1  /*
2   * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3   * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4   *
5   * This software is available to you under a choice of one of two
6   * licenses.  You may choose to be licensed under the terms of the GNU
7   * General Public License (GPL) Version 2, available from the file
8   * COPYING in the main directory of this source tree, or the
9   * OpenIB.org BSD license below:
10   *
11   *     Redistribution and use in source and binary forms, with or
12   *     without modification, are permitted provided that the following
13   *     conditions are met:
14   *
15   *      - Redistributions of source code must retain the above
16   *        copyright notice, this list of conditions and the following
17   *        disclaimer.
18   *
19   *      - Redistributions in binary form must reproduce the above
20   *        copyright notice, this list of conditions and the following
21   *        disclaimer in the documentation and/or other materials
22   *        provided with the distribution.
23   *
24   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31   * SOFTWARE.
32   */
33  
34  #include <linux/module.h>
35  #include <linux/string.h>
36  #include <linux/errno.h>
37  #include <linux/kernel.h>
38  #include <linux/slab.h>
39  #include <linux/init.h>
40  #include <linux/netdevice.h>
41  #include <net/net_namespace.h>
42  #include <linux/security.h>
43  #include <linux/notifier.h>
44  #include <linux/hashtable.h>
45  #include <rdma/rdma_netlink.h>
46  #include <rdma/ib_addr.h>
47  #include <rdma/ib_cache.h>
48  #include <rdma/rdma_counter.h>
49  
50  #include "core_priv.h"
51  #include "restrack.h"
52  
53  MODULE_AUTHOR("Roland Dreier");
54  MODULE_DESCRIPTION("core kernel InfiniBand API");
55  MODULE_LICENSE("Dual BSD/GPL");
56  
57  struct workqueue_struct *ib_comp_wq;
58  struct workqueue_struct *ib_comp_unbound_wq;
59  struct workqueue_struct *ib_wq;
60  EXPORT_SYMBOL_GPL(ib_wq);
61  static struct workqueue_struct *ib_unreg_wq;
62  
63  /*
64   * Each of the three rwsem locks (devices, clients, client_data) protects the
65   * xarray of the same name. Specifically it allows the caller to assert that
66   * the MARK will/will not be changing under the lock, and for devices and
67   * clients, that the value in the xarray is still a valid pointer. Change of
68   * the MARK is linked to the object state, so holding the lock and testing the
69   * MARK also asserts that the contained object is in a certain state.
70   *
71   * This is used to build a two stage register/unregister flow where objects
72   * can continue to be in the xarray even though they are still in progress to
73   * register/unregister.
74   *
75   * The xarray itself provides additional locking, and restartable iteration,
76   * which is also relied on.
77   *
78   * Locks should not be nested, with the exception of client_data, which is
79   * allowed to nest under the read side of the other two locks.
80   *
81   * The devices_rwsem also protects the device name list, any change or
82   * assignment of device name must also hold the write side to guarantee unique
83   * names.
84   */
85  
86  /*
87   * devices contains devices that have had their names assigned. The
88   * devices may not be registered. Users that care about the registration
89   * status need to call ib_device_try_get() on the device to ensure it is
90   * registered, and keep it registered, for the required duration.
91   *
92   */
93  static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94  static DECLARE_RWSEM(devices_rwsem);
95  #define DEVICE_REGISTERED XA_MARK_1
96  
97  static u32 highest_client_id;
98  #define CLIENT_REGISTERED XA_MARK_1
99  static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100  static DECLARE_RWSEM(clients_rwsem);
101  
ib_client_put(struct ib_client * client)102  static void ib_client_put(struct ib_client *client)
103  {
104  	if (refcount_dec_and_test(&client->uses))
105  		complete(&client->uses_zero);
106  }
107  
108  /*
109   * If client_data is registered then the corresponding client must also still
110   * be registered.
111   */
112  #define CLIENT_DATA_REGISTERED XA_MARK_1
113  
114  unsigned int rdma_dev_net_id;
115  
116  /*
117   * A list of net namespaces is maintained in an xarray. This is necessary
118   * because we can't get the locking right using the existing net ns list. We
119   * would require a init_net callback after the list is updated.
120   */
121  static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122  /*
123   * rwsem to protect accessing the rdma_nets xarray entries.
124   */
125  static DECLARE_RWSEM(rdma_nets_rwsem);
126  
127  bool ib_devices_shared_netns = true;
128  module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129  MODULE_PARM_DESC(netns_mode,
130  		 "Share device among net namespaces; default=1 (shared)");
131  /**
132   * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133   *			     from a specified net namespace or not.
134   * @dev:	Pointer to rdma device which needs to be checked
135   * @net:	Pointer to net namesapce for which access to be checked
136   *
137   * When the rdma device is in shared mode, it ignores the net namespace.
138   * When the rdma device is exclusive to a net namespace, rdma device net
139   * namespace is checked against the specified one.
140   */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141  bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142  {
143  	return (ib_devices_shared_netns ||
144  		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145  }
146  EXPORT_SYMBOL(rdma_dev_access_netns);
147  
148  /*
149   * xarray has this behavior where it won't iterate over NULL values stored in
150   * allocated arrays.  So we need our own iterator to see all values stored in
151   * the array. This does the same thing as xa_for_each except that it also
152   * returns NULL valued entries if the array is allocating. Simplified to only
153   * work on simple xarrays.
154   */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155  static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156  			     xa_mark_t filter)
157  {
158  	XA_STATE(xas, xa, *indexp);
159  	void *entry;
160  
161  	rcu_read_lock();
162  	do {
163  		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164  		if (xa_is_zero(entry))
165  			break;
166  	} while (xas_retry(&xas, entry));
167  	rcu_read_unlock();
168  
169  	if (entry) {
170  		*indexp = xas.xa_index;
171  		if (xa_is_zero(entry))
172  			return NULL;
173  		return entry;
174  	}
175  	return XA_ERROR(-ENOENT);
176  }
177  #define xan_for_each_marked(xa, index, entry, filter)                          \
178  	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179  	     !xa_is_err(entry);                                                \
180  	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181  
182  /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183  static DEFINE_SPINLOCK(ndev_hash_lock);
184  static DECLARE_HASHTABLE(ndev_hash, 5);
185  
186  static void free_netdevs(struct ib_device *ib_dev);
187  static void ib_unregister_work(struct work_struct *work);
188  static void __ib_unregister_device(struct ib_device *device);
189  static int ib_security_change(struct notifier_block *nb, unsigned long event,
190  			      void *lsm_data);
191  static void ib_policy_change_task(struct work_struct *work);
192  static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193  
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194  static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195  			   struct va_format *vaf)
196  {
197  	if (ibdev && ibdev->dev.parent)
198  		dev_printk_emit(level[1] - '0',
199  				ibdev->dev.parent,
200  				"%s %s %s: %pV",
201  				dev_driver_string(ibdev->dev.parent),
202  				dev_name(ibdev->dev.parent),
203  				dev_name(&ibdev->dev),
204  				vaf);
205  	else if (ibdev)
206  		printk("%s%s: %pV",
207  		       level, dev_name(&ibdev->dev), vaf);
208  	else
209  		printk("%s(NULL ib_device): %pV", level, vaf);
210  }
211  
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212  void ibdev_printk(const char *level, const struct ib_device *ibdev,
213  		  const char *format, ...)
214  {
215  	struct va_format vaf;
216  	va_list args;
217  
218  	va_start(args, format);
219  
220  	vaf.fmt = format;
221  	vaf.va = &args;
222  
223  	__ibdev_printk(level, ibdev, &vaf);
224  
225  	va_end(args);
226  }
227  EXPORT_SYMBOL(ibdev_printk);
228  
229  #define define_ibdev_printk_level(func, level)                  \
230  void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231  {                                                               \
232  	struct va_format vaf;                                   \
233  	va_list args;                                           \
234  								\
235  	va_start(args, fmt);                                    \
236  								\
237  	vaf.fmt = fmt;                                          \
238  	vaf.va = &args;                                         \
239  								\
240  	__ibdev_printk(level, ibdev, &vaf);                     \
241  								\
242  	va_end(args);                                           \
243  }                                                               \
244  EXPORT_SYMBOL(func);
245  
246  define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247  define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248  define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249  define_ibdev_printk_level(ibdev_err, KERN_ERR);
250  define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251  define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252  define_ibdev_printk_level(ibdev_info, KERN_INFO);
253  
254  static struct notifier_block ibdev_lsm_nb = {
255  	.notifier_call = ib_security_change,
256  };
257  
258  static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259  				 struct net *net);
260  
261  /* Pointer to the RCU head at the start of the ib_port_data array */
262  struct ib_port_data_rcu {
263  	struct rcu_head rcu_head;
264  	struct ib_port_data pdata[];
265  };
266  
ib_device_check_mandatory(struct ib_device * device)267  static void ib_device_check_mandatory(struct ib_device *device)
268  {
269  #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270  	static const struct {
271  		size_t offset;
272  		char  *name;
273  	} mandatory_table[] = {
274  		IB_MANDATORY_FUNC(query_device),
275  		IB_MANDATORY_FUNC(query_port),
276  		IB_MANDATORY_FUNC(alloc_pd),
277  		IB_MANDATORY_FUNC(dealloc_pd),
278  		IB_MANDATORY_FUNC(create_qp),
279  		IB_MANDATORY_FUNC(modify_qp),
280  		IB_MANDATORY_FUNC(destroy_qp),
281  		IB_MANDATORY_FUNC(post_send),
282  		IB_MANDATORY_FUNC(post_recv),
283  		IB_MANDATORY_FUNC(create_cq),
284  		IB_MANDATORY_FUNC(destroy_cq),
285  		IB_MANDATORY_FUNC(poll_cq),
286  		IB_MANDATORY_FUNC(req_notify_cq),
287  		IB_MANDATORY_FUNC(get_dma_mr),
288  		IB_MANDATORY_FUNC(reg_user_mr),
289  		IB_MANDATORY_FUNC(dereg_mr),
290  		IB_MANDATORY_FUNC(get_port_immutable)
291  	};
292  	int i;
293  
294  	device->kverbs_provider = true;
295  	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296  		if (!*(void **) ((void *) &device->ops +
297  				 mandatory_table[i].offset)) {
298  			device->kverbs_provider = false;
299  			break;
300  		}
301  	}
302  }
303  
304  /*
305   * Caller must perform ib_device_put() to return the device reference count
306   * when ib_device_get_by_index() returns valid device pointer.
307   */
ib_device_get_by_index(const struct net * net,u32 index)308  struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309  {
310  	struct ib_device *device;
311  
312  	down_read(&devices_rwsem);
313  	device = xa_load(&devices, index);
314  	if (device) {
315  		if (!rdma_dev_access_netns(device, net)) {
316  			device = NULL;
317  			goto out;
318  		}
319  
320  		if (!ib_device_try_get(device))
321  			device = NULL;
322  	}
323  out:
324  	up_read(&devices_rwsem);
325  	return device;
326  }
327  
328  /**
329   * ib_device_put - Release IB device reference
330   * @device: device whose reference to be released
331   *
332   * ib_device_put() releases reference to the IB device to allow it to be
333   * unregistered and eventually free.
334   */
ib_device_put(struct ib_device * device)335  void ib_device_put(struct ib_device *device)
336  {
337  	if (refcount_dec_and_test(&device->refcount))
338  		complete(&device->unreg_completion);
339  }
340  EXPORT_SYMBOL(ib_device_put);
341  
__ib_device_get_by_name(const char * name)342  static struct ib_device *__ib_device_get_by_name(const char *name)
343  {
344  	struct ib_device *device;
345  	unsigned long index;
346  
347  	xa_for_each (&devices, index, device)
348  		if (!strcmp(name, dev_name(&device->dev)))
349  			return device;
350  
351  	return NULL;
352  }
353  
354  /**
355   * ib_device_get_by_name - Find an IB device by name
356   * @name: The name to look for
357   * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358   *
359   * Find and hold an ib_device by its name. The caller must call
360   * ib_device_put() on the returned pointer.
361   */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362  struct ib_device *ib_device_get_by_name(const char *name,
363  					enum rdma_driver_id driver_id)
364  {
365  	struct ib_device *device;
366  
367  	down_read(&devices_rwsem);
368  	device = __ib_device_get_by_name(name);
369  	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370  	    device->ops.driver_id != driver_id)
371  		device = NULL;
372  
373  	if (device) {
374  		if (!ib_device_try_get(device))
375  			device = NULL;
376  	}
377  	up_read(&devices_rwsem);
378  	return device;
379  }
380  EXPORT_SYMBOL(ib_device_get_by_name);
381  
rename_compat_devs(struct ib_device * device)382  static int rename_compat_devs(struct ib_device *device)
383  {
384  	struct ib_core_device *cdev;
385  	unsigned long index;
386  	int ret = 0;
387  
388  	mutex_lock(&device->compat_devs_mutex);
389  	xa_for_each (&device->compat_devs, index, cdev) {
390  		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391  		if (ret) {
392  			dev_warn(&cdev->dev,
393  				 "Fail to rename compatdev to new name %s\n",
394  				 dev_name(&device->dev));
395  			break;
396  		}
397  	}
398  	mutex_unlock(&device->compat_devs_mutex);
399  	return ret;
400  }
401  
ib_device_rename(struct ib_device * ibdev,const char * name)402  int ib_device_rename(struct ib_device *ibdev, const char *name)
403  {
404  	unsigned long index;
405  	void *client_data;
406  	int ret;
407  
408  	down_write(&devices_rwsem);
409  	if (!strcmp(name, dev_name(&ibdev->dev))) {
410  		up_write(&devices_rwsem);
411  		return 0;
412  	}
413  
414  	if (__ib_device_get_by_name(name)) {
415  		up_write(&devices_rwsem);
416  		return -EEXIST;
417  	}
418  
419  	ret = device_rename(&ibdev->dev, name);
420  	if (ret) {
421  		up_write(&devices_rwsem);
422  		return ret;
423  	}
424  
425  	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426  	ret = rename_compat_devs(ibdev);
427  
428  	downgrade_write(&devices_rwsem);
429  	down_read(&ibdev->client_data_rwsem);
430  	xan_for_each_marked(&ibdev->client_data, index, client_data,
431  			    CLIENT_DATA_REGISTERED) {
432  		struct ib_client *client = xa_load(&clients, index);
433  
434  		if (!client || !client->rename)
435  			continue;
436  
437  		client->rename(ibdev, client_data);
438  	}
439  	up_read(&ibdev->client_data_rwsem);
440  	up_read(&devices_rwsem);
441  	return 0;
442  }
443  
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444  int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445  {
446  	if (use_dim > 1)
447  		return -EINVAL;
448  	ibdev->use_cq_dim = use_dim;
449  
450  	return 0;
451  }
452  
alloc_name(struct ib_device * ibdev,const char * name)453  static int alloc_name(struct ib_device *ibdev, const char *name)
454  {
455  	struct ib_device *device;
456  	unsigned long index;
457  	struct ida inuse;
458  	int rc;
459  	int i;
460  
461  	lockdep_assert_held_write(&devices_rwsem);
462  	ida_init(&inuse);
463  	xa_for_each (&devices, index, device) {
464  		char buf[IB_DEVICE_NAME_MAX];
465  
466  		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467  			continue;
468  		if (i < 0 || i >= INT_MAX)
469  			continue;
470  		snprintf(buf, sizeof buf, name, i);
471  		if (strcmp(buf, dev_name(&device->dev)) != 0)
472  			continue;
473  
474  		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475  		if (rc < 0)
476  			goto out;
477  	}
478  
479  	rc = ida_alloc(&inuse, GFP_KERNEL);
480  	if (rc < 0)
481  		goto out;
482  
483  	rc = dev_set_name(&ibdev->dev, name, rc);
484  out:
485  	ida_destroy(&inuse);
486  	return rc;
487  }
488  
ib_device_release(struct device * device)489  static void ib_device_release(struct device *device)
490  {
491  	struct ib_device *dev = container_of(device, struct ib_device, dev);
492  
493  	free_netdevs(dev);
494  	WARN_ON(refcount_read(&dev->refcount));
495  	if (dev->hw_stats_data)
496  		ib_device_release_hw_stats(dev->hw_stats_data);
497  	if (dev->port_data) {
498  		ib_cache_release_one(dev);
499  		ib_security_release_port_pkey_list(dev);
500  		rdma_counter_release(dev);
501  		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502  				       pdata[0]),
503  			  rcu_head);
504  	}
505  
506  	mutex_destroy(&dev->subdev_lock);
507  	mutex_destroy(&dev->unregistration_lock);
508  	mutex_destroy(&dev->compat_devs_mutex);
509  
510  	xa_destroy(&dev->compat_devs);
511  	xa_destroy(&dev->client_data);
512  	kfree_rcu(dev, rcu_head);
513  }
514  
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)515  static int ib_device_uevent(const struct device *device,
516  			    struct kobj_uevent_env *env)
517  {
518  	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
519  		return -ENOMEM;
520  
521  	/*
522  	 * It would be nice to pass the node GUID with the event...
523  	 */
524  
525  	return 0;
526  }
527  
net_namespace(const struct device * d)528  static const void *net_namespace(const struct device *d)
529  {
530  	const struct ib_core_device *coredev =
531  			container_of(d, struct ib_core_device, dev);
532  
533  	return read_pnet(&coredev->rdma_net);
534  }
535  
536  static struct class ib_class = {
537  	.name    = "infiniband",
538  	.dev_release = ib_device_release,
539  	.dev_uevent = ib_device_uevent,
540  	.ns_type = &net_ns_type_operations,
541  	.namespace = net_namespace,
542  };
543  
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)544  static void rdma_init_coredev(struct ib_core_device *coredev,
545  			      struct ib_device *dev, struct net *net)
546  {
547  	/* This BUILD_BUG_ON is intended to catch layout change
548  	 * of union of ib_core_device and device.
549  	 * dev must be the first element as ib_core and providers
550  	 * driver uses it. Adding anything in ib_core_device before
551  	 * device will break this assumption.
552  	 */
553  	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
554  		     offsetof(struct ib_device, dev));
555  
556  	coredev->dev.class = &ib_class;
557  	coredev->dev.groups = dev->groups;
558  	device_initialize(&coredev->dev);
559  	coredev->owner = dev;
560  	INIT_LIST_HEAD(&coredev->port_list);
561  	write_pnet(&coredev->rdma_net, net);
562  }
563  
564  /**
565   * _ib_alloc_device - allocate an IB device struct
566   * @size:size of structure to allocate
567   *
568   * Low-level drivers should use ib_alloc_device() to allocate &struct
569   * ib_device.  @size is the size of the structure to be allocated,
570   * including any private data used by the low-level driver.
571   * ib_dealloc_device() must be used to free structures allocated with
572   * ib_alloc_device().
573   */
_ib_alloc_device(size_t size)574  struct ib_device *_ib_alloc_device(size_t size)
575  {
576  	struct ib_device *device;
577  	unsigned int i;
578  
579  	if (WARN_ON(size < sizeof(struct ib_device)))
580  		return NULL;
581  
582  	device = kzalloc(size, GFP_KERNEL);
583  	if (!device)
584  		return NULL;
585  
586  	if (rdma_restrack_init(device)) {
587  		kfree(device);
588  		return NULL;
589  	}
590  
591  	rdma_init_coredev(&device->coredev, device, &init_net);
592  
593  	INIT_LIST_HEAD(&device->event_handler_list);
594  	spin_lock_init(&device->qp_open_list_lock);
595  	init_rwsem(&device->event_handler_rwsem);
596  	mutex_init(&device->unregistration_lock);
597  	/*
598  	 * client_data needs to be alloc because we don't want our mark to be
599  	 * destroyed if the user stores NULL in the client data.
600  	 */
601  	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
602  	init_rwsem(&device->client_data_rwsem);
603  	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
604  	mutex_init(&device->compat_devs_mutex);
605  	init_completion(&device->unreg_completion);
606  	INIT_WORK(&device->unregistration_work, ib_unregister_work);
607  
608  	spin_lock_init(&device->cq_pools_lock);
609  	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
610  		INIT_LIST_HEAD(&device->cq_pools[i]);
611  
612  	rwlock_init(&device->cache_lock);
613  
614  	device->uverbs_cmd_mask =
615  		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
616  		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
617  		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
618  		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
619  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
620  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
621  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
622  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
623  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
624  		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
625  		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
626  		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
627  		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
628  		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
629  		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
630  		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
631  		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
632  		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
633  		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
634  		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
635  		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
636  		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
637  		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
638  		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
639  		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
640  		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
641  		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
642  		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
643  		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
644  		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
645  
646  	mutex_init(&device->subdev_lock);
647  	INIT_LIST_HEAD(&device->subdev_list_head);
648  	INIT_LIST_HEAD(&device->subdev_list);
649  
650  	return device;
651  }
652  EXPORT_SYMBOL(_ib_alloc_device);
653  
654  /**
655   * ib_dealloc_device - free an IB device struct
656   * @device:structure to free
657   *
658   * Free a structure allocated with ib_alloc_device().
659   */
ib_dealloc_device(struct ib_device * device)660  void ib_dealloc_device(struct ib_device *device)
661  {
662  	if (device->ops.dealloc_driver)
663  		device->ops.dealloc_driver(device);
664  
665  	/*
666  	 * ib_unregister_driver() requires all devices to remain in the xarray
667  	 * while their ops are callable. The last op we call is dealloc_driver
668  	 * above.  This is needed to create a fence on op callbacks prior to
669  	 * allowing the driver module to unload.
670  	 */
671  	down_write(&devices_rwsem);
672  	if (xa_load(&devices, device->index) == device)
673  		xa_erase(&devices, device->index);
674  	up_write(&devices_rwsem);
675  
676  	/* Expedite releasing netdev references */
677  	free_netdevs(device);
678  
679  	WARN_ON(!xa_empty(&device->compat_devs));
680  	WARN_ON(!xa_empty(&device->client_data));
681  	WARN_ON(refcount_read(&device->refcount));
682  	rdma_restrack_clean(device);
683  	/* Balances with device_initialize */
684  	put_device(&device->dev);
685  }
686  EXPORT_SYMBOL(ib_dealloc_device);
687  
688  /*
689   * add_client_context() and remove_client_context() must be safe against
690   * parallel calls on the same device - registration/unregistration of both the
691   * device and client can be occurring in parallel.
692   *
693   * The routines need to be a fence, any caller must not return until the add
694   * or remove is fully completed.
695   */
add_client_context(struct ib_device * device,struct ib_client * client)696  static int add_client_context(struct ib_device *device,
697  			      struct ib_client *client)
698  {
699  	int ret = 0;
700  
701  	if (!device->kverbs_provider && !client->no_kverbs_req)
702  		return 0;
703  
704  	down_write(&device->client_data_rwsem);
705  	/*
706  	 * So long as the client is registered hold both the client and device
707  	 * unregistration locks.
708  	 */
709  	if (!refcount_inc_not_zero(&client->uses))
710  		goto out_unlock;
711  	refcount_inc(&device->refcount);
712  
713  	/*
714  	 * Another caller to add_client_context got here first and has already
715  	 * completely initialized context.
716  	 */
717  	if (xa_get_mark(&device->client_data, client->client_id,
718  		    CLIENT_DATA_REGISTERED))
719  		goto out;
720  
721  	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
722  			      GFP_KERNEL));
723  	if (ret)
724  		goto out;
725  	downgrade_write(&device->client_data_rwsem);
726  	if (client->add) {
727  		if (client->add(device)) {
728  			/*
729  			 * If a client fails to add then the error code is
730  			 * ignored, but we won't call any more ops on this
731  			 * client.
732  			 */
733  			xa_erase(&device->client_data, client->client_id);
734  			up_read(&device->client_data_rwsem);
735  			ib_device_put(device);
736  			ib_client_put(client);
737  			return 0;
738  		}
739  	}
740  
741  	/* Readers shall not see a client until add has been completed */
742  	xa_set_mark(&device->client_data, client->client_id,
743  		    CLIENT_DATA_REGISTERED);
744  	up_read(&device->client_data_rwsem);
745  	return 0;
746  
747  out:
748  	ib_device_put(device);
749  	ib_client_put(client);
750  out_unlock:
751  	up_write(&device->client_data_rwsem);
752  	return ret;
753  }
754  
remove_client_context(struct ib_device * device,unsigned int client_id)755  static void remove_client_context(struct ib_device *device,
756  				  unsigned int client_id)
757  {
758  	struct ib_client *client;
759  	void *client_data;
760  
761  	down_write(&device->client_data_rwsem);
762  	if (!xa_get_mark(&device->client_data, client_id,
763  			 CLIENT_DATA_REGISTERED)) {
764  		up_write(&device->client_data_rwsem);
765  		return;
766  	}
767  	client_data = xa_load(&device->client_data, client_id);
768  	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
769  	client = xa_load(&clients, client_id);
770  	up_write(&device->client_data_rwsem);
771  
772  	/*
773  	 * Notice we cannot be holding any exclusive locks when calling the
774  	 * remove callback as the remove callback can recurse back into any
775  	 * public functions in this module and thus try for any locks those
776  	 * functions take.
777  	 *
778  	 * For this reason clients and drivers should not call the
779  	 * unregistration functions will holdling any locks.
780  	 */
781  	if (client->remove)
782  		client->remove(device, client_data);
783  
784  	xa_erase(&device->client_data, client_id);
785  	ib_device_put(device);
786  	ib_client_put(client);
787  }
788  
alloc_port_data(struct ib_device * device)789  static int alloc_port_data(struct ib_device *device)
790  {
791  	struct ib_port_data_rcu *pdata_rcu;
792  	u32 port;
793  
794  	if (device->port_data)
795  		return 0;
796  
797  	/* This can only be called once the physical port range is defined */
798  	if (WARN_ON(!device->phys_port_cnt))
799  		return -EINVAL;
800  
801  	/* Reserve U32_MAX so the logic to go over all the ports is sane */
802  	if (WARN_ON(device->phys_port_cnt == U32_MAX))
803  		return -EINVAL;
804  
805  	/*
806  	 * device->port_data is indexed directly by the port number to make
807  	 * access to this data as efficient as possible.
808  	 *
809  	 * Therefore port_data is declared as a 1 based array with potential
810  	 * empty slots at the beginning.
811  	 */
812  	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
813  					size_add(rdma_end_port(device), 1)),
814  			    GFP_KERNEL);
815  	if (!pdata_rcu)
816  		return -ENOMEM;
817  	/*
818  	 * The rcu_head is put in front of the port data array and the stored
819  	 * pointer is adjusted since we never need to see that member until
820  	 * kfree_rcu.
821  	 */
822  	device->port_data = pdata_rcu->pdata;
823  
824  	rdma_for_each_port (device, port) {
825  		struct ib_port_data *pdata = &device->port_data[port];
826  
827  		pdata->ib_dev = device;
828  		spin_lock_init(&pdata->pkey_list_lock);
829  		INIT_LIST_HEAD(&pdata->pkey_list);
830  		spin_lock_init(&pdata->netdev_lock);
831  		INIT_HLIST_NODE(&pdata->ndev_hash_link);
832  	}
833  	return 0;
834  }
835  
verify_immutable(const struct ib_device * dev,u32 port)836  static int verify_immutable(const struct ib_device *dev, u32 port)
837  {
838  	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
839  			    rdma_max_mad_size(dev, port) != 0);
840  }
841  
setup_port_data(struct ib_device * device)842  static int setup_port_data(struct ib_device *device)
843  {
844  	u32 port;
845  	int ret;
846  
847  	ret = alloc_port_data(device);
848  	if (ret)
849  		return ret;
850  
851  	rdma_for_each_port (device, port) {
852  		struct ib_port_data *pdata = &device->port_data[port];
853  
854  		ret = device->ops.get_port_immutable(device, port,
855  						     &pdata->immutable);
856  		if (ret)
857  			return ret;
858  
859  		if (verify_immutable(device, port))
860  			return -EINVAL;
861  	}
862  	return 0;
863  }
864  
865  /**
866   * ib_port_immutable_read() - Read rdma port's immutable data
867   * @dev: IB device
868   * @port: port number whose immutable data to read. It starts with index 1 and
869   *        valid upto including rdma_end_port().
870   */
871  const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)872  ib_port_immutable_read(struct ib_device *dev, unsigned int port)
873  {
874  	WARN_ON(!rdma_is_port_valid(dev, port));
875  	return &dev->port_data[port].immutable;
876  }
877  EXPORT_SYMBOL(ib_port_immutable_read);
878  
ib_get_device_fw_str(struct ib_device * dev,char * str)879  void ib_get_device_fw_str(struct ib_device *dev, char *str)
880  {
881  	if (dev->ops.get_dev_fw_str)
882  		dev->ops.get_dev_fw_str(dev, str);
883  	else
884  		str[0] = '\0';
885  }
886  EXPORT_SYMBOL(ib_get_device_fw_str);
887  
ib_policy_change_task(struct work_struct * work)888  static void ib_policy_change_task(struct work_struct *work)
889  {
890  	struct ib_device *dev;
891  	unsigned long index;
892  
893  	down_read(&devices_rwsem);
894  	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
895  		unsigned int i;
896  
897  		rdma_for_each_port (dev, i) {
898  			u64 sp;
899  			ib_get_cached_subnet_prefix(dev, i, &sp);
900  			ib_security_cache_change(dev, i, sp);
901  		}
902  	}
903  	up_read(&devices_rwsem);
904  }
905  
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)906  static int ib_security_change(struct notifier_block *nb, unsigned long event,
907  			      void *lsm_data)
908  {
909  	if (event != LSM_POLICY_CHANGE)
910  		return NOTIFY_DONE;
911  
912  	schedule_work(&ib_policy_change_work);
913  	ib_mad_agent_security_change();
914  
915  	return NOTIFY_OK;
916  }
917  
compatdev_release(struct device * dev)918  static void compatdev_release(struct device *dev)
919  {
920  	struct ib_core_device *cdev =
921  		container_of(dev, struct ib_core_device, dev);
922  
923  	kfree(cdev);
924  }
925  
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)926  static int add_one_compat_dev(struct ib_device *device,
927  			      struct rdma_dev_net *rnet)
928  {
929  	struct ib_core_device *cdev;
930  	int ret;
931  
932  	lockdep_assert_held(&rdma_nets_rwsem);
933  	if (!ib_devices_shared_netns)
934  		return 0;
935  
936  	/*
937  	 * Create and add compat device in all namespaces other than where it
938  	 * is currently bound to.
939  	 */
940  	if (net_eq(read_pnet(&rnet->net),
941  		   read_pnet(&device->coredev.rdma_net)))
942  		return 0;
943  
944  	/*
945  	 * The first of init_net() or ib_register_device() to take the
946  	 * compat_devs_mutex wins and gets to add the device. Others will wait
947  	 * for completion here.
948  	 */
949  	mutex_lock(&device->compat_devs_mutex);
950  	cdev = xa_load(&device->compat_devs, rnet->id);
951  	if (cdev) {
952  		ret = 0;
953  		goto done;
954  	}
955  	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
956  	if (ret)
957  		goto done;
958  
959  	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
960  	if (!cdev) {
961  		ret = -ENOMEM;
962  		goto cdev_err;
963  	}
964  
965  	cdev->dev.parent = device->dev.parent;
966  	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
967  	cdev->dev.release = compatdev_release;
968  	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
969  	if (ret)
970  		goto add_err;
971  
972  	ret = device_add(&cdev->dev);
973  	if (ret)
974  		goto add_err;
975  	ret = ib_setup_port_attrs(cdev);
976  	if (ret)
977  		goto port_err;
978  
979  	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
980  			      cdev, GFP_KERNEL));
981  	if (ret)
982  		goto insert_err;
983  
984  	mutex_unlock(&device->compat_devs_mutex);
985  	return 0;
986  
987  insert_err:
988  	ib_free_port_attrs(cdev);
989  port_err:
990  	device_del(&cdev->dev);
991  add_err:
992  	put_device(&cdev->dev);
993  cdev_err:
994  	xa_release(&device->compat_devs, rnet->id);
995  done:
996  	mutex_unlock(&device->compat_devs_mutex);
997  	return ret;
998  }
999  
remove_one_compat_dev(struct ib_device * device,u32 id)1000  static void remove_one_compat_dev(struct ib_device *device, u32 id)
1001  {
1002  	struct ib_core_device *cdev;
1003  
1004  	mutex_lock(&device->compat_devs_mutex);
1005  	cdev = xa_erase(&device->compat_devs, id);
1006  	mutex_unlock(&device->compat_devs_mutex);
1007  	if (cdev) {
1008  		ib_free_port_attrs(cdev);
1009  		device_del(&cdev->dev);
1010  		put_device(&cdev->dev);
1011  	}
1012  }
1013  
remove_compat_devs(struct ib_device * device)1014  static void remove_compat_devs(struct ib_device *device)
1015  {
1016  	struct ib_core_device *cdev;
1017  	unsigned long index;
1018  
1019  	xa_for_each (&device->compat_devs, index, cdev)
1020  		remove_one_compat_dev(device, index);
1021  }
1022  
add_compat_devs(struct ib_device * device)1023  static int add_compat_devs(struct ib_device *device)
1024  {
1025  	struct rdma_dev_net *rnet;
1026  	unsigned long index;
1027  	int ret = 0;
1028  
1029  	lockdep_assert_held(&devices_rwsem);
1030  
1031  	down_read(&rdma_nets_rwsem);
1032  	xa_for_each (&rdma_nets, index, rnet) {
1033  		ret = add_one_compat_dev(device, rnet);
1034  		if (ret)
1035  			break;
1036  	}
1037  	up_read(&rdma_nets_rwsem);
1038  	return ret;
1039  }
1040  
remove_all_compat_devs(void)1041  static void remove_all_compat_devs(void)
1042  {
1043  	struct ib_compat_device *cdev;
1044  	struct ib_device *dev;
1045  	unsigned long index;
1046  
1047  	down_read(&devices_rwsem);
1048  	xa_for_each (&devices, index, dev) {
1049  		unsigned long c_index = 0;
1050  
1051  		/* Hold nets_rwsem so that any other thread modifying this
1052  		 * system param can sync with this thread.
1053  		 */
1054  		down_read(&rdma_nets_rwsem);
1055  		xa_for_each (&dev->compat_devs, c_index, cdev)
1056  			remove_one_compat_dev(dev, c_index);
1057  		up_read(&rdma_nets_rwsem);
1058  	}
1059  	up_read(&devices_rwsem);
1060  }
1061  
add_all_compat_devs(void)1062  static int add_all_compat_devs(void)
1063  {
1064  	struct rdma_dev_net *rnet;
1065  	struct ib_device *dev;
1066  	unsigned long index;
1067  	int ret = 0;
1068  
1069  	down_read(&devices_rwsem);
1070  	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1071  		unsigned long net_index = 0;
1072  
1073  		/* Hold nets_rwsem so that any other thread modifying this
1074  		 * system param can sync with this thread.
1075  		 */
1076  		down_read(&rdma_nets_rwsem);
1077  		xa_for_each (&rdma_nets, net_index, rnet) {
1078  			ret = add_one_compat_dev(dev, rnet);
1079  			if (ret)
1080  				break;
1081  		}
1082  		up_read(&rdma_nets_rwsem);
1083  	}
1084  	up_read(&devices_rwsem);
1085  	if (ret)
1086  		remove_all_compat_devs();
1087  	return ret;
1088  }
1089  
rdma_compatdev_set(u8 enable)1090  int rdma_compatdev_set(u8 enable)
1091  {
1092  	struct rdma_dev_net *rnet;
1093  	unsigned long index;
1094  	int ret = 0;
1095  
1096  	down_write(&rdma_nets_rwsem);
1097  	if (ib_devices_shared_netns == enable) {
1098  		up_write(&rdma_nets_rwsem);
1099  		return 0;
1100  	}
1101  
1102  	/* enable/disable of compat devices is not supported
1103  	 * when more than default init_net exists.
1104  	 */
1105  	xa_for_each (&rdma_nets, index, rnet) {
1106  		ret++;
1107  		break;
1108  	}
1109  	if (!ret)
1110  		ib_devices_shared_netns = enable;
1111  	up_write(&rdma_nets_rwsem);
1112  	if (ret)
1113  		return -EBUSY;
1114  
1115  	if (enable)
1116  		ret = add_all_compat_devs();
1117  	else
1118  		remove_all_compat_devs();
1119  	return ret;
1120  }
1121  
rdma_dev_exit_net(struct net * net)1122  static void rdma_dev_exit_net(struct net *net)
1123  {
1124  	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1125  	struct ib_device *dev;
1126  	unsigned long index;
1127  	int ret;
1128  
1129  	down_write(&rdma_nets_rwsem);
1130  	/*
1131  	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1132  	 */
1133  	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1134  	WARN_ON(ret);
1135  	up_write(&rdma_nets_rwsem);
1136  
1137  	down_read(&devices_rwsem);
1138  	xa_for_each (&devices, index, dev) {
1139  		get_device(&dev->dev);
1140  		/*
1141  		 * Release the devices_rwsem so that pontentially blocking
1142  		 * device_del, doesn't hold the devices_rwsem for too long.
1143  		 */
1144  		up_read(&devices_rwsem);
1145  
1146  		remove_one_compat_dev(dev, rnet->id);
1147  
1148  		/*
1149  		 * If the real device is in the NS then move it back to init.
1150  		 */
1151  		rdma_dev_change_netns(dev, net, &init_net);
1152  
1153  		put_device(&dev->dev);
1154  		down_read(&devices_rwsem);
1155  	}
1156  	up_read(&devices_rwsem);
1157  
1158  	rdma_nl_net_exit(rnet);
1159  	xa_erase(&rdma_nets, rnet->id);
1160  }
1161  
rdma_dev_init_net(struct net * net)1162  static __net_init int rdma_dev_init_net(struct net *net)
1163  {
1164  	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1165  	unsigned long index;
1166  	struct ib_device *dev;
1167  	int ret;
1168  
1169  	write_pnet(&rnet->net, net);
1170  
1171  	ret = rdma_nl_net_init(rnet);
1172  	if (ret)
1173  		return ret;
1174  
1175  	/* No need to create any compat devices in default init_net. */
1176  	if (net_eq(net, &init_net))
1177  		return 0;
1178  
1179  	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1180  	if (ret) {
1181  		rdma_nl_net_exit(rnet);
1182  		return ret;
1183  	}
1184  
1185  	down_read(&devices_rwsem);
1186  	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1187  		/* Hold nets_rwsem so that netlink command cannot change
1188  		 * system configuration for device sharing mode.
1189  		 */
1190  		down_read(&rdma_nets_rwsem);
1191  		ret = add_one_compat_dev(dev, rnet);
1192  		up_read(&rdma_nets_rwsem);
1193  		if (ret)
1194  			break;
1195  	}
1196  	up_read(&devices_rwsem);
1197  
1198  	if (ret)
1199  		rdma_dev_exit_net(net);
1200  
1201  	return ret;
1202  }
1203  
1204  /*
1205   * Assign the unique string device name and the unique device index. This is
1206   * undone by ib_dealloc_device.
1207   */
assign_name(struct ib_device * device,const char * name)1208  static int assign_name(struct ib_device *device, const char *name)
1209  {
1210  	static u32 last_id;
1211  	int ret;
1212  
1213  	down_write(&devices_rwsem);
1214  	/* Assign a unique name to the device */
1215  	if (strchr(name, '%'))
1216  		ret = alloc_name(device, name);
1217  	else
1218  		ret = dev_set_name(&device->dev, name);
1219  	if (ret)
1220  		goto out;
1221  
1222  	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1223  		ret = -ENFILE;
1224  		goto out;
1225  	}
1226  	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1227  
1228  	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1229  			&last_id, GFP_KERNEL);
1230  	if (ret > 0)
1231  		ret = 0;
1232  
1233  out:
1234  	up_write(&devices_rwsem);
1235  	return ret;
1236  }
1237  
1238  /*
1239   * setup_device() allocates memory and sets up data that requires calling the
1240   * device ops, this is the only reason these actions are not done during
1241   * ib_alloc_device. It is undone by ib_dealloc_device().
1242   */
setup_device(struct ib_device * device)1243  static int setup_device(struct ib_device *device)
1244  {
1245  	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1246  	int ret;
1247  
1248  	ib_device_check_mandatory(device);
1249  
1250  	ret = setup_port_data(device);
1251  	if (ret) {
1252  		dev_warn(&device->dev, "Couldn't create per-port data\n");
1253  		return ret;
1254  	}
1255  
1256  	memset(&device->attrs, 0, sizeof(device->attrs));
1257  	ret = device->ops.query_device(device, &device->attrs, &uhw);
1258  	if (ret) {
1259  		dev_warn(&device->dev,
1260  			 "Couldn't query the device attributes\n");
1261  		return ret;
1262  	}
1263  
1264  	return 0;
1265  }
1266  
disable_device(struct ib_device * device)1267  static void disable_device(struct ib_device *device)
1268  {
1269  	u32 cid;
1270  
1271  	WARN_ON(!refcount_read(&device->refcount));
1272  
1273  	down_write(&devices_rwsem);
1274  	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1275  	up_write(&devices_rwsem);
1276  
1277  	/*
1278  	 * Remove clients in LIFO order, see assign_client_id. This could be
1279  	 * more efficient if xarray learns to reverse iterate. Since no new
1280  	 * clients can be added to this ib_device past this point we only need
1281  	 * the maximum possible client_id value here.
1282  	 */
1283  	down_read(&clients_rwsem);
1284  	cid = highest_client_id;
1285  	up_read(&clients_rwsem);
1286  	while (cid) {
1287  		cid--;
1288  		remove_client_context(device, cid);
1289  	}
1290  
1291  	ib_cq_pool_cleanup(device);
1292  
1293  	/* Pairs with refcount_set in enable_device */
1294  	ib_device_put(device);
1295  	wait_for_completion(&device->unreg_completion);
1296  
1297  	/*
1298  	 * compat devices must be removed after device refcount drops to zero.
1299  	 * Otherwise init_net() may add more compatdevs after removing compat
1300  	 * devices and before device is disabled.
1301  	 */
1302  	remove_compat_devs(device);
1303  }
1304  
1305  /*
1306   * An enabled device is visible to all clients and to all the public facing
1307   * APIs that return a device pointer. This always returns with a new get, even
1308   * if it fails.
1309   */
enable_device_and_get(struct ib_device * device)1310  static int enable_device_and_get(struct ib_device *device)
1311  {
1312  	struct ib_client *client;
1313  	unsigned long index;
1314  	int ret = 0;
1315  
1316  	/*
1317  	 * One ref belongs to the xa and the other belongs to this
1318  	 * thread. This is needed to guard against parallel unregistration.
1319  	 */
1320  	refcount_set(&device->refcount, 2);
1321  	down_write(&devices_rwsem);
1322  	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1323  
1324  	/*
1325  	 * By using downgrade_write() we ensure that no other thread can clear
1326  	 * DEVICE_REGISTERED while we are completing the client setup.
1327  	 */
1328  	downgrade_write(&devices_rwsem);
1329  
1330  	if (device->ops.enable_driver) {
1331  		ret = device->ops.enable_driver(device);
1332  		if (ret)
1333  			goto out;
1334  	}
1335  
1336  	down_read(&clients_rwsem);
1337  	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1338  		ret = add_client_context(device, client);
1339  		if (ret)
1340  			break;
1341  	}
1342  	up_read(&clients_rwsem);
1343  	if (!ret)
1344  		ret = add_compat_devs(device);
1345  out:
1346  	up_read(&devices_rwsem);
1347  	return ret;
1348  }
1349  
prevent_dealloc_device(struct ib_device * ib_dev)1350  static void prevent_dealloc_device(struct ib_device *ib_dev)
1351  {
1352  }
1353  
ib_device_notify_register(struct ib_device * device)1354  static void ib_device_notify_register(struct ib_device *device)
1355  {
1356  	struct net_device *netdev;
1357  	u32 port;
1358  	int ret;
1359  
1360  	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1361  	if (ret)
1362  		return;
1363  
1364  	rdma_for_each_port(device, port) {
1365  		netdev = ib_device_get_netdev(device, port);
1366  		if (!netdev)
1367  			continue;
1368  
1369  		ret = rdma_nl_notify_event(device, port,
1370  					   RDMA_NETDEV_ATTACH_EVENT);
1371  		dev_put(netdev);
1372  		if (ret)
1373  			return;
1374  	}
1375  }
1376  
1377  /**
1378   * ib_register_device - Register an IB device with IB core
1379   * @device: Device to register
1380   * @name: unique string device name. This may include a '%' which will
1381   * 	  cause a unique index to be added to the passed device name.
1382   * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1383   *	        device will be used. In this case the caller should fully
1384   *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1385   *
1386   * Low-level drivers use ib_register_device() to register their
1387   * devices with the IB core.  All registered clients will receive a
1388   * callback for each device that is added. @device must be allocated
1389   * with ib_alloc_device().
1390   *
1391   * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1392   * asynchronously then the device pointer may become freed as soon as this
1393   * function returns.
1394   */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1395  int ib_register_device(struct ib_device *device, const char *name,
1396  		       struct device *dma_device)
1397  {
1398  	int ret;
1399  
1400  	ret = assign_name(device, name);
1401  	if (ret)
1402  		return ret;
1403  
1404  	/*
1405  	 * If the caller does not provide a DMA capable device then the IB core
1406  	 * will set up ib_sge and scatterlist structures that stash the kernel
1407  	 * virtual address into the address field.
1408  	 */
1409  	WARN_ON(dma_device && !dma_device->dma_parms);
1410  	device->dma_device = dma_device;
1411  
1412  	ret = setup_device(device);
1413  	if (ret)
1414  		return ret;
1415  
1416  	ret = ib_cache_setup_one(device);
1417  	if (ret) {
1418  		dev_warn(&device->dev,
1419  			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1420  		return ret;
1421  	}
1422  
1423  	device->groups[0] = &ib_dev_attr_group;
1424  	device->groups[1] = device->ops.device_group;
1425  	ret = ib_setup_device_attrs(device);
1426  	if (ret)
1427  		goto cache_cleanup;
1428  
1429  	ib_device_register_rdmacg(device);
1430  
1431  	rdma_counter_init(device);
1432  
1433  	/*
1434  	 * Ensure that ADD uevent is not fired because it
1435  	 * is too early amd device is not initialized yet.
1436  	 */
1437  	dev_set_uevent_suppress(&device->dev, true);
1438  	ret = device_add(&device->dev);
1439  	if (ret)
1440  		goto cg_cleanup;
1441  
1442  	ret = ib_setup_port_attrs(&device->coredev);
1443  	if (ret) {
1444  		dev_warn(&device->dev,
1445  			 "Couldn't register device with driver model\n");
1446  		goto dev_cleanup;
1447  	}
1448  
1449  	ret = enable_device_and_get(device);
1450  	if (ret) {
1451  		void (*dealloc_fn)(struct ib_device *);
1452  
1453  		/*
1454  		 * If we hit this error flow then we don't want to
1455  		 * automatically dealloc the device since the caller is
1456  		 * expected to call ib_dealloc_device() after
1457  		 * ib_register_device() fails. This is tricky due to the
1458  		 * possibility for a parallel unregistration along with this
1459  		 * error flow. Since we have a refcount here we know any
1460  		 * parallel flow is stopped in disable_device and will see the
1461  		 * special dealloc_driver pointer, causing the responsibility to
1462  		 * ib_dealloc_device() to revert back to this thread.
1463  		 */
1464  		dealloc_fn = device->ops.dealloc_driver;
1465  		device->ops.dealloc_driver = prevent_dealloc_device;
1466  		ib_device_put(device);
1467  		__ib_unregister_device(device);
1468  		device->ops.dealloc_driver = dealloc_fn;
1469  		dev_set_uevent_suppress(&device->dev, false);
1470  		return ret;
1471  	}
1472  	dev_set_uevent_suppress(&device->dev, false);
1473  	/* Mark for userspace that device is ready */
1474  	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1475  
1476  	ib_device_notify_register(device);
1477  	ib_device_put(device);
1478  
1479  	return 0;
1480  
1481  dev_cleanup:
1482  	device_del(&device->dev);
1483  cg_cleanup:
1484  	dev_set_uevent_suppress(&device->dev, false);
1485  	ib_device_unregister_rdmacg(device);
1486  cache_cleanup:
1487  	ib_cache_cleanup_one(device);
1488  	return ret;
1489  }
1490  EXPORT_SYMBOL(ib_register_device);
1491  
1492  /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1493  static void __ib_unregister_device(struct ib_device *ib_dev)
1494  {
1495  	struct ib_device *sub, *tmp;
1496  
1497  	mutex_lock(&ib_dev->subdev_lock);
1498  	list_for_each_entry_safe_reverse(sub, tmp,
1499  					 &ib_dev->subdev_list_head,
1500  					 subdev_list) {
1501  		list_del(&sub->subdev_list);
1502  		ib_dev->ops.del_sub_dev(sub);
1503  		ib_device_put(ib_dev);
1504  	}
1505  	mutex_unlock(&ib_dev->subdev_lock);
1506  
1507  	/*
1508  	 * We have a registration lock so that all the calls to unregister are
1509  	 * fully fenced, once any unregister returns the device is truely
1510  	 * unregistered even if multiple callers are unregistering it at the
1511  	 * same time. This also interacts with the registration flow and
1512  	 * provides sane semantics if register and unregister are racing.
1513  	 */
1514  	mutex_lock(&ib_dev->unregistration_lock);
1515  	if (!refcount_read(&ib_dev->refcount))
1516  		goto out;
1517  
1518  	disable_device(ib_dev);
1519  	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1520  
1521  	/* Expedite removing unregistered pointers from the hash table */
1522  	free_netdevs(ib_dev);
1523  
1524  	ib_free_port_attrs(&ib_dev->coredev);
1525  	device_del(&ib_dev->dev);
1526  	ib_device_unregister_rdmacg(ib_dev);
1527  	ib_cache_cleanup_one(ib_dev);
1528  
1529  	/*
1530  	 * Drivers using the new flow may not call ib_dealloc_device except
1531  	 * in error unwind prior to registration success.
1532  	 */
1533  	if (ib_dev->ops.dealloc_driver &&
1534  	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1535  		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1536  		ib_dealloc_device(ib_dev);
1537  	}
1538  out:
1539  	mutex_unlock(&ib_dev->unregistration_lock);
1540  }
1541  
1542  /**
1543   * ib_unregister_device - Unregister an IB device
1544   * @ib_dev: The device to unregister
1545   *
1546   * Unregister an IB device.  All clients will receive a remove callback.
1547   *
1548   * Callers should call this routine only once, and protect against races with
1549   * registration. Typically it should only be called as part of a remove
1550   * callback in an implementation of driver core's struct device_driver and
1551   * related.
1552   *
1553   * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1554   * this function.
1555   */
ib_unregister_device(struct ib_device * ib_dev)1556  void ib_unregister_device(struct ib_device *ib_dev)
1557  {
1558  	get_device(&ib_dev->dev);
1559  	__ib_unregister_device(ib_dev);
1560  	put_device(&ib_dev->dev);
1561  }
1562  EXPORT_SYMBOL(ib_unregister_device);
1563  
1564  /**
1565   * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1566   * @ib_dev: The device to unregister
1567   *
1568   * This is the same as ib_unregister_device(), except it includes an internal
1569   * ib_device_put() that should match a 'get' obtained by the caller.
1570   *
1571   * It is safe to call this routine concurrently from multiple threads while
1572   * holding the 'get'. When the function returns the device is fully
1573   * unregistered.
1574   *
1575   * Drivers using this flow MUST use the driver_unregister callback to clean up
1576   * their resources associated with the device and dealloc it.
1577   */
ib_unregister_device_and_put(struct ib_device * ib_dev)1578  void ib_unregister_device_and_put(struct ib_device *ib_dev)
1579  {
1580  	WARN_ON(!ib_dev->ops.dealloc_driver);
1581  	get_device(&ib_dev->dev);
1582  	ib_device_put(ib_dev);
1583  	__ib_unregister_device(ib_dev);
1584  	put_device(&ib_dev->dev);
1585  }
1586  EXPORT_SYMBOL(ib_unregister_device_and_put);
1587  
1588  /**
1589   * ib_unregister_driver - Unregister all IB devices for a driver
1590   * @driver_id: The driver to unregister
1591   *
1592   * This implements a fence for device unregistration. It only returns once all
1593   * devices associated with the driver_id have fully completed their
1594   * unregistration and returned from ib_unregister_device*().
1595   *
1596   * If device's are not yet unregistered it goes ahead and starts unregistering
1597   * them.
1598   *
1599   * This does not block creation of new devices with the given driver_id, that
1600   * is the responsibility of the caller.
1601   */
ib_unregister_driver(enum rdma_driver_id driver_id)1602  void ib_unregister_driver(enum rdma_driver_id driver_id)
1603  {
1604  	struct ib_device *ib_dev;
1605  	unsigned long index;
1606  
1607  	down_read(&devices_rwsem);
1608  	xa_for_each (&devices, index, ib_dev) {
1609  		if (ib_dev->ops.driver_id != driver_id)
1610  			continue;
1611  
1612  		get_device(&ib_dev->dev);
1613  		up_read(&devices_rwsem);
1614  
1615  		WARN_ON(!ib_dev->ops.dealloc_driver);
1616  		__ib_unregister_device(ib_dev);
1617  
1618  		put_device(&ib_dev->dev);
1619  		down_read(&devices_rwsem);
1620  	}
1621  	up_read(&devices_rwsem);
1622  }
1623  EXPORT_SYMBOL(ib_unregister_driver);
1624  
ib_unregister_work(struct work_struct * work)1625  static void ib_unregister_work(struct work_struct *work)
1626  {
1627  	struct ib_device *ib_dev =
1628  		container_of(work, struct ib_device, unregistration_work);
1629  
1630  	__ib_unregister_device(ib_dev);
1631  	put_device(&ib_dev->dev);
1632  }
1633  
1634  /**
1635   * ib_unregister_device_queued - Unregister a device using a work queue
1636   * @ib_dev: The device to unregister
1637   *
1638   * This schedules an asynchronous unregistration using a WQ for the device. A
1639   * driver should use this to avoid holding locks while doing unregistration,
1640   * such as holding the RTNL lock.
1641   *
1642   * Drivers using this API must use ib_unregister_driver before module unload
1643   * to ensure that all scheduled unregistrations have completed.
1644   */
ib_unregister_device_queued(struct ib_device * ib_dev)1645  void ib_unregister_device_queued(struct ib_device *ib_dev)
1646  {
1647  	WARN_ON(!refcount_read(&ib_dev->refcount));
1648  	WARN_ON(!ib_dev->ops.dealloc_driver);
1649  	get_device(&ib_dev->dev);
1650  	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1651  		put_device(&ib_dev->dev);
1652  }
1653  EXPORT_SYMBOL(ib_unregister_device_queued);
1654  
1655  /*
1656   * The caller must pass in a device that has the kref held and the refcount
1657   * released. If the device is in cur_net and still registered then it is moved
1658   * into net.
1659   */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1660  static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1661  				 struct net *net)
1662  {
1663  	int ret2 = -EINVAL;
1664  	int ret;
1665  
1666  	mutex_lock(&device->unregistration_lock);
1667  
1668  	/*
1669  	 * If a device not under ib_device_get() or if the unregistration_lock
1670  	 * is not held, the namespace can be changed, or it can be unregistered.
1671  	 * Check again under the lock.
1672  	 */
1673  	if (refcount_read(&device->refcount) == 0 ||
1674  	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1675  		ret = -ENODEV;
1676  		goto out;
1677  	}
1678  
1679  	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1680  	disable_device(device);
1681  
1682  	/*
1683  	 * At this point no one can be using the device, so it is safe to
1684  	 * change the namespace.
1685  	 */
1686  	write_pnet(&device->coredev.rdma_net, net);
1687  
1688  	down_read(&devices_rwsem);
1689  	/*
1690  	 * Currently rdma devices are system wide unique. So the device name
1691  	 * is guaranteed free in the new namespace. Publish the new namespace
1692  	 * at the sysfs level.
1693  	 */
1694  	ret = device_rename(&device->dev, dev_name(&device->dev));
1695  	up_read(&devices_rwsem);
1696  	if (ret) {
1697  		dev_warn(&device->dev,
1698  			 "%s: Couldn't rename device after namespace change\n",
1699  			 __func__);
1700  		/* Try and put things back and re-enable the device */
1701  		write_pnet(&device->coredev.rdma_net, cur_net);
1702  	}
1703  
1704  	ret2 = enable_device_and_get(device);
1705  	if (ret2) {
1706  		/*
1707  		 * This shouldn't really happen, but if it does, let the user
1708  		 * retry at later point. So don't disable the device.
1709  		 */
1710  		dev_warn(&device->dev,
1711  			 "%s: Couldn't re-enable device after namespace change\n",
1712  			 __func__);
1713  	}
1714  	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1715  
1716  	ib_device_put(device);
1717  out:
1718  	mutex_unlock(&device->unregistration_lock);
1719  	if (ret)
1720  		return ret;
1721  	return ret2;
1722  }
1723  
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1724  int ib_device_set_netns_put(struct sk_buff *skb,
1725  			    struct ib_device *dev, u32 ns_fd)
1726  {
1727  	struct net *net;
1728  	int ret;
1729  
1730  	net = get_net_ns_by_fd(ns_fd);
1731  	if (IS_ERR(net)) {
1732  		ret = PTR_ERR(net);
1733  		goto net_err;
1734  	}
1735  
1736  	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1737  		ret = -EPERM;
1738  		goto ns_err;
1739  	}
1740  
1741  	/*
1742  	 * All the ib_clients, including uverbs, are reset when the namespace is
1743  	 * changed and this cannot be blocked waiting for userspace to do
1744  	 * something, so disassociation is mandatory.
1745  	 */
1746  	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1747  		ret = -EOPNOTSUPP;
1748  		goto ns_err;
1749  	}
1750  
1751  	get_device(&dev->dev);
1752  	ib_device_put(dev);
1753  	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1754  	put_device(&dev->dev);
1755  
1756  	put_net(net);
1757  	return ret;
1758  
1759  ns_err:
1760  	put_net(net);
1761  net_err:
1762  	ib_device_put(dev);
1763  	return ret;
1764  }
1765  
1766  static struct pernet_operations rdma_dev_net_ops = {
1767  	.init = rdma_dev_init_net,
1768  	.exit = rdma_dev_exit_net,
1769  	.id = &rdma_dev_net_id,
1770  	.size = sizeof(struct rdma_dev_net),
1771  };
1772  
assign_client_id(struct ib_client * client)1773  static int assign_client_id(struct ib_client *client)
1774  {
1775  	int ret;
1776  
1777  	lockdep_assert_held(&clients_rwsem);
1778  	/*
1779  	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1780  	 * achieve this we assign client_ids so they are sorted in
1781  	 * registration order.
1782  	 */
1783  	client->client_id = highest_client_id;
1784  	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1785  	if (ret)
1786  		return ret;
1787  
1788  	highest_client_id++;
1789  	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1790  	return 0;
1791  }
1792  
remove_client_id(struct ib_client * client)1793  static void remove_client_id(struct ib_client *client)
1794  {
1795  	down_write(&clients_rwsem);
1796  	xa_erase(&clients, client->client_id);
1797  	for (; highest_client_id; highest_client_id--)
1798  		if (xa_load(&clients, highest_client_id - 1))
1799  			break;
1800  	up_write(&clients_rwsem);
1801  }
1802  
1803  /**
1804   * ib_register_client - Register an IB client
1805   * @client:Client to register
1806   *
1807   * Upper level users of the IB drivers can use ib_register_client() to
1808   * register callbacks for IB device addition and removal.  When an IB
1809   * device is added, each registered client's add method will be called
1810   * (in the order the clients were registered), and when a device is
1811   * removed, each client's remove method will be called (in the reverse
1812   * order that clients were registered).  In addition, when
1813   * ib_register_client() is called, the client will receive an add
1814   * callback for all devices already registered.
1815   */
ib_register_client(struct ib_client * client)1816  int ib_register_client(struct ib_client *client)
1817  {
1818  	struct ib_device *device;
1819  	unsigned long index;
1820  	bool need_unreg = false;
1821  	int ret;
1822  
1823  	refcount_set(&client->uses, 1);
1824  	init_completion(&client->uses_zero);
1825  
1826  	/*
1827  	 * The devices_rwsem is held in write mode to ensure that a racing
1828  	 * ib_register_device() sees a consisent view of clients and devices.
1829  	 */
1830  	down_write(&devices_rwsem);
1831  	down_write(&clients_rwsem);
1832  	ret = assign_client_id(client);
1833  	if (ret)
1834  		goto out;
1835  
1836  	need_unreg = true;
1837  	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1838  		ret = add_client_context(device, client);
1839  		if (ret)
1840  			goto out;
1841  	}
1842  	ret = 0;
1843  out:
1844  	up_write(&clients_rwsem);
1845  	up_write(&devices_rwsem);
1846  	if (need_unreg && ret)
1847  		ib_unregister_client(client);
1848  	return ret;
1849  }
1850  EXPORT_SYMBOL(ib_register_client);
1851  
1852  /**
1853   * ib_unregister_client - Unregister an IB client
1854   * @client:Client to unregister
1855   *
1856   * Upper level users use ib_unregister_client() to remove their client
1857   * registration.  When ib_unregister_client() is called, the client
1858   * will receive a remove callback for each IB device still registered.
1859   *
1860   * This is a full fence, once it returns no client callbacks will be called,
1861   * or are running in another thread.
1862   */
ib_unregister_client(struct ib_client * client)1863  void ib_unregister_client(struct ib_client *client)
1864  {
1865  	struct ib_device *device;
1866  	unsigned long index;
1867  
1868  	down_write(&clients_rwsem);
1869  	ib_client_put(client);
1870  	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1871  	up_write(&clients_rwsem);
1872  
1873  	/* We do not want to have locks while calling client->remove() */
1874  	rcu_read_lock();
1875  	xa_for_each (&devices, index, device) {
1876  		if (!ib_device_try_get(device))
1877  			continue;
1878  		rcu_read_unlock();
1879  
1880  		remove_client_context(device, client->client_id);
1881  
1882  		ib_device_put(device);
1883  		rcu_read_lock();
1884  	}
1885  	rcu_read_unlock();
1886  
1887  	/*
1888  	 * remove_client_context() is not a fence, it can return even though a
1889  	 * removal is ongoing. Wait until all removals are completed.
1890  	 */
1891  	wait_for_completion(&client->uses_zero);
1892  	remove_client_id(client);
1893  }
1894  EXPORT_SYMBOL(ib_unregister_client);
1895  
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1896  static int __ib_get_global_client_nl_info(const char *client_name,
1897  					  struct ib_client_nl_info *res)
1898  {
1899  	struct ib_client *client;
1900  	unsigned long index;
1901  	int ret = -ENOENT;
1902  
1903  	down_read(&clients_rwsem);
1904  	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1905  		if (strcmp(client->name, client_name) != 0)
1906  			continue;
1907  		if (!client->get_global_nl_info) {
1908  			ret = -EOPNOTSUPP;
1909  			break;
1910  		}
1911  		ret = client->get_global_nl_info(res);
1912  		if (WARN_ON(ret == -ENOENT))
1913  			ret = -EINVAL;
1914  		if (!ret && res->cdev)
1915  			get_device(res->cdev);
1916  		break;
1917  	}
1918  	up_read(&clients_rwsem);
1919  	return ret;
1920  }
1921  
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1922  static int __ib_get_client_nl_info(struct ib_device *ibdev,
1923  				   const char *client_name,
1924  				   struct ib_client_nl_info *res)
1925  {
1926  	unsigned long index;
1927  	void *client_data;
1928  	int ret = -ENOENT;
1929  
1930  	down_read(&ibdev->client_data_rwsem);
1931  	xan_for_each_marked (&ibdev->client_data, index, client_data,
1932  			     CLIENT_DATA_REGISTERED) {
1933  		struct ib_client *client = xa_load(&clients, index);
1934  
1935  		if (!client || strcmp(client->name, client_name) != 0)
1936  			continue;
1937  		if (!client->get_nl_info) {
1938  			ret = -EOPNOTSUPP;
1939  			break;
1940  		}
1941  		ret = client->get_nl_info(ibdev, client_data, res);
1942  		if (WARN_ON(ret == -ENOENT))
1943  			ret = -EINVAL;
1944  
1945  		/*
1946  		 * The cdev is guaranteed valid as long as we are inside the
1947  		 * client_data_rwsem as remove_one can't be called. Keep it
1948  		 * valid for the caller.
1949  		 */
1950  		if (!ret && res->cdev)
1951  			get_device(res->cdev);
1952  		break;
1953  	}
1954  	up_read(&ibdev->client_data_rwsem);
1955  
1956  	return ret;
1957  }
1958  
1959  /**
1960   * ib_get_client_nl_info - Fetch the nl_info from a client
1961   * @ibdev: IB device
1962   * @client_name: Name of the client
1963   * @res: Result of the query
1964   */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1965  int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1966  			  struct ib_client_nl_info *res)
1967  {
1968  	int ret;
1969  
1970  	if (ibdev)
1971  		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1972  	else
1973  		ret = __ib_get_global_client_nl_info(client_name, res);
1974  #ifdef CONFIG_MODULES
1975  	if (ret == -ENOENT) {
1976  		request_module("rdma-client-%s", client_name);
1977  		if (ibdev)
1978  			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1979  		else
1980  			ret = __ib_get_global_client_nl_info(client_name, res);
1981  	}
1982  #endif
1983  	if (ret) {
1984  		if (ret == -ENOENT)
1985  			return -EOPNOTSUPP;
1986  		return ret;
1987  	}
1988  
1989  	if (WARN_ON(!res->cdev))
1990  		return -EINVAL;
1991  	return 0;
1992  }
1993  
1994  /**
1995   * ib_set_client_data - Set IB client context
1996   * @device:Device to set context for
1997   * @client:Client to set context for
1998   * @data:Context to set
1999   *
2000   * ib_set_client_data() sets client context data that can be retrieved with
2001   * ib_get_client_data(). This can only be called while the client is
2002   * registered to the device, once the ib_client remove() callback returns this
2003   * cannot be called.
2004   */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2005  void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2006  			void *data)
2007  {
2008  	void *rc;
2009  
2010  	if (WARN_ON(IS_ERR(data)))
2011  		data = NULL;
2012  
2013  	rc = xa_store(&device->client_data, client->client_id, data,
2014  		      GFP_KERNEL);
2015  	WARN_ON(xa_is_err(rc));
2016  }
2017  EXPORT_SYMBOL(ib_set_client_data);
2018  
2019  /**
2020   * ib_register_event_handler - Register an IB event handler
2021   * @event_handler:Handler to register
2022   *
2023   * ib_register_event_handler() registers an event handler that will be
2024   * called back when asynchronous IB events occur (as defined in
2025   * chapter 11 of the InfiniBand Architecture Specification). This
2026   * callback occurs in workqueue context.
2027   */
ib_register_event_handler(struct ib_event_handler * event_handler)2028  void ib_register_event_handler(struct ib_event_handler *event_handler)
2029  {
2030  	down_write(&event_handler->device->event_handler_rwsem);
2031  	list_add_tail(&event_handler->list,
2032  		      &event_handler->device->event_handler_list);
2033  	up_write(&event_handler->device->event_handler_rwsem);
2034  }
2035  EXPORT_SYMBOL(ib_register_event_handler);
2036  
2037  /**
2038   * ib_unregister_event_handler - Unregister an event handler
2039   * @event_handler:Handler to unregister
2040   *
2041   * Unregister an event handler registered with
2042   * ib_register_event_handler().
2043   */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2044  void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2045  {
2046  	down_write(&event_handler->device->event_handler_rwsem);
2047  	list_del(&event_handler->list);
2048  	up_write(&event_handler->device->event_handler_rwsem);
2049  }
2050  EXPORT_SYMBOL(ib_unregister_event_handler);
2051  
ib_dispatch_event_clients(struct ib_event * event)2052  void ib_dispatch_event_clients(struct ib_event *event)
2053  {
2054  	struct ib_event_handler *handler;
2055  
2056  	down_read(&event->device->event_handler_rwsem);
2057  
2058  	list_for_each_entry(handler, &event->device->event_handler_list, list)
2059  		handler->handler(handler, event);
2060  
2061  	up_read(&event->device->event_handler_rwsem);
2062  }
2063  
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2064  static int iw_query_port(struct ib_device *device,
2065  			   u32 port_num,
2066  			   struct ib_port_attr *port_attr)
2067  {
2068  	struct in_device *inetdev;
2069  	struct net_device *netdev;
2070  
2071  	memset(port_attr, 0, sizeof(*port_attr));
2072  
2073  	netdev = ib_device_get_netdev(device, port_num);
2074  	if (!netdev)
2075  		return -ENODEV;
2076  
2077  	port_attr->max_mtu = IB_MTU_4096;
2078  	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2079  
2080  	if (!netif_carrier_ok(netdev)) {
2081  		port_attr->state = IB_PORT_DOWN;
2082  		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2083  	} else {
2084  		rcu_read_lock();
2085  		inetdev = __in_dev_get_rcu(netdev);
2086  
2087  		if (inetdev && inetdev->ifa_list) {
2088  			port_attr->state = IB_PORT_ACTIVE;
2089  			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2090  		} else {
2091  			port_attr->state = IB_PORT_INIT;
2092  			port_attr->phys_state =
2093  				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2094  		}
2095  
2096  		rcu_read_unlock();
2097  	}
2098  
2099  	dev_put(netdev);
2100  	return device->ops.query_port(device, port_num, port_attr);
2101  }
2102  
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2103  static int __ib_query_port(struct ib_device *device,
2104  			   u32 port_num,
2105  			   struct ib_port_attr *port_attr)
2106  {
2107  	int err;
2108  
2109  	memset(port_attr, 0, sizeof(*port_attr));
2110  
2111  	err = device->ops.query_port(device, port_num, port_attr);
2112  	if (err || port_attr->subnet_prefix)
2113  		return err;
2114  
2115  	if (rdma_port_get_link_layer(device, port_num) !=
2116  	    IB_LINK_LAYER_INFINIBAND)
2117  		return 0;
2118  
2119  	ib_get_cached_subnet_prefix(device, port_num,
2120  				    &port_attr->subnet_prefix);
2121  	return 0;
2122  }
2123  
2124  /**
2125   * ib_query_port - Query IB port attributes
2126   * @device:Device to query
2127   * @port_num:Port number to query
2128   * @port_attr:Port attributes
2129   *
2130   * ib_query_port() returns the attributes of a port through the
2131   * @port_attr pointer.
2132   */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2133  int ib_query_port(struct ib_device *device,
2134  		  u32 port_num,
2135  		  struct ib_port_attr *port_attr)
2136  {
2137  	if (!rdma_is_port_valid(device, port_num))
2138  		return -EINVAL;
2139  
2140  	if (rdma_protocol_iwarp(device, port_num))
2141  		return iw_query_port(device, port_num, port_attr);
2142  	else
2143  		return __ib_query_port(device, port_num, port_attr);
2144  }
2145  EXPORT_SYMBOL(ib_query_port);
2146  
add_ndev_hash(struct ib_port_data * pdata)2147  static void add_ndev_hash(struct ib_port_data *pdata)
2148  {
2149  	unsigned long flags;
2150  
2151  	might_sleep();
2152  
2153  	spin_lock_irqsave(&ndev_hash_lock, flags);
2154  	if (hash_hashed(&pdata->ndev_hash_link)) {
2155  		hash_del_rcu(&pdata->ndev_hash_link);
2156  		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2157  		/*
2158  		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2159  		 * grace period
2160  		 */
2161  		synchronize_rcu();
2162  		spin_lock_irqsave(&ndev_hash_lock, flags);
2163  	}
2164  	if (pdata->netdev)
2165  		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2166  			     (uintptr_t)pdata->netdev);
2167  	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2168  }
2169  
2170  /**
2171   * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2172   * @ib_dev: Device to modify
2173   * @ndev: net_device to affiliate, may be NULL
2174   * @port: IB port the net_device is connected to
2175   *
2176   * Drivers should use this to link the ib_device to a netdev so the netdev
2177   * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2178   * affiliated with any port.
2179   *
2180   * The caller must ensure that the given ndev is not unregistered or
2181   * unregistering, and that either the ib_device is unregistered or
2182   * ib_device_set_netdev() is called with NULL when the ndev sends a
2183   * NETDEV_UNREGISTER event.
2184   */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2185  int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2186  			 u32 port)
2187  {
2188  	enum rdma_nl_notify_event_type etype;
2189  	struct net_device *old_ndev;
2190  	struct ib_port_data *pdata;
2191  	unsigned long flags;
2192  	int ret;
2193  
2194  	if (!rdma_is_port_valid(ib_dev, port))
2195  		return -EINVAL;
2196  
2197  	/*
2198  	 * Drivers wish to call this before ib_register_driver, so we have to
2199  	 * setup the port data early.
2200  	 */
2201  	ret = alloc_port_data(ib_dev);
2202  	if (ret)
2203  		return ret;
2204  
2205  	pdata = &ib_dev->port_data[port];
2206  	spin_lock_irqsave(&pdata->netdev_lock, flags);
2207  	old_ndev = rcu_dereference_protected(
2208  		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2209  	if (old_ndev == ndev) {
2210  		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2211  		return 0;
2212  	}
2213  
2214  	rcu_assign_pointer(pdata->netdev, ndev);
2215  	netdev_put(old_ndev, &pdata->netdev_tracker);
2216  	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2217  	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2218  
2219  	add_ndev_hash(pdata);
2220  
2221  	/* Make sure that the device is registered before we send events */
2222  	if (xa_load(&devices, ib_dev->index) != ib_dev)
2223  		return 0;
2224  
2225  	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2226  	rdma_nl_notify_event(ib_dev, port, etype);
2227  
2228  	return 0;
2229  }
2230  EXPORT_SYMBOL(ib_device_set_netdev);
2231  
free_netdevs(struct ib_device * ib_dev)2232  static void free_netdevs(struct ib_device *ib_dev)
2233  {
2234  	unsigned long flags;
2235  	u32 port;
2236  
2237  	if (!ib_dev->port_data)
2238  		return;
2239  
2240  	rdma_for_each_port (ib_dev, port) {
2241  		struct ib_port_data *pdata = &ib_dev->port_data[port];
2242  		struct net_device *ndev;
2243  
2244  		spin_lock_irqsave(&pdata->netdev_lock, flags);
2245  		ndev = rcu_dereference_protected(
2246  			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2247  		if (ndev) {
2248  			spin_lock(&ndev_hash_lock);
2249  			hash_del_rcu(&pdata->ndev_hash_link);
2250  			spin_unlock(&ndev_hash_lock);
2251  
2252  			/*
2253  			 * If this is the last dev_put there is still a
2254  			 * synchronize_rcu before the netdev is kfreed, so we
2255  			 * can continue to rely on unlocked pointer
2256  			 * comparisons after the put
2257  			 */
2258  			rcu_assign_pointer(pdata->netdev, NULL);
2259  			netdev_put(ndev, &pdata->netdev_tracker);
2260  		}
2261  		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2262  	}
2263  }
2264  
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2265  struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2266  					u32 port)
2267  {
2268  	struct ib_port_data *pdata;
2269  	struct net_device *res;
2270  
2271  	if (!rdma_is_port_valid(ib_dev, port))
2272  		return NULL;
2273  
2274  	if (!ib_dev->port_data)
2275  		return NULL;
2276  
2277  	pdata = &ib_dev->port_data[port];
2278  
2279  	/*
2280  	 * New drivers should use ib_device_set_netdev() not the legacy
2281  	 * get_netdev().
2282  	 */
2283  	if (ib_dev->ops.get_netdev)
2284  		res = ib_dev->ops.get_netdev(ib_dev, port);
2285  	else {
2286  		spin_lock(&pdata->netdev_lock);
2287  		res = rcu_dereference_protected(
2288  			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2289  		dev_hold(res);
2290  		spin_unlock(&pdata->netdev_lock);
2291  	}
2292  
2293  	return res;
2294  }
2295  EXPORT_SYMBOL(ib_device_get_netdev);
2296  
2297  /**
2298   * ib_device_get_by_netdev - Find an IB device associated with a netdev
2299   * @ndev: netdev to locate
2300   * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2301   *
2302   * Find and hold an ib_device that is associated with a netdev via
2303   * ib_device_set_netdev(). The caller must call ib_device_put() on the
2304   * returned pointer.
2305   */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2306  struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2307  					  enum rdma_driver_id driver_id)
2308  {
2309  	struct ib_device *res = NULL;
2310  	struct ib_port_data *cur;
2311  
2312  	rcu_read_lock();
2313  	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2314  				    (uintptr_t)ndev) {
2315  		if (rcu_access_pointer(cur->netdev) == ndev &&
2316  		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2317  		     cur->ib_dev->ops.driver_id == driver_id) &&
2318  		    ib_device_try_get(cur->ib_dev)) {
2319  			res = cur->ib_dev;
2320  			break;
2321  		}
2322  	}
2323  	rcu_read_unlock();
2324  
2325  	return res;
2326  }
2327  EXPORT_SYMBOL(ib_device_get_by_netdev);
2328  
2329  /**
2330   * ib_enum_roce_netdev - enumerate all RoCE ports
2331   * @ib_dev : IB device we want to query
2332   * @filter: Should we call the callback?
2333   * @filter_cookie: Cookie passed to filter
2334   * @cb: Callback to call for each found RoCE ports
2335   * @cookie: Cookie passed back to the callback
2336   *
2337   * Enumerates all of the physical RoCE ports of ib_dev
2338   * which are related to netdevice and calls callback() on each
2339   * device for which filter() function returns non zero.
2340   */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2341  void ib_enum_roce_netdev(struct ib_device *ib_dev,
2342  			 roce_netdev_filter filter,
2343  			 void *filter_cookie,
2344  			 roce_netdev_callback cb,
2345  			 void *cookie)
2346  {
2347  	u32 port;
2348  
2349  	rdma_for_each_port (ib_dev, port)
2350  		if (rdma_protocol_roce(ib_dev, port)) {
2351  			struct net_device *idev =
2352  				ib_device_get_netdev(ib_dev, port);
2353  
2354  			if (filter(ib_dev, port, idev, filter_cookie))
2355  				cb(ib_dev, port, idev, cookie);
2356  			dev_put(idev);
2357  		}
2358  }
2359  
2360  /**
2361   * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2362   * @filter: Should we call the callback?
2363   * @filter_cookie: Cookie passed to filter
2364   * @cb: Callback to call for each found RoCE ports
2365   * @cookie: Cookie passed back to the callback
2366   *
2367   * Enumerates all RoCE devices' physical ports which are related
2368   * to netdevices and calls callback() on each device for which
2369   * filter() function returns non zero.
2370   */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2371  void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2372  			      void *filter_cookie,
2373  			      roce_netdev_callback cb,
2374  			      void *cookie)
2375  {
2376  	struct ib_device *dev;
2377  	unsigned long index;
2378  
2379  	down_read(&devices_rwsem);
2380  	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2381  		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2382  	up_read(&devices_rwsem);
2383  }
2384  
2385  /*
2386   * ib_enum_all_devs - enumerate all ib_devices
2387   * @cb: Callback to call for each found ib_device
2388   *
2389   * Enumerates all ib_devices and calls callback() on each device.
2390   */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2391  int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2392  		     struct netlink_callback *cb)
2393  {
2394  	unsigned long index;
2395  	struct ib_device *dev;
2396  	unsigned int idx = 0;
2397  	int ret = 0;
2398  
2399  	down_read(&devices_rwsem);
2400  	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2401  		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2402  			continue;
2403  
2404  		ret = nldev_cb(dev, skb, cb, idx);
2405  		if (ret)
2406  			break;
2407  		idx++;
2408  	}
2409  	up_read(&devices_rwsem);
2410  	return ret;
2411  }
2412  
2413  /**
2414   * ib_query_pkey - Get P_Key table entry
2415   * @device:Device to query
2416   * @port_num:Port number to query
2417   * @index:P_Key table index to query
2418   * @pkey:Returned P_Key
2419   *
2420   * ib_query_pkey() fetches the specified P_Key table entry.
2421   */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2422  int ib_query_pkey(struct ib_device *device,
2423  		  u32 port_num, u16 index, u16 *pkey)
2424  {
2425  	if (!rdma_is_port_valid(device, port_num))
2426  		return -EINVAL;
2427  
2428  	if (!device->ops.query_pkey)
2429  		return -EOPNOTSUPP;
2430  
2431  	return device->ops.query_pkey(device, port_num, index, pkey);
2432  }
2433  EXPORT_SYMBOL(ib_query_pkey);
2434  
2435  /**
2436   * ib_modify_device - Change IB device attributes
2437   * @device:Device to modify
2438   * @device_modify_mask:Mask of attributes to change
2439   * @device_modify:New attribute values
2440   *
2441   * ib_modify_device() changes a device's attributes as specified by
2442   * the @device_modify_mask and @device_modify structure.
2443   */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2444  int ib_modify_device(struct ib_device *device,
2445  		     int device_modify_mask,
2446  		     struct ib_device_modify *device_modify)
2447  {
2448  	if (!device->ops.modify_device)
2449  		return -EOPNOTSUPP;
2450  
2451  	return device->ops.modify_device(device, device_modify_mask,
2452  					 device_modify);
2453  }
2454  EXPORT_SYMBOL(ib_modify_device);
2455  
2456  /**
2457   * ib_modify_port - Modifies the attributes for the specified port.
2458   * @device: The device to modify.
2459   * @port_num: The number of the port to modify.
2460   * @port_modify_mask: Mask used to specify which attributes of the port
2461   *   to change.
2462   * @port_modify: New attribute values for the port.
2463   *
2464   * ib_modify_port() changes a port's attributes as specified by the
2465   * @port_modify_mask and @port_modify structure.
2466   */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2467  int ib_modify_port(struct ib_device *device,
2468  		   u32 port_num, int port_modify_mask,
2469  		   struct ib_port_modify *port_modify)
2470  {
2471  	int rc;
2472  
2473  	if (!rdma_is_port_valid(device, port_num))
2474  		return -EINVAL;
2475  
2476  	if (device->ops.modify_port)
2477  		rc = device->ops.modify_port(device, port_num,
2478  					     port_modify_mask,
2479  					     port_modify);
2480  	else if (rdma_protocol_roce(device, port_num) &&
2481  		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2482  		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2483  		rc = 0;
2484  	else
2485  		rc = -EOPNOTSUPP;
2486  	return rc;
2487  }
2488  EXPORT_SYMBOL(ib_modify_port);
2489  
2490  /**
2491   * ib_find_gid - Returns the port number and GID table index where
2492   *   a specified GID value occurs. Its searches only for IB link layer.
2493   * @device: The device to query.
2494   * @gid: The GID value to search for.
2495   * @port_num: The port number of the device where the GID value was found.
2496   * @index: The index into the GID table where the GID was found.  This
2497   *   parameter may be NULL.
2498   */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2499  int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2500  		u32 *port_num, u16 *index)
2501  {
2502  	union ib_gid tmp_gid;
2503  	u32 port;
2504  	int ret, i;
2505  
2506  	rdma_for_each_port (device, port) {
2507  		if (!rdma_protocol_ib(device, port))
2508  			continue;
2509  
2510  		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2511  		     ++i) {
2512  			ret = rdma_query_gid(device, port, i, &tmp_gid);
2513  			if (ret)
2514  				continue;
2515  
2516  			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2517  				*port_num = port;
2518  				if (index)
2519  					*index = i;
2520  				return 0;
2521  			}
2522  		}
2523  	}
2524  
2525  	return -ENOENT;
2526  }
2527  EXPORT_SYMBOL(ib_find_gid);
2528  
2529  /**
2530   * ib_find_pkey - Returns the PKey table index where a specified
2531   *   PKey value occurs.
2532   * @device: The device to query.
2533   * @port_num: The port number of the device to search for the PKey.
2534   * @pkey: The PKey value to search for.
2535   * @index: The index into the PKey table where the PKey was found.
2536   */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2537  int ib_find_pkey(struct ib_device *device,
2538  		 u32 port_num, u16 pkey, u16 *index)
2539  {
2540  	int ret, i;
2541  	u16 tmp_pkey;
2542  	int partial_ix = -1;
2543  
2544  	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2545  	     ++i) {
2546  		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2547  		if (ret)
2548  			return ret;
2549  		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2550  			/* if there is full-member pkey take it.*/
2551  			if (tmp_pkey & 0x8000) {
2552  				*index = i;
2553  				return 0;
2554  			}
2555  			if (partial_ix < 0)
2556  				partial_ix = i;
2557  		}
2558  	}
2559  
2560  	/*no full-member, if exists take the limited*/
2561  	if (partial_ix >= 0) {
2562  		*index = partial_ix;
2563  		return 0;
2564  	}
2565  	return -ENOENT;
2566  }
2567  EXPORT_SYMBOL(ib_find_pkey);
2568  
2569  /**
2570   * ib_get_net_dev_by_params() - Return the appropriate net_dev
2571   * for a received CM request
2572   * @dev:	An RDMA device on which the request has been received.
2573   * @port:	Port number on the RDMA device.
2574   * @pkey:	The Pkey the request came on.
2575   * @gid:	A GID that the net_dev uses to communicate.
2576   * @addr:	Contains the IP address that the request specified as its
2577   *		destination.
2578   *
2579   */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2580  struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2581  					    u32 port,
2582  					    u16 pkey,
2583  					    const union ib_gid *gid,
2584  					    const struct sockaddr *addr)
2585  {
2586  	struct net_device *net_dev = NULL;
2587  	unsigned long index;
2588  	void *client_data;
2589  
2590  	if (!rdma_protocol_ib(dev, port))
2591  		return NULL;
2592  
2593  	/*
2594  	 * Holding the read side guarantees that the client will not become
2595  	 * unregistered while we are calling get_net_dev_by_params()
2596  	 */
2597  	down_read(&dev->client_data_rwsem);
2598  	xan_for_each_marked (&dev->client_data, index, client_data,
2599  			     CLIENT_DATA_REGISTERED) {
2600  		struct ib_client *client = xa_load(&clients, index);
2601  
2602  		if (!client || !client->get_net_dev_by_params)
2603  			continue;
2604  
2605  		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2606  							addr, client_data);
2607  		if (net_dev)
2608  			break;
2609  	}
2610  	up_read(&dev->client_data_rwsem);
2611  
2612  	return net_dev;
2613  }
2614  EXPORT_SYMBOL(ib_get_net_dev_by_params);
2615  
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2616  void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2617  {
2618  	struct ib_device_ops *dev_ops = &dev->ops;
2619  #define SET_DEVICE_OP(ptr, name)                                               \
2620  	do {                                                                   \
2621  		if (ops->name)                                                 \
2622  			if (!((ptr)->name))				       \
2623  				(ptr)->name = ops->name;                       \
2624  	} while (0)
2625  
2626  #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2627  
2628  	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2629  		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2630  			dev_ops->driver_id != ops->driver_id);
2631  		dev_ops->driver_id = ops->driver_id;
2632  	}
2633  	if (ops->owner) {
2634  		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2635  		dev_ops->owner = ops->owner;
2636  	}
2637  	if (ops->uverbs_abi_ver)
2638  		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2639  
2640  	dev_ops->uverbs_no_driver_id_binding |=
2641  		ops->uverbs_no_driver_id_binding;
2642  
2643  	SET_DEVICE_OP(dev_ops, add_gid);
2644  	SET_DEVICE_OP(dev_ops, add_sub_dev);
2645  	SET_DEVICE_OP(dev_ops, advise_mr);
2646  	SET_DEVICE_OP(dev_ops, alloc_dm);
2647  	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2648  	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2649  	SET_DEVICE_OP(dev_ops, alloc_mr);
2650  	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2651  	SET_DEVICE_OP(dev_ops, alloc_mw);
2652  	SET_DEVICE_OP(dev_ops, alloc_pd);
2653  	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2654  	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2655  	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2656  	SET_DEVICE_OP(dev_ops, attach_mcast);
2657  	SET_DEVICE_OP(dev_ops, check_mr_status);
2658  	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2659  	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2660  	SET_DEVICE_OP(dev_ops, counter_dealloc);
2661  	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2662  	SET_DEVICE_OP(dev_ops, counter_update_stats);
2663  	SET_DEVICE_OP(dev_ops, create_ah);
2664  	SET_DEVICE_OP(dev_ops, create_counters);
2665  	SET_DEVICE_OP(dev_ops, create_cq);
2666  	SET_DEVICE_OP(dev_ops, create_flow);
2667  	SET_DEVICE_OP(dev_ops, create_qp);
2668  	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2669  	SET_DEVICE_OP(dev_ops, create_srq);
2670  	SET_DEVICE_OP(dev_ops, create_user_ah);
2671  	SET_DEVICE_OP(dev_ops, create_wq);
2672  	SET_DEVICE_OP(dev_ops, dealloc_dm);
2673  	SET_DEVICE_OP(dev_ops, dealloc_driver);
2674  	SET_DEVICE_OP(dev_ops, dealloc_mw);
2675  	SET_DEVICE_OP(dev_ops, dealloc_pd);
2676  	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2677  	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2678  	SET_DEVICE_OP(dev_ops, del_gid);
2679  	SET_DEVICE_OP(dev_ops, del_sub_dev);
2680  	SET_DEVICE_OP(dev_ops, dereg_mr);
2681  	SET_DEVICE_OP(dev_ops, destroy_ah);
2682  	SET_DEVICE_OP(dev_ops, destroy_counters);
2683  	SET_DEVICE_OP(dev_ops, destroy_cq);
2684  	SET_DEVICE_OP(dev_ops, destroy_flow);
2685  	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2686  	SET_DEVICE_OP(dev_ops, destroy_qp);
2687  	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2688  	SET_DEVICE_OP(dev_ops, destroy_srq);
2689  	SET_DEVICE_OP(dev_ops, destroy_wq);
2690  	SET_DEVICE_OP(dev_ops, device_group);
2691  	SET_DEVICE_OP(dev_ops, detach_mcast);
2692  	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2693  	SET_DEVICE_OP(dev_ops, drain_rq);
2694  	SET_DEVICE_OP(dev_ops, drain_sq);
2695  	SET_DEVICE_OP(dev_ops, enable_driver);
2696  	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2697  	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2698  	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2699  	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2700  	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2701  	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2702  	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2703  	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2704  	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2705  	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2706  	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2707  	SET_DEVICE_OP(dev_ops, get_dma_mr);
2708  	SET_DEVICE_OP(dev_ops, get_hw_stats);
2709  	SET_DEVICE_OP(dev_ops, get_link_layer);
2710  	SET_DEVICE_OP(dev_ops, get_netdev);
2711  	SET_DEVICE_OP(dev_ops, get_numa_node);
2712  	SET_DEVICE_OP(dev_ops, get_port_immutable);
2713  	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2714  	SET_DEVICE_OP(dev_ops, get_vf_config);
2715  	SET_DEVICE_OP(dev_ops, get_vf_guid);
2716  	SET_DEVICE_OP(dev_ops, get_vf_stats);
2717  	SET_DEVICE_OP(dev_ops, iw_accept);
2718  	SET_DEVICE_OP(dev_ops, iw_add_ref);
2719  	SET_DEVICE_OP(dev_ops, iw_connect);
2720  	SET_DEVICE_OP(dev_ops, iw_create_listen);
2721  	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2722  	SET_DEVICE_OP(dev_ops, iw_get_qp);
2723  	SET_DEVICE_OP(dev_ops, iw_reject);
2724  	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2725  	SET_DEVICE_OP(dev_ops, map_mr_sg);
2726  	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2727  	SET_DEVICE_OP(dev_ops, mmap);
2728  	SET_DEVICE_OP(dev_ops, mmap_free);
2729  	SET_DEVICE_OP(dev_ops, modify_ah);
2730  	SET_DEVICE_OP(dev_ops, modify_cq);
2731  	SET_DEVICE_OP(dev_ops, modify_device);
2732  	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2733  	SET_DEVICE_OP(dev_ops, modify_port);
2734  	SET_DEVICE_OP(dev_ops, modify_qp);
2735  	SET_DEVICE_OP(dev_ops, modify_srq);
2736  	SET_DEVICE_OP(dev_ops, modify_wq);
2737  	SET_DEVICE_OP(dev_ops, peek_cq);
2738  	SET_DEVICE_OP(dev_ops, poll_cq);
2739  	SET_DEVICE_OP(dev_ops, port_groups);
2740  	SET_DEVICE_OP(dev_ops, post_recv);
2741  	SET_DEVICE_OP(dev_ops, post_send);
2742  	SET_DEVICE_OP(dev_ops, post_srq_recv);
2743  	SET_DEVICE_OP(dev_ops, process_mad);
2744  	SET_DEVICE_OP(dev_ops, query_ah);
2745  	SET_DEVICE_OP(dev_ops, query_device);
2746  	SET_DEVICE_OP(dev_ops, query_gid);
2747  	SET_DEVICE_OP(dev_ops, query_pkey);
2748  	SET_DEVICE_OP(dev_ops, query_port);
2749  	SET_DEVICE_OP(dev_ops, query_qp);
2750  	SET_DEVICE_OP(dev_ops, query_srq);
2751  	SET_DEVICE_OP(dev_ops, query_ucontext);
2752  	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2753  	SET_DEVICE_OP(dev_ops, read_counters);
2754  	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2755  	SET_DEVICE_OP(dev_ops, reg_user_mr);
2756  	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2757  	SET_DEVICE_OP(dev_ops, req_notify_cq);
2758  	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2759  	SET_DEVICE_OP(dev_ops, resize_cq);
2760  	SET_DEVICE_OP(dev_ops, set_vf_guid);
2761  	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2762  
2763  	SET_OBJ_SIZE(dev_ops, ib_ah);
2764  	SET_OBJ_SIZE(dev_ops, ib_counters);
2765  	SET_OBJ_SIZE(dev_ops, ib_cq);
2766  	SET_OBJ_SIZE(dev_ops, ib_mw);
2767  	SET_OBJ_SIZE(dev_ops, ib_pd);
2768  	SET_OBJ_SIZE(dev_ops, ib_qp);
2769  	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2770  	SET_OBJ_SIZE(dev_ops, ib_srq);
2771  	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2772  	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2773  }
2774  EXPORT_SYMBOL(ib_set_device_ops);
2775  
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2776  int ib_add_sub_device(struct ib_device *parent,
2777  		      enum rdma_nl_dev_type type,
2778  		      const char *name)
2779  {
2780  	struct ib_device *sub;
2781  	int ret = 0;
2782  
2783  	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2784  		return -EOPNOTSUPP;
2785  
2786  	if (!ib_device_try_get(parent))
2787  		return -EINVAL;
2788  
2789  	sub = parent->ops.add_sub_dev(parent, type, name);
2790  	if (IS_ERR(sub)) {
2791  		ib_device_put(parent);
2792  		return PTR_ERR(sub);
2793  	}
2794  
2795  	sub->type = type;
2796  	sub->parent = parent;
2797  
2798  	mutex_lock(&parent->subdev_lock);
2799  	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2800  	mutex_unlock(&parent->subdev_lock);
2801  
2802  	return ret;
2803  }
2804  EXPORT_SYMBOL(ib_add_sub_device);
2805  
ib_del_sub_device_and_put(struct ib_device * sub)2806  int ib_del_sub_device_and_put(struct ib_device *sub)
2807  {
2808  	struct ib_device *parent = sub->parent;
2809  
2810  	if (!parent)
2811  		return -EOPNOTSUPP;
2812  
2813  	mutex_lock(&parent->subdev_lock);
2814  	list_del(&sub->subdev_list);
2815  	mutex_unlock(&parent->subdev_lock);
2816  
2817  	ib_device_put(sub);
2818  	parent->ops.del_sub_dev(sub);
2819  	ib_device_put(parent);
2820  
2821  	return 0;
2822  }
2823  EXPORT_SYMBOL(ib_del_sub_device_and_put);
2824  
2825  #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2826  int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2827  {
2828  	struct scatterlist *s;
2829  	int i;
2830  
2831  	for_each_sg(sg, s, nents, i) {
2832  		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2833  		sg_dma_len(s) = s->length;
2834  	}
2835  	return nents;
2836  }
2837  EXPORT_SYMBOL(ib_dma_virt_map_sg);
2838  #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2839  
2840  static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2841  	[RDMA_NL_LS_OP_RESOLVE] = {
2842  		.doit = ib_nl_handle_resolve_resp,
2843  		.flags = RDMA_NL_ADMIN_PERM,
2844  	},
2845  	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2846  		.doit = ib_nl_handle_set_timeout,
2847  		.flags = RDMA_NL_ADMIN_PERM,
2848  	},
2849  	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2850  		.doit = ib_nl_handle_ip_res_resp,
2851  		.flags = RDMA_NL_ADMIN_PERM,
2852  	},
2853  };
2854  
ib_core_init(void)2855  static int __init ib_core_init(void)
2856  {
2857  	int ret = -ENOMEM;
2858  
2859  	ib_wq = alloc_workqueue("infiniband", 0, 0);
2860  	if (!ib_wq)
2861  		return -ENOMEM;
2862  
2863  	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2864  				      WQ_UNBOUND_MAX_ACTIVE);
2865  	if (!ib_unreg_wq)
2866  		goto err;
2867  
2868  	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2869  			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2870  	if (!ib_comp_wq)
2871  		goto err_unbound;
2872  
2873  	ib_comp_unbound_wq =
2874  		alloc_workqueue("ib-comp-unb-wq",
2875  				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2876  				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2877  	if (!ib_comp_unbound_wq)
2878  		goto err_comp;
2879  
2880  	ret = class_register(&ib_class);
2881  	if (ret) {
2882  		pr_warn("Couldn't create InfiniBand device class\n");
2883  		goto err_comp_unbound;
2884  	}
2885  
2886  	rdma_nl_init();
2887  
2888  	ret = addr_init();
2889  	if (ret) {
2890  		pr_warn("Couldn't init IB address resolution\n");
2891  		goto err_ibnl;
2892  	}
2893  
2894  	ret = ib_mad_init();
2895  	if (ret) {
2896  		pr_warn("Couldn't init IB MAD\n");
2897  		goto err_addr;
2898  	}
2899  
2900  	ret = ib_sa_init();
2901  	if (ret) {
2902  		pr_warn("Couldn't init SA\n");
2903  		goto err_mad;
2904  	}
2905  
2906  	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2907  	if (ret) {
2908  		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2909  		goto err_sa;
2910  	}
2911  
2912  	ret = register_pernet_device(&rdma_dev_net_ops);
2913  	if (ret) {
2914  		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2915  		goto err_compat;
2916  	}
2917  
2918  	nldev_init();
2919  	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2920  	ret = roce_gid_mgmt_init();
2921  	if (ret) {
2922  		pr_warn("Couldn't init RoCE GID management\n");
2923  		goto err_parent;
2924  	}
2925  
2926  	return 0;
2927  
2928  err_parent:
2929  	rdma_nl_unregister(RDMA_NL_LS);
2930  	nldev_exit();
2931  	unregister_pernet_device(&rdma_dev_net_ops);
2932  err_compat:
2933  	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2934  err_sa:
2935  	ib_sa_cleanup();
2936  err_mad:
2937  	ib_mad_cleanup();
2938  err_addr:
2939  	addr_cleanup();
2940  err_ibnl:
2941  	class_unregister(&ib_class);
2942  err_comp_unbound:
2943  	destroy_workqueue(ib_comp_unbound_wq);
2944  err_comp:
2945  	destroy_workqueue(ib_comp_wq);
2946  err_unbound:
2947  	destroy_workqueue(ib_unreg_wq);
2948  err:
2949  	destroy_workqueue(ib_wq);
2950  	return ret;
2951  }
2952  
ib_core_cleanup(void)2953  static void __exit ib_core_cleanup(void)
2954  {
2955  	roce_gid_mgmt_cleanup();
2956  	rdma_nl_unregister(RDMA_NL_LS);
2957  	nldev_exit();
2958  	unregister_pernet_device(&rdma_dev_net_ops);
2959  	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2960  	ib_sa_cleanup();
2961  	ib_mad_cleanup();
2962  	addr_cleanup();
2963  	rdma_nl_exit();
2964  	class_unregister(&ib_class);
2965  	destroy_workqueue(ib_comp_unbound_wq);
2966  	destroy_workqueue(ib_comp_wq);
2967  	/* Make sure that any pending umem accounting work is done. */
2968  	destroy_workqueue(ib_wq);
2969  	destroy_workqueue(ib_unreg_wq);
2970  	WARN_ON(!xa_empty(&clients));
2971  	WARN_ON(!xa_empty(&devices));
2972  }
2973  
2974  MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2975  
2976  /* ib core relies on netdev stack to first register net_ns_type_operations
2977   * ns kobject type before ib_core initialization.
2978   */
2979  fs_initcall(ib_core_init);
2980  module_exit(ib_core_cleanup);
2981