1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
46 
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/fred.h>
56 #include <asm/fpu/api.h>
57 #include <asm/cpu.h>
58 #include <asm/cpu_entry_area.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/vm86.h>
65 #include <asm/umip.h>
66 #include <asm/insn.h>
67 #include <asm/insn-eval.h>
68 #include <asm/vdso.h>
69 #include <asm/tdx.h>
70 #include <asm/cfi.h>
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/x86_init.h>
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #endif
78 
79 #include <asm/proto.h>
80 
81 DECLARE_BITMAP(system_vectors, NR_VECTORS);
82 
is_valid_bugaddr(unsigned long addr)83 __always_inline int is_valid_bugaddr(unsigned long addr)
84 {
85 	if (addr < TASK_SIZE_MAX)
86 		return 0;
87 
88 	/*
89 	 * We got #UD, if the text isn't readable we'd have gotten
90 	 * a different exception.
91 	 */
92 	return *(unsigned short *)addr == INSN_UD2;
93 }
94 
95 /*
96  * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97  * If it's a UD1, get the ModRM byte to pass along to UBSan.
98  */
decode_bug(unsigned long addr,u32 * imm)99 __always_inline int decode_bug(unsigned long addr, u32 *imm)
100 {
101 	u8 v;
102 
103 	if (addr < TASK_SIZE_MAX)
104 		return BUG_NONE;
105 
106 	v = *(u8 *)(addr++);
107 	if (v == INSN_ASOP)
108 		v = *(u8 *)(addr++);
109 	if (v != OPCODE_ESCAPE)
110 		return BUG_NONE;
111 
112 	v = *(u8 *)(addr++);
113 	if (v == SECOND_BYTE_OPCODE_UD2)
114 		return BUG_UD2;
115 
116 	if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
117 		return BUG_NONE;
118 
119 	/* Retrieve the immediate (type value) for the UBSAN UD1 */
120 	v = *(u8 *)(addr++);
121 	if (X86_MODRM_RM(v) == 4)
122 		addr++;
123 
124 	*imm = 0;
125 	if (X86_MODRM_MOD(v) == 1)
126 		*imm = *(u8 *)addr;
127 	else if (X86_MODRM_MOD(v) == 2)
128 		*imm = *(u32 *)addr;
129 	else
130 		WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
131 
132 	return BUG_UD1;
133 }
134 
135 
136 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)137 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
138 		  struct pt_regs *regs,	long error_code)
139 {
140 	if (v8086_mode(regs)) {
141 		/*
142 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 		 * On nmi (interrupt 2), do_trap should not be called.
144 		 */
145 		if (trapnr < X86_TRAP_UD) {
146 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
147 						error_code, trapnr))
148 				return 0;
149 		}
150 	} else if (!user_mode(regs)) {
151 		if (fixup_exception(regs, trapnr, error_code, 0))
152 			return 0;
153 
154 		tsk->thread.error_code = error_code;
155 		tsk->thread.trap_nr = trapnr;
156 		die(str, regs, error_code);
157 	} else {
158 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
159 			return 0;
160 	}
161 
162 	/*
163 	 * We want error_code and trap_nr set for userspace faults and
164 	 * kernelspace faults which result in die(), but not
165 	 * kernelspace faults which are fixed up.  die() gives the
166 	 * process no chance to handle the signal and notice the
167 	 * kernel fault information, so that won't result in polluting
168 	 * the information about previously queued, but not yet
169 	 * delivered, faults.  See also exc_general_protection below.
170 	 */
171 	tsk->thread.error_code = error_code;
172 	tsk->thread.trap_nr = trapnr;
173 
174 	return -1;
175 }
176 
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)177 static void show_signal(struct task_struct *tsk, int signr,
178 			const char *type, const char *desc,
179 			struct pt_regs *regs, long error_code)
180 {
181 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
182 	    printk_ratelimit()) {
183 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 			tsk->comm, task_pid_nr(tsk), type, desc,
185 			regs->ip, regs->sp, error_code);
186 		print_vma_addr(KERN_CONT " in ", regs->ip);
187 		pr_cont("\n");
188 	}
189 }
190 
191 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)192 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
193 	long error_code, int sicode, void __user *addr)
194 {
195 	struct task_struct *tsk = current;
196 
197 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
198 		return;
199 
200 	show_signal(tsk, signr, "trap ", str, regs, error_code);
201 
202 	if (!sicode)
203 		force_sig(signr);
204 	else
205 		force_sig_fault(signr, sicode, addr);
206 }
207 NOKPROBE_SYMBOL(do_trap);
208 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)209 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
210 	unsigned long trapnr, int signr, int sicode, void __user *addr)
211 {
212 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
213 
214 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
215 			NOTIFY_STOP) {
216 		cond_local_irq_enable(regs);
217 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
218 		cond_local_irq_disable(regs);
219 	}
220 }
221 
222 /*
223  * Posix requires to provide the address of the faulting instruction for
224  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
225  *
226  * This address is usually regs->ip, but when an uprobe moved the code out
227  * of line then regs->ip points to the XOL code which would confuse
228  * anything which analyzes the fault address vs. the unmodified binary. If
229  * a trap happened in XOL code then uprobe maps regs->ip back to the
230  * original instruction address.
231  */
error_get_trap_addr(struct pt_regs * regs)232 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
233 {
234 	return (void __user *)uprobe_get_trap_addr(regs);
235 }
236 
DEFINE_IDTENTRY(exc_divide_error)237 DEFINE_IDTENTRY(exc_divide_error)
238 {
239 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
240 		      FPE_INTDIV, error_get_trap_addr(regs));
241 }
242 
DEFINE_IDTENTRY(exc_overflow)243 DEFINE_IDTENTRY(exc_overflow)
244 {
245 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
246 }
247 
248 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)249 void handle_invalid_op(struct pt_regs *regs)
250 #else
251 static inline void handle_invalid_op(struct pt_regs *regs)
252 #endif
253 {
254 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
255 		      ILL_ILLOPN, error_get_trap_addr(regs));
256 }
257 
handle_bug(struct pt_regs * regs)258 static noinstr bool handle_bug(struct pt_regs *regs)
259 {
260 	bool handled = false;
261 	int ud_type;
262 	u32 imm;
263 
264 	ud_type = decode_bug(regs->ip, &imm);
265 	if (ud_type == BUG_NONE)
266 		return handled;
267 
268 	/*
269 	 * All lies, just get the WARN/BUG out.
270 	 */
271 	instrumentation_begin();
272 	/*
273 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 	 * is a rare case that uses @regs without passing them to
275 	 * irqentry_enter().
276 	 */
277 	kmsan_unpoison_entry_regs(regs);
278 	/*
279 	 * Since we're emulating a CALL with exceptions, restore the interrupt
280 	 * state to what it was at the exception site.
281 	 */
282 	if (regs->flags & X86_EFLAGS_IF)
283 		raw_local_irq_enable();
284 	if (ud_type == BUG_UD2) {
285 		if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
286 		    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
287 			regs->ip += LEN_UD2;
288 			handled = true;
289 		}
290 	} else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
291 		pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
292 	}
293 	if (regs->flags & X86_EFLAGS_IF)
294 		raw_local_irq_disable();
295 	instrumentation_end();
296 
297 	return handled;
298 }
299 
DEFINE_IDTENTRY_RAW(exc_invalid_op)300 DEFINE_IDTENTRY_RAW(exc_invalid_op)
301 {
302 	irqentry_state_t state;
303 
304 	/*
305 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 	 * handle it before exception entry to avoid recursive WARN
307 	 * in case exception entry is the one triggering WARNs.
308 	 */
309 	if (!user_mode(regs) && handle_bug(regs))
310 		return;
311 
312 	state = irqentry_enter(regs);
313 	instrumentation_begin();
314 	handle_invalid_op(regs);
315 	instrumentation_end();
316 	irqentry_exit(regs, state);
317 }
318 
DEFINE_IDTENTRY(exc_coproc_segment_overrun)319 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
320 {
321 	do_error_trap(regs, 0, "coprocessor segment overrun",
322 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
323 }
324 
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
326 {
327 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
328 		      0, NULL);
329 }
330 
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
332 {
333 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
334 		      SIGBUS, 0, NULL);
335 }
336 
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
338 {
339 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
340 		      0, NULL);
341 }
342 
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
344 {
345 	char *str = "alignment check";
346 
347 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
348 		return;
349 
350 	if (!user_mode(regs))
351 		die("Split lock detected\n", regs, error_code);
352 
353 	local_irq_enable();
354 
355 	if (handle_user_split_lock(regs, error_code))
356 		goto out;
357 
358 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
359 		error_code, BUS_ADRALN, NULL);
360 
361 out:
362 	local_irq_disable();
363 }
364 
365 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)366 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
367 						unsigned long fault_address,
368 						struct stack_info *info)
369 {
370 	const char *name = stack_type_name(info->type);
371 
372 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 	       name, (void *)fault_address, info->begin, info->end);
374 
375 	die("stack guard page", regs, 0);
376 
377 	/* Be absolutely certain we don't return. */
378 	panic("%s stack guard hit", name);
379 }
380 #endif
381 
382 /*
383  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
384  *
385  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
386  * SDM's warnings about double faults being unrecoverable, returning works as
387  * expected.  Presumably what the SDM actually means is that the CPU may get
388  * the register state wrong on entry, so returning could be a bad idea.
389  *
390  * Various CPU engineers have promised that double faults due to an IRET fault
391  * while the stack is read-only are, in fact, recoverable.
392  *
393  * On x86_32, this is entered through a task gate, and regs are synthesized
394  * from the TSS.  Returning is, in principle, okay, but changes to regs will
395  * be lost.  If, for some reason, we need to return to a context with modified
396  * regs, the shim code could be adjusted to synchronize the registers.
397  *
398  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
399  * to be read before doing anything else.
400  */
DEFINE_IDTENTRY_DF(exc_double_fault)401 DEFINE_IDTENTRY_DF(exc_double_fault)
402 {
403 	static const char str[] = "double fault";
404 	struct task_struct *tsk = current;
405 
406 #ifdef CONFIG_VMAP_STACK
407 	unsigned long address = read_cr2();
408 	struct stack_info info;
409 #endif
410 
411 #ifdef CONFIG_X86_ESPFIX64
412 	extern unsigned char native_irq_return_iret[];
413 
414 	/*
415 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
416 	 * end up promoting it to a doublefault.  In that case, take
417 	 * advantage of the fact that we're not using the normal (TSS.sp0)
418 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
419 	 * and then modify our own IRET frame so that, when we return,
420 	 * we land directly at the #GP(0) vector with the stack already
421 	 * set up according to its expectations.
422 	 *
423 	 * The net result is that our #GP handler will think that we
424 	 * entered from usermode with the bad user context.
425 	 *
426 	 * No need for nmi_enter() here because we don't use RCU.
427 	 */
428 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
429 		regs->cs == __KERNEL_CS &&
430 		regs->ip == (unsigned long)native_irq_return_iret)
431 	{
432 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
433 		unsigned long *p = (unsigned long *)regs->sp;
434 
435 		/*
436 		 * regs->sp points to the failing IRET frame on the
437 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
438 		 * in gpregs->ss through gpregs->ip.
439 		 *
440 		 */
441 		gpregs->ip	= p[0];
442 		gpregs->cs	= p[1];
443 		gpregs->flags	= p[2];
444 		gpregs->sp	= p[3];
445 		gpregs->ss	= p[4];
446 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
447 
448 		/*
449 		 * Adjust our frame so that we return straight to the #GP
450 		 * vector with the expected RSP value.  This is safe because
451 		 * we won't enable interrupts or schedule before we invoke
452 		 * general_protection, so nothing will clobber the stack
453 		 * frame we just set up.
454 		 *
455 		 * We will enter general_protection with kernel GSBASE,
456 		 * which is what the stub expects, given that the faulting
457 		 * RIP will be the IRET instruction.
458 		 */
459 		regs->ip = (unsigned long)asm_exc_general_protection;
460 		regs->sp = (unsigned long)&gpregs->orig_ax;
461 
462 		return;
463 	}
464 #endif
465 
466 	irqentry_nmi_enter(regs);
467 	instrumentation_begin();
468 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
469 
470 	tsk->thread.error_code = error_code;
471 	tsk->thread.trap_nr = X86_TRAP_DF;
472 
473 #ifdef CONFIG_VMAP_STACK
474 	/*
475 	 * If we overflow the stack into a guard page, the CPU will fail
476 	 * to deliver #PF and will send #DF instead.  Similarly, if we
477 	 * take any non-IST exception while too close to the bottom of
478 	 * the stack, the processor will get a page fault while
479 	 * delivering the exception and will generate a double fault.
480 	 *
481 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
482 	 * Page-Fault Exception (#PF):
483 	 *
484 	 *   Processors update CR2 whenever a page fault is detected. If a
485 	 *   second page fault occurs while an earlier page fault is being
486 	 *   delivered, the faulting linear address of the second fault will
487 	 *   overwrite the contents of CR2 (replacing the previous
488 	 *   address). These updates to CR2 occur even if the page fault
489 	 *   results in a double fault or occurs during the delivery of a
490 	 *   double fault.
491 	 *
492 	 * The logic below has a small possibility of incorrectly diagnosing
493 	 * some errors as stack overflows.  For example, if the IDT or GDT
494 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
495 	 * causing #GP and we hit this condition while CR2 coincidentally
496 	 * points to the stack guard page, we'll think we overflowed the
497 	 * stack.  Given that we're going to panic one way or another
498 	 * if this happens, this isn't necessarily worth fixing.
499 	 *
500 	 * If necessary, we could improve the test by only diagnosing
501 	 * a stack overflow if the saved RSP points within 47 bytes of
502 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
503 	 * take an exception, the stack is already aligned and there
504 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
505 	 * possible error code, so a stack overflow would *not* double
506 	 * fault.  With any less space left, exception delivery could
507 	 * fail, and, as a practical matter, we've overflowed the
508 	 * stack even if the actual trigger for the double fault was
509 	 * something else.
510 	 */
511 	if (get_stack_guard_info((void *)address, &info))
512 		handle_stack_overflow(regs, address, &info);
513 #endif
514 
515 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
516 	die("double fault", regs, error_code);
517 	panic("Machine halted.");
518 	instrumentation_end();
519 }
520 
DEFINE_IDTENTRY(exc_bounds)521 DEFINE_IDTENTRY(exc_bounds)
522 {
523 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
524 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
525 		return;
526 	cond_local_irq_enable(regs);
527 
528 	if (!user_mode(regs))
529 		die("bounds", regs, 0);
530 
531 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
532 
533 	cond_local_irq_disable(regs);
534 }
535 
536 enum kernel_gp_hint {
537 	GP_NO_HINT,
538 	GP_NON_CANONICAL,
539 	GP_CANONICAL
540 };
541 
542 /*
543  * When an uncaught #GP occurs, try to determine the memory address accessed by
544  * the instruction and return that address to the caller. Also, try to figure
545  * out whether any part of the access to that address was non-canonical.
546  */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)547 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
548 						 unsigned long *addr)
549 {
550 	u8 insn_buf[MAX_INSN_SIZE];
551 	struct insn insn;
552 	int ret;
553 
554 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
555 			MAX_INSN_SIZE))
556 		return GP_NO_HINT;
557 
558 	ret = insn_decode_kernel(&insn, insn_buf);
559 	if (ret < 0)
560 		return GP_NO_HINT;
561 
562 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
563 	if (*addr == -1UL)
564 		return GP_NO_HINT;
565 
566 #ifdef CONFIG_X86_64
567 	/*
568 	 * Check that:
569 	 *  - the operand is not in the kernel half
570 	 *  - the last byte of the operand is not in the user canonical half
571 	 */
572 	if (*addr < ~__VIRTUAL_MASK &&
573 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
574 		return GP_NON_CANONICAL;
575 #endif
576 
577 	return GP_CANONICAL;
578 }
579 
580 #define GPFSTR "general protection fault"
581 
fixup_iopl_exception(struct pt_regs * regs)582 static bool fixup_iopl_exception(struct pt_regs *regs)
583 {
584 	struct thread_struct *t = &current->thread;
585 	unsigned char byte;
586 	unsigned long ip;
587 
588 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
589 		return false;
590 
591 	if (insn_get_effective_ip(regs, &ip))
592 		return false;
593 
594 	if (get_user(byte, (const char __user *)ip))
595 		return false;
596 
597 	if (byte != 0xfa && byte != 0xfb)
598 		return false;
599 
600 	if (!t->iopl_warn && printk_ratelimit()) {
601 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
602 		       current->comm, task_pid_nr(current), ip);
603 		print_vma_addr(KERN_CONT " in ", ip);
604 		pr_cont("\n");
605 		t->iopl_warn = 1;
606 	}
607 
608 	regs->ip += 1;
609 	return true;
610 }
611 
612 /*
613  * The unprivileged ENQCMD instruction generates #GPs if the
614  * IA32_PASID MSR has not been populated.  If possible, populate
615  * the MSR from a PASID previously allocated to the mm.
616  */
try_fixup_enqcmd_gp(void)617 static bool try_fixup_enqcmd_gp(void)
618 {
619 #ifdef CONFIG_ARCH_HAS_CPU_PASID
620 	u32 pasid;
621 
622 	/*
623 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
624 	 * writing to the MSR is only possible when fpregs
625 	 * are valid and the fpstate is not.  This is
626 	 * guaranteed when handling a userspace exception
627 	 * in *before* interrupts are re-enabled.
628 	 */
629 	lockdep_assert_irqs_disabled();
630 
631 	/*
632 	 * Hardware without ENQCMD will not generate
633 	 * #GPs that can be fixed up here.
634 	 */
635 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
636 		return false;
637 
638 	/*
639 	 * If the mm has not been allocated a
640 	 * PASID, the #GP can not be fixed up.
641 	 */
642 	if (!mm_valid_pasid(current->mm))
643 		return false;
644 
645 	pasid = mm_get_enqcmd_pasid(current->mm);
646 
647 	/*
648 	 * Did this thread already have its PASID activated?
649 	 * If so, the #GP must be from something else.
650 	 */
651 	if (current->pasid_activated)
652 		return false;
653 
654 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
655 	current->pasid_activated = 1;
656 
657 	return true;
658 #else
659 	return false;
660 #endif
661 }
662 
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)663 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
664 				    unsigned long error_code, const char *str,
665 				    unsigned long address)
666 {
667 	if (fixup_exception(regs, trapnr, error_code, address))
668 		return true;
669 
670 	current->thread.error_code = error_code;
671 	current->thread.trap_nr = trapnr;
672 
673 	/*
674 	 * To be potentially processing a kprobe fault and to trust the result
675 	 * from kprobe_running(), we have to be non-preemptible.
676 	 */
677 	if (!preemptible() && kprobe_running() &&
678 	    kprobe_fault_handler(regs, trapnr))
679 		return true;
680 
681 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
682 }
683 
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)684 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
685 				   unsigned long error_code, const char *str)
686 {
687 	current->thread.error_code = error_code;
688 	current->thread.trap_nr = trapnr;
689 	show_signal(current, SIGSEGV, "", str, regs, error_code);
690 	force_sig(SIGSEGV);
691 }
692 
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)693 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
694 {
695 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
696 	enum kernel_gp_hint hint = GP_NO_HINT;
697 	unsigned long gp_addr;
698 
699 	if (user_mode(regs) && try_fixup_enqcmd_gp())
700 		return;
701 
702 	cond_local_irq_enable(regs);
703 
704 	if (static_cpu_has(X86_FEATURE_UMIP)) {
705 		if (user_mode(regs) && fixup_umip_exception(regs))
706 			goto exit;
707 	}
708 
709 	if (v8086_mode(regs)) {
710 		local_irq_enable();
711 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
712 		local_irq_disable();
713 		return;
714 	}
715 
716 	if (user_mode(regs)) {
717 		if (fixup_iopl_exception(regs))
718 			goto exit;
719 
720 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
721 			goto exit;
722 
723 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
724 		goto exit;
725 	}
726 
727 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
728 		goto exit;
729 
730 	if (error_code)
731 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
732 	else
733 		hint = get_kernel_gp_address(regs, &gp_addr);
734 
735 	if (hint != GP_NO_HINT)
736 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
737 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
738 						    : "maybe for address",
739 			 gp_addr);
740 
741 	/*
742 	 * KASAN is interested only in the non-canonical case, clear it
743 	 * otherwise.
744 	 */
745 	if (hint != GP_NON_CANONICAL)
746 		gp_addr = 0;
747 
748 	die_addr(desc, regs, error_code, gp_addr);
749 
750 exit:
751 	cond_local_irq_disable(regs);
752 }
753 
do_int3(struct pt_regs * regs)754 static bool do_int3(struct pt_regs *regs)
755 {
756 	int res;
757 
758 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
759 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
760 			 SIGTRAP) == NOTIFY_STOP)
761 		return true;
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763 
764 #ifdef CONFIG_KPROBES
765 	if (kprobe_int3_handler(regs))
766 		return true;
767 #endif
768 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
769 
770 	return res == NOTIFY_STOP;
771 }
772 NOKPROBE_SYMBOL(do_int3);
773 
do_int3_user(struct pt_regs * regs)774 static void do_int3_user(struct pt_regs *regs)
775 {
776 	if (do_int3(regs))
777 		return;
778 
779 	cond_local_irq_enable(regs);
780 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
781 	cond_local_irq_disable(regs);
782 }
783 
DEFINE_IDTENTRY_RAW(exc_int3)784 DEFINE_IDTENTRY_RAW(exc_int3)
785 {
786 	/*
787 	 * poke_int3_handler() is completely self contained code; it does (and
788 	 * must) *NOT* call out to anything, lest it hits upon yet another
789 	 * INT3.
790 	 */
791 	if (poke_int3_handler(regs))
792 		return;
793 
794 	/*
795 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
796 	 * and therefore can trigger INT3, hence poke_int3_handler() must
797 	 * be done before. If the entry came from kernel mode, then use
798 	 * nmi_enter() because the INT3 could have been hit in any context
799 	 * including NMI.
800 	 */
801 	if (user_mode(regs)) {
802 		irqentry_enter_from_user_mode(regs);
803 		instrumentation_begin();
804 		do_int3_user(regs);
805 		instrumentation_end();
806 		irqentry_exit_to_user_mode(regs);
807 	} else {
808 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
809 
810 		instrumentation_begin();
811 		if (!do_int3(regs))
812 			die("int3", regs, 0);
813 		instrumentation_end();
814 		irqentry_nmi_exit(regs, irq_state);
815 	}
816 }
817 
818 #ifdef CONFIG_X86_64
819 /*
820  * Help handler running on a per-cpu (IST or entry trampoline) stack
821  * to switch to the normal thread stack if the interrupted code was in
822  * user mode. The actual stack switch is done in entry_64.S
823  */
sync_regs(struct pt_regs * eregs)824 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
825 {
826 	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
827 	if (regs != eregs)
828 		*regs = *eregs;
829 	return regs;
830 }
831 
832 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)833 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
834 {
835 	unsigned long sp, *stack;
836 	struct stack_info info;
837 	struct pt_regs *regs_ret;
838 
839 	/*
840 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
841 	 * trust it and switch to the current kernel stack
842 	 */
843 	if (ip_within_syscall_gap(regs)) {
844 		sp = current_top_of_stack();
845 		goto sync;
846 	}
847 
848 	/*
849 	 * From here on the RSP value is trusted. Now check whether entry
850 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
851 	 * use the fall-back stack instead in this case.
852 	 */
853 	sp    = regs->sp;
854 	stack = (unsigned long *)sp;
855 
856 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
857 	    info.type > STACK_TYPE_EXCEPTION_LAST)
858 		sp = __this_cpu_ist_top_va(VC2);
859 
860 sync:
861 	/*
862 	 * Found a safe stack - switch to it as if the entry didn't happen via
863 	 * IST stack. The code below only copies pt_regs, the real switch happens
864 	 * in assembly code.
865 	 */
866 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
867 
868 	regs_ret = (struct pt_regs *)sp;
869 	*regs_ret = *regs;
870 
871 	return regs_ret;
872 }
873 #endif
874 
fixup_bad_iret(struct pt_regs * bad_regs)875 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
876 {
877 	struct pt_regs tmp, *new_stack;
878 
879 	/*
880 	 * This is called from entry_64.S early in handling a fault
881 	 * caused by a bad iret to user mode.  To handle the fault
882 	 * correctly, we want to move our stack frame to where it would
883 	 * be had we entered directly on the entry stack (rather than
884 	 * just below the IRET frame) and we want to pretend that the
885 	 * exception came from the IRET target.
886 	 */
887 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
888 
889 	/* Copy the IRET target to the temporary storage. */
890 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
891 
892 	/* Copy the remainder of the stack from the current stack. */
893 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
894 
895 	/* Update the entry stack */
896 	__memcpy(new_stack, &tmp, sizeof(tmp));
897 
898 	BUG_ON(!user_mode(new_stack));
899 	return new_stack;
900 }
901 #endif
902 
is_sysenter_singlestep(struct pt_regs * regs)903 static bool is_sysenter_singlestep(struct pt_regs *regs)
904 {
905 	/*
906 	 * We don't try for precision here.  If we're anywhere in the region of
907 	 * code that can be single-stepped in the SYSENTER entry path, then
908 	 * assume that this is a useless single-step trap due to SYSENTER
909 	 * being invoked with TF set.  (We don't know in advance exactly
910 	 * which instructions will be hit because BTF could plausibly
911 	 * be set.)
912 	 */
913 #ifdef CONFIG_X86_32
914 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
915 		(unsigned long)__end_SYSENTER_singlestep_region -
916 		(unsigned long)__begin_SYSENTER_singlestep_region;
917 #elif defined(CONFIG_IA32_EMULATION)
918 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
919 		(unsigned long)__end_entry_SYSENTER_compat -
920 		(unsigned long)entry_SYSENTER_compat;
921 #else
922 	return false;
923 #endif
924 }
925 
debug_read_clear_dr6(void)926 static __always_inline unsigned long debug_read_clear_dr6(void)
927 {
928 	unsigned long dr6;
929 
930 	/*
931 	 * The Intel SDM says:
932 	 *
933 	 *   Certain debug exceptions may clear bits 0-3. The remaining
934 	 *   contents of the DR6 register are never cleared by the
935 	 *   processor. To avoid confusion in identifying debug
936 	 *   exceptions, debug handlers should clear the register before
937 	 *   returning to the interrupted task.
938 	 *
939 	 * Keep it simple: clear DR6 immediately.
940 	 */
941 	get_debugreg(dr6, 6);
942 	set_debugreg(DR6_RESERVED, 6);
943 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
944 
945 	return dr6;
946 }
947 
948 /*
949  * Our handling of the processor debug registers is non-trivial.
950  * We do not clear them on entry and exit from the kernel. Therefore
951  * it is possible to get a watchpoint trap here from inside the kernel.
952  * However, the code in ./ptrace.c has ensured that the user can
953  * only set watchpoints on userspace addresses. Therefore the in-kernel
954  * watchpoint trap can only occur in code which is reading/writing
955  * from user space. Such code must not hold kernel locks (since it
956  * can equally take a page fault), therefore it is safe to call
957  * force_sig_info even though that claims and releases locks.
958  *
959  * Code in ./signal.c ensures that the debug control register
960  * is restored before we deliver any signal, and therefore that
961  * user code runs with the correct debug control register even though
962  * we clear it here.
963  *
964  * Being careful here means that we don't have to be as careful in a
965  * lot of more complicated places (task switching can be a bit lazy
966  * about restoring all the debug state, and ptrace doesn't have to
967  * find every occurrence of the TF bit that could be saved away even
968  * by user code)
969  *
970  * May run on IST stack.
971  */
972 
notify_debug(struct pt_regs * regs,unsigned long * dr6)973 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
974 {
975 	/*
976 	 * Notifiers will clear bits in @dr6 to indicate the event has been
977 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
978 	 *
979 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
980 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
981 	 */
982 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
983 		return true;
984 
985 	return false;
986 }
987 
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)988 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
989 {
990 	/*
991 	 * Disable breakpoints during exception handling; recursive exceptions
992 	 * are exceedingly 'fun'.
993 	 *
994 	 * Since this function is NOKPROBE, and that also applies to
995 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
996 	 * HW_BREAKPOINT_W on our stack)
997 	 *
998 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
999 	 * includes the entry stack is excluded for everything.
1000 	 *
1001 	 * For FRED, nested #DB should just work fine. But when a watchpoint or
1002 	 * breakpoint is set in the code path which is executed by #DB handler,
1003 	 * it results in an endless recursion and stack overflow. Thus we stay
1004 	 * with the IDT approach, i.e., save DR7 and disable #DB.
1005 	 */
1006 	unsigned long dr7 = local_db_save();
1007 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1008 	instrumentation_begin();
1009 
1010 	/*
1011 	 * If something gets miswired and we end up here for a user mode
1012 	 * #DB, we will malfunction.
1013 	 */
1014 	WARN_ON_ONCE(user_mode(regs));
1015 
1016 	if (test_thread_flag(TIF_BLOCKSTEP)) {
1017 		/*
1018 		 * The SDM says "The processor clears the BTF flag when it
1019 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1020 		 * it for userspace, but we just took a kernel #DB, so re-set
1021 		 * BTF.
1022 		 */
1023 		unsigned long debugctl;
1024 
1025 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1026 		debugctl |= DEBUGCTLMSR_BTF;
1027 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1028 	}
1029 
1030 	/*
1031 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1032 	 * watchpoint at the same time then that will still be handled.
1033 	 */
1034 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1035 	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1036 		dr6 &= ~DR_STEP;
1037 
1038 	/*
1039 	 * The kernel doesn't use INT1
1040 	 */
1041 	if (!dr6)
1042 		goto out;
1043 
1044 	if (notify_debug(regs, &dr6))
1045 		goto out;
1046 
1047 	/*
1048 	 * The kernel doesn't use TF single-step outside of:
1049 	 *
1050 	 *  - Kprobes, consumed through kprobe_debug_handler()
1051 	 *  - KGDB, consumed through notify_debug()
1052 	 *
1053 	 * So if we get here with DR_STEP set, something is wonky.
1054 	 *
1055 	 * A known way to trigger this is through QEMU's GDB stub,
1056 	 * which leaks #DB into the guest and causes IST recursion.
1057 	 */
1058 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1059 		regs->flags &= ~X86_EFLAGS_TF;
1060 out:
1061 	instrumentation_end();
1062 	irqentry_nmi_exit(regs, irq_state);
1063 
1064 	local_db_restore(dr7);
1065 }
1066 
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1067 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1068 {
1069 	bool icebp;
1070 
1071 	/*
1072 	 * If something gets miswired and we end up here for a kernel mode
1073 	 * #DB, we will malfunction.
1074 	 */
1075 	WARN_ON_ONCE(!user_mode(regs));
1076 
1077 	/*
1078 	 * NB: We can't easily clear DR7 here because
1079 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1080 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1081 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1082 	 * Since we're not on the IST stack right now, everything will be
1083 	 * fine.
1084 	 */
1085 
1086 	irqentry_enter_from_user_mode(regs);
1087 	instrumentation_begin();
1088 
1089 	/*
1090 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1091 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1092 	 *
1093 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1094 	 * even if it is not the result of PTRACE_SINGLESTEP.
1095 	 */
1096 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1097 
1098 	/*
1099 	 * The SDM says "The processor clears the BTF flag when it
1100 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1101 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1102 	 */
1103 	clear_thread_flag(TIF_BLOCKSTEP);
1104 
1105 	/*
1106 	 * If dr6 has no reason to give us about the origin of this trap,
1107 	 * then it's very likely the result of an icebp/int01 trap.
1108 	 * User wants a sigtrap for that.
1109 	 */
1110 	icebp = !dr6;
1111 
1112 	if (notify_debug(regs, &dr6))
1113 		goto out;
1114 
1115 	/* It's safe to allow irq's after DR6 has been saved */
1116 	local_irq_enable();
1117 
1118 	if (v8086_mode(regs)) {
1119 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1120 		goto out_irq;
1121 	}
1122 
1123 	/* #DB for bus lock can only be triggered from userspace. */
1124 	if (dr6 & DR_BUS_LOCK)
1125 		handle_bus_lock(regs);
1126 
1127 	/* Add the virtual_dr6 bits for signals. */
1128 	dr6 |= current->thread.virtual_dr6;
1129 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1130 		send_sigtrap(regs, 0, get_si_code(dr6));
1131 
1132 out_irq:
1133 	local_irq_disable();
1134 out:
1135 	instrumentation_end();
1136 	irqentry_exit_to_user_mode(regs);
1137 }
1138 
1139 #ifdef CONFIG_X86_64
1140 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1141 DEFINE_IDTENTRY_DEBUG(exc_debug)
1142 {
1143 	exc_debug_kernel(regs, debug_read_clear_dr6());
1144 }
1145 
1146 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1147 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1148 {
1149 	exc_debug_user(regs, debug_read_clear_dr6());
1150 }
1151 
1152 #ifdef CONFIG_X86_FRED
1153 /*
1154  * When occurred on different ring level, i.e., from user or kernel
1155  * context, #DB needs to be handled on different stack: User #DB on
1156  * current task stack, while kernel #DB on a dedicated stack.
1157  *
1158  * This is exactly how FRED event delivery invokes an exception
1159  * handler: ring 3 event on level 0 stack, i.e., current task stack;
1160  * ring 0 event on the #DB dedicated stack specified in the
1161  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1162  * entry stub doesn't do stack switch.
1163  */
DEFINE_FREDENTRY_DEBUG(exc_debug)1164 DEFINE_FREDENTRY_DEBUG(exc_debug)
1165 {
1166 	/*
1167 	 * FRED #DB stores DR6 on the stack in the format which
1168 	 * debug_read_clear_dr6() returns for the IDT entry points.
1169 	 */
1170 	unsigned long dr6 = fred_event_data(regs);
1171 
1172 	if (user_mode(regs))
1173 		exc_debug_user(regs, dr6);
1174 	else
1175 		exc_debug_kernel(regs, dr6);
1176 }
1177 #endif /* CONFIG_X86_FRED */
1178 
1179 #else
1180 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1181 DEFINE_IDTENTRY_RAW(exc_debug)
1182 {
1183 	unsigned long dr6 = debug_read_clear_dr6();
1184 
1185 	if (user_mode(regs))
1186 		exc_debug_user(regs, dr6);
1187 	else
1188 		exc_debug_kernel(regs, dr6);
1189 }
1190 #endif
1191 
1192 /*
1193  * Note that we play around with the 'TS' bit in an attempt to get
1194  * the correct behaviour even in the presence of the asynchronous
1195  * IRQ13 behaviour
1196  */
math_error(struct pt_regs * regs,int trapnr)1197 static void math_error(struct pt_regs *regs, int trapnr)
1198 {
1199 	struct task_struct *task = current;
1200 	struct fpu *fpu = &task->thread.fpu;
1201 	int si_code;
1202 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1203 						"simd exception";
1204 
1205 	cond_local_irq_enable(regs);
1206 
1207 	if (!user_mode(regs)) {
1208 		if (fixup_exception(regs, trapnr, 0, 0))
1209 			goto exit;
1210 
1211 		task->thread.error_code = 0;
1212 		task->thread.trap_nr = trapnr;
1213 
1214 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1215 			       SIGFPE) != NOTIFY_STOP)
1216 			die(str, regs, 0);
1217 		goto exit;
1218 	}
1219 
1220 	/*
1221 	 * Synchronize the FPU register state to the memory register state
1222 	 * if necessary. This allows the exception handler to inspect it.
1223 	 */
1224 	fpu_sync_fpstate(fpu);
1225 
1226 	task->thread.trap_nr	= trapnr;
1227 	task->thread.error_code = 0;
1228 
1229 	si_code = fpu__exception_code(fpu, trapnr);
1230 	/* Retry when we get spurious exceptions: */
1231 	if (!si_code)
1232 		goto exit;
1233 
1234 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1235 		goto exit;
1236 
1237 	force_sig_fault(SIGFPE, si_code,
1238 			(void __user *)uprobe_get_trap_addr(regs));
1239 exit:
1240 	cond_local_irq_disable(regs);
1241 }
1242 
DEFINE_IDTENTRY(exc_coprocessor_error)1243 DEFINE_IDTENTRY(exc_coprocessor_error)
1244 {
1245 	math_error(regs, X86_TRAP_MF);
1246 }
1247 
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1248 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1249 {
1250 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1251 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1252 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1253 			__exc_general_protection(regs, 0);
1254 			return;
1255 		}
1256 	}
1257 	math_error(regs, X86_TRAP_XF);
1258 }
1259 
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1260 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1261 {
1262 	/*
1263 	 * This addresses a Pentium Pro Erratum:
1264 	 *
1265 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1266 	 * Virtual Wire mode implemented through the local APIC, an
1267 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1268 	 * generated by the local APIC (Int 15).  This vector may be
1269 	 * generated upon receipt of a spurious interrupt (an interrupt
1270 	 * which is removed before the system receives the INTA sequence)
1271 	 * instead of the programmed 8259 spurious interrupt vector.
1272 	 *
1273 	 * IMPLICATION: The spurious interrupt vector programmed in the
1274 	 * 8259 is normally handled by an operating system's spurious
1275 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1276 	 * operating systems, which would crash if this erratum occurred.
1277 	 *
1278 	 * In theory this could be limited to 32bit, but the handler is not
1279 	 * hurting and who knows which other CPUs suffer from this.
1280 	 */
1281 }
1282 
handle_xfd_event(struct pt_regs * regs)1283 static bool handle_xfd_event(struct pt_regs *regs)
1284 {
1285 	u64 xfd_err;
1286 	int err;
1287 
1288 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1289 		return false;
1290 
1291 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1292 	if (!xfd_err)
1293 		return false;
1294 
1295 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1296 
1297 	/* Die if that happens in kernel space */
1298 	if (WARN_ON(!user_mode(regs)))
1299 		return false;
1300 
1301 	local_irq_enable();
1302 
1303 	err = xfd_enable_feature(xfd_err);
1304 
1305 	switch (err) {
1306 	case -EPERM:
1307 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1308 		break;
1309 	case -EFAULT:
1310 		force_sig(SIGSEGV);
1311 		break;
1312 	}
1313 
1314 	local_irq_disable();
1315 	return true;
1316 }
1317 
DEFINE_IDTENTRY(exc_device_not_available)1318 DEFINE_IDTENTRY(exc_device_not_available)
1319 {
1320 	unsigned long cr0 = read_cr0();
1321 
1322 	if (handle_xfd_event(regs))
1323 		return;
1324 
1325 #ifdef CONFIG_MATH_EMULATION
1326 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1327 		struct math_emu_info info = { };
1328 
1329 		cond_local_irq_enable(regs);
1330 
1331 		info.regs = regs;
1332 		math_emulate(&info);
1333 
1334 		cond_local_irq_disable(regs);
1335 		return;
1336 	}
1337 #endif
1338 
1339 	/* This should not happen. */
1340 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1341 		/* Try to fix it up and carry on. */
1342 		write_cr0(cr0 & ~X86_CR0_TS);
1343 	} else {
1344 		/*
1345 		 * Something terrible happened, and we're better off trying
1346 		 * to kill the task than getting stuck in a never-ending
1347 		 * loop of #NM faults.
1348 		 */
1349 		die("unexpected #NM exception", regs, 0);
1350 	}
1351 }
1352 
1353 #ifdef CONFIG_INTEL_TDX_GUEST
1354 
1355 #define VE_FAULT_STR "VE fault"
1356 
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1357 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1358 			   unsigned long address)
1359 {
1360 	if (user_mode(regs)) {
1361 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1362 		return;
1363 	}
1364 
1365 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1366 				    VE_FAULT_STR, address)) {
1367 		return;
1368 	}
1369 
1370 	die_addr(VE_FAULT_STR, regs, error_code, address);
1371 }
1372 
1373 /*
1374  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375  * specific guest actions which may happen in either user space or the
1376  * kernel:
1377  *
1378  *  * Specific instructions (WBINVD, for example)
1379  *  * Specific MSR accesses
1380  *  * Specific CPUID leaf accesses
1381  *  * Access to specific guest physical addresses
1382  *
1383  * In the settings that Linux will run in, virtualization exceptions are
1384  * never generated on accesses to normal, TD-private memory that has been
1385  * accepted (by BIOS or with tdx_enc_status_changed()).
1386  *
1387  * Syscall entry code has a critical window where the kernel stack is not
1388  * yet set up. Any exception in this window leads to hard to debug issues
1389  * and can be exploited for privilege escalation. Exceptions in the NMI
1390  * entry code also cause issues. Returning from the exception handler with
1391  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392  *
1393  * For these reasons, the kernel avoids #VEs during the syscall gap and
1394  * the NMI entry code. Entry code paths do not access TD-shared memory,
1395  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396  * that might generate #VE. VMM can remove memory from TD at any point,
1397  * but access to unaccepted (or missing) private memory leads to VM
1398  * termination, not to #VE.
1399  *
1400  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401  * handlers once the kernel is ready to deal with nested NMIs.
1402  *
1403  * During #VE delivery, all interrupts, including NMIs, are blocked until
1404  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405  * the VE info.
1406  *
1407  * If a guest kernel action which would normally cause a #VE occurs in
1408  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409  * exception) is delivered to the guest which will result in an oops.
1410  *
1411  * The entry code has been audited carefully for following these expectations.
1412  * Changes in the entry code have to be audited for correctness vs. this
1413  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414  * privilege escalation or may lead to random crashes.
1415  */
DEFINE_IDTENTRY(exc_virtualization_exception)1416 DEFINE_IDTENTRY(exc_virtualization_exception)
1417 {
1418 	struct ve_info ve;
1419 
1420 	/*
1421 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 	 * info cannot be overwritten by a nested #VE.
1424 	 */
1425 	tdx_get_ve_info(&ve);
1426 
1427 	cond_local_irq_enable(regs);
1428 
1429 	/*
1430 	 * If tdx_handle_virt_exception() could not process
1431 	 * it successfully, treat it as #GP(0) and handle it.
1432 	 */
1433 	if (!tdx_handle_virt_exception(regs, &ve))
1434 		ve_raise_fault(regs, 0, ve.gla);
1435 
1436 	cond_local_irq_disable(regs);
1437 }
1438 
1439 #endif
1440 
1441 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1442 DEFINE_IDTENTRY_SW(iret_error)
1443 {
1444 	local_irq_enable();
1445 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448 			ILL_BADSTK, (void __user *)NULL);
1449 	}
1450 	local_irq_disable();
1451 }
1452 #endif
1453 
trap_init(void)1454 void __init trap_init(void)
1455 {
1456 	/* Init cpu_entry_area before IST entries are set up */
1457 	setup_cpu_entry_areas();
1458 
1459 	/* Init GHCB memory pages when running as an SEV-ES guest */
1460 	sev_es_init_vc_handling();
1461 
1462 	/* Initialize TSS before setting up traps so ISTs work */
1463 	cpu_init_exception_handling(true);
1464 
1465 	/* Setup traps as cpu_init() might #GP */
1466 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1467 		idt_setup_traps();
1468 
1469 	cpu_init();
1470 }
1471