1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2020, Intel Corporation. */
3  
4  #include <linux/vmalloc.h>
5  
6  #include "ice.h"
7  #include "ice_lib.h"
8  #include "devlink.h"
9  #include "devlink_port.h"
10  #include "ice_eswitch.h"
11  #include "ice_fw_update.h"
12  #include "ice_dcb_lib.h"
13  #include "ice_sf_eth.h"
14  
15  /* context for devlink info version reporting */
16  struct ice_info_ctx {
17  	char buf[128];
18  	struct ice_orom_info pending_orom;
19  	struct ice_nvm_info pending_nvm;
20  	struct ice_netlist_info pending_netlist;
21  	struct ice_hw_dev_caps dev_caps;
22  };
23  
24  /* The following functions are used to format specific strings for various
25   * devlink info versions. The ctx parameter is used to provide the storage
26   * buffer, as well as any ancillary information calculated when the info
27   * request was made.
28   *
29   * If a version does not exist, for example when attempting to get the
30   * inactive version of flash when there is no pending update, the function
31   * should leave the buffer in the ctx structure empty.
32   */
33  
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34  static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35  {
36  	u8 dsn[8];
37  
38  	/* Copy the DSN into an array in Big Endian format */
39  	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40  
41  	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42  }
43  
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44  static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45  {
46  	struct ice_hw *hw = &pf->hw;
47  	int status;
48  
49  	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50  	if (status)
51  		/* We failed to locate the PBA, so just skip this entry */
52  		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53  			status);
54  }
55  
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56  static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57  {
58  	struct ice_hw *hw = &pf->hw;
59  
60  	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61  		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62  }
63  
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64  static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65  {
66  	struct ice_hw *hw = &pf->hw;
67  
68  	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69  		 hw->api_min_ver, hw->api_patch);
70  }
71  
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72  static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73  {
74  	struct ice_hw *hw = &pf->hw;
75  
76  	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77  }
78  
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79  static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80  {
81  	struct ice_orom_info *orom = &pf->hw.flash.orom;
82  
83  	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84  		 orom->major, orom->build, orom->patch);
85  }
86  
87  static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88  ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89  			  struct ice_info_ctx *ctx)
90  {
91  	struct ice_orom_info *orom = &ctx->pending_orom;
92  
93  	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94  		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95  			 orom->major, orom->build, orom->patch);
96  }
97  
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98  static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99  {
100  	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101  
102  	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103  }
104  
105  static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106  ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107  			 struct ice_info_ctx *ctx)
108  {
109  	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110  
111  	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112  		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113  			 nvm->major, nvm->minor);
114  }
115  
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116  static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117  {
118  	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119  
120  	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121  }
122  
123  static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124  ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125  {
126  	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127  
128  	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129  		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130  }
131  
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132  static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133  {
134  	struct ice_hw *hw = &pf->hw;
135  
136  	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137  }
138  
139  static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140  ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141  {
142  	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143  
144  	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145  		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146  }
147  
148  static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149  ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150  {
151  	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152  }
153  
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154  static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155  {
156  	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157  
158  	/* The netlist version fields are BCD formatted */
159  	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160  		 netlist->major, netlist->minor,
161  		 netlist->type >> 16, netlist->type & 0xFFFF,
162  		 netlist->rev, netlist->cust_ver);
163  }
164  
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165  static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166  {
167  	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168  
169  	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170  }
171  
172  static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173  ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174  			     struct ice_info_ctx *ctx)
175  {
176  	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177  
178  	/* The netlist version fields are BCD formatted */
179  	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180  		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181  			 netlist->major, netlist->minor,
182  			 netlist->type >> 16, netlist->type & 0xFFFF,
183  			 netlist->rev, netlist->cust_ver);
184  }
185  
186  static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187  ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188  			       struct ice_info_ctx *ctx)
189  {
190  	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191  
192  	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193  		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194  }
195  
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196  static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197  {
198  	u32 id, cfg_ver, fw_ver;
199  
200  	if (!ice_is_feature_supported(pf, ICE_F_CGU))
201  		return;
202  	if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203  		return;
204  	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205  }
206  
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207  static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208  {
209  	if (!ice_is_feature_supported(pf, ICE_F_CGU))
210  		return;
211  	snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212  }
213  
214  #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215  #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216  #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217  
218  /* The combined() macro inserts both the running entry as well as a stored
219   * entry. The running entry will always report the version from the active
220   * handler. The stored entry will first try the pending handler, and fallback
221   * to the active handler if the pending function does not report a version.
222   * The pending handler should check the status of a pending update for the
223   * relevant flash component. It should only fill in the buffer in the case
224   * where a valid pending version is available. This ensures that the related
225   * stored and running versions remain in sync, and that stored versions are
226   * correctly reported as expected.
227   */
228  #define combined(key, active, pending) \
229  	running(key, active), \
230  	stored(key, pending, active)
231  
232  enum ice_version_type {
233  	ICE_VERSION_FIXED,
234  	ICE_VERSION_RUNNING,
235  	ICE_VERSION_STORED,
236  };
237  
238  static const struct ice_devlink_version {
239  	enum ice_version_type type;
240  	const char *key;
241  	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242  	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243  } ice_devlink_versions[] = {
244  	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245  	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246  	running("fw.mgmt.api", ice_info_fw_api),
247  	running("fw.mgmt.build", ice_info_fw_build),
248  	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249  	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250  	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251  	running("fw.app.name", ice_info_ddp_pkg_name),
252  	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253  	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254  	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255  	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256  	fixed("cgu.id", ice_info_cgu_id),
257  	running("fw.cgu", ice_info_cgu_fw_build),
258  };
259  
260  /**
261   * ice_devlink_info_get - .info_get devlink handler
262   * @devlink: devlink instance structure
263   * @req: the devlink info request
264   * @extack: extended netdev ack structure
265   *
266   * Callback for the devlink .info_get operation. Reports information about the
267   * device.
268   *
269   * Return: zero on success or an error code on failure.
270   */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271  static int ice_devlink_info_get(struct devlink *devlink,
272  				struct devlink_info_req *req,
273  				struct netlink_ext_ack *extack)
274  {
275  	struct ice_pf *pf = devlink_priv(devlink);
276  	struct device *dev = ice_pf_to_dev(pf);
277  	struct ice_hw *hw = &pf->hw;
278  	struct ice_info_ctx *ctx;
279  	size_t i;
280  	int err;
281  
282  	err = ice_wait_for_reset(pf, 10 * HZ);
283  	if (err) {
284  		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285  		return err;
286  	}
287  
288  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289  	if (!ctx)
290  		return -ENOMEM;
291  
292  	/* discover capabilities first */
293  	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294  	if (err) {
295  		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296  			err, ice_aq_str(hw->adminq.sq_last_status));
297  		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298  		goto out_free_ctx;
299  	}
300  
301  	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302  		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303  		if (err) {
304  			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305  				err, ice_aq_str(hw->adminq.sq_last_status));
306  
307  			/* disable display of pending Option ROM */
308  			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309  		}
310  	}
311  
312  	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313  		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314  		if (err) {
315  			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316  				err, ice_aq_str(hw->adminq.sq_last_status));
317  
318  			/* disable display of pending Option ROM */
319  			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320  		}
321  	}
322  
323  	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324  		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325  		if (err) {
326  			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327  				err, ice_aq_str(hw->adminq.sq_last_status));
328  
329  			/* disable display of pending Option ROM */
330  			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331  		}
332  	}
333  
334  	ice_info_get_dsn(pf, ctx);
335  
336  	err = devlink_info_serial_number_put(req, ctx->buf);
337  	if (err) {
338  		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339  		goto out_free_ctx;
340  	}
341  
342  	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343  		enum ice_version_type type = ice_devlink_versions[i].type;
344  		const char *key = ice_devlink_versions[i].key;
345  
346  		memset(ctx->buf, 0, sizeof(ctx->buf));
347  
348  		ice_devlink_versions[i].getter(pf, ctx);
349  
350  		/* If the default getter doesn't report a version, use the
351  		 * fallback function. This is primarily useful in the case of
352  		 * "stored" versions that want to report the same value as the
353  		 * running version in the normal case of no pending update.
354  		 */
355  		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356  			ice_devlink_versions[i].fallback(pf, ctx);
357  
358  		/* Do not report missing versions */
359  		if (ctx->buf[0] == '\0')
360  			continue;
361  
362  		switch (type) {
363  		case ICE_VERSION_FIXED:
364  			err = devlink_info_version_fixed_put(req, key, ctx->buf);
365  			if (err) {
366  				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367  				goto out_free_ctx;
368  			}
369  			break;
370  		case ICE_VERSION_RUNNING:
371  			err = devlink_info_version_running_put(req, key, ctx->buf);
372  			if (err) {
373  				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
374  				goto out_free_ctx;
375  			}
376  			break;
377  		case ICE_VERSION_STORED:
378  			err = devlink_info_version_stored_put(req, key, ctx->buf);
379  			if (err) {
380  				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
381  				goto out_free_ctx;
382  			}
383  			break;
384  		}
385  	}
386  
387  out_free_ctx:
388  	kfree(ctx);
389  	return err;
390  }
391  
392  /**
393   * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
394   * @pf: pointer to the pf instance
395   * @extack: netlink extended ACK structure
396   *
397   * Allow user to activate new Embedded Management Processor firmware by
398   * issuing device specific EMP reset. Called in response to
399   * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
400   *
401   * Note that teardown and rebuild of the driver state happens automatically as
402   * part of an interrupt and watchdog task. This is because all physical
403   * functions on the device must be able to reset when an EMP reset occurs from
404   * any source.
405   */
406  static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)407  ice_devlink_reload_empr_start(struct ice_pf *pf,
408  			      struct netlink_ext_ack *extack)
409  {
410  	struct device *dev = ice_pf_to_dev(pf);
411  	struct ice_hw *hw = &pf->hw;
412  	u8 pending;
413  	int err;
414  
415  	err = ice_get_pending_updates(pf, &pending, extack);
416  	if (err)
417  		return err;
418  
419  	/* pending is a bitmask of which flash banks have a pending update,
420  	 * including the main NVM bank, the Option ROM bank, and the netlist
421  	 * bank. If any of these bits are set, then there is a pending update
422  	 * waiting to be activated.
423  	 */
424  	if (!pending) {
425  		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
426  		return -ECANCELED;
427  	}
428  
429  	if (pf->fw_emp_reset_disabled) {
430  		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
431  		return -ECANCELED;
432  	}
433  
434  	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
435  
436  	err = ice_aq_nvm_update_empr(hw);
437  	if (err) {
438  		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
439  			err, ice_aq_str(hw->adminq.sq_last_status));
440  		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
441  		return err;
442  	}
443  
444  	return 0;
445  }
446  
447  /**
448   * ice_devlink_reinit_down - unload given PF
449   * @pf: pointer to the PF struct
450   */
ice_devlink_reinit_down(struct ice_pf * pf)451  static void ice_devlink_reinit_down(struct ice_pf *pf)
452  {
453  	/* No need to take devl_lock, it's already taken by devlink API */
454  	ice_unload(pf);
455  	rtnl_lock();
456  	ice_vsi_decfg(ice_get_main_vsi(pf));
457  	rtnl_unlock();
458  	ice_deinit_dev(pf);
459  }
460  
461  /**
462   * ice_devlink_reload_down - prepare for reload
463   * @devlink: pointer to the devlink instance to reload
464   * @netns_change: if true, the network namespace is changing
465   * @action: the action to perform
466   * @limit: limits on what reload should do, such as not resetting
467   * @extack: netlink extended ACK structure
468   */
469  static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)470  ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
471  			enum devlink_reload_action action,
472  			enum devlink_reload_limit limit,
473  			struct netlink_ext_ack *extack)
474  {
475  	struct ice_pf *pf = devlink_priv(devlink);
476  
477  	switch (action) {
478  	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
479  		if (ice_is_eswitch_mode_switchdev(pf)) {
480  			NL_SET_ERR_MSG_MOD(extack,
481  					   "Go to legacy mode before doing reinit");
482  			return -EOPNOTSUPP;
483  		}
484  		if (ice_is_adq_active(pf)) {
485  			NL_SET_ERR_MSG_MOD(extack,
486  					   "Turn off ADQ before doing reinit");
487  			return -EOPNOTSUPP;
488  		}
489  		if (ice_has_vfs(pf)) {
490  			NL_SET_ERR_MSG_MOD(extack,
491  					   "Remove all VFs before doing reinit");
492  			return -EOPNOTSUPP;
493  		}
494  		ice_devlink_reinit_down(pf);
495  		return 0;
496  	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
497  		return ice_devlink_reload_empr_start(pf, extack);
498  	default:
499  		WARN_ON(1);
500  		return -EOPNOTSUPP;
501  	}
502  }
503  
504  /**
505   * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
506   * @pf: pointer to the pf instance
507   * @extack: netlink extended ACK structure
508   *
509   * Wait for driver to finish rebuilding after EMP reset is completed. This
510   * includes time to wait for both the actual device reset as well as the time
511   * for the driver's rebuild to complete.
512   */
513  static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)514  ice_devlink_reload_empr_finish(struct ice_pf *pf,
515  			       struct netlink_ext_ack *extack)
516  {
517  	int err;
518  
519  	err = ice_wait_for_reset(pf, 60 * HZ);
520  	if (err) {
521  		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
522  		return err;
523  	}
524  
525  	return 0;
526  }
527  
528  /**
529   * ice_get_tx_topo_user_sel - Read user's choice from flash
530   * @pf: pointer to pf structure
531   * @layers: value read from flash will be saved here
532   *
533   * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
534   *
535   * Return: zero when read was successful, negative values otherwise.
536   */
ice_get_tx_topo_user_sel(struct ice_pf * pf,uint8_t * layers)537  static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
538  {
539  	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
540  	struct ice_hw *hw = &pf->hw;
541  	int err;
542  
543  	err = ice_acquire_nvm(hw, ICE_RES_READ);
544  	if (err)
545  		return err;
546  
547  	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
548  			      sizeof(usr_sel), &usr_sel, true, true, NULL);
549  	if (err)
550  		goto exit_release_res;
551  
552  	if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
553  		*layers = ICE_SCHED_5_LAYERS;
554  	else
555  		*layers = ICE_SCHED_9_LAYERS;
556  
557  exit_release_res:
558  	ice_release_nvm(hw);
559  
560  	return err;
561  }
562  
563  /**
564   * ice_update_tx_topo_user_sel - Save user's preference in flash
565   * @pf: pointer to pf structure
566   * @layers: value to be saved in flash
567   *
568   * Variable "layers" defines user's preference about number of layers in Tx
569   * Scheduler Topology Tree. This choice should be stored in PFA TLV field
570   * and be picked up by driver, next time during init.
571   *
572   * Return: zero when save was successful, negative values otherwise.
573   */
ice_update_tx_topo_user_sel(struct ice_pf * pf,int layers)574  static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
575  {
576  	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
577  	struct ice_hw *hw = &pf->hw;
578  	int err;
579  
580  	err = ice_acquire_nvm(hw, ICE_RES_WRITE);
581  	if (err)
582  		return err;
583  
584  	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
585  			      sizeof(usr_sel), &usr_sel, true, true, NULL);
586  	if (err)
587  		goto exit_release_res;
588  
589  	if (layers == ICE_SCHED_5_LAYERS)
590  		usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
591  	else
592  		usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
593  
594  	err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
595  				      sizeof(usr_sel.data), &usr_sel.data,
596  				      true, NULL, NULL);
597  exit_release_res:
598  	ice_release_nvm(hw);
599  
600  	return err;
601  }
602  
603  /**
604   * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
605   * @devlink: pointer to the devlink instance
606   * @id: the parameter ID to set
607   * @ctx: context to store the parameter value
608   *
609   * Return: zero on success and negative value on failure.
610   */
ice_devlink_tx_sched_layers_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)611  static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
612  					   struct devlink_param_gset_ctx *ctx)
613  {
614  	struct ice_pf *pf = devlink_priv(devlink);
615  	int err;
616  
617  	err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
618  	if (err)
619  		return err;
620  
621  	return 0;
622  }
623  
624  /**
625   * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
626   * @devlink: pointer to the devlink instance
627   * @id: the parameter ID to set
628   * @ctx: context to get the parameter value
629   * @extack: netlink extended ACK structure
630   *
631   * Return: zero on success and negative value on failure.
632   */
ice_devlink_tx_sched_layers_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)633  static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
634  					   struct devlink_param_gset_ctx *ctx,
635  					   struct netlink_ext_ack *extack)
636  {
637  	struct ice_pf *pf = devlink_priv(devlink);
638  	int err;
639  
640  	err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
641  	if (err)
642  		return err;
643  
644  	NL_SET_ERR_MSG_MOD(extack,
645  			   "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
646  
647  	return 0;
648  }
649  
650  /**
651   * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
652   *                                        parameter value
653   * @devlink: unused pointer to devlink instance
654   * @id: the parameter ID to validate
655   * @val: value to validate
656   * @extack: netlink extended ACK structure
657   *
658   * Supported values are:
659   * - 5 - five layers Tx Scheduler Topology Tree
660   * - 9 - nine layers Tx Scheduler Topology Tree
661   *
662   * Return: zero when passed parameter value is supported. Negative value on
663   * error.
664   */
ice_devlink_tx_sched_layers_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)665  static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
666  						union devlink_param_value val,
667  						struct netlink_ext_ack *extack)
668  {
669  	if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
670  		NL_SET_ERR_MSG_MOD(extack,
671  				   "Wrong number of tx scheduler layers provided.");
672  		return -EINVAL;
673  	}
674  
675  	return 0;
676  }
677  
678  /**
679   * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
680   * @pf: pf struct
681   *
682   * This function tears down tree exported during VF's creation.
683   */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)684  void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
685  {
686  	struct devlink *devlink;
687  	struct ice_vf *vf;
688  	unsigned int bkt;
689  
690  	devlink = priv_to_devlink(pf);
691  
692  	devl_lock(devlink);
693  	mutex_lock(&pf->vfs.table_lock);
694  	ice_for_each_vf(pf, bkt, vf) {
695  		if (vf->devlink_port.devlink_rate)
696  			devl_rate_leaf_destroy(&vf->devlink_port);
697  	}
698  	mutex_unlock(&pf->vfs.table_lock);
699  
700  	devl_rate_nodes_destroy(devlink);
701  	devl_unlock(devlink);
702  }
703  
704  /**
705   * ice_enable_custom_tx - try to enable custom Tx feature
706   * @pf: pf struct
707   *
708   * This function tries to enable custom Tx feature,
709   * it's not possible to enable it, if DCB or ADQ is active.
710   */
ice_enable_custom_tx(struct ice_pf * pf)711  static bool ice_enable_custom_tx(struct ice_pf *pf)
712  {
713  	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
714  	struct device *dev = ice_pf_to_dev(pf);
715  
716  	if (pi->is_custom_tx_enabled)
717  		/* already enabled, return true */
718  		return true;
719  
720  	if (ice_is_adq_active(pf)) {
721  		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
722  		return false;
723  	}
724  
725  	if (ice_is_dcb_active(pf)) {
726  		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
727  		return false;
728  	}
729  
730  	pi->is_custom_tx_enabled = true;
731  
732  	return true;
733  }
734  
735  /**
736   * ice_traverse_tx_tree - traverse Tx scheduler tree
737   * @devlink: devlink struct
738   * @node: current node, used for recursion
739   * @tc_node: tc_node struct, that is treated as a root
740   * @pf: pf struct
741   *
742   * This function traverses Tx scheduler tree and exports
743   * entire structure to the devlink-rate.
744   */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)745  static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
746  				 struct ice_sched_node *tc_node, struct ice_pf *pf)
747  {
748  	struct devlink_rate *rate_node = NULL;
749  	struct ice_dynamic_port *sf;
750  	struct ice_vf *vf;
751  	int i;
752  
753  	if (node->rate_node)
754  		/* already added, skip to the next */
755  		goto traverse_children;
756  
757  	if (node->parent == tc_node) {
758  		/* create root node */
759  		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
760  	} else if (node->vsi_handle &&
761  		   pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
762  		   pf->vsi[node->vsi_handle]->vf) {
763  		vf = pf->vsi[node->vsi_handle]->vf;
764  		if (!vf->devlink_port.devlink_rate)
765  			/* leaf nodes doesn't have children
766  			 * so we don't set rate_node
767  			 */
768  			devl_rate_leaf_create(&vf->devlink_port, node,
769  					      node->parent->rate_node);
770  	} else if (node->vsi_handle &&
771  		   pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
772  		   pf->vsi[node->vsi_handle]->sf) {
773  		sf = pf->vsi[node->vsi_handle]->sf;
774  		if (!sf->devlink_port.devlink_rate)
775  			/* leaf nodes doesn't have children
776  			 * so we don't set rate_node
777  			 */
778  			devl_rate_leaf_create(&sf->devlink_port, node,
779  					      node->parent->rate_node);
780  	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
781  		   node->parent->rate_node) {
782  		rate_node = devl_rate_node_create(devlink, node, node->name,
783  						  node->parent->rate_node);
784  	}
785  
786  	if (rate_node && !IS_ERR(rate_node))
787  		node->rate_node = rate_node;
788  
789  traverse_children:
790  	for (i = 0; i < node->num_children; i++)
791  		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
792  }
793  
794  /**
795   * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
796   * @devlink: devlink struct
797   * @vsi: main vsi struct
798   *
799   * This function finds a root node, then calls ice_traverse_tx tree, which
800   * traverses the tree and exports it's contents to devlink rate.
801   */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)802  int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
803  {
804  	struct ice_port_info *pi = vsi->port_info;
805  	struct ice_sched_node *tc_node;
806  	struct ice_pf *pf = vsi->back;
807  	int i;
808  
809  	tc_node = pi->root->children[0];
810  	mutex_lock(&pi->sched_lock);
811  	for (i = 0; i < tc_node->num_children; i++)
812  		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
813  	mutex_unlock(&pi->sched_lock);
814  
815  	return 0;
816  }
817  
ice_clear_rate_nodes(struct ice_sched_node * node)818  static void ice_clear_rate_nodes(struct ice_sched_node *node)
819  {
820  	node->rate_node = NULL;
821  
822  	for (int i = 0; i < node->num_children; i++)
823  		ice_clear_rate_nodes(node->children[i]);
824  }
825  
826  /**
827   * ice_devlink_rate_clear_tx_topology - clear node->rate_node
828   * @vsi: main vsi struct
829   *
830   * Clear rate_node to cleanup creation of Tx topology.
831   *
832   */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)833  void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
834  {
835  	struct ice_port_info *pi = vsi->port_info;
836  
837  	mutex_lock(&pi->sched_lock);
838  	ice_clear_rate_nodes(pi->root->children[0]);
839  	mutex_unlock(&pi->sched_lock);
840  }
841  
842  /**
843   * ice_set_object_tx_share - sets node scheduling parameter
844   * @pi: devlink struct instance
845   * @node: node struct instance
846   * @bw: bandwidth in bytes per second
847   * @extack: extended netdev ack structure
848   *
849   * This function sets ICE_MIN_BW scheduling BW limit.
850   */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)851  static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
852  				   u64 bw, struct netlink_ext_ack *extack)
853  {
854  	int status;
855  
856  	mutex_lock(&pi->sched_lock);
857  	/* converts bytes per second to kilo bits per second */
858  	node->tx_share = div_u64(bw, 125);
859  	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
860  	mutex_unlock(&pi->sched_lock);
861  
862  	if (status)
863  		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
864  
865  	return status;
866  }
867  
868  /**
869   * ice_set_object_tx_max - sets node scheduling parameter
870   * @pi: devlink struct instance
871   * @node: node struct instance
872   * @bw: bandwidth in bytes per second
873   * @extack: extended netdev ack structure
874   *
875   * This function sets ICE_MAX_BW scheduling BW limit.
876   */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)877  static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
878  				 u64 bw, struct netlink_ext_ack *extack)
879  {
880  	int status;
881  
882  	mutex_lock(&pi->sched_lock);
883  	/* converts bytes per second value to kilo bits per second */
884  	node->tx_max = div_u64(bw, 125);
885  	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
886  	mutex_unlock(&pi->sched_lock);
887  
888  	if (status)
889  		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
890  
891  	return status;
892  }
893  
894  /**
895   * ice_set_object_tx_priority - sets node scheduling parameter
896   * @pi: devlink struct instance
897   * @node: node struct instance
898   * @priority: value representing priority for strict priority arbitration
899   * @extack: extended netdev ack structure
900   *
901   * This function sets priority of node among siblings.
902   */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)903  static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
904  				      u32 priority, struct netlink_ext_ack *extack)
905  {
906  	int status;
907  
908  	if (priority >= 8) {
909  		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
910  		return -EINVAL;
911  	}
912  
913  	mutex_lock(&pi->sched_lock);
914  	node->tx_priority = priority;
915  	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
916  	mutex_unlock(&pi->sched_lock);
917  
918  	if (status)
919  		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
920  
921  	return status;
922  }
923  
924  /**
925   * ice_set_object_tx_weight - sets node scheduling parameter
926   * @pi: devlink struct instance
927   * @node: node struct instance
928   * @weight: value represeting relative weight for WFQ arbitration
929   * @extack: extended netdev ack structure
930   *
931   * This function sets node weight for WFQ algorithm.
932   */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)933  static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
934  				    u32 weight, struct netlink_ext_ack *extack)
935  {
936  	int status;
937  
938  	if (weight > 200 || weight < 1) {
939  		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
940  		return -EINVAL;
941  	}
942  
943  	mutex_lock(&pi->sched_lock);
944  	node->tx_weight = weight;
945  	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
946  	mutex_unlock(&pi->sched_lock);
947  
948  	if (status)
949  		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
950  
951  	return status;
952  }
953  
954  /**
955   * ice_get_pi_from_dev_rate - get port info from devlink_rate
956   * @rate_node: devlink struct instance
957   *
958   * This function returns corresponding port_info struct of devlink_rate
959   */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)960  static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
961  {
962  	struct ice_pf *pf = devlink_priv(rate_node->devlink);
963  
964  	return ice_get_main_vsi(pf)->port_info;
965  }
966  
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)967  static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
968  				     struct netlink_ext_ack *extack)
969  {
970  	struct ice_sched_node *node;
971  	struct ice_port_info *pi;
972  
973  	pi = ice_get_pi_from_dev_rate(rate_node);
974  
975  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
976  		return -EBUSY;
977  
978  	/* preallocate memory for ice_sched_node */
979  	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
980  	*priv = node;
981  
982  	return 0;
983  }
984  
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)985  static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
986  				     struct netlink_ext_ack *extack)
987  {
988  	struct ice_sched_node *node, *tc_node;
989  	struct ice_port_info *pi;
990  
991  	pi = ice_get_pi_from_dev_rate(rate_node);
992  	tc_node = pi->root->children[0];
993  	node = priv;
994  
995  	if (!rate_node->parent || !node || tc_node == node || !extack)
996  		return 0;
997  
998  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
999  		return -EBUSY;
1000  
1001  	/* can't allow to delete a node with children */
1002  	if (node->num_children)
1003  		return -EINVAL;
1004  
1005  	mutex_lock(&pi->sched_lock);
1006  	ice_free_sched_node(pi, node);
1007  	mutex_unlock(&pi->sched_lock);
1008  
1009  	return 0;
1010  }
1011  
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1012  static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1013  					    u64 tx_max, struct netlink_ext_ack *extack)
1014  {
1015  	struct ice_sched_node *node = priv;
1016  
1017  	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1018  		return -EBUSY;
1019  
1020  	if (!node)
1021  		return 0;
1022  
1023  	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1024  				     node, tx_max, extack);
1025  }
1026  
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1027  static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1028  					      u64 tx_share, struct netlink_ext_ack *extack)
1029  {
1030  	struct ice_sched_node *node = priv;
1031  
1032  	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1033  		return -EBUSY;
1034  
1035  	if (!node)
1036  		return 0;
1037  
1038  	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1039  				       tx_share, extack);
1040  }
1041  
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1042  static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1043  						 u32 tx_priority, struct netlink_ext_ack *extack)
1044  {
1045  	struct ice_sched_node *node = priv;
1046  
1047  	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1048  		return -EBUSY;
1049  
1050  	if (!node)
1051  		return 0;
1052  
1053  	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1054  					  tx_priority, extack);
1055  }
1056  
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1057  static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1058  					       u32 tx_weight, struct netlink_ext_ack *extack)
1059  {
1060  	struct ice_sched_node *node = priv;
1061  
1062  	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1063  		return -EBUSY;
1064  
1065  	if (!node)
1066  		return 0;
1067  
1068  	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1069  					tx_weight, extack);
1070  }
1071  
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1072  static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1073  					    u64 tx_max, struct netlink_ext_ack *extack)
1074  {
1075  	struct ice_sched_node *node = priv;
1076  
1077  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1078  		return -EBUSY;
1079  
1080  	if (!node)
1081  		return 0;
1082  
1083  	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1084  				     node, tx_max, extack);
1085  }
1086  
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1087  static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1088  					      u64 tx_share, struct netlink_ext_ack *extack)
1089  {
1090  	struct ice_sched_node *node = priv;
1091  
1092  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1093  		return -EBUSY;
1094  
1095  	if (!node)
1096  		return 0;
1097  
1098  	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1099  				       node, tx_share, extack);
1100  }
1101  
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1102  static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1103  						 u32 tx_priority, struct netlink_ext_ack *extack)
1104  {
1105  	struct ice_sched_node *node = priv;
1106  
1107  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1108  		return -EBUSY;
1109  
1110  	if (!node)
1111  		return 0;
1112  
1113  	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1114  					  node, tx_priority, extack);
1115  }
1116  
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1117  static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1118  					       u32 tx_weight, struct netlink_ext_ack *extack)
1119  {
1120  	struct ice_sched_node *node = priv;
1121  
1122  	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1123  		return -EBUSY;
1124  
1125  	if (!node)
1126  		return 0;
1127  
1128  	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1129  					node, tx_weight, extack);
1130  }
1131  
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1132  static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1133  				  struct devlink_rate *parent,
1134  				  void *priv, void *parent_priv,
1135  				  struct netlink_ext_ack *extack)
1136  {
1137  	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1138  	struct ice_sched_node *tc_node, *node, *parent_node;
1139  	u16 num_nodes_added;
1140  	u32 first_node_teid;
1141  	u32 node_teid;
1142  	int status;
1143  
1144  	tc_node = pi->root->children[0];
1145  	node = priv;
1146  
1147  	if (!extack)
1148  		return 0;
1149  
1150  	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1151  		return -EBUSY;
1152  
1153  	if (!parent) {
1154  		if (!node || tc_node == node || node->num_children)
1155  			return -EINVAL;
1156  
1157  		mutex_lock(&pi->sched_lock);
1158  		ice_free_sched_node(pi, node);
1159  		mutex_unlock(&pi->sched_lock);
1160  
1161  		return 0;
1162  	}
1163  
1164  	parent_node = parent_priv;
1165  
1166  	/* if the node doesn't exist, create it */
1167  	if (!node->parent) {
1168  		mutex_lock(&pi->sched_lock);
1169  		status = ice_sched_add_elems(pi, tc_node, parent_node,
1170  					     parent_node->tx_sched_layer + 1,
1171  					     1, &num_nodes_added, &first_node_teid,
1172  					     &node);
1173  		mutex_unlock(&pi->sched_lock);
1174  
1175  		if (status) {
1176  			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1177  			return status;
1178  		}
1179  
1180  		if (devlink_rate->tx_share)
1181  			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1182  		if (devlink_rate->tx_max)
1183  			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1184  		if (devlink_rate->tx_priority)
1185  			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1186  		if (devlink_rate->tx_weight)
1187  			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1188  	} else {
1189  		node_teid = le32_to_cpu(node->info.node_teid);
1190  		mutex_lock(&pi->sched_lock);
1191  		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1192  		mutex_unlock(&pi->sched_lock);
1193  
1194  		if (status)
1195  			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1196  	}
1197  
1198  	return status;
1199  }
1200  
1201  /**
1202   * ice_devlink_reinit_up - do reinit of the given PF
1203   * @pf: pointer to the PF struct
1204   */
ice_devlink_reinit_up(struct ice_pf * pf)1205  static int ice_devlink_reinit_up(struct ice_pf *pf)
1206  {
1207  	struct ice_vsi *vsi = ice_get_main_vsi(pf);
1208  	int err;
1209  
1210  	err = ice_init_dev(pf);
1211  	if (err)
1212  		return err;
1213  
1214  	vsi->flags = ICE_VSI_FLAG_INIT;
1215  
1216  	rtnl_lock();
1217  	err = ice_vsi_cfg(vsi);
1218  	rtnl_unlock();
1219  	if (err)
1220  		goto err_vsi_cfg;
1221  
1222  	/* No need to take devl_lock, it's already taken by devlink API */
1223  	err = ice_load(pf);
1224  	if (err)
1225  		goto err_load;
1226  
1227  	return 0;
1228  
1229  err_load:
1230  	rtnl_lock();
1231  	ice_vsi_decfg(vsi);
1232  	rtnl_unlock();
1233  err_vsi_cfg:
1234  	ice_deinit_dev(pf);
1235  	return err;
1236  }
1237  
1238  /**
1239   * ice_devlink_reload_up - do reload up after reinit
1240   * @devlink: pointer to the devlink instance reloading
1241   * @action: the action requested
1242   * @limit: limits imposed by userspace, such as not resetting
1243   * @actions_performed: on return, indicate what actions actually performed
1244   * @extack: netlink extended ACK structure
1245   */
1246  static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1247  ice_devlink_reload_up(struct devlink *devlink,
1248  		      enum devlink_reload_action action,
1249  		      enum devlink_reload_limit limit,
1250  		      u32 *actions_performed,
1251  		      struct netlink_ext_ack *extack)
1252  {
1253  	struct ice_pf *pf = devlink_priv(devlink);
1254  
1255  	switch (action) {
1256  	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1257  		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1258  		return ice_devlink_reinit_up(pf);
1259  	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1260  		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1261  		return ice_devlink_reload_empr_finish(pf, extack);
1262  	default:
1263  		WARN_ON(1);
1264  		return -EOPNOTSUPP;
1265  	}
1266  }
1267  
1268  static const struct devlink_ops ice_devlink_ops = {
1269  	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1270  	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1271  			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1272  	.reload_down = ice_devlink_reload_down,
1273  	.reload_up = ice_devlink_reload_up,
1274  	.eswitch_mode_get = ice_eswitch_mode_get,
1275  	.eswitch_mode_set = ice_eswitch_mode_set,
1276  	.info_get = ice_devlink_info_get,
1277  	.flash_update = ice_devlink_flash_update,
1278  
1279  	.rate_node_new = ice_devlink_rate_node_new,
1280  	.rate_node_del = ice_devlink_rate_node_del,
1281  
1282  	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1283  	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1284  	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1285  	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1286  
1287  	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1288  	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1289  	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1290  	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1291  
1292  	.rate_leaf_parent_set = ice_devlink_set_parent,
1293  	.rate_node_parent_set = ice_devlink_set_parent,
1294  
1295  	.port_new = ice_devlink_port_new,
1296  };
1297  
1298  static const struct devlink_ops ice_sf_devlink_ops;
1299  
1300  static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1301  ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1302  			    struct devlink_param_gset_ctx *ctx)
1303  {
1304  	struct ice_pf *pf = devlink_priv(devlink);
1305  
1306  	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1307  
1308  	return 0;
1309  }
1310  
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1311  static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1312  				       struct devlink_param_gset_ctx *ctx,
1313  				       struct netlink_ext_ack *extack)
1314  {
1315  	struct ice_pf *pf = devlink_priv(devlink);
1316  	bool roce_ena = ctx->val.vbool;
1317  	int ret;
1318  
1319  	if (!roce_ena) {
1320  		ice_unplug_aux_dev(pf);
1321  		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1322  		return 0;
1323  	}
1324  
1325  	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1326  	ret = ice_plug_aux_dev(pf);
1327  	if (ret)
1328  		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1329  
1330  	return ret;
1331  }
1332  
1333  static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1334  ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1335  				 union devlink_param_value val,
1336  				 struct netlink_ext_ack *extack)
1337  {
1338  	struct ice_pf *pf = devlink_priv(devlink);
1339  
1340  	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1341  		return -EOPNOTSUPP;
1342  
1343  	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1344  		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1345  		return -EOPNOTSUPP;
1346  	}
1347  
1348  	return 0;
1349  }
1350  
1351  static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1352  ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1353  			  struct devlink_param_gset_ctx *ctx)
1354  {
1355  	struct ice_pf *pf = devlink_priv(devlink);
1356  
1357  	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1358  
1359  	return 0;
1360  }
1361  
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1362  static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1363  				     struct devlink_param_gset_ctx *ctx,
1364  				     struct netlink_ext_ack *extack)
1365  {
1366  	struct ice_pf *pf = devlink_priv(devlink);
1367  	bool iw_ena = ctx->val.vbool;
1368  	int ret;
1369  
1370  	if (!iw_ena) {
1371  		ice_unplug_aux_dev(pf);
1372  		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1373  		return 0;
1374  	}
1375  
1376  	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1377  	ret = ice_plug_aux_dev(pf);
1378  	if (ret)
1379  		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1380  
1381  	return ret;
1382  }
1383  
1384  static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1385  ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1386  			       union devlink_param_value val,
1387  			       struct netlink_ext_ack *extack)
1388  {
1389  	struct ice_pf *pf = devlink_priv(devlink);
1390  
1391  	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1392  		return -EOPNOTSUPP;
1393  
1394  	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1395  		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1396  		return -EOPNOTSUPP;
1397  	}
1398  
1399  	return 0;
1400  }
1401  
1402  #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1403  #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1404  #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1405  
1406  /**
1407   * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1408   * @mode: local forwarding for mode used in port_info struct.
1409   *
1410   * Return: Mode respective string or "Invalid".
1411   */
1412  static const char *
ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)1413  ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1414  {
1415  	switch (mode) {
1416  	case ICE_LOCAL_FWD_MODE_ENABLED:
1417  		return DEVLINK_LOCAL_FWD_ENABLED_STR;
1418  	case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1419  		return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1420  	case ICE_LOCAL_FWD_MODE_DISABLED:
1421  		return DEVLINK_LOCAL_FWD_DISABLED_STR;
1422  	}
1423  
1424  	return "Invalid";
1425  }
1426  
1427  /**
1428   * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1429   * @mode_str: local forwarding mode string.
1430   *
1431   * Return: Mode value or negative number if invalid.
1432   */
ice_devlink_local_fwd_str_to_mode(const char * mode_str)1433  static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1434  {
1435  	if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1436  		return ICE_LOCAL_FWD_MODE_ENABLED;
1437  	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1438  		return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1439  	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1440  		return ICE_LOCAL_FWD_MODE_DISABLED;
1441  
1442  	return -EINVAL;
1443  }
1444  
1445  /**
1446   * ice_devlink_local_fwd_get - Get local_fwd parameter.
1447   * @devlink: Pointer to the devlink instance.
1448   * @id: The parameter ID to set.
1449   * @ctx: Context to store the parameter value.
1450   *
1451   * Return: Zero.
1452   */
ice_devlink_local_fwd_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1453  static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1454  				     struct devlink_param_gset_ctx *ctx)
1455  {
1456  	struct ice_pf *pf = devlink_priv(devlink);
1457  	struct ice_port_info *pi;
1458  	const char *mode_str;
1459  
1460  	pi = pf->hw.port_info;
1461  	mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1462  	snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1463  
1464  	return 0;
1465  }
1466  
1467  /**
1468   * ice_devlink_local_fwd_set - Set local_fwd parameter.
1469   * @devlink: Pointer to the devlink instance.
1470   * @id: The parameter ID to set.
1471   * @ctx: Context to get the parameter value.
1472   * @extack: Netlink extended ACK structure.
1473   *
1474   * Return: Zero.
1475   */
ice_devlink_local_fwd_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1476  static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1477  				     struct devlink_param_gset_ctx *ctx,
1478  				     struct netlink_ext_ack *extack)
1479  {
1480  	int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1481  	struct ice_pf *pf = devlink_priv(devlink);
1482  	struct device *dev = ice_pf_to_dev(pf);
1483  	struct ice_port_info *pi;
1484  
1485  	pi = pf->hw.port_info;
1486  	if (pi->local_fwd_mode != new_local_fwd_mode) {
1487  		pi->local_fwd_mode = new_local_fwd_mode;
1488  		dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1489  		ice_schedule_reset(pf, ICE_RESET_CORER);
1490  	}
1491  
1492  	return 0;
1493  }
1494  
1495  /**
1496   * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1497   * @devlink: Unused pointer to devlink instance.
1498   * @id: The parameter ID to validate.
1499   * @val: Value to validate.
1500   * @extack: Netlink extended ACK structure.
1501   *
1502   * Supported values are:
1503   * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1504   * "prioritized" - local_fwd traffic is prioritized in scheduling.
1505   *
1506   * Return: Zero when passed parameter value is supported. Negative value on
1507   * error.
1508   */
ice_devlink_local_fwd_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1509  static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1510  					  union devlink_param_value val,
1511  					  struct netlink_ext_ack *extack)
1512  {
1513  	if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1514  		NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1515  		return -EINVAL;
1516  	}
1517  
1518  	return 0;
1519  }
1520  
1521  enum ice_param_id {
1522  	ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1523  	ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1524  	ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1525  };
1526  
1527  static const struct devlink_param ice_dvl_rdma_params[] = {
1528  	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1529  			      ice_devlink_enable_roce_get,
1530  			      ice_devlink_enable_roce_set,
1531  			      ice_devlink_enable_roce_validate),
1532  	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1533  			      ice_devlink_enable_iw_get,
1534  			      ice_devlink_enable_iw_set,
1535  			      ice_devlink_enable_iw_validate),
1536  };
1537  
1538  static const struct devlink_param ice_dvl_sched_params[] = {
1539  	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1540  			     "tx_scheduling_layers",
1541  			     DEVLINK_PARAM_TYPE_U8,
1542  			     BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1543  			     ice_devlink_tx_sched_layers_get,
1544  			     ice_devlink_tx_sched_layers_set,
1545  			     ice_devlink_tx_sched_layers_validate),
1546  	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1547  			     "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1548  			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1549  			     ice_devlink_local_fwd_get,
1550  			     ice_devlink_local_fwd_set,
1551  			     ice_devlink_local_fwd_validate),
1552  };
1553  
ice_devlink_free(void * devlink_ptr)1554  static void ice_devlink_free(void *devlink_ptr)
1555  {
1556  	devlink_free((struct devlink *)devlink_ptr);
1557  }
1558  
1559  /**
1560   * ice_allocate_pf - Allocate devlink and return PF structure pointer
1561   * @dev: the device to allocate for
1562   *
1563   * Allocate a devlink instance for this device and return the private area as
1564   * the PF structure. The devlink memory is kept track of through devres by
1565   * adding an action to remove it when unwinding.
1566   */
ice_allocate_pf(struct device * dev)1567  struct ice_pf *ice_allocate_pf(struct device *dev)
1568  {
1569  	struct devlink *devlink;
1570  
1571  	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1572  	if (!devlink)
1573  		return NULL;
1574  
1575  	/* Add an action to teardown the devlink when unwinding the driver */
1576  	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1577  		return NULL;
1578  
1579  	return devlink_priv(devlink);
1580  }
1581  
1582  /**
1583   * ice_allocate_sf - Allocate devlink and return SF structure pointer
1584   * @dev: the device to allocate for
1585   * @pf: pointer to the PF structure
1586   *
1587   * Allocate a devlink instance for SF.
1588   *
1589   * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1590   */
ice_allocate_sf(struct device * dev,struct ice_pf * pf)1591  struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1592  {
1593  	struct devlink *devlink;
1594  	int err;
1595  
1596  	devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1597  				dev);
1598  	if (!devlink)
1599  		return ERR_PTR(-ENOMEM);
1600  
1601  	err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1602  	if (err) {
1603  		devlink_free(devlink);
1604  		return ERR_PTR(err);
1605  	}
1606  
1607  	return devlink_priv(devlink);
1608  }
1609  
1610  /**
1611   * ice_devlink_register - Register devlink interface for this PF
1612   * @pf: the PF to register the devlink for.
1613   *
1614   * Register the devlink instance associated with this physical function.
1615   *
1616   * Return: zero on success or an error code on failure.
1617   */
ice_devlink_register(struct ice_pf * pf)1618  void ice_devlink_register(struct ice_pf *pf)
1619  {
1620  	struct devlink *devlink = priv_to_devlink(pf);
1621  
1622  	devl_register(devlink);
1623  }
1624  
1625  /**
1626   * ice_devlink_unregister - Unregister devlink resources for this PF.
1627   * @pf: the PF structure to cleanup
1628   *
1629   * Releases resources used by devlink and cleans up associated memory.
1630   */
ice_devlink_unregister(struct ice_pf * pf)1631  void ice_devlink_unregister(struct ice_pf *pf)
1632  {
1633  	devl_unregister(priv_to_devlink(pf));
1634  }
1635  
ice_devlink_register_params(struct ice_pf * pf)1636  int ice_devlink_register_params(struct ice_pf *pf)
1637  {
1638  	struct devlink *devlink = priv_to_devlink(pf);
1639  	struct ice_hw *hw = &pf->hw;
1640  	int status;
1641  
1642  	status = devl_params_register(devlink, ice_dvl_rdma_params,
1643  				      ARRAY_SIZE(ice_dvl_rdma_params));
1644  	if (status)
1645  		return status;
1646  
1647  	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1648  		status = devl_params_register(devlink, ice_dvl_sched_params,
1649  					      ARRAY_SIZE(ice_dvl_sched_params));
1650  
1651  	return status;
1652  }
1653  
ice_devlink_unregister_params(struct ice_pf * pf)1654  void ice_devlink_unregister_params(struct ice_pf *pf)
1655  {
1656  	struct devlink *devlink = priv_to_devlink(pf);
1657  	struct ice_hw *hw = &pf->hw;
1658  
1659  	devl_params_unregister(devlink, ice_dvl_rdma_params,
1660  			       ARRAY_SIZE(ice_dvl_rdma_params));
1661  
1662  	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1663  		devl_params_unregister(devlink, ice_dvl_sched_params,
1664  				       ARRAY_SIZE(ice_dvl_sched_params));
1665  }
1666  
1667  #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1668  
1669  static const struct devlink_region_ops ice_nvm_region_ops;
1670  static const struct devlink_region_ops ice_sram_region_ops;
1671  
1672  /**
1673   * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1674   * @devlink: the devlink instance
1675   * @ops: the devlink region to snapshot
1676   * @extack: extended ACK response structure
1677   * @data: on exit points to snapshot data buffer
1678   *
1679   * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1680   * the nvm-flash or shadow-ram region.
1681   *
1682   * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1683   * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1684   * interface.
1685   *
1686   * @returns zero on success, and updates the data pointer. Returns a non-zero
1687   * error code on failure.
1688   */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1689  static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1690  				    const struct devlink_region_ops *ops,
1691  				    struct netlink_ext_ack *extack, u8 **data)
1692  {
1693  	struct ice_pf *pf = devlink_priv(devlink);
1694  	struct device *dev = ice_pf_to_dev(pf);
1695  	struct ice_hw *hw = &pf->hw;
1696  	bool read_shadow_ram;
1697  	u8 *nvm_data, *tmp, i;
1698  	u32 nvm_size, left;
1699  	s8 num_blks;
1700  	int status;
1701  
1702  	if (ops == &ice_nvm_region_ops) {
1703  		read_shadow_ram = false;
1704  		nvm_size = hw->flash.flash_size;
1705  	} else if (ops == &ice_sram_region_ops) {
1706  		read_shadow_ram = true;
1707  		nvm_size = hw->flash.sr_words * 2u;
1708  	} else {
1709  		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1710  		return -EOPNOTSUPP;
1711  	}
1712  
1713  	nvm_data = vzalloc(nvm_size);
1714  	if (!nvm_data)
1715  		return -ENOMEM;
1716  
1717  	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1718  	tmp = nvm_data;
1719  	left = nvm_size;
1720  
1721  	/* Some systems take longer to read the NVM than others which causes the
1722  	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1723  	 * this by breaking the reads of the NVM into smaller chunks that will
1724  	 * probably not take as long. This has some overhead since we are
1725  	 * increasing the number of AQ commands, but it should always work
1726  	 */
1727  	for (i = 0; i < num_blks; i++) {
1728  		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1729  
1730  		status = ice_acquire_nvm(hw, ICE_RES_READ);
1731  		if (status) {
1732  			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1733  				status, hw->adminq.sq_last_status);
1734  			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1735  			vfree(nvm_data);
1736  			return -EIO;
1737  		}
1738  
1739  		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1740  					   &read_sz, tmp, read_shadow_ram);
1741  		if (status) {
1742  			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1743  				read_sz, status, hw->adminq.sq_last_status);
1744  			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1745  			ice_release_nvm(hw);
1746  			vfree(nvm_data);
1747  			return -EIO;
1748  		}
1749  		ice_release_nvm(hw);
1750  
1751  		tmp += read_sz;
1752  		left -= read_sz;
1753  	}
1754  
1755  	*data = nvm_data;
1756  
1757  	return 0;
1758  }
1759  
1760  /**
1761   * ice_devlink_nvm_read - Read a portion of NVM flash contents
1762   * @devlink: the devlink instance
1763   * @ops: the devlink region to snapshot
1764   * @extack: extended ACK response structure
1765   * @offset: the offset to start at
1766   * @size: the amount to read
1767   * @data: the data buffer to read into
1768   *
1769   * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1770   * read a section of the NVM contents.
1771   *
1772   * It reads from either the nvm-flash or shadow-ram region contents.
1773   *
1774   * @returns zero on success, and updates the data pointer. Returns a non-zero
1775   * error code on failure.
1776   */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1777  static int ice_devlink_nvm_read(struct devlink *devlink,
1778  				const struct devlink_region_ops *ops,
1779  				struct netlink_ext_ack *extack,
1780  				u64 offset, u32 size, u8 *data)
1781  {
1782  	struct ice_pf *pf = devlink_priv(devlink);
1783  	struct device *dev = ice_pf_to_dev(pf);
1784  	struct ice_hw *hw = &pf->hw;
1785  	bool read_shadow_ram;
1786  	u64 nvm_size;
1787  	int status;
1788  
1789  	if (ops == &ice_nvm_region_ops) {
1790  		read_shadow_ram = false;
1791  		nvm_size = hw->flash.flash_size;
1792  	} else if (ops == &ice_sram_region_ops) {
1793  		read_shadow_ram = true;
1794  		nvm_size = hw->flash.sr_words * 2u;
1795  	} else {
1796  		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1797  		return -EOPNOTSUPP;
1798  	}
1799  
1800  	if (offset + size >= nvm_size) {
1801  		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1802  		return -ERANGE;
1803  	}
1804  
1805  	status = ice_acquire_nvm(hw, ICE_RES_READ);
1806  	if (status) {
1807  		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1808  			status, hw->adminq.sq_last_status);
1809  		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1810  		return -EIO;
1811  	}
1812  
1813  	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1814  				   read_shadow_ram);
1815  	if (status) {
1816  		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1817  			size, status, hw->adminq.sq_last_status);
1818  		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1819  		ice_release_nvm(hw);
1820  		return -EIO;
1821  	}
1822  	ice_release_nvm(hw);
1823  
1824  	return 0;
1825  }
1826  
1827  /**
1828   * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1829   * @devlink: the devlink instance
1830   * @ops: the devlink region being snapshotted
1831   * @extack: extended ACK response structure
1832   * @data: on exit points to snapshot data buffer
1833   *
1834   * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1835   * the device-caps devlink region. It captures a snapshot of the device
1836   * capabilities reported by firmware.
1837   *
1838   * @returns zero on success, and updates the data pointer. Returns a non-zero
1839   * error code on failure.
1840   */
1841  static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1842  ice_devlink_devcaps_snapshot(struct devlink *devlink,
1843  			     const struct devlink_region_ops *ops,
1844  			     struct netlink_ext_ack *extack, u8 **data)
1845  {
1846  	struct ice_pf *pf = devlink_priv(devlink);
1847  	struct device *dev = ice_pf_to_dev(pf);
1848  	struct ice_hw *hw = &pf->hw;
1849  	void *devcaps;
1850  	int status;
1851  
1852  	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1853  	if (!devcaps)
1854  		return -ENOMEM;
1855  
1856  	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1857  				  ice_aqc_opc_list_dev_caps, NULL);
1858  	if (status) {
1859  		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1860  			status, hw->adminq.sq_last_status);
1861  		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1862  		vfree(devcaps);
1863  		return status;
1864  	}
1865  
1866  	*data = (u8 *)devcaps;
1867  
1868  	return 0;
1869  }
1870  
1871  static const struct devlink_region_ops ice_nvm_region_ops = {
1872  	.name = "nvm-flash",
1873  	.destructor = vfree,
1874  	.snapshot = ice_devlink_nvm_snapshot,
1875  	.read = ice_devlink_nvm_read,
1876  };
1877  
1878  static const struct devlink_region_ops ice_sram_region_ops = {
1879  	.name = "shadow-ram",
1880  	.destructor = vfree,
1881  	.snapshot = ice_devlink_nvm_snapshot,
1882  	.read = ice_devlink_nvm_read,
1883  };
1884  
1885  static const struct devlink_region_ops ice_devcaps_region_ops = {
1886  	.name = "device-caps",
1887  	.destructor = vfree,
1888  	.snapshot = ice_devlink_devcaps_snapshot,
1889  };
1890  
1891  /**
1892   * ice_devlink_init_regions - Initialize devlink regions
1893   * @pf: the PF device structure
1894   *
1895   * Create devlink regions used to enable access to dump the contents of the
1896   * flash memory on the device.
1897   */
ice_devlink_init_regions(struct ice_pf * pf)1898  void ice_devlink_init_regions(struct ice_pf *pf)
1899  {
1900  	struct devlink *devlink = priv_to_devlink(pf);
1901  	struct device *dev = ice_pf_to_dev(pf);
1902  	u64 nvm_size, sram_size;
1903  
1904  	nvm_size = pf->hw.flash.flash_size;
1905  	pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
1906  					    nvm_size);
1907  	if (IS_ERR(pf->nvm_region)) {
1908  		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1909  			PTR_ERR(pf->nvm_region));
1910  		pf->nvm_region = NULL;
1911  	}
1912  
1913  	sram_size = pf->hw.flash.sr_words * 2u;
1914  	pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
1915  					     1, sram_size);
1916  	if (IS_ERR(pf->sram_region)) {
1917  		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1918  			PTR_ERR(pf->sram_region));
1919  		pf->sram_region = NULL;
1920  	}
1921  
1922  	pf->devcaps_region = devl_region_create(devlink,
1923  						&ice_devcaps_region_ops, 10,
1924  						ICE_AQ_MAX_BUF_LEN);
1925  	if (IS_ERR(pf->devcaps_region)) {
1926  		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1927  			PTR_ERR(pf->devcaps_region));
1928  		pf->devcaps_region = NULL;
1929  	}
1930  }
1931  
1932  /**
1933   * ice_devlink_destroy_regions - Destroy devlink regions
1934   * @pf: the PF device structure
1935   *
1936   * Remove previously created regions for this PF.
1937   */
ice_devlink_destroy_regions(struct ice_pf * pf)1938  void ice_devlink_destroy_regions(struct ice_pf *pf)
1939  {
1940  	if (pf->nvm_region)
1941  		devl_region_destroy(pf->nvm_region);
1942  
1943  	if (pf->sram_region)
1944  		devl_region_destroy(pf->sram_region);
1945  
1946  	if (pf->devcaps_region)
1947  		devl_region_destroy(pf->devcaps_region);
1948  }
1949