598  	for (i = 0; i < adapter->num_tx_queues; i++) {
599  		struct igc_ring *tx_ring = adapter->tx_ring[i];
600  
601  		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
602  	}
603  
604  	/* Now we can clean the pending TX timestamp requests. */
605  	igc_ptp_clear_tx_tstamp(adapter);
606  
607  	wr32(IGC_TSYNCTXCTL, 0);
608  }
609  
igc_ptp_enable_tx_timestamp(struct igc_adapter * adapter)610  static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
611  {
612  	struct igc_hw *hw = &adapter->hw;
613  	int i;
614  
615  	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
616  
617  	/* Read TXSTMP registers to discard any timestamp previously stored. */
618  	rd32(IGC_TXSTMPL);
619  	rd32(IGC_TXSTMPH);
620  
621  	/* The hardware is ready to accept TX timestamp requests,
622  	 * notify the transmit path.
623  	 */
624  	for (i = 0; i < adapter->num_tx_queues; i++) {
625  		struct igc_ring *tx_ring = adapter->tx_ring[i];
626  
627  		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
628  	}
629  
630  }
631  
632  /**
633   * igc_ptp_set_timestamp_mode - setup hardware for timestamping
634   * @adapter: networking device structure
635   * @config: hwtstamp configuration
636   *
637   * Return: 0 in case of success, negative errno code otherwise.
638   */
igc_ptp_set_timestamp_mode(struct igc_adapter * adapter,struct hwtstamp_config * config)639  static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
640  				      struct hwtstamp_config *config)
641  {
642  	switch (config->tx_type) {
643  	case HWTSTAMP_TX_OFF:
644  		igc_ptp_disable_tx_timestamp(adapter);
645  		break;
646  	case HWTSTAMP_TX_ON:
647  		igc_ptp_enable_tx_timestamp(adapter);
648  		break;
649  	default:
650  		return -ERANGE;
651  	}
652  
653  	switch (config->rx_filter) {
654  	case HWTSTAMP_FILTER_NONE:
655  		igc_ptp_disable_rx_timestamp(adapter);
656  		break;
657  	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
658  	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
659  	case HWTSTAMP_FILTER_PTP_V2_EVENT:
660  	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
661  	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
662  	case HWTSTAMP_FILTER_PTP_V2_SYNC:
663  	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
664  	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
665  	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
666  	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
667  	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
668  	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
669  	case HWTSTAMP_FILTER_NTP_ALL:
670  	case HWTSTAMP_FILTER_ALL:
671  		igc_ptp_enable_rx_timestamp(adapter);
672  		config->rx_filter = HWTSTAMP_FILTER_ALL;
673  		break;
674  	default:
675  		return -ERANGE;
676  	}
677  
678  	return 0;
679  }
680  
681  /* Requires adapter->ptp_tx_lock held by caller. */
igc_ptp_tx_timeout(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp)682  static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
683  			       struct igc_tx_timestamp_request *tstamp)
684  {
685  	if (tstamp->skb)
686  		igc_ptp_free_tx_buffer(adapter, tstamp);
687  
688  	adapter->tx_hwtstamp_timeouts++;
689  
690  	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
691  }
692  
igc_ptp_tx_hang(struct igc_adapter * adapter)693  void igc_ptp_tx_hang(struct igc_adapter *adapter)
694  {
695  	struct igc_tx_timestamp_request *tstamp;
696  	struct igc_hw *hw = &adapter->hw;
697  	unsigned long flags;
698  	bool found = false;
699  	int i;
700  
701  	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
702  
703  	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
704  		tstamp = &adapter->tx_tstamp[i];
705  
706  		if (!tstamp->skb)
707  			continue;
708  
709  		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
710  			continue;
711  
712  		igc_ptp_tx_timeout(adapter, tstamp);
713  		found = true;
714  	}
715  
716  	if (found) {
717  		/* Reading the high register of the first set of timestamp registers
718  		 * clears all the equivalent bits in the TSYNCTXCTL register.
719  		 */
720  		rd32(IGC_TXSTMPH_0);
721  	}
722  
723  	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
724  }
725  
igc_ptp_tx_reg_to_stamp(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp,u64 regval)726  static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
727  				    struct igc_tx_timestamp_request *tstamp, u64 regval)
728  {
729  	struct skb_shared_hwtstamps shhwtstamps;
730  	struct sk_buff *skb;
731  	int adjust = 0;
732  
733  	skb = tstamp->skb;
734  	if (!skb)
735  		return;
736  
737  	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
738  		return;
739  
740  	switch (adapter->link_speed) {
741  	case SPEED_10:
742  		adjust = IGC_I225_TX_LATENCY_10;
743  		break;
744  	case SPEED_100:
745  		adjust = IGC_I225_TX_LATENCY_100;
746  		break;
747  	case SPEED_1000:
748  		adjust = IGC_I225_TX_LATENCY_1000;
749  		break;
750  	case SPEED_2500:
751  		adjust = IGC_I225_TX_LATENCY_2500;
752  		break;
753  	}
754  
755  	shhwtstamps.hwtstamp =
756  		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
757  
758  	/* Copy the tx hardware timestamp into xdp metadata or skb */
759  	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
760  		struct xsk_buff_pool *xsk_pool;
761  
762  		xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool;
763  		if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) {
764  			xsk_tx_metadata_complete(&tstamp->xsk_meta,
765  						 &igc_xsk_tx_metadata_ops,
766  						 &shhwtstamps.hwtstamp);
767  		}
768  	} else {
769  		skb_tstamp_tx(skb, &shhwtstamps);
770  	}
771  
772  	igc_ptp_free_tx_buffer(adapter, tstamp);
773  }
774  
775  /**
776   * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
777   * @adapter: Board private structure
778   *
779   * Check against the ready mask for which of the timestamp register
780   * sets are ready to be retrieved, then retrieve that and notify the
781   * rest of the stack.
782   *
783   * Context: Expects adapter->ptp_tx_lock to be held by caller.
784   */
igc_ptp_tx_hwtstamp(struct igc_adapter * adapter)785  static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
786  {
787  	struct igc_hw *hw = &adapter->hw;
788  	u64 regval;
789  	u32 mask;
790  	int i;
791  
792  	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
793  	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
794  		regval = rd32(IGC_TXSTMPL);
795  		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
796  	} else {
797  		/* There's a bug in the hardware that could cause
798  		 * missing interrupts for TX timestamping. The issue
799  		 * is that for new interrupts to be triggered, the
800  		 * IGC_TXSTMPH_0 register must be read.
801  		 *
802  		 * To avoid discarding a valid timestamp that just
803  		 * happened at the "wrong" time, we need to confirm
804  		 * that there was no timestamp captured, we do that by
805  		 * assuming that no two timestamps in sequence have
806  		 * the same nanosecond value.
807  		 *
808  		 * So, we read the "low" register, read the "high"
809  		 * register (to latch a new timestamp) and read the
810  		 * "low" register again, if "old" and "new" versions
811  		 * of the "low" register are different, a valid
812  		 * timestamp was captured, we can read the "high"
813  		 * register again.
814  		 */
815  		u32 txstmpl_old, txstmpl_new;
816  
817  		txstmpl_old = rd32(IGC_TXSTMPL);
818  		rd32(IGC_TXSTMPH);
819  		txstmpl_new = rd32(IGC_TXSTMPL);
820  
821  		if (txstmpl_old == txstmpl_new)
822  			goto done;
823  
824  		regval = txstmpl_new;
825  		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
826  	}
827  
828  	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
829  
830  done:
831  	/* Now that the problematic first register was handled, we can
832  	 * use retrieve the timestamps from the other registers
833  	 * (starting from '1') with less complications.
834  	 */
835  	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
836  		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
837  
838  		if (!(tstamp->mask & mask))
839  			continue;
840  
841  		regval = rd32(tstamp->regl);
842  		regval |= (u64)rd32(tstamp->regh) << 32;
843  
844  		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
845  	}
846  }
847  
848  /**
849   * igc_ptp_tx_tstamp_event
850   * @adapter: board private structure
851   *
852   * Called when a TX timestamp interrupt happens to retrieve the
853   * timestamp and send it up to the socket.
854   */
igc_ptp_tx_tstamp_event(struct igc_adapter * adapter)855  void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
856  {
857  	unsigned long flags;
858  
859  	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
860  
861  	igc_ptp_tx_hwtstamp(adapter);
862  
863  	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
864  }
865  
866  /**
867   * igc_ptp_set_ts_config - set hardware time stamping config
868   * @netdev: network interface device structure
869   * @ifr: interface request data
870   *
871   **/
igc_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)872  int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
873  {
874  	struct igc_adapter *adapter = netdev_priv(netdev);
875  	struct hwtstamp_config config;
876  	int err;
877  
878  	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
879  		return -EFAULT;
880  
881  	err = igc_ptp_set_timestamp_mode(adapter, &config);
882  	if (err)
883  		return err;
884  
885  	/* save these settings for future reference */
886  	memcpy(&adapter->tstamp_config, &config,
887  	       sizeof(adapter->tstamp_config));
888  
889  	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
890  		-EFAULT : 0;
891  }
892  
893  /**
894   * igc_ptp_get_ts_config - get hardware time stamping config
895   * @netdev: network interface device structure
896   * @ifr: interface request data
897   *
898   * Get the hwtstamp_config settings to return to the user. Rather than attempt
899   * to deconstruct the settings from the registers, just return a shadow copy
900   * of the last known settings.
901   **/
igc_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)902  int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
903  {
904  	struct igc_adapter *adapter = netdev_priv(netdev);
905  	struct hwtstamp_config *config = &adapter->tstamp_config;
906  
907  	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
908  		-EFAULT : 0;
909  }
910  
911  /* The two conditions below must be met for cross timestamping via
912   * PCIe PTM:
913   *
914   * 1. We have an way to convert the timestamps in the PTM messages
915   *    to something related to the system clocks (right now, only
916   *    X86 systems with support for the Always Running Timer allow that);
917   *
918   * 2. We have PTM enabled in the path from the device to the PCIe root port.
919   */
igc_is_crosststamp_supported(struct igc_adapter * adapter)920  static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
921  {
922  	if (!IS_ENABLED(CONFIG_X86_TSC))
923  		return false;
924  
925  	/* FIXME: it was noticed that enabling support for PCIe PTM in
926  	 * some i225-V models could cause lockups when bringing the
927  	 * interface up/down. There should be no downsides to
928  	 * disabling crosstimestamping support for i225-V, as it
929  	 * doesn't have any PTP support. That way we gain some time
930  	 * while root causing the issue.
931  	 */
932  	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
933  		return false;
934  
935  	return pcie_ptm_enabled(adapter->pdev);
936  }
937  
igc_device_tstamp_to_system(u64 tstamp)938  static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
939  {
940  #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
941  	return (struct system_counterval_t) {
942  		.cs_id		= CSID_X86_ART,
943  		.cycles		= tstamp,
944  		.use_nsecs	= true,
945  	};
946  #else
947  	return (struct system_counterval_t) { };
948  #endif
949  }
950  
igc_ptm_log_error(struct igc_adapter * adapter,u32 ptm_stat)951  static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
952  {
953  	struct net_device *netdev = adapter->netdev;
954  
955  	switch (ptm_stat) {
956  	case IGC_PTM_STAT_RET_ERR:
957  		netdev_err(netdev, "PTM Error: Root port timeout\n");
958  		break;
959  	case IGC_PTM_STAT_BAD_PTM_RES:
960  		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
961  		break;
962  	case IGC_PTM_STAT_T4M1_OVFL:
963  		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
964  		break;
965  	case IGC_PTM_STAT_ADJUST_1ST:
966  		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
967  		break;
968  	case IGC_PTM_STAT_ADJUST_CYC:
969  		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
970  		break;
971  	default:
972  		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
973  		break;
974  	}
975  }
976  
igc_phc_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)977  static int igc_phc_get_syncdevicetime(ktime_t *device,
978  				      struct system_counterval_t *system,
979  				      void *ctx)
980  {
981  	u32 stat, t2_curr_h, t2_curr_l, ctrl;
982  	struct igc_adapter *adapter = ctx;
983  	struct igc_hw *hw = &adapter->hw;
984  	int err, count = 100;
985  	ktime_t t1, t2_curr;
986  
987  	/* Get a snapshot of system clocks to use as historic value. */
988  	ktime_get_snapshot(&adapter->snapshot);
989  
990  	do {
991  		/* Doing this in a loop because in the event of a
992  		 * badly timed (ha!) system clock adjustment, we may
993  		 * get PTM errors from the PCI root, but these errors
994  		 * are transitory. Repeating the process returns valid
995  		 * data eventually.
996  		 */
997  
998  		/* To "manually" start the PTM cycle we need to clear and
999  		 * then set again the TRIG bit.
1000  		 */
1001  		ctrl = rd32(IGC_PTM_CTRL);
1002  		ctrl &= ~IGC_PTM_CTRL_TRIG;
1003  		wr32(IGC_PTM_CTRL, ctrl);
1004  		ctrl |= IGC_PTM_CTRL_TRIG;
1005  		wr32(IGC_PTM_CTRL, ctrl);
1006  
1007  		/* The cycle only starts "for real" when software notifies
1008  		 * that it has read the registers, this is done by setting
1009  		 * VALID bit.
1010  		 */
1011  		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1012  
1013  		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
1014  					 stat, IGC_PTM_STAT_SLEEP,
1015  					 IGC_PTM_STAT_TIMEOUT);
1016  		if (err < 0) {
1017  			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1018  			return err;
1019  		}
1020  
1021  		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
1022  			break;
1023  
1024  		if (stat & ~IGC_PTM_STAT_VALID) {
1025  			/* An error occurred, log it. */
1026  			igc_ptm_log_error(adapter, stat);
1027  			/* The STAT register is write-1-to-clear (W1C),
1028  			 * so write the previous error status to clear it.
1029  			 */
1030  			wr32(IGC_PTM_STAT, stat);
1031  			continue;
1032  		}
1033  	} while (--count);
1034  
1035  	if (!count) {
1036  		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1037  		return -ETIMEDOUT;
1038  	}
1039  
1040  	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1041  
1042  	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1043  	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1044  
1045  	/* FIXME: When the register that tells the endianness of the
1046  	 * PTM registers are implemented, check them here and add the
1047  	 * appropriate conversion.
1048  	 */
1049  	t2_curr_h = swab32(t2_curr_h);
1050  
1051  	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1052  
1053  	*device = t1;
1054  	*system = igc_device_tstamp_to_system(t2_curr);
1055  
1056  	return 0;
1057  }
1058  
igc_ptp_getcrosststamp(struct ptp_clock_info * ptp,struct system_device_crosststamp * cts)1059  static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1060  				  struct system_device_crosststamp *cts)
1061  {
1062  	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1063  						   ptp_caps);
1064  
1065  	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1066  					     adapter, &adapter->snapshot, cts);
1067  }
1068  
igc_ptp_getcyclesx64(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)1069  static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1070  				struct timespec64 *ts,
1071  				struct ptp_system_timestamp *sts)
1072  {
1073  	struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1074  	struct igc_hw *hw = &igc->hw;
1075  	unsigned long flags;
1076  
1077  	spin_lock_irqsave(&igc->free_timer_lock, flags);
1078  
1079  	ptp_read_system_prets(sts);
1080  	ts->tv_nsec = rd32(IGC_SYSTIML_1);
1081  	ts->tv_sec = rd32(IGC_SYSTIMH_1);
1082  	ptp_read_system_postts(sts);
1083  
1084  	spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1085  
1086  	return 0;
1087  }
1088  
1089  /**
1090   * igc_ptp_init - Initialize PTP functionality
1091   * @adapter: Board private structure
1092   *
1093   * This function is called at device probe to initialize the PTP
1094   * functionality.
1095   */
igc_ptp_init(struct igc_adapter * adapter)1096  void igc_ptp_init(struct igc_adapter *adapter)
1097  {
1098  	struct net_device *netdev = adapter->netdev;
1099  	struct igc_tx_timestamp_request *tstamp;
1100  	struct igc_hw *hw = &adapter->hw;
1101  	int i;
1102  
1103  	tstamp = &adapter->tx_tstamp[0];
1104  	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1105  	tstamp->regl = IGC_TXSTMPL_0;
1106  	tstamp->regh = IGC_TXSTMPH_0;
1107  	tstamp->flags = 0;
1108  
1109  	tstamp = &adapter->tx_tstamp[1];
1110  	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1111  	tstamp->regl = IGC_TXSTMPL_1;
1112  	tstamp->regh = IGC_TXSTMPH_1;
1113  	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1114  
1115  	tstamp = &adapter->tx_tstamp[2];
1116  	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1117  	tstamp->regl = IGC_TXSTMPL_2;
1118  	tstamp->regh = IGC_TXSTMPH_2;
1119  	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1120  
1121  	tstamp = &adapter->tx_tstamp[3];
1122  	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1123  	tstamp->regl = IGC_TXSTMPL_3;
1124  	tstamp->regh = IGC_TXSTMPH_3;
1125  	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1126  
1127  	switch (hw->mac.type) {
1128  	case igc_i225:
1129  		for (i = 0; i < IGC_N_SDP; i++) {
1130  			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1131  
1132  			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1133  			ppd->index = i;
1134  			ppd->func = PTP_PF_NONE;
1135  		}
1136  		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1137  		adapter->ptp_caps.owner = THIS_MODULE;
1138  		adapter->ptp_caps.max_adj = 62499999;
1139  		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1140  		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1141  		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1142  		adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1143  		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1144  		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1145  		adapter->ptp_caps.pps = 1;
1146  		adapter->ptp_caps.pin_config = adapter->sdp_config;
1147  		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1148  		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1149  		adapter->ptp_caps.n_pins = IGC_N_SDP;
1150  		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1151  
1152  		if (!igc_is_crosststamp_supported(adapter))
1153  			break;
1154  
1155  		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1156  		break;
1157  	default:
1158  		adapter->ptp_clock = NULL;
1159  		return;
1160  	}
1161  
1162  	spin_lock_init(&adapter->ptp_tx_lock);
1163  	spin_lock_init(&adapter->free_timer_lock);
1164  	spin_lock_init(&adapter->tmreg_lock);
1165  
1166  	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1167  	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1168  
1169  	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1170  	adapter->ptp_reset_start = ktime_get();
1171  
1172  	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1173  						&adapter->pdev->dev);
1174  	if (IS_ERR(adapter->ptp_clock)) {
1175  		adapter->ptp_clock = NULL;
1176  		netdev_err(netdev, "ptp_clock_register failed\n");
1177  	} else if (adapter->ptp_clock) {
1178  		netdev_info(netdev, "PHC added\n");
1179  		adapter->ptp_flags |= IGC_PTP_ENABLED;
1180  	}
1181  }
1182  
igc_ptp_time_save(struct igc_adapter * adapter)1183  static void igc_ptp_time_save(struct igc_adapter *adapter)
1184  {
1185  	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1186  	adapter->ptp_reset_start = ktime_get();
1187  }
1188  
igc_ptp_time_restore(struct igc_adapter * adapter)1189  static void igc_ptp_time_restore(struct igc_adapter *adapter)
1190  {
1191  	struct timespec64 ts = adapter->prev_ptp_time;
1192  	ktime_t delta;
1193  
1194  	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1195  
1196  	timespec64_add_ns(&ts, ktime_to_ns(delta));
1197  
1198  	igc_ptp_write_i225(adapter, &ts);
1199  }
1200  
igc_ptm_stop(struct igc_adapter * adapter)1201  static void igc_ptm_stop(struct igc_adapter *adapter)
1202  {
1203  	struct igc_hw *hw = &adapter->hw;
1204  	u32 ctrl;
1205  
1206  	ctrl = rd32(IGC_PTM_CTRL);
1207  	ctrl &= ~IGC_PTM_CTRL_EN;
1208  
1209  	wr32(IGC_PTM_CTRL, ctrl);
1210  }
1211  
1212  /**
1213   * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1214   * @adapter: Board private structure
1215   *
1216   * This function stops the overflow check work and PTP Tx timestamp work, and
1217   * will prepare the device for OS suspend.
1218   */
igc_ptp_suspend(struct igc_adapter * adapter)1219  void igc_ptp_suspend(struct igc_adapter *adapter)
1220  {
1221  	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1222  		return;
1223  
1224  	igc_ptp_clear_tx_tstamp(adapter);
1225  
1226  	if (pci_device_is_present(adapter->pdev)) {
1227  		igc_ptp_time_save(adapter);
1228  		igc_ptm_stop(adapter);
1229  	}
1230  }
1231  
1232  /**
1233   * igc_ptp_stop - Disable PTP device and stop the overflow check.
1234   * @adapter: Board private structure.
1235   *
1236   * This function stops the PTP support and cancels the delayed work.
1237   **/
igc_ptp_stop(struct igc_adapter * adapter)1238  void igc_ptp_stop(struct igc_adapter *adapter)
1239  {
1240  	igc_ptp_suspend(adapter);
1241  
1242  	if (adapter->ptp_clock) {
1243  		ptp_clock_unregister(adapter->ptp_clock);
1244  		netdev_info(adapter->netdev, "PHC removed\n");
1245  		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1246  	}
1247  }
1248  
1249  /**
1250   * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1251   * @adapter: Board private structure.
1252   *
1253   * This function handles the reset work required to re-enable the PTP device.
1254   **/
igc_ptp_reset(struct igc_adapter * adapter)1255  void igc_ptp_reset(struct igc_adapter *adapter)
1256  {
1257  	struct igc_hw *hw = &adapter->hw;
1258  	u32 cycle_ctrl, ctrl;
1259  	unsigned long flags;
1260  	u32 timadj;
1261  
1262  	/* reset the tstamp_config */
1263  	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1264  
1265  	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1266  
1267  	switch (adapter->hw.mac.type) {
1268  	case igc_i225:
1269  		timadj = rd32(IGC_TIMADJ);
1270  		timadj |= IGC_TIMADJ_ADJUST_METH;
1271  		wr32(IGC_TIMADJ, timadj);
1272  
1273  		wr32(IGC_TSAUXC, 0x0);
1274  		wr32(IGC_TSSDP, 0x0);
1275  		wr32(IGC_TSIM,
1276  		     IGC_TSICR_INTERRUPTS |
1277  		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1278  		wr32(IGC_IMS, IGC_IMS_TS);
1279  
1280  		if (!igc_is_crosststamp_supported(adapter))
1281  			break;
1282  
1283  		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1284  		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1285  
1286  		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1287  
1288  		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1289  
1290  		ctrl = IGC_PTM_CTRL_EN |
1291  			IGC_PTM_CTRL_START_NOW |
1292  			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1293  			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1294  			IGC_PTM_CTRL_TRIG;
1295  
1296  		wr32(IGC_PTM_CTRL, ctrl);
1297  
1298  		/* Force the first cycle to run. */
1299  		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1300  
1301  		break;
1302  	default:
1303  		/* No work to do. */
1304  		goto out;
1305  	}
1306  
1307  	/* Re-initialize the timer. */
1308  	if (hw->mac.type == igc_i225) {
1309  		igc_ptp_time_restore(adapter);
1310  	} else {
1311  		timecounter_init(&adapter->tc, &adapter->cc,
1312  				 ktime_to_ns(ktime_get_real()));
1313  	}
1314  out:
1315  	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1316  
1317  	wrfl();
1318  }
1319