1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2018, Intel Corporation. */
3  
4  #include "ice.h"
5  #include "ice_base.h"
6  #include "ice_flow.h"
7  #include "ice_lib.h"
8  #include "ice_fltr.h"
9  #include "ice_dcb_lib.h"
10  #include "ice_type.h"
11  #include "ice_vsi_vlan_ops.h"
12  
13  /**
14   * ice_vsi_type_str - maps VSI type enum to string equivalents
15   * @vsi_type: VSI type enum
16   */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17  const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18  {
19  	switch (vsi_type) {
20  	case ICE_VSI_PF:
21  		return "ICE_VSI_PF";
22  	case ICE_VSI_VF:
23  		return "ICE_VSI_VF";
24  	case ICE_VSI_SF:
25  		return "ICE_VSI_SF";
26  	case ICE_VSI_CTRL:
27  		return "ICE_VSI_CTRL";
28  	case ICE_VSI_CHNL:
29  		return "ICE_VSI_CHNL";
30  	case ICE_VSI_LB:
31  		return "ICE_VSI_LB";
32  	default:
33  		return "unknown";
34  	}
35  }
36  
37  /**
38   * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39   * @vsi: the VSI being configured
40   * @ena: start or stop the Rx rings
41   *
42   * First enable/disable all of the Rx rings, flush any remaining writes, and
43   * then verify that they have all been enabled/disabled successfully. This will
44   * let all of the register writes complete when enabling/disabling the Rx rings
45   * before waiting for the change in hardware to complete.
46   */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47  static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48  {
49  	int ret = 0;
50  	u16 i;
51  
52  	ice_for_each_rxq(vsi, i)
53  		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54  
55  	ice_flush(&vsi->back->hw);
56  
57  	ice_for_each_rxq(vsi, i) {
58  		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59  		if (ret)
60  			break;
61  	}
62  
63  	return ret;
64  }
65  
66  /**
67   * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68   * @vsi: VSI pointer
69   *
70   * On error: returns error code (negative)
71   * On success: returns 0
72   */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73  static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74  {
75  	struct ice_pf *pf = vsi->back;
76  	struct device *dev;
77  
78  	dev = ice_pf_to_dev(pf);
79  	if (vsi->type == ICE_VSI_CHNL)
80  		return 0;
81  
82  	/* allocate memory for both Tx and Rx ring pointers */
83  	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84  				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85  	if (!vsi->tx_rings)
86  		return -ENOMEM;
87  
88  	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89  				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90  	if (!vsi->rx_rings)
91  		goto err_rings;
92  
93  	/* txq_map needs to have enough space to track both Tx (stack) rings
94  	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95  	 * so use num_possible_cpus() as we want to always provide XDP ring
96  	 * per CPU, regardless of queue count settings from user that might
97  	 * have come from ethtool's set_channels() callback;
98  	 */
99  	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100  				    sizeof(*vsi->txq_map), GFP_KERNEL);
101  
102  	if (!vsi->txq_map)
103  		goto err_txq_map;
104  
105  	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106  				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107  	if (!vsi->rxq_map)
108  		goto err_rxq_map;
109  
110  	/* There is no need to allocate q_vectors for a loopback VSI. */
111  	if (vsi->type == ICE_VSI_LB)
112  		return 0;
113  
114  	/* allocate memory for q_vector pointers */
115  	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116  				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117  	if (!vsi->q_vectors)
118  		goto err_vectors;
119  
120  	return 0;
121  
122  err_vectors:
123  	devm_kfree(dev, vsi->rxq_map);
124  err_rxq_map:
125  	devm_kfree(dev, vsi->txq_map);
126  err_txq_map:
127  	devm_kfree(dev, vsi->rx_rings);
128  err_rings:
129  	devm_kfree(dev, vsi->tx_rings);
130  	return -ENOMEM;
131  }
132  
133  /**
134   * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135   * @vsi: the VSI being configured
136   */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137  static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138  {
139  	switch (vsi->type) {
140  	case ICE_VSI_PF:
141  	case ICE_VSI_SF:
142  	case ICE_VSI_CTRL:
143  	case ICE_VSI_LB:
144  		/* a user could change the values of num_[tr]x_desc using
145  		 * ethtool -G so we should keep those values instead of
146  		 * overwriting them with the defaults.
147  		 */
148  		if (!vsi->num_rx_desc)
149  			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150  		if (!vsi->num_tx_desc)
151  			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152  		break;
153  	default:
154  		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155  			vsi->type);
156  		break;
157  	}
158  }
159  
160  /**
161   * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162   * @vsi: the VSI being configured
163   *
164   * Return 0 on success and a negative value on error
165   */
ice_vsi_set_num_qs(struct ice_vsi * vsi)166  static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167  {
168  	enum ice_vsi_type vsi_type = vsi->type;
169  	struct ice_pf *pf = vsi->back;
170  	struct ice_vf *vf = vsi->vf;
171  
172  	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173  		return;
174  
175  	switch (vsi_type) {
176  	case ICE_VSI_PF:
177  		if (vsi->req_txq) {
178  			vsi->alloc_txq = vsi->req_txq;
179  			vsi->num_txq = vsi->req_txq;
180  		} else {
181  			vsi->alloc_txq = min3(pf->num_lan_msix,
182  					      ice_get_avail_txq_count(pf),
183  					      (u16)num_online_cpus());
184  		}
185  
186  		pf->num_lan_tx = vsi->alloc_txq;
187  
188  		/* only 1 Rx queue unless RSS is enabled */
189  		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190  			vsi->alloc_rxq = 1;
191  		} else {
192  			if (vsi->req_rxq) {
193  				vsi->alloc_rxq = vsi->req_rxq;
194  				vsi->num_rxq = vsi->req_rxq;
195  			} else {
196  				vsi->alloc_rxq = min3(pf->num_lan_msix,
197  						      ice_get_avail_rxq_count(pf),
198  						      (u16)num_online_cpus());
199  			}
200  		}
201  
202  		pf->num_lan_rx = vsi->alloc_rxq;
203  
204  		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205  					   max_t(int, vsi->alloc_rxq,
206  						 vsi->alloc_txq));
207  		break;
208  	case ICE_VSI_SF:
209  		vsi->alloc_txq = 1;
210  		vsi->alloc_rxq = 1;
211  		vsi->num_q_vectors = 1;
212  		vsi->irq_dyn_alloc = true;
213  		break;
214  	case ICE_VSI_VF:
215  		if (vf->num_req_qs)
216  			vf->num_vf_qs = vf->num_req_qs;
217  		vsi->alloc_txq = vf->num_vf_qs;
218  		vsi->alloc_rxq = vf->num_vf_qs;
219  		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
220  		 * data queue interrupts). Since vsi->num_q_vectors is number
221  		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
222  		 * original vector count
223  		 */
224  		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
225  		break;
226  	case ICE_VSI_CTRL:
227  		vsi->alloc_txq = 1;
228  		vsi->alloc_rxq = 1;
229  		vsi->num_q_vectors = 1;
230  		break;
231  	case ICE_VSI_CHNL:
232  		vsi->alloc_txq = 0;
233  		vsi->alloc_rxq = 0;
234  		break;
235  	case ICE_VSI_LB:
236  		vsi->alloc_txq = 1;
237  		vsi->alloc_rxq = 1;
238  		break;
239  	default:
240  		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
241  		break;
242  	}
243  
244  	ice_vsi_set_num_desc(vsi);
245  }
246  
247  /**
248   * ice_get_free_slot - get the next non-NULL location index in array
249   * @array: array to search
250   * @size: size of the array
251   * @curr: last known occupied index to be used as a search hint
252   *
253   * void * is being used to keep the functionality generic. This lets us use this
254   * function on any array of pointers.
255   */
ice_get_free_slot(void * array,int size,int curr)256  static int ice_get_free_slot(void *array, int size, int curr)
257  {
258  	int **tmp_array = (int **)array;
259  	int next;
260  
261  	if (curr < (size - 1) && !tmp_array[curr + 1]) {
262  		next = curr + 1;
263  	} else {
264  		int i = 0;
265  
266  		while ((i < size) && (tmp_array[i]))
267  			i++;
268  		if (i == size)
269  			next = ICE_NO_VSI;
270  		else
271  			next = i;
272  	}
273  	return next;
274  }
275  
276  /**
277   * ice_vsi_delete_from_hw - delete a VSI from the switch
278   * @vsi: pointer to VSI being removed
279   */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)280  static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
281  {
282  	struct ice_pf *pf = vsi->back;
283  	struct ice_vsi_ctx *ctxt;
284  	int status;
285  
286  	ice_fltr_remove_all(vsi);
287  	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
288  	if (!ctxt)
289  		return;
290  
291  	if (vsi->type == ICE_VSI_VF)
292  		ctxt->vf_num = vsi->vf->vf_id;
293  	ctxt->vsi_num = vsi->vsi_num;
294  
295  	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
296  
297  	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
298  	if (status)
299  		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
300  			vsi->vsi_num, status);
301  
302  	kfree(ctxt);
303  }
304  
305  /**
306   * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
307   * @vsi: pointer to VSI being cleared
308   */
ice_vsi_free_arrays(struct ice_vsi * vsi)309  static void ice_vsi_free_arrays(struct ice_vsi *vsi)
310  {
311  	struct ice_pf *pf = vsi->back;
312  	struct device *dev;
313  
314  	dev = ice_pf_to_dev(pf);
315  
316  	/* free the ring and vector containers */
317  	devm_kfree(dev, vsi->q_vectors);
318  	vsi->q_vectors = NULL;
319  	devm_kfree(dev, vsi->tx_rings);
320  	vsi->tx_rings = NULL;
321  	devm_kfree(dev, vsi->rx_rings);
322  	vsi->rx_rings = NULL;
323  	devm_kfree(dev, vsi->txq_map);
324  	vsi->txq_map = NULL;
325  	devm_kfree(dev, vsi->rxq_map);
326  	vsi->rxq_map = NULL;
327  }
328  
329  /**
330   * ice_vsi_free_stats - Free the ring statistics structures
331   * @vsi: VSI pointer
332   */
ice_vsi_free_stats(struct ice_vsi * vsi)333  static void ice_vsi_free_stats(struct ice_vsi *vsi)
334  {
335  	struct ice_vsi_stats *vsi_stat;
336  	struct ice_pf *pf = vsi->back;
337  	int i;
338  
339  	if (vsi->type == ICE_VSI_CHNL)
340  		return;
341  	if (!pf->vsi_stats)
342  		return;
343  
344  	vsi_stat = pf->vsi_stats[vsi->idx];
345  	if (!vsi_stat)
346  		return;
347  
348  	ice_for_each_alloc_txq(vsi, i) {
349  		if (vsi_stat->tx_ring_stats[i]) {
350  			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
351  			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
352  		}
353  	}
354  
355  	ice_for_each_alloc_rxq(vsi, i) {
356  		if (vsi_stat->rx_ring_stats[i]) {
357  			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
358  			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
359  		}
360  	}
361  
362  	kfree(vsi_stat->tx_ring_stats);
363  	kfree(vsi_stat->rx_ring_stats);
364  	kfree(vsi_stat);
365  	pf->vsi_stats[vsi->idx] = NULL;
366  }
367  
368  /**
369   * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
370   * @vsi: VSI which is having stats allocated
371   */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)372  static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
373  {
374  	struct ice_ring_stats **tx_ring_stats;
375  	struct ice_ring_stats **rx_ring_stats;
376  	struct ice_vsi_stats *vsi_stats;
377  	struct ice_pf *pf = vsi->back;
378  	u16 i;
379  
380  	vsi_stats = pf->vsi_stats[vsi->idx];
381  	tx_ring_stats = vsi_stats->tx_ring_stats;
382  	rx_ring_stats = vsi_stats->rx_ring_stats;
383  
384  	/* Allocate Tx ring stats */
385  	ice_for_each_alloc_txq(vsi, i) {
386  		struct ice_ring_stats *ring_stats;
387  		struct ice_tx_ring *ring;
388  
389  		ring = vsi->tx_rings[i];
390  		ring_stats = tx_ring_stats[i];
391  
392  		if (!ring_stats) {
393  			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
394  			if (!ring_stats)
395  				goto err_out;
396  
397  			WRITE_ONCE(tx_ring_stats[i], ring_stats);
398  		}
399  
400  		ring->ring_stats = ring_stats;
401  	}
402  
403  	/* Allocate Rx ring stats */
404  	ice_for_each_alloc_rxq(vsi, i) {
405  		struct ice_ring_stats *ring_stats;
406  		struct ice_rx_ring *ring;
407  
408  		ring = vsi->rx_rings[i];
409  		ring_stats = rx_ring_stats[i];
410  
411  		if (!ring_stats) {
412  			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
413  			if (!ring_stats)
414  				goto err_out;
415  
416  			WRITE_ONCE(rx_ring_stats[i], ring_stats);
417  		}
418  
419  		ring->ring_stats = ring_stats;
420  	}
421  
422  	return 0;
423  
424  err_out:
425  	ice_vsi_free_stats(vsi);
426  	return -ENOMEM;
427  }
428  
429  /**
430   * ice_vsi_free - clean up and deallocate the provided VSI
431   * @vsi: pointer to VSI being cleared
432   *
433   * This deallocates the VSI's queue resources, removes it from the PF's
434   * VSI array if necessary, and deallocates the VSI
435   */
ice_vsi_free(struct ice_vsi * vsi)436  void ice_vsi_free(struct ice_vsi *vsi)
437  {
438  	struct ice_pf *pf = NULL;
439  	struct device *dev;
440  
441  	if (!vsi || !vsi->back)
442  		return;
443  
444  	pf = vsi->back;
445  	dev = ice_pf_to_dev(pf);
446  
447  	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
448  		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
449  		return;
450  	}
451  
452  	mutex_lock(&pf->sw_mutex);
453  	/* updates the PF for this cleared VSI */
454  
455  	pf->vsi[vsi->idx] = NULL;
456  	pf->next_vsi = vsi->idx;
457  
458  	ice_vsi_free_stats(vsi);
459  	ice_vsi_free_arrays(vsi);
460  	mutex_destroy(&vsi->xdp_state_lock);
461  	mutex_unlock(&pf->sw_mutex);
462  	devm_kfree(dev, vsi);
463  }
464  
ice_vsi_delete(struct ice_vsi * vsi)465  void ice_vsi_delete(struct ice_vsi *vsi)
466  {
467  	ice_vsi_delete_from_hw(vsi);
468  	ice_vsi_free(vsi);
469  }
470  
471  /**
472   * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
473   * @irq: interrupt number
474   * @data: pointer to a q_vector
475   */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)476  static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
477  {
478  	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
479  
480  	if (!q_vector->tx.tx_ring)
481  		return IRQ_HANDLED;
482  
483  #define FDIR_RX_DESC_CLEAN_BUDGET 64
484  	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
485  	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
486  
487  	return IRQ_HANDLED;
488  }
489  
490  /**
491   * ice_msix_clean_rings - MSIX mode Interrupt Handler
492   * @irq: interrupt number
493   * @data: pointer to a q_vector
494   */
ice_msix_clean_rings(int __always_unused irq,void * data)495  static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
496  {
497  	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
498  
499  	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
500  		return IRQ_HANDLED;
501  
502  	q_vector->total_events++;
503  
504  	napi_schedule(&q_vector->napi);
505  
506  	return IRQ_HANDLED;
507  }
508  
509  /**
510   * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
511   * @vsi: VSI pointer
512   */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)513  static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
514  {
515  	struct ice_vsi_stats *vsi_stat;
516  	struct ice_pf *pf = vsi->back;
517  
518  	if (vsi->type == ICE_VSI_CHNL)
519  		return 0;
520  	if (!pf->vsi_stats)
521  		return -ENOENT;
522  
523  	if (pf->vsi_stats[vsi->idx])
524  	/* realloc will happen in rebuild path */
525  		return 0;
526  
527  	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
528  	if (!vsi_stat)
529  		return -ENOMEM;
530  
531  	vsi_stat->tx_ring_stats =
532  		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
533  			GFP_KERNEL);
534  	if (!vsi_stat->tx_ring_stats)
535  		goto err_alloc_tx;
536  
537  	vsi_stat->rx_ring_stats =
538  		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
539  			GFP_KERNEL);
540  	if (!vsi_stat->rx_ring_stats)
541  		goto err_alloc_rx;
542  
543  	pf->vsi_stats[vsi->idx] = vsi_stat;
544  
545  	return 0;
546  
547  err_alloc_rx:
548  	kfree(vsi_stat->rx_ring_stats);
549  err_alloc_tx:
550  	kfree(vsi_stat->tx_ring_stats);
551  	kfree(vsi_stat);
552  	pf->vsi_stats[vsi->idx] = NULL;
553  	return -ENOMEM;
554  }
555  
556  /**
557   * ice_vsi_alloc_def - set default values for already allocated VSI
558   * @vsi: ptr to VSI
559   * @ch: ptr to channel
560   */
561  static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)562  ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
563  {
564  	if (vsi->type != ICE_VSI_CHNL) {
565  		ice_vsi_set_num_qs(vsi);
566  		if (ice_vsi_alloc_arrays(vsi))
567  			return -ENOMEM;
568  	}
569  
570  	switch (vsi->type) {
571  	case ICE_VSI_PF:
572  	case ICE_VSI_SF:
573  		/* Setup default MSIX irq handler for VSI */
574  		vsi->irq_handler = ice_msix_clean_rings;
575  		break;
576  	case ICE_VSI_CTRL:
577  		/* Setup ctrl VSI MSIX irq handler */
578  		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
579  		break;
580  	case ICE_VSI_CHNL:
581  		if (!ch)
582  			return -EINVAL;
583  
584  		vsi->num_rxq = ch->num_rxq;
585  		vsi->num_txq = ch->num_txq;
586  		vsi->next_base_q = ch->base_q;
587  		break;
588  	case ICE_VSI_VF:
589  	case ICE_VSI_LB:
590  		break;
591  	default:
592  		ice_vsi_free_arrays(vsi);
593  		return -EINVAL;
594  	}
595  
596  	return 0;
597  }
598  
599  /**
600   * ice_vsi_alloc - Allocates the next available struct VSI in the PF
601   * @pf: board private structure
602   *
603   * Reserves a VSI index from the PF and allocates an empty VSI structure
604   * without a type. The VSI structure must later be initialized by calling
605   * ice_vsi_cfg().
606   *
607   * returns a pointer to a VSI on success, NULL on failure.
608   */
ice_vsi_alloc(struct ice_pf * pf)609  struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
610  {
611  	struct device *dev = ice_pf_to_dev(pf);
612  	struct ice_vsi *vsi = NULL;
613  
614  	/* Need to protect the allocation of the VSIs at the PF level */
615  	mutex_lock(&pf->sw_mutex);
616  
617  	/* If we have already allocated our maximum number of VSIs,
618  	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
619  	 * is available to be populated
620  	 */
621  	if (pf->next_vsi == ICE_NO_VSI) {
622  		dev_dbg(dev, "out of VSI slots!\n");
623  		goto unlock_pf;
624  	}
625  
626  	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
627  	if (!vsi)
628  		goto unlock_pf;
629  
630  	vsi->back = pf;
631  	set_bit(ICE_VSI_DOWN, vsi->state);
632  
633  	/* fill slot and make note of the index */
634  	vsi->idx = pf->next_vsi;
635  	pf->vsi[pf->next_vsi] = vsi;
636  
637  	/* prepare pf->next_vsi for next use */
638  	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
639  					 pf->next_vsi);
640  
641  	mutex_init(&vsi->xdp_state_lock);
642  
643  unlock_pf:
644  	mutex_unlock(&pf->sw_mutex);
645  	return vsi;
646  }
647  
648  /**
649   * ice_alloc_fd_res - Allocate FD resource for a VSI
650   * @vsi: pointer to the ice_vsi
651   *
652   * This allocates the FD resources
653   *
654   * Returns 0 on success, -EPERM on no-op or -EIO on failure
655   */
ice_alloc_fd_res(struct ice_vsi * vsi)656  static int ice_alloc_fd_res(struct ice_vsi *vsi)
657  {
658  	struct ice_pf *pf = vsi->back;
659  	u32 g_val, b_val;
660  
661  	/* Flow Director filters are only allocated/assigned to the PF VSI or
662  	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
663  	 * add/delete filters so resources are not allocated to it
664  	 */
665  	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
666  		return -EPERM;
667  
668  	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
669  	      vsi->type == ICE_VSI_CHNL))
670  		return -EPERM;
671  
672  	/* FD filters from guaranteed pool per VSI */
673  	g_val = pf->hw.func_caps.fd_fltr_guar;
674  	if (!g_val)
675  		return -EPERM;
676  
677  	/* FD filters from best effort pool */
678  	b_val = pf->hw.func_caps.fd_fltr_best_effort;
679  	if (!b_val)
680  		return -EPERM;
681  
682  	/* PF main VSI gets only 64 FD resources from guaranteed pool
683  	 * when ADQ is configured.
684  	 */
685  #define ICE_PF_VSI_GFLTR	64
686  
687  	/* determine FD filter resources per VSI from shared(best effort) and
688  	 * dedicated pool
689  	 */
690  	if (vsi->type == ICE_VSI_PF) {
691  		vsi->num_gfltr = g_val;
692  		/* if MQPRIO is configured, main VSI doesn't get all FD
693  		 * resources from guaranteed pool. PF VSI gets 64 FD resources
694  		 */
695  		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
696  			if (g_val < ICE_PF_VSI_GFLTR)
697  				return -EPERM;
698  			/* allow bare minimum entries for PF VSI */
699  			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
700  		}
701  
702  		/* each VSI gets same "best_effort" quota */
703  		vsi->num_bfltr = b_val;
704  	} else if (vsi->type == ICE_VSI_VF) {
705  		vsi->num_gfltr = 0;
706  
707  		/* each VSI gets same "best_effort" quota */
708  		vsi->num_bfltr = b_val;
709  	} else {
710  		struct ice_vsi *main_vsi;
711  		int numtc;
712  
713  		main_vsi = ice_get_main_vsi(pf);
714  		if (!main_vsi)
715  			return -EPERM;
716  
717  		if (!main_vsi->all_numtc)
718  			return -EINVAL;
719  
720  		/* figure out ADQ numtc */
721  		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
722  
723  		/* only one TC but still asking resources for channels,
724  		 * invalid config
725  		 */
726  		if (numtc < ICE_CHNL_START_TC)
727  			return -EPERM;
728  
729  		g_val -= ICE_PF_VSI_GFLTR;
730  		/* channel VSIs gets equal share from guaranteed pool */
731  		vsi->num_gfltr = g_val / numtc;
732  
733  		/* each VSI gets same "best_effort" quota */
734  		vsi->num_bfltr = b_val;
735  	}
736  
737  	return 0;
738  }
739  
740  /**
741   * ice_vsi_get_qs - Assign queues from PF to VSI
742   * @vsi: the VSI to assign queues to
743   *
744   * Returns 0 on success and a negative value on error
745   */
ice_vsi_get_qs(struct ice_vsi * vsi)746  static int ice_vsi_get_qs(struct ice_vsi *vsi)
747  {
748  	struct ice_pf *pf = vsi->back;
749  	struct ice_qs_cfg tx_qs_cfg = {
750  		.qs_mutex = &pf->avail_q_mutex,
751  		.pf_map = pf->avail_txqs,
752  		.pf_map_size = pf->max_pf_txqs,
753  		.q_count = vsi->alloc_txq,
754  		.scatter_count = ICE_MAX_SCATTER_TXQS,
755  		.vsi_map = vsi->txq_map,
756  		.vsi_map_offset = 0,
757  		.mapping_mode = ICE_VSI_MAP_CONTIG
758  	};
759  	struct ice_qs_cfg rx_qs_cfg = {
760  		.qs_mutex = &pf->avail_q_mutex,
761  		.pf_map = pf->avail_rxqs,
762  		.pf_map_size = pf->max_pf_rxqs,
763  		.q_count = vsi->alloc_rxq,
764  		.scatter_count = ICE_MAX_SCATTER_RXQS,
765  		.vsi_map = vsi->rxq_map,
766  		.vsi_map_offset = 0,
767  		.mapping_mode = ICE_VSI_MAP_CONTIG
768  	};
769  	int ret;
770  
771  	if (vsi->type == ICE_VSI_CHNL)
772  		return 0;
773  
774  	ret = __ice_vsi_get_qs(&tx_qs_cfg);
775  	if (ret)
776  		return ret;
777  	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
778  
779  	ret = __ice_vsi_get_qs(&rx_qs_cfg);
780  	if (ret)
781  		return ret;
782  	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
783  
784  	return 0;
785  }
786  
787  /**
788   * ice_vsi_put_qs - Release queues from VSI to PF
789   * @vsi: the VSI that is going to release queues
790   */
ice_vsi_put_qs(struct ice_vsi * vsi)791  static void ice_vsi_put_qs(struct ice_vsi *vsi)
792  {
793  	struct ice_pf *pf = vsi->back;
794  	int i;
795  
796  	mutex_lock(&pf->avail_q_mutex);
797  
798  	ice_for_each_alloc_txq(vsi, i) {
799  		clear_bit(vsi->txq_map[i], pf->avail_txqs);
800  		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
801  	}
802  
803  	ice_for_each_alloc_rxq(vsi, i) {
804  		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
805  		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
806  	}
807  
808  	mutex_unlock(&pf->avail_q_mutex);
809  }
810  
811  /**
812   * ice_is_safe_mode
813   * @pf: pointer to the PF struct
814   *
815   * returns true if driver is in safe mode, false otherwise
816   */
ice_is_safe_mode(struct ice_pf * pf)817  bool ice_is_safe_mode(struct ice_pf *pf)
818  {
819  	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
820  }
821  
822  /**
823   * ice_is_rdma_ena
824   * @pf: pointer to the PF struct
825   *
826   * returns true if RDMA is currently supported, false otherwise
827   */
ice_is_rdma_ena(struct ice_pf * pf)828  bool ice_is_rdma_ena(struct ice_pf *pf)
829  {
830  	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
831  }
832  
833  /**
834   * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
835   * @vsi: the VSI being cleaned up
836   *
837   * This function deletes RSS input set for all flows that were configured
838   * for this VSI
839   */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)840  static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
841  {
842  	struct ice_pf *pf = vsi->back;
843  	int status;
844  
845  	if (ice_is_safe_mode(pf))
846  		return;
847  
848  	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
849  	if (status)
850  		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
851  			vsi->vsi_num, status);
852  }
853  
854  /**
855   * ice_rss_clean - Delete RSS related VSI structures and configuration
856   * @vsi: the VSI being removed
857   */
ice_rss_clean(struct ice_vsi * vsi)858  static void ice_rss_clean(struct ice_vsi *vsi)
859  {
860  	struct ice_pf *pf = vsi->back;
861  	struct device *dev;
862  
863  	dev = ice_pf_to_dev(pf);
864  
865  	devm_kfree(dev, vsi->rss_hkey_user);
866  	devm_kfree(dev, vsi->rss_lut_user);
867  
868  	ice_vsi_clean_rss_flow_fld(vsi);
869  	/* remove RSS replay list */
870  	if (!ice_is_safe_mode(pf))
871  		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
872  }
873  
874  /**
875   * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
876   * @vsi: the VSI being configured
877   */
ice_vsi_set_rss_params(struct ice_vsi * vsi)878  static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
879  {
880  	struct ice_hw_common_caps *cap;
881  	struct ice_pf *pf = vsi->back;
882  	u16 max_rss_size;
883  
884  	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
885  		vsi->rss_size = 1;
886  		return;
887  	}
888  
889  	cap = &pf->hw.func_caps.common_cap;
890  	max_rss_size = BIT(cap->rss_table_entry_width);
891  	switch (vsi->type) {
892  	case ICE_VSI_CHNL:
893  	case ICE_VSI_PF:
894  		/* PF VSI will inherit RSS instance of PF */
895  		vsi->rss_table_size = (u16)cap->rss_table_size;
896  		if (vsi->type == ICE_VSI_CHNL)
897  			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
898  		else
899  			vsi->rss_size = min_t(u16, num_online_cpus(),
900  					      max_rss_size);
901  		vsi->rss_lut_type = ICE_LUT_PF;
902  		break;
903  	case ICE_VSI_SF:
904  		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
905  		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
906  		vsi->rss_lut_type = ICE_LUT_VSI;
907  		break;
908  	case ICE_VSI_VF:
909  		/* VF VSI will get a small RSS table.
910  		 * For VSI_LUT, LUT size should be set to 64 bytes.
911  		 */
912  		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
913  		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
914  		vsi->rss_lut_type = ICE_LUT_VSI;
915  		break;
916  	case ICE_VSI_LB:
917  		break;
918  	default:
919  		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
920  			ice_vsi_type_str(vsi->type));
921  		break;
922  	}
923  }
924  
925  /**
926   * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
927   * @hw: HW structure used to determine the VLAN mode of the device
928   * @ctxt: the VSI context being set
929   *
930   * This initializes a default VSI context for all sections except the Queues.
931   */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)932  static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
933  {
934  	u32 table = 0;
935  
936  	memset(&ctxt->info, 0, sizeof(ctxt->info));
937  	/* VSI's should be allocated from shared pool */
938  	ctxt->alloc_from_pool = true;
939  	/* Src pruning enabled by default */
940  	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
941  	/* Traffic from VSI can be sent to LAN */
942  	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
943  	/* allow all untagged/tagged packets by default on Tx */
944  	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
945  						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
946  	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
947  	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
948  	 *
949  	 * DVM - leave inner VLAN in packet by default
950  	 */
951  	if (ice_is_dvm_ena(hw)) {
952  		ctxt->info.inner_vlan_flags |=
953  			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
954  				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
955  		ctxt->info.outer_vlan_flags =
956  			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
957  				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
958  		ctxt->info.outer_vlan_flags |=
959  			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
960  				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
961  		ctxt->info.outer_vlan_flags |=
962  			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
963  				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
964  	}
965  	/* Have 1:1 UP mapping for both ingress/egress tables */
966  	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
967  	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
968  	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
969  	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
970  	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
971  	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
972  	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
973  	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
974  	ctxt->info.ingress_table = cpu_to_le32(table);
975  	ctxt->info.egress_table = cpu_to_le32(table);
976  	/* Have 1:1 UP mapping for outer to inner UP table */
977  	ctxt->info.outer_up_table = cpu_to_le32(table);
978  	/* No Outer tag support outer_tag_flags remains to zero */
979  }
980  
981  /**
982   * ice_vsi_setup_q_map - Setup a VSI queue map
983   * @vsi: the VSI being configured
984   * @ctxt: VSI context structure
985   */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)986  static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
987  {
988  	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
989  	u16 num_txq_per_tc, num_rxq_per_tc;
990  	u16 qcount_tx = vsi->alloc_txq;
991  	u16 qcount_rx = vsi->alloc_rxq;
992  	u8 netdev_tc = 0;
993  	int i;
994  
995  	if (!vsi->tc_cfg.numtc) {
996  		/* at least TC0 should be enabled by default */
997  		vsi->tc_cfg.numtc = 1;
998  		vsi->tc_cfg.ena_tc = 1;
999  	}
1000  
1001  	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1002  	if (!num_rxq_per_tc)
1003  		num_rxq_per_tc = 1;
1004  	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1005  	if (!num_txq_per_tc)
1006  		num_txq_per_tc = 1;
1007  
1008  	/* find the (rounded up) power-of-2 of qcount */
1009  	pow = (u16)order_base_2(num_rxq_per_tc);
1010  
1011  	/* TC mapping is a function of the number of Rx queues assigned to the
1012  	 * VSI for each traffic class and the offset of these queues.
1013  	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1014  	 * queues allocated to TC0. No:of queues is a power-of-2.
1015  	 *
1016  	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1017  	 * queue, this way, traffic for the given TC will be sent to the default
1018  	 * queue.
1019  	 *
1020  	 * Setup number and offset of Rx queues for all TCs for the VSI
1021  	 */
1022  	ice_for_each_traffic_class(i) {
1023  		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1024  			/* TC is not enabled */
1025  			vsi->tc_cfg.tc_info[i].qoffset = 0;
1026  			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1027  			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1028  			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1029  			ctxt->info.tc_mapping[i] = 0;
1030  			continue;
1031  		}
1032  
1033  		/* TC is enabled */
1034  		vsi->tc_cfg.tc_info[i].qoffset = offset;
1035  		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1036  		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1037  		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1038  
1039  		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1040  		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1041  		offset += num_rxq_per_tc;
1042  		tx_count += num_txq_per_tc;
1043  		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1044  	}
1045  
1046  	/* if offset is non-zero, means it is calculated correctly based on
1047  	 * enabled TCs for a given VSI otherwise qcount_rx will always
1048  	 * be correct and non-zero because it is based off - VSI's
1049  	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1050  	 * at least 1)
1051  	 */
1052  	if (offset)
1053  		rx_count = offset;
1054  	else
1055  		rx_count = num_rxq_per_tc;
1056  
1057  	if (rx_count > vsi->alloc_rxq) {
1058  		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1059  			rx_count, vsi->alloc_rxq);
1060  		return -EINVAL;
1061  	}
1062  
1063  	if (tx_count > vsi->alloc_txq) {
1064  		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1065  			tx_count, vsi->alloc_txq);
1066  		return -EINVAL;
1067  	}
1068  
1069  	vsi->num_txq = tx_count;
1070  	vsi->num_rxq = rx_count;
1071  
1072  	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1073  		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1074  		/* since there is a chance that num_rxq could have been changed
1075  		 * in the above for loop, make num_txq equal to num_rxq.
1076  		 */
1077  		vsi->num_txq = vsi->num_rxq;
1078  	}
1079  
1080  	/* Rx queue mapping */
1081  	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1082  	/* q_mapping buffer holds the info for the first queue allocated for
1083  	 * this VSI in the PF space and also the number of queues associated
1084  	 * with this VSI.
1085  	 */
1086  	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1087  	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1088  
1089  	return 0;
1090  }
1091  
1092  /**
1093   * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1094   * @ctxt: the VSI context being set
1095   * @vsi: the VSI being configured
1096   */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1097  static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1098  {
1099  	u8 dflt_q_group, dflt_q_prio;
1100  	u16 dflt_q, report_q, val;
1101  
1102  	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1103  	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1104  		return;
1105  
1106  	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1107  	ctxt->info.valid_sections |= cpu_to_le16(val);
1108  	dflt_q = 0;
1109  	dflt_q_group = 0;
1110  	report_q = 0;
1111  	dflt_q_prio = 0;
1112  
1113  	/* enable flow director filtering/programming */
1114  	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1115  	ctxt->info.fd_options = cpu_to_le16(val);
1116  	/* max of allocated flow director filters */
1117  	ctxt->info.max_fd_fltr_dedicated =
1118  			cpu_to_le16(vsi->num_gfltr);
1119  	/* max of shared flow director filters any VSI may program */
1120  	ctxt->info.max_fd_fltr_shared =
1121  			cpu_to_le16(vsi->num_bfltr);
1122  	/* default queue index within the VSI of the default FD */
1123  	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1124  	/* target queue or queue group to the FD filter */
1125  	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1126  	ctxt->info.fd_def_q = cpu_to_le16(val);
1127  	/* queue index on which FD filter completion is reported */
1128  	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1129  	/* priority of the default qindex action */
1130  	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1131  	ctxt->info.fd_report_opt = cpu_to_le16(val);
1132  }
1133  
1134  /**
1135   * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1136   * @ctxt: the VSI context being set
1137   * @vsi: the VSI being configured
1138   */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1139  static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1140  {
1141  	u8 lut_type, hash_type;
1142  	struct device *dev;
1143  	struct ice_pf *pf;
1144  
1145  	pf = vsi->back;
1146  	dev = ice_pf_to_dev(pf);
1147  
1148  	switch (vsi->type) {
1149  	case ICE_VSI_CHNL:
1150  	case ICE_VSI_PF:
1151  		/* PF VSI will inherit RSS instance of PF */
1152  		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1153  		break;
1154  	case ICE_VSI_VF:
1155  	case ICE_VSI_SF:
1156  		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1157  		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1158  		break;
1159  	default:
1160  		dev_dbg(dev, "Unsupported VSI type %s\n",
1161  			ice_vsi_type_str(vsi->type));
1162  		return;
1163  	}
1164  
1165  	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1166  	vsi->rss_hfunc = hash_type;
1167  
1168  	ctxt->info.q_opt_rss =
1169  		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1170  		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1171  }
1172  
1173  static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1174  ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1175  {
1176  	struct ice_pf *pf = vsi->back;
1177  	u16 qcount, qmap;
1178  	u8 offset = 0;
1179  	int pow;
1180  
1181  	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1182  
1183  	pow = order_base_2(qcount);
1184  	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1185  	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1186  
1187  	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1188  	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1189  	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1190  	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1191  }
1192  
1193  /**
1194   * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1195   * @vsi: VSI to check whether or not VLAN pruning is enabled.
1196   *
1197   * returns true if Rx VLAN pruning is enabled and false otherwise.
1198   */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1199  static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1200  {
1201  	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1202  }
1203  
1204  /**
1205   * ice_vsi_init - Create and initialize a VSI
1206   * @vsi: the VSI being configured
1207   * @vsi_flags: VSI configuration flags
1208   *
1209   * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1210   * reconfigure an existing context.
1211   *
1212   * This initializes a VSI context depending on the VSI type to be added and
1213   * passes it down to the add_vsi aq command to create a new VSI.
1214   */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1215  static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1216  {
1217  	struct ice_pf *pf = vsi->back;
1218  	struct ice_hw *hw = &pf->hw;
1219  	struct ice_vsi_ctx *ctxt;
1220  	struct device *dev;
1221  	int ret = 0;
1222  
1223  	dev = ice_pf_to_dev(pf);
1224  	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1225  	if (!ctxt)
1226  		return -ENOMEM;
1227  
1228  	switch (vsi->type) {
1229  	case ICE_VSI_CTRL:
1230  	case ICE_VSI_LB:
1231  	case ICE_VSI_PF:
1232  		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1233  		break;
1234  	case ICE_VSI_SF:
1235  	case ICE_VSI_CHNL:
1236  		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1237  		break;
1238  	case ICE_VSI_VF:
1239  		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1240  		/* VF number here is the absolute VF number (0-255) */
1241  		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1242  		break;
1243  	default:
1244  		ret = -ENODEV;
1245  		goto out;
1246  	}
1247  
1248  	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1249  	 * prune enabled
1250  	 */
1251  	if (vsi->type == ICE_VSI_CHNL) {
1252  		struct ice_vsi *main_vsi;
1253  
1254  		main_vsi = ice_get_main_vsi(pf);
1255  		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1256  			ctxt->info.sw_flags2 |=
1257  				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1258  		else
1259  			ctxt->info.sw_flags2 &=
1260  				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1261  	}
1262  
1263  	ice_set_dflt_vsi_ctx(hw, ctxt);
1264  	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1265  		ice_set_fd_vsi_ctx(ctxt, vsi);
1266  	/* if the switch is in VEB mode, allow VSI loopback */
1267  	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1268  		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1269  
1270  	/* Set LUT type and HASH type if RSS is enabled */
1271  	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1272  	    vsi->type != ICE_VSI_CTRL) {
1273  		ice_set_rss_vsi_ctx(ctxt, vsi);
1274  		/* if updating VSI context, make sure to set valid_section:
1275  		 * to indicate which section of VSI context being updated
1276  		 */
1277  		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1278  			ctxt->info.valid_sections |=
1279  				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1280  	}
1281  
1282  	ctxt->info.sw_id = vsi->port_info->sw_id;
1283  	if (vsi->type == ICE_VSI_CHNL) {
1284  		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1285  	} else {
1286  		ret = ice_vsi_setup_q_map(vsi, ctxt);
1287  		if (ret)
1288  			goto out;
1289  
1290  		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1291  			/* means VSI being updated */
1292  			/* must to indicate which section of VSI context are
1293  			 * being modified
1294  			 */
1295  			ctxt->info.valid_sections |=
1296  				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1297  	}
1298  
1299  	/* Allow control frames out of main VSI */
1300  	if (vsi->type == ICE_VSI_PF) {
1301  		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1302  		ctxt->info.valid_sections |=
1303  			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1304  	}
1305  
1306  	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1307  		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1308  		if (ret) {
1309  			dev_err(dev, "Add VSI failed, err %d\n", ret);
1310  			ret = -EIO;
1311  			goto out;
1312  		}
1313  	} else {
1314  		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1315  		if (ret) {
1316  			dev_err(dev, "Update VSI failed, err %d\n", ret);
1317  			ret = -EIO;
1318  			goto out;
1319  		}
1320  	}
1321  
1322  	/* keep context for update VSI operations */
1323  	vsi->info = ctxt->info;
1324  
1325  	/* record VSI number returned */
1326  	vsi->vsi_num = ctxt->vsi_num;
1327  
1328  out:
1329  	kfree(ctxt);
1330  	return ret;
1331  }
1332  
1333  /**
1334   * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1335   * @vsi: the VSI having rings deallocated
1336   */
ice_vsi_clear_rings(struct ice_vsi * vsi)1337  static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1338  {
1339  	int i;
1340  
1341  	/* Avoid stale references by clearing map from vector to ring */
1342  	if (vsi->q_vectors) {
1343  		ice_for_each_q_vector(vsi, i) {
1344  			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1345  
1346  			if (q_vector) {
1347  				q_vector->tx.tx_ring = NULL;
1348  				q_vector->rx.rx_ring = NULL;
1349  			}
1350  		}
1351  	}
1352  
1353  	if (vsi->tx_rings) {
1354  		ice_for_each_alloc_txq(vsi, i) {
1355  			if (vsi->tx_rings[i]) {
1356  				kfree_rcu(vsi->tx_rings[i], rcu);
1357  				WRITE_ONCE(vsi->tx_rings[i], NULL);
1358  			}
1359  		}
1360  	}
1361  	if (vsi->rx_rings) {
1362  		ice_for_each_alloc_rxq(vsi, i) {
1363  			if (vsi->rx_rings[i]) {
1364  				kfree_rcu(vsi->rx_rings[i], rcu);
1365  				WRITE_ONCE(vsi->rx_rings[i], NULL);
1366  			}
1367  		}
1368  	}
1369  }
1370  
1371  /**
1372   * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1373   * @vsi: VSI which is having rings allocated
1374   */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1375  static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1376  {
1377  	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1378  	struct ice_pf *pf = vsi->back;
1379  	struct device *dev;
1380  	u16 i;
1381  
1382  	dev = ice_pf_to_dev(pf);
1383  	/* Allocate Tx rings */
1384  	ice_for_each_alloc_txq(vsi, i) {
1385  		struct ice_tx_ring *ring;
1386  
1387  		/* allocate with kzalloc(), free with kfree_rcu() */
1388  		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1389  
1390  		if (!ring)
1391  			goto err_out;
1392  
1393  		ring->q_index = i;
1394  		ring->reg_idx = vsi->txq_map[i];
1395  		ring->vsi = vsi;
1396  		ring->tx_tstamps = &pf->ptp.port.tx;
1397  		ring->dev = dev;
1398  		ring->count = vsi->num_tx_desc;
1399  		ring->txq_teid = ICE_INVAL_TEID;
1400  		if (dvm_ena)
1401  			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1402  		else
1403  			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1404  		WRITE_ONCE(vsi->tx_rings[i], ring);
1405  	}
1406  
1407  	/* Allocate Rx rings */
1408  	ice_for_each_alloc_rxq(vsi, i) {
1409  		struct ice_rx_ring *ring;
1410  
1411  		/* allocate with kzalloc(), free with kfree_rcu() */
1412  		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1413  		if (!ring)
1414  			goto err_out;
1415  
1416  		ring->q_index = i;
1417  		ring->reg_idx = vsi->rxq_map[i];
1418  		ring->vsi = vsi;
1419  		ring->netdev = vsi->netdev;
1420  		ring->dev = dev;
1421  		ring->count = vsi->num_rx_desc;
1422  		ring->cached_phctime = pf->ptp.cached_phc_time;
1423  		WRITE_ONCE(vsi->rx_rings[i], ring);
1424  	}
1425  
1426  	return 0;
1427  
1428  err_out:
1429  	ice_vsi_clear_rings(vsi);
1430  	return -ENOMEM;
1431  }
1432  
1433  /**
1434   * ice_vsi_manage_rss_lut - disable/enable RSS
1435   * @vsi: the VSI being changed
1436   * @ena: boolean value indicating if this is an enable or disable request
1437   *
1438   * In the event of disable request for RSS, this function will zero out RSS
1439   * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1440   * LUT.
1441   */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1442  void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1443  {
1444  	u8 *lut;
1445  
1446  	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1447  	if (!lut)
1448  		return;
1449  
1450  	if (ena) {
1451  		if (vsi->rss_lut_user)
1452  			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1453  		else
1454  			ice_fill_rss_lut(lut, vsi->rss_table_size,
1455  					 vsi->rss_size);
1456  	}
1457  
1458  	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1459  	kfree(lut);
1460  }
1461  
1462  /**
1463   * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1464   * @vsi: VSI to be configured
1465   * @disable: set to true to have FCS / CRC in the frame data
1466   */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1467  void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1468  {
1469  	int i;
1470  
1471  	ice_for_each_rxq(vsi, i)
1472  		if (disable)
1473  			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1474  		else
1475  			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1476  }
1477  
1478  /**
1479   * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1480   * @vsi: VSI to be configured
1481   */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1482  int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1483  {
1484  	struct ice_pf *pf = vsi->back;
1485  	struct device *dev;
1486  	u8 *lut, *key;
1487  	int err;
1488  
1489  	dev = ice_pf_to_dev(pf);
1490  	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1491  	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1492  		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1493  	} else {
1494  		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1495  
1496  		/* If orig_rss_size is valid and it is less than determined
1497  		 * main VSI's rss_size, update main VSI's rss_size to be
1498  		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1499  		 * RSS table gets programmed to be correct (whatever it was
1500  		 * to begin with (prior to setup-tc for ADQ config)
1501  		 */
1502  		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1503  		    vsi->orig_rss_size <= vsi->num_rxq) {
1504  			vsi->rss_size = vsi->orig_rss_size;
1505  			/* now orig_rss_size is used, reset it to zero */
1506  			vsi->orig_rss_size = 0;
1507  		}
1508  	}
1509  
1510  	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1511  	if (!lut)
1512  		return -ENOMEM;
1513  
1514  	if (vsi->rss_lut_user)
1515  		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1516  	else
1517  		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1518  
1519  	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1520  	if (err) {
1521  		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1522  		goto ice_vsi_cfg_rss_exit;
1523  	}
1524  
1525  	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1526  	if (!key) {
1527  		err = -ENOMEM;
1528  		goto ice_vsi_cfg_rss_exit;
1529  	}
1530  
1531  	if (vsi->rss_hkey_user)
1532  		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1533  	else
1534  		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1535  
1536  	err = ice_set_rss_key(vsi, key);
1537  	if (err)
1538  		dev_err(dev, "set_rss_key failed, error %d\n", err);
1539  
1540  	kfree(key);
1541  ice_vsi_cfg_rss_exit:
1542  	kfree(lut);
1543  	return err;
1544  }
1545  
1546  /**
1547   * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1548   * @vsi: VSI to be configured
1549   *
1550   * This function will only be called during the VF VSI setup. Upon successful
1551   * completion of package download, this function will configure default RSS
1552   * input sets for VF VSI.
1553   */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1554  static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1555  {
1556  	struct ice_pf *pf = vsi->back;
1557  	struct device *dev;
1558  	int status;
1559  
1560  	dev = ice_pf_to_dev(pf);
1561  	if (ice_is_safe_mode(pf)) {
1562  		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1563  			vsi->vsi_num);
1564  		return;
1565  	}
1566  
1567  	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1568  	if (status)
1569  		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1570  			vsi->vsi_num, status);
1571  }
1572  
1573  static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1574  	/* configure RSS for IPv4 with input set IP src/dst */
1575  	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1576  	/* configure RSS for IPv6 with input set IPv6 src/dst */
1577  	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1578  	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1579  	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1580  				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1581  	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1582  	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1583  				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1584  	/* configure RSS for sctp4 with input set IP src/dst - only support
1585  	 * RSS on SCTPv4 on outer headers (non-tunneled)
1586  	 */
1587  	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1588  		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1589  	/* configure RSS for gtpc4 with input set IPv4 src/dst */
1590  	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1591  		ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1592  	/* configure RSS for gtpc4t with input set IPv4 src/dst */
1593  	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1594  		ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1595  	/* configure RSS for gtpu4 with input set IPv4 src/dst */
1596  	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1597  		ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1598  	/* configure RSS for gtpu4e with input set IPv4 src/dst */
1599  	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1600  		ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1601  	/* configure RSS for gtpu4u with input set IPv4 src/dst */
1602  	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1603  		ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1604  	/* configure RSS for gtpu4d with input set IPv4 src/dst */
1605  	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1606  		ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1607  
1608  	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1609  	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1610  				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1611  	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1612  	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1613  				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1614  	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1615  	 * RSS on SCTPv6 on outer headers (non-tunneled)
1616  	 */
1617  	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1618  		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1619  	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1620  	{ICE_FLOW_SEG_HDR_ESP,
1621  		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1622  	/* configure RSS for gtpc6 with input set IPv6 src/dst */
1623  	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1624  		ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1625  	/* configure RSS for gtpc6t with input set IPv6 src/dst */
1626  	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1627  		ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1628  	/* configure RSS for gtpu6 with input set IPv6 src/dst */
1629  	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1630  		ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1631  	/* configure RSS for gtpu6e with input set IPv6 src/dst */
1632  	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1633  		ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1634  	/* configure RSS for gtpu6u with input set IPv6 src/dst */
1635  	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1636  		ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1637  	/* configure RSS for gtpu6d with input set IPv6 src/dst */
1638  	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1639  		ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1640  };
1641  
1642  /**
1643   * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1644   * @vsi: VSI to be configured
1645   *
1646   * This function will only be called after successful download package call
1647   * during initialization of PF. Since the downloaded package will erase the
1648   * RSS section, this function will configure RSS input sets for different
1649   * flow types. The last profile added has the highest priority, therefore 2
1650   * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1651   * (i.e. IPv4 src/dst TCP src/dst port).
1652   */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1653  static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1654  {
1655  	u16 vsi_num = vsi->vsi_num;
1656  	struct ice_pf *pf = vsi->back;
1657  	struct ice_hw *hw = &pf->hw;
1658  	struct device *dev;
1659  	int status;
1660  	u32 i;
1661  
1662  	dev = ice_pf_to_dev(pf);
1663  	if (ice_is_safe_mode(pf)) {
1664  		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1665  			vsi_num);
1666  		return;
1667  	}
1668  	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1669  		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1670  
1671  		status = ice_add_rss_cfg(hw, vsi, cfg);
1672  		if (status)
1673  			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1674  				cfg->addl_hdrs, cfg->hash_flds,
1675  				cfg->hdr_type, cfg->symm);
1676  	}
1677  }
1678  
1679  /**
1680   * ice_pf_state_is_nominal - checks the PF for nominal state
1681   * @pf: pointer to PF to check
1682   *
1683   * Check the PF's state for a collection of bits that would indicate
1684   * the PF is in a state that would inhibit normal operation for
1685   * driver functionality.
1686   *
1687   * Returns true if PF is in a nominal state, false otherwise
1688   */
ice_pf_state_is_nominal(struct ice_pf * pf)1689  bool ice_pf_state_is_nominal(struct ice_pf *pf)
1690  {
1691  	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1692  
1693  	if (!pf)
1694  		return false;
1695  
1696  	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1697  	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1698  		return false;
1699  
1700  	return true;
1701  }
1702  
1703  /**
1704   * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1705   * @vsi: the VSI to be updated
1706   */
ice_update_eth_stats(struct ice_vsi * vsi)1707  void ice_update_eth_stats(struct ice_vsi *vsi)
1708  {
1709  	struct ice_eth_stats *prev_es, *cur_es;
1710  	struct ice_hw *hw = &vsi->back->hw;
1711  	struct ice_pf *pf = vsi->back;
1712  	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1713  
1714  	prev_es = &vsi->eth_stats_prev;
1715  	cur_es = &vsi->eth_stats;
1716  
1717  	if (ice_is_reset_in_progress(pf->state))
1718  		vsi->stat_offsets_loaded = false;
1719  
1720  	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1721  			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1722  
1723  	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1724  			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1725  
1726  	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1727  			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1728  
1729  	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1730  			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1731  
1732  	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1733  			  &prev_es->rx_discards, &cur_es->rx_discards);
1734  
1735  	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1736  			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1737  
1738  	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1739  			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1740  
1741  	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1742  			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1743  
1744  	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1745  			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1746  
1747  	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1748  			  &prev_es->tx_errors, &cur_es->tx_errors);
1749  
1750  	vsi->stat_offsets_loaded = true;
1751  }
1752  
1753  /**
1754   * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1755   * @hw: HW pointer
1756   * @pf_q: index of the Rx queue in the PF's queue space
1757   * @rxdid: flexible descriptor RXDID
1758   * @prio: priority for the RXDID for this queue
1759   * @ena_ts: true to enable timestamp and false to disable timestamp
1760   */
1761  void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1762  ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1763  			bool ena_ts)
1764  {
1765  	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1766  
1767  	/* clear any previous values */
1768  	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1769  		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1770  		    QRXFLXP_CNTXT_TS_M);
1771  
1772  	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1773  	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1774  
1775  	if (ena_ts)
1776  		/* Enable TimeSync on this queue */
1777  		regval |= QRXFLXP_CNTXT_TS_M;
1778  
1779  	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1780  }
1781  
1782  /**
1783   * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1784   * @intrl: interrupt rate limit in usecs
1785   * @gran: interrupt rate limit granularity in usecs
1786   *
1787   * This function converts a decimal interrupt rate limit in usecs to the format
1788   * expected by firmware.
1789   */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1790  static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1791  {
1792  	u32 val = intrl / gran;
1793  
1794  	if (val)
1795  		return val | GLINT_RATE_INTRL_ENA_M;
1796  	return 0;
1797  }
1798  
1799  /**
1800   * ice_write_intrl - write throttle rate limit to interrupt specific register
1801   * @q_vector: pointer to interrupt specific structure
1802   * @intrl: throttle rate limit in microseconds to write
1803   */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1804  void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1805  {
1806  	struct ice_hw *hw = &q_vector->vsi->back->hw;
1807  
1808  	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1809  	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1810  }
1811  
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1812  static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1813  {
1814  	switch (rc->type) {
1815  	case ICE_RX_CONTAINER:
1816  		if (rc->rx_ring)
1817  			return rc->rx_ring->q_vector;
1818  		break;
1819  	case ICE_TX_CONTAINER:
1820  		if (rc->tx_ring)
1821  			return rc->tx_ring->q_vector;
1822  		break;
1823  	default:
1824  		break;
1825  	}
1826  
1827  	return NULL;
1828  }
1829  
1830  /**
1831   * __ice_write_itr - write throttle rate to register
1832   * @q_vector: pointer to interrupt data structure
1833   * @rc: pointer to ring container
1834   * @itr: throttle rate in microseconds to write
1835   */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1836  static void __ice_write_itr(struct ice_q_vector *q_vector,
1837  			    struct ice_ring_container *rc, u16 itr)
1838  {
1839  	struct ice_hw *hw = &q_vector->vsi->back->hw;
1840  
1841  	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1842  	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1843  }
1844  
1845  /**
1846   * ice_write_itr - write throttle rate to queue specific register
1847   * @rc: pointer to ring container
1848   * @itr: throttle rate in microseconds to write
1849   */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1850  void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1851  {
1852  	struct ice_q_vector *q_vector;
1853  
1854  	q_vector = ice_pull_qvec_from_rc(rc);
1855  	if (!q_vector)
1856  		return;
1857  
1858  	__ice_write_itr(q_vector, rc, itr);
1859  }
1860  
1861  /**
1862   * ice_set_q_vector_intrl - set up interrupt rate limiting
1863   * @q_vector: the vector to be configured
1864   *
1865   * Interrupt rate limiting is local to the vector, not per-queue so we must
1866   * detect if either ring container has dynamic moderation enabled to decide
1867   * what to set the interrupt rate limit to via INTRL settings. In the case that
1868   * dynamic moderation is disabled on both, write the value with the cached
1869   * setting to make sure INTRL register matches the user visible value.
1870   */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1871  void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1872  {
1873  	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1874  		/* in the case of dynamic enabled, cap each vector to no more
1875  		 * than (4 us) 250,000 ints/sec, which allows low latency
1876  		 * but still less than 500,000 interrupts per second, which
1877  		 * reduces CPU a bit in the case of the lowest latency
1878  		 * setting. The 4 here is a value in microseconds.
1879  		 */
1880  		ice_write_intrl(q_vector, 4);
1881  	} else {
1882  		ice_write_intrl(q_vector, q_vector->intrl);
1883  	}
1884  }
1885  
1886  /**
1887   * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1888   * @vsi: the VSI being configured
1889   *
1890   * This configures MSIX mode interrupts for the PF VSI, and should not be used
1891   * for the VF VSI.
1892   */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1893  void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1894  {
1895  	struct ice_pf *pf = vsi->back;
1896  	struct ice_hw *hw = &pf->hw;
1897  	u16 txq = 0, rxq = 0;
1898  	int i, q;
1899  
1900  	ice_for_each_q_vector(vsi, i) {
1901  		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1902  		u16 reg_idx = q_vector->reg_idx;
1903  
1904  		ice_cfg_itr(hw, q_vector);
1905  
1906  		/* Both Transmit Queue Interrupt Cause Control register
1907  		 * and Receive Queue Interrupt Cause control register
1908  		 * expects MSIX_INDX field to be the vector index
1909  		 * within the function space and not the absolute
1910  		 * vector index across PF or across device.
1911  		 * For SR-IOV VF VSIs queue vector index always starts
1912  		 * with 1 since first vector index(0) is used for OICR
1913  		 * in VF space. Since VMDq and other PF VSIs are within
1914  		 * the PF function space, use the vector index that is
1915  		 * tracked for this PF.
1916  		 */
1917  		for (q = 0; q < q_vector->num_ring_tx; q++) {
1918  			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1919  					      q_vector->tx.itr_idx);
1920  			txq++;
1921  		}
1922  
1923  		for (q = 0; q < q_vector->num_ring_rx; q++) {
1924  			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1925  					      q_vector->rx.itr_idx);
1926  			rxq++;
1927  		}
1928  	}
1929  }
1930  
1931  /**
1932   * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1933   * @vsi: the VSI whose rings are to be enabled
1934   *
1935   * Returns 0 on success and a negative value on error
1936   */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1937  int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1938  {
1939  	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1940  }
1941  
1942  /**
1943   * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1944   * @vsi: the VSI whose rings are to be disabled
1945   *
1946   * Returns 0 on success and a negative value on error
1947   */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1948  int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1949  {
1950  	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1951  }
1952  
1953  /**
1954   * ice_vsi_stop_tx_rings - Disable Tx rings
1955   * @vsi: the VSI being configured
1956   * @rst_src: reset source
1957   * @rel_vmvf_num: Relative ID of VF/VM
1958   * @rings: Tx ring array to be stopped
1959   * @count: number of Tx ring array elements
1960   */
1961  static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1962  ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1963  		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1964  {
1965  	u16 q_idx;
1966  
1967  	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1968  		return -EINVAL;
1969  
1970  	for (q_idx = 0; q_idx < count; q_idx++) {
1971  		struct ice_txq_meta txq_meta = { };
1972  		int status;
1973  
1974  		if (!rings || !rings[q_idx])
1975  			return -EINVAL;
1976  
1977  		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1978  		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1979  					      rings[q_idx], &txq_meta);
1980  
1981  		if (status)
1982  			return status;
1983  	}
1984  
1985  	return 0;
1986  }
1987  
1988  /**
1989   * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1990   * @vsi: the VSI being configured
1991   * @rst_src: reset source
1992   * @rel_vmvf_num: Relative ID of VF/VM
1993   */
1994  int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)1995  ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1996  			  u16 rel_vmvf_num)
1997  {
1998  	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1999  }
2000  
2001  /**
2002   * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2003   * @vsi: the VSI being configured
2004   */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2005  int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2006  {
2007  	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2008  }
2009  
2010  /**
2011   * ice_vsi_is_rx_queue_active
2012   * @vsi: the VSI being configured
2013   *
2014   * Return true if at least one queue is active.
2015   */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2016  bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2017  {
2018  	struct ice_pf *pf = vsi->back;
2019  	struct ice_hw *hw = &pf->hw;
2020  	int i;
2021  
2022  	ice_for_each_rxq(vsi, i) {
2023  		u32 rx_reg;
2024  		int pf_q;
2025  
2026  		pf_q = vsi->rxq_map[i];
2027  		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2028  		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2029  			return true;
2030  	}
2031  
2032  	return false;
2033  }
2034  
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2035  static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2036  {
2037  	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2038  		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2039  		vsi->tc_cfg.numtc = 1;
2040  		return;
2041  	}
2042  
2043  	/* set VSI TC information based on DCB config */
2044  	ice_vsi_set_dcb_tc_cfg(vsi);
2045  }
2046  
2047  /**
2048   * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2049   * @vsi: the VSI being configured
2050   * @tx: bool to determine Tx or Rx rule
2051   * @create: bool to determine create or remove Rule
2052   */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2053  void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2054  {
2055  	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2056  			enum ice_sw_fwd_act_type act);
2057  	struct ice_pf *pf = vsi->back;
2058  	struct device *dev;
2059  	int status;
2060  
2061  	dev = ice_pf_to_dev(pf);
2062  	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2063  
2064  	if (tx) {
2065  		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2066  				  ICE_DROP_PACKET);
2067  	} else {
2068  		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2069  			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2070  							  create);
2071  		} else {
2072  			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2073  					  ICE_FWD_TO_VSI);
2074  		}
2075  	}
2076  
2077  	if (status)
2078  		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2079  			create ? "adding" : "removing", tx ? "TX" : "RX",
2080  			vsi->vsi_num, status);
2081  }
2082  
2083  /**
2084   * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2085   * @vsi: pointer to the VSI
2086   *
2087   * This function will allocate new scheduler aggregator now if needed and will
2088   * move specified VSI into it.
2089   */
ice_set_agg_vsi(struct ice_vsi * vsi)2090  static void ice_set_agg_vsi(struct ice_vsi *vsi)
2091  {
2092  	struct device *dev = ice_pf_to_dev(vsi->back);
2093  	struct ice_agg_node *agg_node_iter = NULL;
2094  	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2095  	struct ice_agg_node *agg_node = NULL;
2096  	int node_offset, max_agg_nodes = 0;
2097  	struct ice_port_info *port_info;
2098  	struct ice_pf *pf = vsi->back;
2099  	u32 agg_node_id_start = 0;
2100  	int status;
2101  
2102  	/* create (as needed) scheduler aggregator node and move VSI into
2103  	 * corresponding aggregator node
2104  	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2105  	 * - VF aggregator nodes will contain VF VSI
2106  	 */
2107  	port_info = pf->hw.port_info;
2108  	if (!port_info)
2109  		return;
2110  
2111  	switch (vsi->type) {
2112  	case ICE_VSI_CTRL:
2113  	case ICE_VSI_CHNL:
2114  	case ICE_VSI_LB:
2115  	case ICE_VSI_PF:
2116  	case ICE_VSI_SF:
2117  		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2118  		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2119  		agg_node_iter = &pf->pf_agg_node[0];
2120  		break;
2121  	case ICE_VSI_VF:
2122  		/* user can create 'n' VFs on a given PF, but since max children
2123  		 * per aggregator node can be only 64. Following code handles
2124  		 * aggregator(s) for VF VSIs, either selects a agg_node which
2125  		 * was already created provided num_vsis < 64, otherwise
2126  		 * select next available node, which will be created
2127  		 */
2128  		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2129  		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2130  		agg_node_iter = &pf->vf_agg_node[0];
2131  		break;
2132  	default:
2133  		/* other VSI type, handle later if needed */
2134  		dev_dbg(dev, "unexpected VSI type %s\n",
2135  			ice_vsi_type_str(vsi->type));
2136  		return;
2137  	}
2138  
2139  	/* find the appropriate aggregator node */
2140  	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2141  		/* see if we can find space in previously created
2142  		 * node if num_vsis < 64, otherwise skip
2143  		 */
2144  		if (agg_node_iter->num_vsis &&
2145  		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2146  			agg_node_iter++;
2147  			continue;
2148  		}
2149  
2150  		if (agg_node_iter->valid &&
2151  		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2152  			agg_id = agg_node_iter->agg_id;
2153  			agg_node = agg_node_iter;
2154  			break;
2155  		}
2156  
2157  		/* find unclaimed agg_id */
2158  		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2159  			agg_id = node_offset + agg_node_id_start;
2160  			agg_node = agg_node_iter;
2161  			break;
2162  		}
2163  		/* move to next agg_node */
2164  		agg_node_iter++;
2165  	}
2166  
2167  	if (!agg_node)
2168  		return;
2169  
2170  	/* if selected aggregator node was not created, create it */
2171  	if (!agg_node->valid) {
2172  		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2173  				     (u8)vsi->tc_cfg.ena_tc);
2174  		if (status) {
2175  			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2176  				agg_id);
2177  			return;
2178  		}
2179  		/* aggregator node is created, store the needed info */
2180  		agg_node->valid = true;
2181  		agg_node->agg_id = agg_id;
2182  	}
2183  
2184  	/* move VSI to corresponding aggregator node */
2185  	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2186  				     (u8)vsi->tc_cfg.ena_tc);
2187  	if (status) {
2188  		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2189  			vsi->idx, agg_id);
2190  		return;
2191  	}
2192  
2193  	/* keep active children count for aggregator node */
2194  	agg_node->num_vsis++;
2195  
2196  	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2197  	 * to aggregator node
2198  	 */
2199  	vsi->agg_node = agg_node;
2200  	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2201  		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2202  		vsi->agg_node->num_vsis);
2203  }
2204  
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2205  static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2206  {
2207  	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2208  	struct device *dev = ice_pf_to_dev(pf);
2209  	int ret, i;
2210  
2211  	/* configure VSI nodes based on number of queues and TC's */
2212  	ice_for_each_traffic_class(i) {
2213  		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2214  			continue;
2215  
2216  		if (vsi->type == ICE_VSI_CHNL) {
2217  			if (!vsi->alloc_txq && vsi->num_txq)
2218  				max_txqs[i] = vsi->num_txq;
2219  			else
2220  				max_txqs[i] = pf->num_lan_tx;
2221  		} else {
2222  			max_txqs[i] = vsi->alloc_txq;
2223  		}
2224  
2225  		if (vsi->type == ICE_VSI_PF)
2226  			max_txqs[i] += vsi->num_xdp_txq;
2227  	}
2228  
2229  	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2230  	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2231  			      max_txqs);
2232  	if (ret) {
2233  		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2234  			vsi->vsi_num, ret);
2235  		return ret;
2236  	}
2237  
2238  	return 0;
2239  }
2240  
2241  /**
2242   * ice_vsi_cfg_def - configure default VSI based on the type
2243   * @vsi: pointer to VSI
2244   */
ice_vsi_cfg_def(struct ice_vsi * vsi)2245  static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2246  {
2247  	struct device *dev = ice_pf_to_dev(vsi->back);
2248  	struct ice_pf *pf = vsi->back;
2249  	int ret;
2250  
2251  	vsi->vsw = pf->first_sw;
2252  
2253  	ret = ice_vsi_alloc_def(vsi, vsi->ch);
2254  	if (ret)
2255  		return ret;
2256  
2257  	/* allocate memory for Tx/Rx ring stat pointers */
2258  	ret = ice_vsi_alloc_stat_arrays(vsi);
2259  	if (ret)
2260  		goto unroll_vsi_alloc;
2261  
2262  	ice_alloc_fd_res(vsi);
2263  
2264  	ret = ice_vsi_get_qs(vsi);
2265  	if (ret) {
2266  		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2267  			vsi->idx);
2268  		goto unroll_vsi_alloc_stat;
2269  	}
2270  
2271  	/* set RSS capabilities */
2272  	ice_vsi_set_rss_params(vsi);
2273  
2274  	/* set TC configuration */
2275  	ice_vsi_set_tc_cfg(vsi);
2276  
2277  	/* create the VSI */
2278  	ret = ice_vsi_init(vsi, vsi->flags);
2279  	if (ret)
2280  		goto unroll_get_qs;
2281  
2282  	ice_vsi_init_vlan_ops(vsi);
2283  
2284  	switch (vsi->type) {
2285  	case ICE_VSI_CTRL:
2286  	case ICE_VSI_SF:
2287  	case ICE_VSI_PF:
2288  		ret = ice_vsi_alloc_q_vectors(vsi);
2289  		if (ret)
2290  			goto unroll_vsi_init;
2291  
2292  		ret = ice_vsi_alloc_rings(vsi);
2293  		if (ret)
2294  			goto unroll_vector_base;
2295  
2296  		ret = ice_vsi_alloc_ring_stats(vsi);
2297  		if (ret)
2298  			goto unroll_vector_base;
2299  
2300  		if (ice_is_xdp_ena_vsi(vsi)) {
2301  			ret = ice_vsi_determine_xdp_res(vsi);
2302  			if (ret)
2303  				goto unroll_vector_base;
2304  			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2305  						    ICE_XDP_CFG_PART);
2306  			if (ret)
2307  				goto unroll_vector_base;
2308  		}
2309  
2310  		ice_vsi_map_rings_to_vectors(vsi);
2311  
2312  		vsi->stat_offsets_loaded = false;
2313  
2314  		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2315  		if (vsi->type != ICE_VSI_CTRL)
2316  			/* Do not exit if configuring RSS had an issue, at
2317  			 * least receive traffic on first queue. Hence no
2318  			 * need to capture return value
2319  			 */
2320  			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2321  				ice_vsi_cfg_rss_lut_key(vsi);
2322  				ice_vsi_set_rss_flow_fld(vsi);
2323  			}
2324  		ice_init_arfs(vsi);
2325  		break;
2326  	case ICE_VSI_CHNL:
2327  		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2328  			ice_vsi_cfg_rss_lut_key(vsi);
2329  			ice_vsi_set_rss_flow_fld(vsi);
2330  		}
2331  		break;
2332  	case ICE_VSI_VF:
2333  		/* VF driver will take care of creating netdev for this type and
2334  		 * map queues to vectors through Virtchnl, PF driver only
2335  		 * creates a VSI and corresponding structures for bookkeeping
2336  		 * purpose
2337  		 */
2338  		ret = ice_vsi_alloc_q_vectors(vsi);
2339  		if (ret)
2340  			goto unroll_vsi_init;
2341  
2342  		ret = ice_vsi_alloc_rings(vsi);
2343  		if (ret)
2344  			goto unroll_alloc_q_vector;
2345  
2346  		ret = ice_vsi_alloc_ring_stats(vsi);
2347  		if (ret)
2348  			goto unroll_vector_base;
2349  
2350  		vsi->stat_offsets_loaded = false;
2351  
2352  		/* Do not exit if configuring RSS had an issue, at least
2353  		 * receive traffic on first queue. Hence no need to capture
2354  		 * return value
2355  		 */
2356  		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357  			ice_vsi_cfg_rss_lut_key(vsi);
2358  			ice_vsi_set_vf_rss_flow_fld(vsi);
2359  		}
2360  		break;
2361  	case ICE_VSI_LB:
2362  		ret = ice_vsi_alloc_rings(vsi);
2363  		if (ret)
2364  			goto unroll_vsi_init;
2365  
2366  		ret = ice_vsi_alloc_ring_stats(vsi);
2367  		if (ret)
2368  			goto unroll_vector_base;
2369  
2370  		break;
2371  	default:
2372  		/* clean up the resources and exit */
2373  		ret = -EINVAL;
2374  		goto unroll_vsi_init;
2375  	}
2376  
2377  	return 0;
2378  
2379  unroll_vector_base:
2380  	/* reclaim SW interrupts back to the common pool */
2381  unroll_alloc_q_vector:
2382  	ice_vsi_free_q_vectors(vsi);
2383  unroll_vsi_init:
2384  	ice_vsi_delete_from_hw(vsi);
2385  unroll_get_qs:
2386  	ice_vsi_put_qs(vsi);
2387  unroll_vsi_alloc_stat:
2388  	ice_vsi_free_stats(vsi);
2389  unroll_vsi_alloc:
2390  	ice_vsi_free_arrays(vsi);
2391  	return ret;
2392  }
2393  
2394  /**
2395   * ice_vsi_cfg - configure a previously allocated VSI
2396   * @vsi: pointer to VSI
2397   */
ice_vsi_cfg(struct ice_vsi * vsi)2398  int ice_vsi_cfg(struct ice_vsi *vsi)
2399  {
2400  	struct ice_pf *pf = vsi->back;
2401  	int ret;
2402  
2403  	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2404  		return -EINVAL;
2405  
2406  	ret = ice_vsi_cfg_def(vsi);
2407  	if (ret)
2408  		return ret;
2409  
2410  	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2411  	if (ret)
2412  		ice_vsi_decfg(vsi);
2413  
2414  	if (vsi->type == ICE_VSI_CTRL) {
2415  		if (vsi->vf) {
2416  			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2417  			vsi->vf->ctrl_vsi_idx = vsi->idx;
2418  		} else {
2419  			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2420  			pf->ctrl_vsi_idx = vsi->idx;
2421  		}
2422  	}
2423  
2424  	return ret;
2425  }
2426  
2427  /**
2428   * ice_vsi_decfg - remove all VSI configuration
2429   * @vsi: pointer to VSI
2430   */
ice_vsi_decfg(struct ice_vsi * vsi)2431  void ice_vsi_decfg(struct ice_vsi *vsi)
2432  {
2433  	struct ice_pf *pf = vsi->back;
2434  	int err;
2435  
2436  	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2437  	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2438  	if (err)
2439  		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2440  			vsi->vsi_num, err);
2441  
2442  	if (vsi->xdp_rings)
2443  		/* return value check can be skipped here, it always returns
2444  		 * 0 if reset is in progress
2445  		 */
2446  		ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2447  
2448  	ice_vsi_clear_rings(vsi);
2449  	ice_vsi_free_q_vectors(vsi);
2450  	ice_vsi_put_qs(vsi);
2451  	ice_vsi_free_arrays(vsi);
2452  
2453  	/* SR-IOV determines needed MSIX resources all at once instead of per
2454  	 * VSI since when VFs are spawned we know how many VFs there are and how
2455  	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2456  	 * cleared in the same manner.
2457  	 */
2458  
2459  	if (vsi->type == ICE_VSI_VF &&
2460  	    vsi->agg_node && vsi->agg_node->valid)
2461  		vsi->agg_node->num_vsis--;
2462  }
2463  
2464  /**
2465   * ice_vsi_setup - Set up a VSI by a given type
2466   * @pf: board private structure
2467   * @params: parameters to use when creating the VSI
2468   *
2469   * This allocates the sw VSI structure and its queue resources.
2470   *
2471   * Returns pointer to the successfully allocated and configured VSI sw struct on
2472   * success, NULL on failure.
2473   */
2474  struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2475  ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2476  {
2477  	struct device *dev = ice_pf_to_dev(pf);
2478  	struct ice_vsi *vsi;
2479  	int ret;
2480  
2481  	/* ice_vsi_setup can only initialize a new VSI, and we must have
2482  	 * a port_info structure for it.
2483  	 */
2484  	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2485  	    WARN_ON(!params->port_info))
2486  		return NULL;
2487  
2488  	vsi = ice_vsi_alloc(pf);
2489  	if (!vsi) {
2490  		dev_err(dev, "could not allocate VSI\n");
2491  		return NULL;
2492  	}
2493  
2494  	vsi->params = *params;
2495  	ret = ice_vsi_cfg(vsi);
2496  	if (ret)
2497  		goto err_vsi_cfg;
2498  
2499  	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2500  	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2501  	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2502  	 * The rule is added once for PF VSI in order to create appropriate
2503  	 * recipe, since VSI/VSI list is ignored with drop action...
2504  	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2505  	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2506  	 * settings in the HW.
2507  	 */
2508  	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2509  		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2510  				 ICE_DROP_PACKET);
2511  		ice_cfg_sw_lldp(vsi, true, true);
2512  	}
2513  
2514  	if (!vsi->agg_node)
2515  		ice_set_agg_vsi(vsi);
2516  
2517  	return vsi;
2518  
2519  err_vsi_cfg:
2520  	ice_vsi_free(vsi);
2521  
2522  	return NULL;
2523  }
2524  
2525  /**
2526   * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2527   * @vsi: the VSI being cleaned up
2528   */
ice_vsi_release_msix(struct ice_vsi * vsi)2529  static void ice_vsi_release_msix(struct ice_vsi *vsi)
2530  {
2531  	struct ice_pf *pf = vsi->back;
2532  	struct ice_hw *hw = &pf->hw;
2533  	u32 txq = 0;
2534  	u32 rxq = 0;
2535  	int i, q;
2536  
2537  	ice_for_each_q_vector(vsi, i) {
2538  		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2539  
2540  		ice_write_intrl(q_vector, 0);
2541  		for (q = 0; q < q_vector->num_ring_tx; q++) {
2542  			ice_write_itr(&q_vector->tx, 0);
2543  			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2544  			if (vsi->xdp_rings) {
2545  				u32 xdp_txq = txq + vsi->num_xdp_txq;
2546  
2547  				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2548  			}
2549  			txq++;
2550  		}
2551  
2552  		for (q = 0; q < q_vector->num_ring_rx; q++) {
2553  			ice_write_itr(&q_vector->rx, 0);
2554  			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2555  			rxq++;
2556  		}
2557  	}
2558  
2559  	ice_flush(hw);
2560  }
2561  
2562  /**
2563   * ice_vsi_free_irq - Free the IRQ association with the OS
2564   * @vsi: the VSI being configured
2565   */
ice_vsi_free_irq(struct ice_vsi * vsi)2566  void ice_vsi_free_irq(struct ice_vsi *vsi)
2567  {
2568  	struct ice_pf *pf = vsi->back;
2569  	int i;
2570  
2571  	if (!vsi->q_vectors || !vsi->irqs_ready)
2572  		return;
2573  
2574  	ice_vsi_release_msix(vsi);
2575  	if (vsi->type == ICE_VSI_VF)
2576  		return;
2577  
2578  	vsi->irqs_ready = false;
2579  	ice_free_cpu_rx_rmap(vsi);
2580  
2581  	ice_for_each_q_vector(vsi, i) {
2582  		int irq_num;
2583  
2584  		irq_num = vsi->q_vectors[i]->irq.virq;
2585  
2586  		/* free only the irqs that were actually requested */
2587  		if (!vsi->q_vectors[i] ||
2588  		    !(vsi->q_vectors[i]->num_ring_tx ||
2589  		      vsi->q_vectors[i]->num_ring_rx))
2590  			continue;
2591  
2592  		/* clear the affinity notifier in the IRQ descriptor */
2593  		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2594  			irq_set_affinity_notifier(irq_num, NULL);
2595  
2596  		/* clear the affinity_hint in the IRQ descriptor */
2597  		irq_update_affinity_hint(irq_num, NULL);
2598  		synchronize_irq(irq_num);
2599  		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2600  	}
2601  }
2602  
2603  /**
2604   * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2605   * @vsi: the VSI having resources freed
2606   */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2607  void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2608  {
2609  	int i;
2610  
2611  	if (!vsi->tx_rings)
2612  		return;
2613  
2614  	ice_for_each_txq(vsi, i)
2615  		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2616  			ice_free_tx_ring(vsi->tx_rings[i]);
2617  }
2618  
2619  /**
2620   * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2621   * @vsi: the VSI having resources freed
2622   */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2623  void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2624  {
2625  	int i;
2626  
2627  	if (!vsi->rx_rings)
2628  		return;
2629  
2630  	ice_for_each_rxq(vsi, i)
2631  		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2632  			ice_free_rx_ring(vsi->rx_rings[i]);
2633  }
2634  
2635  /**
2636   * ice_vsi_close - Shut down a VSI
2637   * @vsi: the VSI being shut down
2638   */
ice_vsi_close(struct ice_vsi * vsi)2639  void ice_vsi_close(struct ice_vsi *vsi)
2640  {
2641  	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2642  		ice_down(vsi);
2643  
2644  	ice_vsi_clear_napi_queues(vsi);
2645  	ice_vsi_free_irq(vsi);
2646  	ice_vsi_free_tx_rings(vsi);
2647  	ice_vsi_free_rx_rings(vsi);
2648  }
2649  
2650  /**
2651   * ice_ena_vsi - resume a VSI
2652   * @vsi: the VSI being resume
2653   * @locked: is the rtnl_lock already held
2654   */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2655  int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2656  {
2657  	int err = 0;
2658  
2659  	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2660  		return 0;
2661  
2662  	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2663  
2664  	if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2665  			    vsi->type == ICE_VSI_SF)) {
2666  		if (netif_running(vsi->netdev)) {
2667  			if (!locked)
2668  				rtnl_lock();
2669  
2670  			err = ice_open_internal(vsi->netdev);
2671  
2672  			if (!locked)
2673  				rtnl_unlock();
2674  		}
2675  	} else if (vsi->type == ICE_VSI_CTRL) {
2676  		err = ice_vsi_open_ctrl(vsi);
2677  	}
2678  
2679  	return err;
2680  }
2681  
2682  /**
2683   * ice_dis_vsi - pause a VSI
2684   * @vsi: the VSI being paused
2685   * @locked: is the rtnl_lock already held
2686   */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2687  void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2688  {
2689  	bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2690  
2691  	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2692  
2693  	if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2694  			    vsi->type == ICE_VSI_SF)) {
2695  		if (netif_running(vsi->netdev)) {
2696  			if (!locked)
2697  				rtnl_lock();
2698  			already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2699  			if (!already_down)
2700  				ice_vsi_close(vsi);
2701  
2702  			if (!locked)
2703  				rtnl_unlock();
2704  		} else if (!already_down) {
2705  			ice_vsi_close(vsi);
2706  		}
2707  	} else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2708  		ice_vsi_close(vsi);
2709  	}
2710  }
2711  
2712  /**
2713   * ice_vsi_set_napi_queues - associate netdev queues with napi
2714   * @vsi: VSI pointer
2715   *
2716   * Associate queue[s] with napi for all vectors.
2717   * The caller must hold rtnl_lock.
2718   */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2719  void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2720  {
2721  	struct net_device *netdev = vsi->netdev;
2722  	int q_idx, v_idx;
2723  
2724  	if (!netdev)
2725  		return;
2726  
2727  	ice_for_each_rxq(vsi, q_idx)
2728  		netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2729  				     &vsi->rx_rings[q_idx]->q_vector->napi);
2730  
2731  	ice_for_each_txq(vsi, q_idx)
2732  		netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2733  				     &vsi->tx_rings[q_idx]->q_vector->napi);
2734  	/* Also set the interrupt number for the NAPI */
2735  	ice_for_each_q_vector(vsi, v_idx) {
2736  		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2737  
2738  		netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2739  	}
2740  }
2741  
2742  /**
2743   * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2744   * @vsi: VSI pointer
2745   *
2746   * Clear the association between all VSI queues queue[s] and napi.
2747   * The caller must hold rtnl_lock.
2748   */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2749  void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2750  {
2751  	struct net_device *netdev = vsi->netdev;
2752  	int q_idx;
2753  
2754  	if (!netdev)
2755  		return;
2756  
2757  	ice_for_each_txq(vsi, q_idx)
2758  		netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2759  
2760  	ice_for_each_rxq(vsi, q_idx)
2761  		netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2762  }
2763  
2764  /**
2765   * ice_napi_add - register NAPI handler for the VSI
2766   * @vsi: VSI for which NAPI handler is to be registered
2767   *
2768   * This function is only called in the driver's load path. Registering the NAPI
2769   * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2770   * reset/rebuild, etc.)
2771   */
ice_napi_add(struct ice_vsi * vsi)2772  void ice_napi_add(struct ice_vsi *vsi)
2773  {
2774  	int v_idx;
2775  
2776  	if (!vsi->netdev)
2777  		return;
2778  
2779  	ice_for_each_q_vector(vsi, v_idx)
2780  		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2781  			       ice_napi_poll);
2782  }
2783  
2784  /**
2785   * ice_vsi_release - Delete a VSI and free its resources
2786   * @vsi: the VSI being removed
2787   *
2788   * Returns 0 on success or < 0 on error
2789   */
ice_vsi_release(struct ice_vsi * vsi)2790  int ice_vsi_release(struct ice_vsi *vsi)
2791  {
2792  	struct ice_pf *pf;
2793  
2794  	if (!vsi->back)
2795  		return -ENODEV;
2796  	pf = vsi->back;
2797  
2798  	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2799  		ice_rss_clean(vsi);
2800  
2801  	ice_vsi_close(vsi);
2802  
2803  	/* The Rx rule will only exist to remove if the LLDP FW
2804  	 * engine is currently stopped
2805  	 */
2806  	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2807  	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2808  		ice_cfg_sw_lldp(vsi, false, false);
2809  
2810  	ice_vsi_decfg(vsi);
2811  
2812  	/* retain SW VSI data structure since it is needed to unregister and
2813  	 * free VSI netdev when PF is not in reset recovery pending state,\
2814  	 * for ex: during rmmod.
2815  	 */
2816  	if (!ice_is_reset_in_progress(pf->state))
2817  		ice_vsi_delete(vsi);
2818  
2819  	return 0;
2820  }
2821  
2822  /**
2823   * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2824   * @vsi: VSI connected with q_vectors
2825   * @coalesce: array of struct with stored coalesce
2826   *
2827   * Returns array size.
2828   */
2829  static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2830  ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2831  			     struct ice_coalesce_stored *coalesce)
2832  {
2833  	int i;
2834  
2835  	ice_for_each_q_vector(vsi, i) {
2836  		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2837  
2838  		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2839  		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2840  		coalesce[i].intrl = q_vector->intrl;
2841  
2842  		if (i < vsi->num_txq)
2843  			coalesce[i].tx_valid = true;
2844  		if (i < vsi->num_rxq)
2845  			coalesce[i].rx_valid = true;
2846  	}
2847  
2848  	return vsi->num_q_vectors;
2849  }
2850  
2851  /**
2852   * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2853   * @vsi: VSI connected with q_vectors
2854   * @coalesce: pointer to array of struct with stored coalesce
2855   * @size: size of coalesce array
2856   *
2857   * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2858   * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2859   * to default value.
2860   */
2861  static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2862  ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2863  			     struct ice_coalesce_stored *coalesce, int size)
2864  {
2865  	struct ice_ring_container *rc;
2866  	int i;
2867  
2868  	if ((size && !coalesce) || !vsi)
2869  		return;
2870  
2871  	/* There are a couple of cases that have to be handled here:
2872  	 *   1. The case where the number of queue vectors stays the same, but
2873  	 *      the number of Tx or Rx rings changes (the first for loop)
2874  	 *   2. The case where the number of queue vectors increased (the
2875  	 *      second for loop)
2876  	 */
2877  	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2878  		/* There are 2 cases to handle here and they are the same for
2879  		 * both Tx and Rx:
2880  		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2881  		 *   and the loop variable is less than the number of rings
2882  		 *   allocated, then write the previous values
2883  		 *
2884  		 *   if the entry was not valid previously, but the number of
2885  		 *   rings is less than are allocated (this means the number of
2886  		 *   rings increased from previously), then write out the
2887  		 *   values in the first element
2888  		 *
2889  		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2890  		 *   as there is no harm because the dynamic algorithm
2891  		 *   will just overwrite.
2892  		 */
2893  		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2894  			rc = &vsi->q_vectors[i]->rx;
2895  			rc->itr_settings = coalesce[i].itr_rx;
2896  			ice_write_itr(rc, rc->itr_setting);
2897  		} else if (i < vsi->alloc_rxq) {
2898  			rc = &vsi->q_vectors[i]->rx;
2899  			rc->itr_settings = coalesce[0].itr_rx;
2900  			ice_write_itr(rc, rc->itr_setting);
2901  		}
2902  
2903  		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2904  			rc = &vsi->q_vectors[i]->tx;
2905  			rc->itr_settings = coalesce[i].itr_tx;
2906  			ice_write_itr(rc, rc->itr_setting);
2907  		} else if (i < vsi->alloc_txq) {
2908  			rc = &vsi->q_vectors[i]->tx;
2909  			rc->itr_settings = coalesce[0].itr_tx;
2910  			ice_write_itr(rc, rc->itr_setting);
2911  		}
2912  
2913  		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2914  		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2915  	}
2916  
2917  	/* the number of queue vectors increased so write whatever is in
2918  	 * the first element
2919  	 */
2920  	for (; i < vsi->num_q_vectors; i++) {
2921  		/* transmit */
2922  		rc = &vsi->q_vectors[i]->tx;
2923  		rc->itr_settings = coalesce[0].itr_tx;
2924  		ice_write_itr(rc, rc->itr_setting);
2925  
2926  		/* receive */
2927  		rc = &vsi->q_vectors[i]->rx;
2928  		rc->itr_settings = coalesce[0].itr_rx;
2929  		ice_write_itr(rc, rc->itr_setting);
2930  
2931  		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2932  		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2933  	}
2934  }
2935  
2936  /**
2937   * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2938   * @vsi: VSI pointer
2939   */
2940  static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)2941  ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2942  {
2943  	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2944  	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2945  	struct ice_ring_stats **tx_ring_stats;
2946  	struct ice_ring_stats **rx_ring_stats;
2947  	struct ice_vsi_stats *vsi_stat;
2948  	struct ice_pf *pf = vsi->back;
2949  	u16 prev_txq = vsi->alloc_txq;
2950  	u16 prev_rxq = vsi->alloc_rxq;
2951  	int i;
2952  
2953  	vsi_stat = pf->vsi_stats[vsi->idx];
2954  
2955  	if (req_txq < prev_txq) {
2956  		for (i = req_txq; i < prev_txq; i++) {
2957  			if (vsi_stat->tx_ring_stats[i]) {
2958  				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2959  				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2960  			}
2961  		}
2962  	}
2963  
2964  	tx_ring_stats = vsi_stat->tx_ring_stats;
2965  	vsi_stat->tx_ring_stats =
2966  		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2967  			       sizeof(*vsi_stat->tx_ring_stats),
2968  			       GFP_KERNEL | __GFP_ZERO);
2969  	if (!vsi_stat->tx_ring_stats) {
2970  		vsi_stat->tx_ring_stats = tx_ring_stats;
2971  		return -ENOMEM;
2972  	}
2973  
2974  	if (req_rxq < prev_rxq) {
2975  		for (i = req_rxq; i < prev_rxq; i++) {
2976  			if (vsi_stat->rx_ring_stats[i]) {
2977  				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
2978  				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
2979  			}
2980  		}
2981  	}
2982  
2983  	rx_ring_stats = vsi_stat->rx_ring_stats;
2984  	vsi_stat->rx_ring_stats =
2985  		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
2986  			       sizeof(*vsi_stat->rx_ring_stats),
2987  			       GFP_KERNEL | __GFP_ZERO);
2988  	if (!vsi_stat->rx_ring_stats) {
2989  		vsi_stat->rx_ring_stats = rx_ring_stats;
2990  		return -ENOMEM;
2991  	}
2992  
2993  	return 0;
2994  }
2995  
2996  /**
2997   * ice_vsi_rebuild - Rebuild VSI after reset
2998   * @vsi: VSI to be rebuild
2999   * @vsi_flags: flags used for VSI rebuild flow
3000   *
3001   * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3002   * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3003   *
3004   * Returns 0 on success and negative value on failure
3005   */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3006  int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3007  {
3008  	struct ice_coalesce_stored *coalesce;
3009  	int prev_num_q_vectors;
3010  	struct ice_pf *pf;
3011  	int ret;
3012  
3013  	if (!vsi)
3014  		return -EINVAL;
3015  
3016  	vsi->flags = vsi_flags;
3017  	pf = vsi->back;
3018  	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3019  		return -EINVAL;
3020  
3021  	mutex_lock(&vsi->xdp_state_lock);
3022  
3023  	ret = ice_vsi_realloc_stat_arrays(vsi);
3024  	if (ret)
3025  		goto unlock;
3026  
3027  	ice_vsi_decfg(vsi);
3028  	ret = ice_vsi_cfg_def(vsi);
3029  	if (ret)
3030  		goto unlock;
3031  
3032  	coalesce = kcalloc(vsi->num_q_vectors,
3033  			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3034  	if (!coalesce) {
3035  		ret = -ENOMEM;
3036  		goto decfg;
3037  	}
3038  
3039  	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3040  
3041  	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3042  	if (ret) {
3043  		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3044  			ret = -EIO;
3045  			goto free_coalesce;
3046  		}
3047  
3048  		ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3049  		goto free_coalesce;
3050  	}
3051  
3052  	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3053  	clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3054  
3055  free_coalesce:
3056  	kfree(coalesce);
3057  decfg:
3058  	if (ret)
3059  		ice_vsi_decfg(vsi);
3060  unlock:
3061  	mutex_unlock(&vsi->xdp_state_lock);
3062  	return ret;
3063  }
3064  
3065  /**
3066   * ice_is_reset_in_progress - check for a reset in progress
3067   * @state: PF state field
3068   */
ice_is_reset_in_progress(unsigned long * state)3069  bool ice_is_reset_in_progress(unsigned long *state)
3070  {
3071  	return test_bit(ICE_RESET_OICR_RECV, state) ||
3072  	       test_bit(ICE_PFR_REQ, state) ||
3073  	       test_bit(ICE_CORER_REQ, state) ||
3074  	       test_bit(ICE_GLOBR_REQ, state);
3075  }
3076  
3077  /**
3078   * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3079   * @pf: pointer to the PF structure
3080   * @timeout: length of time to wait, in jiffies
3081   *
3082   * Wait (sleep) for a short time until the driver finishes cleaning up from
3083   * a device reset. The caller must be able to sleep. Use this to delay
3084   * operations that could fail while the driver is cleaning up after a device
3085   * reset.
3086   *
3087   * Returns 0 on success, -EBUSY if the reset is not finished within the
3088   * timeout, and -ERESTARTSYS if the thread was interrupted.
3089   */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3090  int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3091  {
3092  	long ret;
3093  
3094  	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3095  					       !ice_is_reset_in_progress(pf->state),
3096  					       timeout);
3097  	if (ret < 0)
3098  		return ret;
3099  	else if (!ret)
3100  		return -EBUSY;
3101  	else
3102  		return 0;
3103  }
3104  
3105  /**
3106   * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3107   * @vsi: VSI being configured
3108   * @ctx: the context buffer returned from AQ VSI update command
3109   */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3110  static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3111  {
3112  	vsi->info.mapping_flags = ctx->info.mapping_flags;
3113  	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3114  	       sizeof(vsi->info.q_mapping));
3115  	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3116  	       sizeof(vsi->info.tc_mapping));
3117  }
3118  
3119  /**
3120   * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3121   * @vsi: the VSI being configured
3122   * @ena_tc: TC map to be enabled
3123   */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3124  void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3125  {
3126  	struct net_device *netdev = vsi->netdev;
3127  	struct ice_pf *pf = vsi->back;
3128  	int numtc = vsi->tc_cfg.numtc;
3129  	struct ice_dcbx_cfg *dcbcfg;
3130  	u8 netdev_tc;
3131  	int i;
3132  
3133  	if (!netdev)
3134  		return;
3135  
3136  	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3137  	if (vsi->type == ICE_VSI_CHNL)
3138  		return;
3139  
3140  	if (!ena_tc) {
3141  		netdev_reset_tc(netdev);
3142  		return;
3143  	}
3144  
3145  	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3146  		numtc = vsi->all_numtc;
3147  
3148  	if (netdev_set_num_tc(netdev, numtc))
3149  		return;
3150  
3151  	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3152  
3153  	ice_for_each_traffic_class(i)
3154  		if (vsi->tc_cfg.ena_tc & BIT(i))
3155  			netdev_set_tc_queue(netdev,
3156  					    vsi->tc_cfg.tc_info[i].netdev_tc,
3157  					    vsi->tc_cfg.tc_info[i].qcount_tx,
3158  					    vsi->tc_cfg.tc_info[i].qoffset);
3159  	/* setup TC queue map for CHNL TCs */
3160  	ice_for_each_chnl_tc(i) {
3161  		if (!(vsi->all_enatc & BIT(i)))
3162  			break;
3163  		if (!vsi->mqprio_qopt.qopt.count[i])
3164  			break;
3165  		netdev_set_tc_queue(netdev, i,
3166  				    vsi->mqprio_qopt.qopt.count[i],
3167  				    vsi->mqprio_qopt.qopt.offset[i]);
3168  	}
3169  
3170  	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3171  		return;
3172  
3173  	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3174  		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3175  
3176  		/* Get the mapped netdev TC# for the UP */
3177  		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3178  		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3179  	}
3180  }
3181  
3182  /**
3183   * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3184   * @vsi: the VSI being configured,
3185   * @ctxt: VSI context structure
3186   * @ena_tc: number of traffic classes to enable
3187   *
3188   * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3189   */
3190  static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3191  ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3192  			   u8 ena_tc)
3193  {
3194  	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3195  	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3196  	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3197  	u16 new_txq, new_rxq;
3198  	u8 netdev_tc = 0;
3199  	int i;
3200  
3201  	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3202  
3203  	pow = order_base_2(tc0_qcount);
3204  	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3205  	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3206  
3207  	ice_for_each_traffic_class(i) {
3208  		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3209  			/* TC is not enabled */
3210  			vsi->tc_cfg.tc_info[i].qoffset = 0;
3211  			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3212  			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3213  			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3214  			ctxt->info.tc_mapping[i] = 0;
3215  			continue;
3216  		}
3217  
3218  		offset = vsi->mqprio_qopt.qopt.offset[i];
3219  		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3220  		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3221  		vsi->tc_cfg.tc_info[i].qoffset = offset;
3222  		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3223  		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3224  		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3225  	}
3226  
3227  	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3228  		ice_for_each_chnl_tc(i) {
3229  			if (!(vsi->all_enatc & BIT(i)))
3230  				continue;
3231  			offset = vsi->mqprio_qopt.qopt.offset[i];
3232  			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3233  			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3234  		}
3235  	}
3236  
3237  	new_txq = offset + qcount_tx;
3238  	if (new_txq > vsi->alloc_txq) {
3239  		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3240  			new_txq, vsi->alloc_txq);
3241  		return -EINVAL;
3242  	}
3243  
3244  	new_rxq = offset + qcount_rx;
3245  	if (new_rxq > vsi->alloc_rxq) {
3246  		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3247  			new_rxq, vsi->alloc_rxq);
3248  		return -EINVAL;
3249  	}
3250  
3251  	/* Set actual Tx/Rx queue pairs */
3252  	vsi->num_txq = new_txq;
3253  	vsi->num_rxq = new_rxq;
3254  
3255  	/* Setup queue TC[0].qmap for given VSI context */
3256  	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3257  	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3258  	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3259  
3260  	/* Find queue count available for channel VSIs and starting offset
3261  	 * for channel VSIs
3262  	 */
3263  	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3264  		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3265  		vsi->next_base_q = tc0_qcount;
3266  	}
3267  	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3268  	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3269  	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3270  		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3271  
3272  	return 0;
3273  }
3274  
3275  /**
3276   * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3277   * @vsi: VSI to be configured
3278   * @ena_tc: TC bitmap
3279   *
3280   * VSI queues expected to be quiesced before calling this function
3281   */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3282  int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3283  {
3284  	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3285  	struct ice_pf *pf = vsi->back;
3286  	struct ice_tc_cfg old_tc_cfg;
3287  	struct ice_vsi_ctx *ctx;
3288  	struct device *dev;
3289  	int i, ret = 0;
3290  	u8 num_tc = 0;
3291  
3292  	dev = ice_pf_to_dev(pf);
3293  	if (vsi->tc_cfg.ena_tc == ena_tc &&
3294  	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3295  		return 0;
3296  
3297  	ice_for_each_traffic_class(i) {
3298  		/* build bitmap of enabled TCs */
3299  		if (ena_tc & BIT(i))
3300  			num_tc++;
3301  		/* populate max_txqs per TC */
3302  		max_txqs[i] = vsi->alloc_txq;
3303  		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3304  		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3305  		 */
3306  		if (vsi->type == ICE_VSI_CHNL &&
3307  		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3308  			max_txqs[i] = vsi->num_txq;
3309  	}
3310  
3311  	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3312  	vsi->tc_cfg.ena_tc = ena_tc;
3313  	vsi->tc_cfg.numtc = num_tc;
3314  
3315  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3316  	if (!ctx)
3317  		return -ENOMEM;
3318  
3319  	ctx->vf_num = 0;
3320  	ctx->info = vsi->info;
3321  
3322  	if (vsi->type == ICE_VSI_PF &&
3323  	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3324  		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3325  	else
3326  		ret = ice_vsi_setup_q_map(vsi, ctx);
3327  
3328  	if (ret) {
3329  		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3330  		goto out;
3331  	}
3332  
3333  	/* must to indicate which section of VSI context are being modified */
3334  	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3335  	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3336  	if (ret) {
3337  		dev_info(dev, "Failed VSI Update\n");
3338  		goto out;
3339  	}
3340  
3341  	if (vsi->type == ICE_VSI_PF &&
3342  	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3343  		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3344  	else
3345  		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3346  				      vsi->tc_cfg.ena_tc, max_txqs);
3347  
3348  	if (ret) {
3349  		dev_err(dev, "VSI %d failed TC config, error %d\n",
3350  			vsi->vsi_num, ret);
3351  		goto out;
3352  	}
3353  	ice_vsi_update_q_map(vsi, ctx);
3354  	vsi->info.valid_sections = 0;
3355  
3356  	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3357  out:
3358  	kfree(ctx);
3359  	return ret;
3360  }
3361  
3362  /**
3363   * ice_update_ring_stats - Update ring statistics
3364   * @stats: stats to be updated
3365   * @pkts: number of processed packets
3366   * @bytes: number of processed bytes
3367   *
3368   * This function assumes that caller has acquired a u64_stats_sync lock.
3369   */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3370  static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3371  {
3372  	stats->bytes += bytes;
3373  	stats->pkts += pkts;
3374  }
3375  
3376  /**
3377   * ice_update_tx_ring_stats - Update Tx ring specific counters
3378   * @tx_ring: ring to update
3379   * @pkts: number of processed packets
3380   * @bytes: number of processed bytes
3381   */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3382  void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3383  {
3384  	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3385  	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3386  	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3387  }
3388  
3389  /**
3390   * ice_update_rx_ring_stats - Update Rx ring specific counters
3391   * @rx_ring: ring to update
3392   * @pkts: number of processed packets
3393   * @bytes: number of processed bytes
3394   */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3395  void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3396  {
3397  	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3398  	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3399  	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3400  }
3401  
3402  /**
3403   * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3404   * @pi: port info of the switch with default VSI
3405   *
3406   * Return true if the there is a single VSI in default forwarding VSI list
3407   */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3408  bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3409  {
3410  	bool exists = false;
3411  
3412  	ice_check_if_dflt_vsi(pi, 0, &exists);
3413  	return exists;
3414  }
3415  
3416  /**
3417   * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3418   * @vsi: VSI to compare against default forwarding VSI
3419   *
3420   * If this VSI passed in is the default forwarding VSI then return true, else
3421   * return false
3422   */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3423  bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3424  {
3425  	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3426  }
3427  
3428  /**
3429   * ice_set_dflt_vsi - set the default forwarding VSI
3430   * @vsi: VSI getting set as the default forwarding VSI on the switch
3431   *
3432   * If the VSI passed in is already the default VSI and it's enabled just return
3433   * success.
3434   *
3435   * Otherwise try to set the VSI passed in as the switch's default VSI and
3436   * return the result.
3437   */
ice_set_dflt_vsi(struct ice_vsi * vsi)3438  int ice_set_dflt_vsi(struct ice_vsi *vsi)
3439  {
3440  	struct device *dev;
3441  	int status;
3442  
3443  	if (!vsi)
3444  		return -EINVAL;
3445  
3446  	dev = ice_pf_to_dev(vsi->back);
3447  
3448  	if (ice_lag_is_switchdev_running(vsi->back)) {
3449  		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3450  			vsi->vsi_num);
3451  		return 0;
3452  	}
3453  
3454  	/* the VSI passed in is already the default VSI */
3455  	if (ice_is_vsi_dflt_vsi(vsi)) {
3456  		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3457  			vsi->vsi_num);
3458  		return 0;
3459  	}
3460  
3461  	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3462  	if (status) {
3463  		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3464  			vsi->vsi_num, status);
3465  		return status;
3466  	}
3467  
3468  	return 0;
3469  }
3470  
3471  /**
3472   * ice_clear_dflt_vsi - clear the default forwarding VSI
3473   * @vsi: VSI to remove from filter list
3474   *
3475   * If the switch has no default VSI or it's not enabled then return error.
3476   *
3477   * Otherwise try to clear the default VSI and return the result.
3478   */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3479  int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3480  {
3481  	struct device *dev;
3482  	int status;
3483  
3484  	if (!vsi)
3485  		return -EINVAL;
3486  
3487  	dev = ice_pf_to_dev(vsi->back);
3488  
3489  	/* there is no default VSI configured */
3490  	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3491  		return -ENODEV;
3492  
3493  	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3494  				  ICE_FLTR_RX);
3495  	if (status) {
3496  		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3497  			vsi->vsi_num, status);
3498  		return -EIO;
3499  	}
3500  
3501  	return 0;
3502  }
3503  
3504  /**
3505   * ice_get_link_speed_mbps - get link speed in Mbps
3506   * @vsi: the VSI whose link speed is being queried
3507   *
3508   * Return current VSI link speed and 0 if the speed is unknown.
3509   */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3510  int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3511  {
3512  	unsigned int link_speed;
3513  
3514  	link_speed = vsi->port_info->phy.link_info.link_speed;
3515  
3516  	return (int)ice_get_link_speed(fls(link_speed) - 1);
3517  }
3518  
3519  /**
3520   * ice_get_link_speed_kbps - get link speed in Kbps
3521   * @vsi: the VSI whose link speed is being queried
3522   *
3523   * Return current VSI link speed and 0 if the speed is unknown.
3524   */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3525  int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3526  {
3527  	int speed_mbps;
3528  
3529  	speed_mbps = ice_get_link_speed_mbps(vsi);
3530  
3531  	return speed_mbps * 1000;
3532  }
3533  
3534  /**
3535   * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3536   * @vsi: VSI to be configured
3537   * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3538   *
3539   * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3540   * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3541   * on TC 0.
3542   */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3543  int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3544  {
3545  	struct ice_pf *pf = vsi->back;
3546  	struct device *dev;
3547  	int status;
3548  	int speed;
3549  
3550  	dev = ice_pf_to_dev(pf);
3551  	if (!vsi->port_info) {
3552  		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3553  			vsi->idx, vsi->type);
3554  		return -EINVAL;
3555  	}
3556  
3557  	speed = ice_get_link_speed_kbps(vsi);
3558  	if (min_tx_rate > (u64)speed) {
3559  		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3560  			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3561  			speed);
3562  		return -EINVAL;
3563  	}
3564  
3565  	/* Configure min BW for VSI limit */
3566  	if (min_tx_rate) {
3567  		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3568  						   ICE_MIN_BW, min_tx_rate);
3569  		if (status) {
3570  			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3571  				min_tx_rate, ice_vsi_type_str(vsi->type),
3572  				vsi->idx);
3573  			return status;
3574  		}
3575  
3576  		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3577  			min_tx_rate, ice_vsi_type_str(vsi->type));
3578  	} else {
3579  		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3580  							vsi->idx, 0,
3581  							ICE_MIN_BW);
3582  		if (status) {
3583  			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3584  				ice_vsi_type_str(vsi->type), vsi->idx);
3585  			return status;
3586  		}
3587  
3588  		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3589  			ice_vsi_type_str(vsi->type), vsi->idx);
3590  	}
3591  
3592  	return 0;
3593  }
3594  
3595  /**
3596   * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3597   * @vsi: VSI to be configured
3598   * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3599   *
3600   * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3601   * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3602   * on TC 0.
3603   */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3604  int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3605  {
3606  	struct ice_pf *pf = vsi->back;
3607  	struct device *dev;
3608  	int status;
3609  	int speed;
3610  
3611  	dev = ice_pf_to_dev(pf);
3612  	if (!vsi->port_info) {
3613  		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3614  			vsi->idx, vsi->type);
3615  		return -EINVAL;
3616  	}
3617  
3618  	speed = ice_get_link_speed_kbps(vsi);
3619  	if (max_tx_rate > (u64)speed) {
3620  		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3621  			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3622  			speed);
3623  		return -EINVAL;
3624  	}
3625  
3626  	/* Configure max BW for VSI limit */
3627  	if (max_tx_rate) {
3628  		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3629  						   ICE_MAX_BW, max_tx_rate);
3630  		if (status) {
3631  			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3632  				max_tx_rate, ice_vsi_type_str(vsi->type),
3633  				vsi->idx);
3634  			return status;
3635  		}
3636  
3637  		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3638  			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3639  	} else {
3640  		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3641  							vsi->idx, 0,
3642  							ICE_MAX_BW);
3643  		if (status) {
3644  			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3645  				ice_vsi_type_str(vsi->type), vsi->idx);
3646  			return status;
3647  		}
3648  
3649  		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3650  			ice_vsi_type_str(vsi->type), vsi->idx);
3651  	}
3652  
3653  	return 0;
3654  }
3655  
3656  /**
3657   * ice_set_link - turn on/off physical link
3658   * @vsi: VSI to modify physical link on
3659   * @ena: turn on/off physical link
3660   */
ice_set_link(struct ice_vsi * vsi,bool ena)3661  int ice_set_link(struct ice_vsi *vsi, bool ena)
3662  {
3663  	struct device *dev = ice_pf_to_dev(vsi->back);
3664  	struct ice_port_info *pi = vsi->port_info;
3665  	struct ice_hw *hw = pi->hw;
3666  	int status;
3667  
3668  	if (vsi->type != ICE_VSI_PF)
3669  		return -EINVAL;
3670  
3671  	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3672  
3673  	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3674  	 * this is not a fatal error, so print a warning message and return
3675  	 * a success code. Return an error if FW returns an error code other
3676  	 * than ICE_AQ_RC_EMODE
3677  	 */
3678  	if (status == -EIO) {
3679  		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3680  			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3681  				(ena ? "ON" : "OFF"), status,
3682  				ice_aq_str(hw->adminq.sq_last_status));
3683  	} else if (status) {
3684  		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3685  			(ena ? "ON" : "OFF"), status,
3686  			ice_aq_str(hw->adminq.sq_last_status));
3687  		return status;
3688  	}
3689  
3690  	return 0;
3691  }
3692  
3693  /**
3694   * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3695   * @vsi: VSI used to add VLAN filters
3696   *
3697   * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3698   * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3699   * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3700   * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3701   *
3702   * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3703   * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3704   * traffic in SVM, since the VLAN TPID isn't part of filtering.
3705   *
3706   * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3707   * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3708   * part of filtering.
3709   */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3710  int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3711  {
3712  	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3713  	struct ice_vlan vlan;
3714  	int err;
3715  
3716  	vlan = ICE_VLAN(0, 0, 0);
3717  	err = vlan_ops->add_vlan(vsi, &vlan);
3718  	if (err && err != -EEXIST)
3719  		return err;
3720  
3721  	/* in SVM both VLAN 0 filters are identical */
3722  	if (!ice_is_dvm_ena(&vsi->back->hw))
3723  		return 0;
3724  
3725  	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3726  	err = vlan_ops->add_vlan(vsi, &vlan);
3727  	if (err && err != -EEXIST)
3728  		return err;
3729  
3730  	return 0;
3731  }
3732  
3733  /**
3734   * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3735   * @vsi: VSI used to add VLAN filters
3736   *
3737   * Delete the VLAN 0 filters in the same manner that they were added in
3738   * ice_vsi_add_vlan_zero.
3739   */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3740  int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3741  {
3742  	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3743  	struct ice_vlan vlan;
3744  	int err;
3745  
3746  	vlan = ICE_VLAN(0, 0, 0);
3747  	err = vlan_ops->del_vlan(vsi, &vlan);
3748  	if (err && err != -EEXIST)
3749  		return err;
3750  
3751  	/* in SVM both VLAN 0 filters are identical */
3752  	if (!ice_is_dvm_ena(&vsi->back->hw))
3753  		return 0;
3754  
3755  	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3756  	err = vlan_ops->del_vlan(vsi, &vlan);
3757  	if (err && err != -EEXIST)
3758  		return err;
3759  
3760  	/* when deleting the last VLAN filter, make sure to disable the VLAN
3761  	 * promisc mode so the filter isn't left by accident
3762  	 */
3763  	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3764  				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3765  }
3766  
3767  /**
3768   * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3769   * @vsi: VSI used to get the VLAN mode
3770   *
3771   * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3772   * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3773   */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3774  static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3775  {
3776  #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3777  #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3778  	/* no VLAN 0 filter is created when a port VLAN is active */
3779  	if (vsi->type == ICE_VSI_VF) {
3780  		if (WARN_ON(!vsi->vf))
3781  			return 0;
3782  
3783  		if (ice_vf_is_port_vlan_ena(vsi->vf))
3784  			return 0;
3785  	}
3786  
3787  	if (ice_is_dvm_ena(&vsi->back->hw))
3788  		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3789  	else
3790  		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3791  }
3792  
3793  /**
3794   * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3795   * @vsi: VSI used to determine if any non-zero VLANs have been added
3796   */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3797  bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3798  {
3799  	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3800  }
3801  
3802  /**
3803   * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3804   * @vsi: VSI used to get the number of non-zero VLANs added
3805   */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3806  u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3807  {
3808  	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3809  }
3810  
3811  /**
3812   * ice_is_feature_supported
3813   * @pf: pointer to the struct ice_pf instance
3814   * @f: feature enum to be checked
3815   *
3816   * returns true if feature is supported, false otherwise
3817   */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3818  bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3819  {
3820  	if (f < 0 || f >= ICE_F_MAX)
3821  		return false;
3822  
3823  	return test_bit(f, pf->features);
3824  }
3825  
3826  /**
3827   * ice_set_feature_support
3828   * @pf: pointer to the struct ice_pf instance
3829   * @f: feature enum to set
3830   */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3831  void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3832  {
3833  	if (f < 0 || f >= ICE_F_MAX)
3834  		return;
3835  
3836  	set_bit(f, pf->features);
3837  }
3838  
3839  /**
3840   * ice_clear_feature_support
3841   * @pf: pointer to the struct ice_pf instance
3842   * @f: feature enum to clear
3843   */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3844  void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3845  {
3846  	if (f < 0 || f >= ICE_F_MAX)
3847  		return;
3848  
3849  	clear_bit(f, pf->features);
3850  }
3851  
3852  /**
3853   * ice_init_feature_support
3854   * @pf: pointer to the struct ice_pf instance
3855   *
3856   * called during init to setup supported feature
3857   */
ice_init_feature_support(struct ice_pf * pf)3858  void ice_init_feature_support(struct ice_pf *pf)
3859  {
3860  	switch (pf->hw.device_id) {
3861  	case ICE_DEV_ID_E810C_BACKPLANE:
3862  	case ICE_DEV_ID_E810C_QSFP:
3863  	case ICE_DEV_ID_E810C_SFP:
3864  	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3865  	case ICE_DEV_ID_E810_XXV_QSFP:
3866  	case ICE_DEV_ID_E810_XXV_SFP:
3867  		ice_set_feature_support(pf, ICE_F_DSCP);
3868  		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3869  			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3870  		/* If we don't own the timer - don't enable other caps */
3871  		if (!ice_pf_src_tmr_owned(pf))
3872  			break;
3873  		if (ice_is_cgu_in_netlist(&pf->hw))
3874  			ice_set_feature_support(pf, ICE_F_CGU);
3875  		if (ice_is_clock_mux_in_netlist(&pf->hw))
3876  			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3877  		if (ice_gnss_is_gps_present(&pf->hw))
3878  			ice_set_feature_support(pf, ICE_F_GNSS);
3879  		break;
3880  	default:
3881  		break;
3882  	}
3883  }
3884  
3885  /**
3886   * ice_vsi_update_security - update security block in VSI
3887   * @vsi: pointer to VSI structure
3888   * @fill: function pointer to fill ctx
3889   */
3890  int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))3891  ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3892  {
3893  	struct ice_vsi_ctx ctx = { 0 };
3894  
3895  	ctx.info = vsi->info;
3896  	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3897  	fill(&ctx);
3898  
3899  	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3900  		return -ENODEV;
3901  
3902  	vsi->info = ctx.info;
3903  	return 0;
3904  }
3905  
3906  /**
3907   * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3908   * @ctx: pointer to VSI ctx structure
3909   */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)3910  void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3911  {
3912  	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3913  			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3914  				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3915  }
3916  
3917  /**
3918   * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3919   * @ctx: pointer to VSI ctx structure
3920   */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)3921  void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3922  {
3923  	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3924  			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3925  				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3926  }
3927  
3928  /**
3929   * ice_vsi_ctx_set_allow_override - allow destination override on VSI
3930   * @ctx: pointer to VSI ctx structure
3931   */
ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx * ctx)3932  void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
3933  {
3934  	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3935  }
3936  
3937  /**
3938   * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
3939   * @ctx: pointer to VSI ctx structure
3940   */
ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx * ctx)3941  void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
3942  {
3943  	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3944  }
3945  
3946  /**
3947   * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3948   * @vsi: pointer to VSI structure
3949   * @set: set or unset the bit
3950   */
3951  int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)3952  ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3953  {
3954  	struct ice_vsi_ctx ctx = {
3955  		.info	= vsi->info,
3956  	};
3957  
3958  	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3959  	if (set)
3960  		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3961  	else
3962  		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3963  
3964  	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3965  		return -ENODEV;
3966  
3967  	vsi->info = ctx.info;
3968  	return 0;
3969  }
3970