1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 2007 - 2018 Intel Corporation. */
3  
4  #include <linux/bitfield.h>
5  #include <linux/delay.h>
6  #include <linux/if_ether.h>
7  #include "e1000_mac.h"
8  #include "e1000_nvm.h"
9  
10  /**
11   *  igb_raise_eec_clk - Raise EEPROM clock
12   *  @hw: pointer to the HW structure
13   *  @eecd: pointer to the EEPROM
14   *
15   *  Enable/Raise the EEPROM clock bit.
16   **/
igb_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)17  static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
18  {
19  	*eecd = *eecd | E1000_EECD_SK;
20  	wr32(E1000_EECD, *eecd);
21  	wrfl();
22  	udelay(hw->nvm.delay_usec);
23  }
24  
25  /**
26   *  igb_lower_eec_clk - Lower EEPROM clock
27   *  @hw: pointer to the HW structure
28   *  @eecd: pointer to the EEPROM
29   *
30   *  Clear/Lower the EEPROM clock bit.
31   **/
igb_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)32  static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
33  {
34  	*eecd = *eecd & ~E1000_EECD_SK;
35  	wr32(E1000_EECD, *eecd);
36  	wrfl();
37  	udelay(hw->nvm.delay_usec);
38  }
39  
40  /**
41   *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
42   *  @hw: pointer to the HW structure
43   *  @data: data to send to the EEPROM
44   *  @count: number of bits to shift out
45   *
46   *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
47   *  "data" parameter will be shifted out to the EEPROM one bit at a time.
48   *  In order to do this, "data" must be broken down into bits.
49   **/
igb_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)50  static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
51  {
52  	struct e1000_nvm_info *nvm = &hw->nvm;
53  	u32 eecd = rd32(E1000_EECD);
54  	u32 mask;
55  
56  	mask = 1u << (count - 1);
57  	if (nvm->type == e1000_nvm_eeprom_spi)
58  		eecd |= E1000_EECD_DO;
59  
60  	do {
61  		eecd &= ~E1000_EECD_DI;
62  
63  		if (data & mask)
64  			eecd |= E1000_EECD_DI;
65  
66  		wr32(E1000_EECD, eecd);
67  		wrfl();
68  
69  		udelay(nvm->delay_usec);
70  
71  		igb_raise_eec_clk(hw, &eecd);
72  		igb_lower_eec_clk(hw, &eecd);
73  
74  		mask >>= 1;
75  	} while (mask);
76  
77  	eecd &= ~E1000_EECD_DI;
78  	wr32(E1000_EECD, eecd);
79  }
80  
81  /**
82   *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
83   *  @hw: pointer to the HW structure
84   *  @count: number of bits to shift in
85   *
86   *  In order to read a register from the EEPROM, we need to shift 'count' bits
87   *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
88   *  the EEPROM (setting the SK bit), and then reading the value of the data out
89   *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
90   *  always be clear.
91   **/
igb_shift_in_eec_bits(struct e1000_hw * hw,u16 count)92  static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
93  {
94  	u32 eecd;
95  	u32 i;
96  	u16 data;
97  
98  	eecd = rd32(E1000_EECD);
99  
100  	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
101  	data = 0;
102  
103  	for (i = 0; i < count; i++) {
104  		data <<= 1;
105  		igb_raise_eec_clk(hw, &eecd);
106  
107  		eecd = rd32(E1000_EECD);
108  
109  		eecd &= ~E1000_EECD_DI;
110  		if (eecd & E1000_EECD_DO)
111  			data |= 1;
112  
113  		igb_lower_eec_clk(hw, &eecd);
114  	}
115  
116  	return data;
117  }
118  
119  /**
120   *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
121   *  @hw: pointer to the HW structure
122   *  @ee_reg: EEPROM flag for polling
123   *
124   *  Polls the EEPROM status bit for either read or write completion based
125   *  upon the value of 'ee_reg'.
126   **/
igb_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)127  static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
128  {
129  	u32 attempts = 100000;
130  	u32 i, reg = 0;
131  	s32 ret_val = -E1000_ERR_NVM;
132  
133  	for (i = 0; i < attempts; i++) {
134  		if (ee_reg == E1000_NVM_POLL_READ)
135  			reg = rd32(E1000_EERD);
136  		else
137  			reg = rd32(E1000_EEWR);
138  
139  		if (reg & E1000_NVM_RW_REG_DONE) {
140  			ret_val = 0;
141  			break;
142  		}
143  
144  		udelay(5);
145  	}
146  
147  	return ret_val;
148  }
149  
150  /**
151   *  igb_acquire_nvm - Generic request for access to EEPROM
152   *  @hw: pointer to the HW structure
153   *
154   *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
155   *  Return successful if access grant bit set, else clear the request for
156   *  EEPROM access and return -E1000_ERR_NVM (-1).
157   **/
igb_acquire_nvm(struct e1000_hw * hw)158  s32 igb_acquire_nvm(struct e1000_hw *hw)
159  {
160  	u32 eecd = rd32(E1000_EECD);
161  	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
162  	s32 ret_val = 0;
163  
164  
165  	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
166  	eecd = rd32(E1000_EECD);
167  
168  	while (timeout) {
169  		if (eecd & E1000_EECD_GNT)
170  			break;
171  		udelay(5);
172  		eecd = rd32(E1000_EECD);
173  		timeout--;
174  	}
175  
176  	if (!timeout) {
177  		eecd &= ~E1000_EECD_REQ;
178  		wr32(E1000_EECD, eecd);
179  		hw_dbg("Could not acquire NVM grant\n");
180  		ret_val = -E1000_ERR_NVM;
181  	}
182  
183  	return ret_val;
184  }
185  
186  /**
187   *  igb_standby_nvm - Return EEPROM to standby state
188   *  @hw: pointer to the HW structure
189   *
190   *  Return the EEPROM to a standby state.
191   **/
igb_standby_nvm(struct e1000_hw * hw)192  static void igb_standby_nvm(struct e1000_hw *hw)
193  {
194  	struct e1000_nvm_info *nvm = &hw->nvm;
195  	u32 eecd = rd32(E1000_EECD);
196  
197  	if (nvm->type == e1000_nvm_eeprom_spi) {
198  		/* Toggle CS to flush commands */
199  		eecd |= E1000_EECD_CS;
200  		wr32(E1000_EECD, eecd);
201  		wrfl();
202  		udelay(nvm->delay_usec);
203  		eecd &= ~E1000_EECD_CS;
204  		wr32(E1000_EECD, eecd);
205  		wrfl();
206  		udelay(nvm->delay_usec);
207  	}
208  }
209  
210  /**
211   *  e1000_stop_nvm - Terminate EEPROM command
212   *  @hw: pointer to the HW structure
213   *
214   *  Terminates the current command by inverting the EEPROM's chip select pin.
215   **/
e1000_stop_nvm(struct e1000_hw * hw)216  static void e1000_stop_nvm(struct e1000_hw *hw)
217  {
218  	u32 eecd;
219  
220  	eecd = rd32(E1000_EECD);
221  	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
222  		/* Pull CS high */
223  		eecd |= E1000_EECD_CS;
224  		igb_lower_eec_clk(hw, &eecd);
225  	}
226  }
227  
228  /**
229   *  igb_release_nvm - Release exclusive access to EEPROM
230   *  @hw: pointer to the HW structure
231   *
232   *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
233   **/
igb_release_nvm(struct e1000_hw * hw)234  void igb_release_nvm(struct e1000_hw *hw)
235  {
236  	u32 eecd;
237  
238  	e1000_stop_nvm(hw);
239  
240  	eecd = rd32(E1000_EECD);
241  	eecd &= ~E1000_EECD_REQ;
242  	wr32(E1000_EECD, eecd);
243  }
244  
245  /**
246   *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
247   *  @hw: pointer to the HW structure
248   *
249   *  Setups the EEPROM for reading and writing.
250   **/
igb_ready_nvm_eeprom(struct e1000_hw * hw)251  static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
252  {
253  	struct e1000_nvm_info *nvm = &hw->nvm;
254  	u32 eecd = rd32(E1000_EECD);
255  	s32 ret_val = 0;
256  	u16 timeout = 0;
257  	u8 spi_stat_reg;
258  
259  
260  	if (nvm->type == e1000_nvm_eeprom_spi) {
261  		/* Clear SK and CS */
262  		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263  		wr32(E1000_EECD, eecd);
264  		wrfl();
265  		udelay(1);
266  		timeout = NVM_MAX_RETRY_SPI;
267  
268  		/* Read "Status Register" repeatedly until the LSB is cleared.
269  		 * The EEPROM will signal that the command has been completed
270  		 * by clearing bit 0 of the internal status register.  If it's
271  		 * not cleared within 'timeout', then error out.
272  		 */
273  		while (timeout) {
274  			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
275  					       hw->nvm.opcode_bits);
276  			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
277  			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
278  				break;
279  
280  			udelay(5);
281  			igb_standby_nvm(hw);
282  			timeout--;
283  		}
284  
285  		if (!timeout) {
286  			hw_dbg("SPI NVM Status error\n");
287  			ret_val = -E1000_ERR_NVM;
288  			goto out;
289  		}
290  	}
291  
292  out:
293  	return ret_val;
294  }
295  
296  /**
297   *  igb_read_nvm_spi - Read EEPROM's using SPI
298   *  @hw: pointer to the HW structure
299   *  @offset: offset of word in the EEPROM to read
300   *  @words: number of words to read
301   *  @data: word read from the EEPROM
302   *
303   *  Reads a 16 bit word from the EEPROM.
304   **/
igb_read_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)305  s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
306  {
307  	struct e1000_nvm_info *nvm = &hw->nvm;
308  	u32 i = 0;
309  	s32 ret_val;
310  	u16 word_in;
311  	u8 read_opcode = NVM_READ_OPCODE_SPI;
312  
313  	/* A check for invalid values:  offset too large, too many words,
314  	 * and not enough words.
315  	 */
316  	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
317  	    (words == 0)) {
318  		hw_dbg("nvm parameter(s) out of bounds\n");
319  		ret_val = -E1000_ERR_NVM;
320  		goto out;
321  	}
322  
323  	ret_val = nvm->ops.acquire(hw);
324  	if (ret_val)
325  		goto out;
326  
327  	ret_val = igb_ready_nvm_eeprom(hw);
328  	if (ret_val)
329  		goto release;
330  
331  	igb_standby_nvm(hw);
332  
333  	if ((nvm->address_bits == 8) && (offset >= 128))
334  		read_opcode |= NVM_A8_OPCODE_SPI;
335  
336  	/* Send the READ command (opcode + addr) */
337  	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
338  	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
339  
340  	/* Read the data.  SPI NVMs increment the address with each byte
341  	 * read and will roll over if reading beyond the end.  This allows
342  	 * us to read the whole NVM from any offset
343  	 */
344  	for (i = 0; i < words; i++) {
345  		word_in = igb_shift_in_eec_bits(hw, 16);
346  		data[i] = (word_in >> 8) | (word_in << 8);
347  	}
348  
349  release:
350  	nvm->ops.release(hw);
351  
352  out:
353  	return ret_val;
354  }
355  
356  /**
357   *  igb_read_nvm_eerd - Reads EEPROM using EERD register
358   *  @hw: pointer to the HW structure
359   *  @offset: offset of word in the EEPROM to read
360   *  @words: number of words to read
361   *  @data: word read from the EEPROM
362   *
363   *  Reads a 16 bit word from the EEPROM using the EERD register.
364   **/
igb_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)365  s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
366  {
367  	struct e1000_nvm_info *nvm = &hw->nvm;
368  	u32 i, eerd = 0;
369  	s32 ret_val = 0;
370  
371  	/* A check for invalid values:  offset too large, too many words,
372  	 * and not enough words.
373  	 */
374  	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
375  	    (words == 0)) {
376  		hw_dbg("nvm parameter(s) out of bounds\n");
377  		ret_val = -E1000_ERR_NVM;
378  		goto out;
379  	}
380  
381  	for (i = 0; i < words; i++) {
382  		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
383  			E1000_NVM_RW_REG_START;
384  
385  		wr32(E1000_EERD, eerd);
386  		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
387  		if (ret_val)
388  			break;
389  
390  		data[i] = (rd32(E1000_EERD) >>
391  			E1000_NVM_RW_REG_DATA);
392  	}
393  
394  out:
395  	return ret_val;
396  }
397  
398  /**
399   *  igb_write_nvm_spi - Write to EEPROM using SPI
400   *  @hw: pointer to the HW structure
401   *  @offset: offset within the EEPROM to be written to
402   *  @words: number of words to write
403   *  @data: 16 bit word(s) to be written to the EEPROM
404   *
405   *  Writes data to EEPROM at offset using SPI interface.
406   *
407   *  If e1000_update_nvm_checksum is not called after this function , the
408   *  EEPROM will most likley contain an invalid checksum.
409   **/
igb_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)410  s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
411  {
412  	struct e1000_nvm_info *nvm = &hw->nvm;
413  	s32 ret_val = -E1000_ERR_NVM;
414  	u16 widx = 0;
415  
416  	/* A check for invalid values:  offset too large, too many words,
417  	 * and not enough words.
418  	 */
419  	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
420  	    (words == 0)) {
421  		hw_dbg("nvm parameter(s) out of bounds\n");
422  		return ret_val;
423  	}
424  
425  	while (widx < words) {
426  		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
427  
428  		ret_val = nvm->ops.acquire(hw);
429  		if (ret_val)
430  			return ret_val;
431  
432  		ret_val = igb_ready_nvm_eeprom(hw);
433  		if (ret_val) {
434  			nvm->ops.release(hw);
435  			return ret_val;
436  		}
437  
438  		igb_standby_nvm(hw);
439  
440  		/* Send the WRITE ENABLE command (8 bit opcode) */
441  		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
442  					 nvm->opcode_bits);
443  
444  		igb_standby_nvm(hw);
445  
446  		/* Some SPI eeproms use the 8th address bit embedded in the
447  		 * opcode
448  		 */
449  		if ((nvm->address_bits == 8) && (offset >= 128))
450  			write_opcode |= NVM_A8_OPCODE_SPI;
451  
452  		/* Send the Write command (8-bit opcode + addr) */
453  		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
454  		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
455  					 nvm->address_bits);
456  
457  		/* Loop to allow for up to whole page write of eeprom */
458  		while (widx < words) {
459  			u16 word_out = data[widx];
460  
461  			word_out = (word_out >> 8) | (word_out << 8);
462  			igb_shift_out_eec_bits(hw, word_out, 16);
463  			widx++;
464  
465  			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
466  				igb_standby_nvm(hw);
467  				break;
468  			}
469  		}
470  		usleep_range(1000, 2000);
471  		nvm->ops.release(hw);
472  	}
473  
474  	return ret_val;
475  }
476  
477  /**
478   *  igb_read_part_string - Read device part number
479   *  @hw: pointer to the HW structure
480   *  @part_num: pointer to device part number
481   *  @part_num_size: size of part number buffer
482   *
483   *  Reads the product board assembly (PBA) number from the EEPROM and stores
484   *  the value in part_num.
485   **/
igb_read_part_string(struct e1000_hw * hw,u8 * part_num,u32 part_num_size)486  s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
487  {
488  	s32 ret_val;
489  	u16 nvm_data;
490  	u16 pointer;
491  	u16 offset;
492  	u16 length;
493  
494  	if (part_num == NULL) {
495  		hw_dbg("PBA string buffer was null\n");
496  		ret_val = E1000_ERR_INVALID_ARGUMENT;
497  		goto out;
498  	}
499  
500  	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
501  	if (ret_val) {
502  		hw_dbg("NVM Read Error\n");
503  		goto out;
504  	}
505  
506  	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
507  	if (ret_val) {
508  		hw_dbg("NVM Read Error\n");
509  		goto out;
510  	}
511  
512  	/* if nvm_data is not ptr guard the PBA must be in legacy format which
513  	 * means pointer is actually our second data word for the PBA number
514  	 * and we can decode it into an ascii string
515  	 */
516  	if (nvm_data != NVM_PBA_PTR_GUARD) {
517  		hw_dbg("NVM PBA number is not stored as string\n");
518  
519  		/* we will need 11 characters to store the PBA */
520  		if (part_num_size < 11) {
521  			hw_dbg("PBA string buffer too small\n");
522  			return E1000_ERR_NO_SPACE;
523  		}
524  
525  		/* extract hex string from data and pointer */
526  		part_num[0] = (nvm_data >> 12) & 0xF;
527  		part_num[1] = (nvm_data >> 8) & 0xF;
528  		part_num[2] = (nvm_data >> 4) & 0xF;
529  		part_num[3] = nvm_data & 0xF;
530  		part_num[4] = (pointer >> 12) & 0xF;
531  		part_num[5] = (pointer >> 8) & 0xF;
532  		part_num[6] = '-';
533  		part_num[7] = 0;
534  		part_num[8] = (pointer >> 4) & 0xF;
535  		part_num[9] = pointer & 0xF;
536  
537  		/* put a null character on the end of our string */
538  		part_num[10] = '\0';
539  
540  		/* switch all the data but the '-' to hex char */
541  		for (offset = 0; offset < 10; offset++) {
542  			if (part_num[offset] < 0xA)
543  				part_num[offset] += '0';
544  			else if (part_num[offset] < 0x10)
545  				part_num[offset] += 'A' - 0xA;
546  		}
547  
548  		goto out;
549  	}
550  
551  	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
552  	if (ret_val) {
553  		hw_dbg("NVM Read Error\n");
554  		goto out;
555  	}
556  
557  	if (length == 0xFFFF || length == 0) {
558  		hw_dbg("NVM PBA number section invalid length\n");
559  		ret_val = E1000_ERR_NVM_PBA_SECTION;
560  		goto out;
561  	}
562  	/* check if part_num buffer is big enough */
563  	if (part_num_size < (((u32)length * 2) - 1)) {
564  		hw_dbg("PBA string buffer too small\n");
565  		ret_val = E1000_ERR_NO_SPACE;
566  		goto out;
567  	}
568  
569  	/* trim pba length from start of string */
570  	pointer++;
571  	length--;
572  
573  	for (offset = 0; offset < length; offset++) {
574  		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
575  		if (ret_val) {
576  			hw_dbg("NVM Read Error\n");
577  			goto out;
578  		}
579  		part_num[offset * 2] = (u8)(nvm_data >> 8);
580  		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
581  	}
582  	part_num[offset * 2] = '\0';
583  
584  out:
585  	return ret_val;
586  }
587  
588  /**
589   *  igb_read_mac_addr - Read device MAC address
590   *  @hw: pointer to the HW structure
591   *
592   *  Reads the device MAC address from the EEPROM and stores the value.
593   *  Since devices with two ports use the same EEPROM, we increment the
594   *  last bit in the MAC address for the second port.
595   **/
igb_read_mac_addr(struct e1000_hw * hw)596  s32 igb_read_mac_addr(struct e1000_hw *hw)
597  {
598  	u32 rar_high;
599  	u32 rar_low;
600  	u16 i;
601  
602  	rar_high = rd32(E1000_RAH(0));
603  	rar_low = rd32(E1000_RAL(0));
604  
605  	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
606  		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
607  
608  	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
609  		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
610  
611  	for (i = 0; i < ETH_ALEN; i++)
612  		hw->mac.addr[i] = hw->mac.perm_addr[i];
613  
614  	return 0;
615  }
616  
617  /**
618   *  igb_validate_nvm_checksum - Validate EEPROM checksum
619   *  @hw: pointer to the HW structure
620   *
621   *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
622   *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
623   **/
igb_validate_nvm_checksum(struct e1000_hw * hw)624  s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
625  {
626  	s32 ret_val = 0;
627  	u16 checksum = 0;
628  	u16 i, nvm_data;
629  
630  	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
631  		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
632  		if (ret_val) {
633  			hw_dbg("NVM Read Error\n");
634  			goto out;
635  		}
636  		checksum += nvm_data;
637  	}
638  
639  	if (checksum != (u16) NVM_SUM) {
640  		hw_dbg("NVM Checksum Invalid\n");
641  		ret_val = -E1000_ERR_NVM;
642  		goto out;
643  	}
644  
645  out:
646  	return ret_val;
647  }
648  
649  /**
650   *  igb_update_nvm_checksum - Update EEPROM checksum
651   *  @hw: pointer to the HW structure
652   *
653   *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
654   *  up to the checksum.  Then calculates the EEPROM checksum and writes the
655   *  value to the EEPROM.
656   **/
igb_update_nvm_checksum(struct e1000_hw * hw)657  s32 igb_update_nvm_checksum(struct e1000_hw *hw)
658  {
659  	s32  ret_val;
660  	u16 checksum = 0;
661  	u16 i, nvm_data;
662  
663  	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
664  		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
665  		if (ret_val) {
666  			hw_dbg("NVM Read Error while updating checksum.\n");
667  			goto out;
668  		}
669  		checksum += nvm_data;
670  	}
671  	checksum = (u16) NVM_SUM - checksum;
672  	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
673  	if (ret_val)
674  		hw_dbg("NVM Write Error while updating checksum.\n");
675  
676  out:
677  	return ret_val;
678  }
679  
680  /**
681   *  igb_get_fw_version - Get firmware version information
682   *  @hw: pointer to the HW structure
683   *  @fw_vers: pointer to output structure
684   *
685   *  unsupported MAC types will return all 0 version structure
686   **/
igb_get_fw_version(struct e1000_hw * hw,struct e1000_fw_version * fw_vers)687  void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
688  {
689  	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
690  	u8 q, hval, rem, result;
691  	u16 comb_verh, comb_verl, comb_offset;
692  
693  	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
694  
695  	/* basic eeprom version numbers and bits used vary by part and by tool
696  	 * used to create the nvm images. Check which data format we have.
697  	 */
698  	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
699  	switch (hw->mac.type) {
700  	case e1000_i211:
701  		igb_read_invm_version(hw, fw_vers);
702  		return;
703  	case e1000_82575:
704  	case e1000_82576:
705  	case e1000_82580:
706  		/* Use this format, unless EETRACK ID exists,
707  		 * then use alternate format
708  		 */
709  		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
710  			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
711  			fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK,
712  						       fw_version);
713  			fw_vers->eep_minor = FIELD_GET(NVM_MINOR_MASK,
714  						       fw_version);
715  			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
716  			goto etrack_id;
717  		}
718  		break;
719  	case e1000_i210:
720  		if (!(igb_get_flash_presence_i210(hw))) {
721  			igb_read_invm_version(hw, fw_vers);
722  			return;
723  		}
724  		fallthrough;
725  	case e1000_i350:
726  		/* find combo image version */
727  		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
728  		if ((comb_offset != 0x0) &&
729  		    (comb_offset != NVM_VER_INVALID)) {
730  
731  			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
732  					 + 1), 1, &comb_verh);
733  			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
734  					 1, &comb_verl);
735  
736  			/* get Option Rom version if it exists and is valid */
737  			if ((comb_verh && comb_verl) &&
738  			    ((comb_verh != NVM_VER_INVALID) &&
739  			     (comb_verl != NVM_VER_INVALID))) {
740  
741  				fw_vers->or_valid = true;
742  				fw_vers->or_major =
743  					comb_verl >> NVM_COMB_VER_SHFT;
744  				fw_vers->or_build =
745  					(comb_verl << NVM_COMB_VER_SHFT)
746  					| (comb_verh >> NVM_COMB_VER_SHFT);
747  				fw_vers->or_patch =
748  					comb_verh & NVM_COMB_VER_MASK;
749  			}
750  		}
751  		break;
752  	default:
753  		return;
754  	}
755  	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
756  	fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK, fw_version);
757  
758  	/* check for old style version format in newer images*/
759  	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
760  		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
761  	} else {
762  		eeprom_verl = FIELD_GET(NVM_MINOR_MASK, fw_version);
763  	}
764  	/* Convert minor value to hex before assigning to output struct
765  	 * Val to be converted will not be higher than 99, per tool output
766  	 */
767  	q = eeprom_verl / NVM_HEX_CONV;
768  	hval = q * NVM_HEX_TENS;
769  	rem = eeprom_verl % NVM_HEX_CONV;
770  	result = hval + rem;
771  	fw_vers->eep_minor = result;
772  
773  etrack_id:
774  	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
775  		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
776  		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
777  		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
778  			| eeprom_verl;
779  	}
780  }
781