1  /*
2   * Copyright © 2008-2015 Intel Corporation
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21   * IN THE SOFTWARE.
22   *
23   */
24  
25  #include <linux/dma-fence-array.h>
26  #include <linux/dma-fence-chain.h>
27  #include <linux/irq_work.h>
28  #include <linux/prefetch.h>
29  #include <linux/sched.h>
30  #include <linux/sched/clock.h>
31  #include <linux/sched/signal.h>
32  #include <linux/sched/mm.h>
33  
34  #include "gem/i915_gem_context.h"
35  #include "gt/intel_breadcrumbs.h"
36  #include "gt/intel_context.h"
37  #include "gt/intel_engine.h"
38  #include "gt/intel_engine_heartbeat.h"
39  #include "gt/intel_engine_regs.h"
40  #include "gt/intel_gpu_commands.h"
41  #include "gt/intel_reset.h"
42  #include "gt/intel_ring.h"
43  #include "gt/intel_rps.h"
44  
45  #include "i915_active.h"
46  #include "i915_config.h"
47  #include "i915_deps.h"
48  #include "i915_driver.h"
49  #include "i915_drv.h"
50  #include "i915_trace.h"
51  
52  struct execute_cb {
53  	struct irq_work work;
54  	struct i915_sw_fence *fence;
55  };
56  
57  static struct kmem_cache *slab_requests;
58  static struct kmem_cache *slab_execute_cbs;
59  
i915_fence_get_driver_name(struct dma_fence * fence)60  static const char *i915_fence_get_driver_name(struct dma_fence *fence)
61  {
62  	return dev_name(to_request(fence)->i915->drm.dev);
63  }
64  
i915_fence_get_timeline_name(struct dma_fence * fence)65  static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
66  {
67  	const struct i915_gem_context *ctx;
68  
69  	/*
70  	 * The timeline struct (as part of the ppgtt underneath a context)
71  	 * may be freed when the request is no longer in use by the GPU.
72  	 * We could extend the life of a context to beyond that of all
73  	 * fences, possibly keeping the hw resource around indefinitely,
74  	 * or we just give them a false name. Since
75  	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
76  	 * lie seems justifiable.
77  	 */
78  	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
79  		return "signaled";
80  
81  	ctx = i915_request_gem_context(to_request(fence));
82  	if (!ctx)
83  		return "[" DRIVER_NAME "]";
84  
85  	return ctx->name;
86  }
87  
i915_fence_signaled(struct dma_fence * fence)88  static bool i915_fence_signaled(struct dma_fence *fence)
89  {
90  	return i915_request_completed(to_request(fence));
91  }
92  
i915_fence_enable_signaling(struct dma_fence * fence)93  static bool i915_fence_enable_signaling(struct dma_fence *fence)
94  {
95  	return i915_request_enable_breadcrumb(to_request(fence));
96  }
97  
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)98  static signed long i915_fence_wait(struct dma_fence *fence,
99  				   bool interruptible,
100  				   signed long timeout)
101  {
102  	return i915_request_wait_timeout(to_request(fence),
103  					 interruptible | I915_WAIT_PRIORITY,
104  					 timeout);
105  }
106  
i915_request_slab_cache(void)107  struct kmem_cache *i915_request_slab_cache(void)
108  {
109  	return slab_requests;
110  }
111  
i915_fence_release(struct dma_fence * fence)112  static void i915_fence_release(struct dma_fence *fence)
113  {
114  	struct i915_request *rq = to_request(fence);
115  
116  	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
117  		   rq->guc_prio != GUC_PRIO_FINI);
118  
119  	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
120  	if (rq->batch_res) {
121  		i915_vma_resource_put(rq->batch_res);
122  		rq->batch_res = NULL;
123  	}
124  
125  	/*
126  	 * The request is put onto a RCU freelist (i.e. the address
127  	 * is immediately reused), mark the fences as being freed now.
128  	 * Otherwise the debugobjects for the fences are only marked as
129  	 * freed when the slab cache itself is freed, and so we would get
130  	 * caught trying to reuse dead objects.
131  	 */
132  	i915_sw_fence_fini(&rq->submit);
133  	i915_sw_fence_fini(&rq->semaphore);
134  
135  	/*
136  	 * Keep one request on each engine for reserved use under mempressure.
137  	 *
138  	 * We do not hold a reference to the engine here and so have to be
139  	 * very careful in what rq->engine we poke. The virtual engine is
140  	 * referenced via the rq->context and we released that ref during
141  	 * i915_request_retire(), ergo we must not dereference a virtual
142  	 * engine here. Not that we would want to, as the only consumer of
143  	 * the reserved engine->request_pool is the power management parking,
144  	 * which must-not-fail, and that is only run on the physical engines.
145  	 *
146  	 * Since the request must have been executed to be have completed,
147  	 * we know that it will have been processed by the HW and will
148  	 * not be unsubmitted again, so rq->engine and rq->execution_mask
149  	 * at this point is stable. rq->execution_mask will be a single
150  	 * bit if the last and _only_ engine it could execution on was a
151  	 * physical engine, if it's multiple bits then it started on and
152  	 * could still be on a virtual engine. Thus if the mask is not a
153  	 * power-of-two we assume that rq->engine may still be a virtual
154  	 * engine and so a dangling invalid pointer that we cannot dereference
155  	 *
156  	 * For example, consider the flow of a bonded request through a virtual
157  	 * engine. The request is created with a wide engine mask (all engines
158  	 * that we might execute on). On processing the bond, the request mask
159  	 * is reduced to one or more engines. If the request is subsequently
160  	 * bound to a single engine, it will then be constrained to only
161  	 * execute on that engine and never returned to the virtual engine
162  	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
163  	 * know that if the rq->execution_mask is a single bit, rq->engine
164  	 * can be a physical engine with the exact corresponding mask.
165  	 */
166  	if (is_power_of_2(rq->execution_mask) &&
167  	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
168  		return;
169  
170  	kmem_cache_free(slab_requests, rq);
171  }
172  
173  const struct dma_fence_ops i915_fence_ops = {
174  	.get_driver_name = i915_fence_get_driver_name,
175  	.get_timeline_name = i915_fence_get_timeline_name,
176  	.enable_signaling = i915_fence_enable_signaling,
177  	.signaled = i915_fence_signaled,
178  	.wait = i915_fence_wait,
179  	.release = i915_fence_release,
180  };
181  
irq_execute_cb(struct irq_work * wrk)182  static void irq_execute_cb(struct irq_work *wrk)
183  {
184  	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
185  
186  	i915_sw_fence_complete(cb->fence);
187  	kmem_cache_free(slab_execute_cbs, cb);
188  }
189  
190  static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))191  __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192  {
193  	struct execute_cb *cb, *cn;
194  
195  	if (llist_empty(&rq->execute_cb))
196  		return;
197  
198  	llist_for_each_entry_safe(cb, cn,
199  				  llist_del_all(&rq->execute_cb),
200  				  work.node.llist)
201  		fn(&cb->work);
202  }
203  
__notify_execute_cb_irq(struct i915_request * rq)204  static void __notify_execute_cb_irq(struct i915_request *rq)
205  {
206  	__notify_execute_cb(rq, irq_work_queue);
207  }
208  
irq_work_imm(struct irq_work * wrk)209  static bool irq_work_imm(struct irq_work *wrk)
210  {
211  	wrk->func(wrk);
212  	return false;
213  }
214  
i915_request_notify_execute_cb_imm(struct i915_request * rq)215  void i915_request_notify_execute_cb_imm(struct i915_request *rq)
216  {
217  	__notify_execute_cb(rq, irq_work_imm);
218  }
219  
__i915_request_fill(struct i915_request * rq,u8 val)220  static void __i915_request_fill(struct i915_request *rq, u8 val)
221  {
222  	void *vaddr = rq->ring->vaddr;
223  	u32 head;
224  
225  	head = rq->infix;
226  	if (rq->postfix < head) {
227  		memset(vaddr + head, val, rq->ring->size - head);
228  		head = 0;
229  	}
230  	memset(vaddr + head, val, rq->postfix - head);
231  }
232  
233  /**
234   * i915_request_active_engine
235   * @rq: request to inspect
236   * @active: pointer in which to return the active engine
237   *
238   * Fills the currently active engine to the @active pointer if the request
239   * is active and still not completed.
240   *
241   * Returns true if request was active or false otherwise.
242   */
243  bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)244  i915_request_active_engine(struct i915_request *rq,
245  			   struct intel_engine_cs **active)
246  {
247  	struct intel_engine_cs *engine, *locked;
248  	bool ret = false;
249  
250  	/*
251  	 * Serialise with __i915_request_submit() so that it sees
252  	 * is-banned?, or we know the request is already inflight.
253  	 *
254  	 * Note that rq->engine is unstable, and so we double
255  	 * check that we have acquired the lock on the final engine.
256  	 */
257  	locked = READ_ONCE(rq->engine);
258  	spin_lock_irq(&locked->sched_engine->lock);
259  	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260  		spin_unlock(&locked->sched_engine->lock);
261  		locked = engine;
262  		spin_lock(&locked->sched_engine->lock);
263  	}
264  
265  	if (i915_request_is_active(rq)) {
266  		if (!__i915_request_is_complete(rq))
267  			*active = locked;
268  		ret = true;
269  	}
270  
271  	spin_unlock_irq(&locked->sched_engine->lock);
272  
273  	return ret;
274  }
275  
__rq_init_watchdog(struct i915_request * rq)276  static void __rq_init_watchdog(struct i915_request *rq)
277  {
278  	rq->watchdog.timer.function = NULL;
279  }
280  
__rq_watchdog_expired(struct hrtimer * hrtimer)281  static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
282  {
283  	struct i915_request *rq =
284  		container_of(hrtimer, struct i915_request, watchdog.timer);
285  	struct intel_gt *gt = rq->engine->gt;
286  
287  	if (!i915_request_completed(rq)) {
288  		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
289  			queue_work(gt->i915->unordered_wq, &gt->watchdog.work);
290  	} else {
291  		i915_request_put(rq);
292  	}
293  
294  	return HRTIMER_NORESTART;
295  }
296  
__rq_arm_watchdog(struct i915_request * rq)297  static void __rq_arm_watchdog(struct i915_request *rq)
298  {
299  	struct i915_request_watchdog *wdg = &rq->watchdog;
300  	struct intel_context *ce = rq->context;
301  
302  	if (!ce->watchdog.timeout_us)
303  		return;
304  
305  	i915_request_get(rq);
306  
307  	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308  	wdg->timer.function = __rq_watchdog_expired;
309  	hrtimer_start_range_ns(&wdg->timer,
310  			       ns_to_ktime(ce->watchdog.timeout_us *
311  					   NSEC_PER_USEC),
312  			       NSEC_PER_MSEC,
313  			       HRTIMER_MODE_REL);
314  }
315  
__rq_cancel_watchdog(struct i915_request * rq)316  static void __rq_cancel_watchdog(struct i915_request *rq)
317  {
318  	struct i915_request_watchdog *wdg = &rq->watchdog;
319  
320  	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
321  		i915_request_put(rq);
322  }
323  
324  #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
325  
326  /**
327   * i915_request_free_capture_list - Free a capture list
328   * @capture: Pointer to the first list item or NULL
329   *
330   */
i915_request_free_capture_list(struct i915_capture_list * capture)331  void i915_request_free_capture_list(struct i915_capture_list *capture)
332  {
333  	while (capture) {
334  		struct i915_capture_list *next = capture->next;
335  
336  		i915_vma_resource_put(capture->vma_res);
337  		kfree(capture);
338  		capture = next;
339  	}
340  }
341  
342  #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
343  
344  #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
345  
346  #else
347  
348  #define i915_request_free_capture_list(_a) do {} while (0)
349  
350  #define assert_capture_list_is_null(_a) do {} while (0)
351  
352  #define clear_capture_list(_rq) do {} while (0)
353  
354  #endif
355  
i915_request_retire(struct i915_request * rq)356  bool i915_request_retire(struct i915_request *rq)
357  {
358  	if (!__i915_request_is_complete(rq))
359  		return false;
360  
361  	RQ_TRACE(rq, "\n");
362  
363  	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
364  	trace_i915_request_retire(rq);
365  	i915_request_mark_complete(rq);
366  
367  	__rq_cancel_watchdog(rq);
368  
369  	/*
370  	 * We know the GPU must have read the request to have
371  	 * sent us the seqno + interrupt, so use the position
372  	 * of tail of the request to update the last known position
373  	 * of the GPU head.
374  	 *
375  	 * Note this requires that we are always called in request
376  	 * completion order.
377  	 */
378  	GEM_BUG_ON(!list_is_first(&rq->link,
379  				  &i915_request_timeline(rq)->requests));
380  	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
381  		/* Poison before we release our space in the ring */
382  		__i915_request_fill(rq, POISON_FREE);
383  	rq->ring->head = rq->postfix;
384  
385  	if (!i915_request_signaled(rq)) {
386  		spin_lock_irq(&rq->lock);
387  		dma_fence_signal_locked(&rq->fence);
388  		spin_unlock_irq(&rq->lock);
389  	}
390  
391  	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
392  		intel_rps_dec_waiters(&rq->engine->gt->rps);
393  
394  	/*
395  	 * We only loosely track inflight requests across preemption,
396  	 * and so we may find ourselves attempting to retire a _completed_
397  	 * request that we have removed from the HW and put back on a run
398  	 * queue.
399  	 *
400  	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
401  	 * after removing the breadcrumb and signaling it, so that we do not
402  	 * inadvertently attach the breadcrumb to a completed request.
403  	 */
404  	rq->engine->remove_active_request(rq);
405  	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
406  
407  	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
408  
409  	intel_context_exit(rq->context);
410  	intel_context_unpin(rq->context);
411  
412  	i915_sched_node_fini(&rq->sched);
413  	i915_request_put(rq);
414  
415  	return true;
416  }
417  
i915_request_retire_upto(struct i915_request * rq)418  void i915_request_retire_upto(struct i915_request *rq)
419  {
420  	struct intel_timeline * const tl = i915_request_timeline(rq);
421  	struct i915_request *tmp;
422  
423  	RQ_TRACE(rq, "\n");
424  	GEM_BUG_ON(!__i915_request_is_complete(rq));
425  
426  	do {
427  		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
428  		GEM_BUG_ON(!i915_request_completed(tmp));
429  	} while (i915_request_retire(tmp) && tmp != rq);
430  }
431  
432  static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)433  __engine_active(struct intel_engine_cs *engine)
434  {
435  	return READ_ONCE(engine->execlists.active);
436  }
437  
__request_in_flight(const struct i915_request * signal)438  static bool __request_in_flight(const struct i915_request *signal)
439  {
440  	struct i915_request * const *port, *rq;
441  	bool inflight = false;
442  
443  	if (!i915_request_is_ready(signal))
444  		return false;
445  
446  	/*
447  	 * Even if we have unwound the request, it may still be on
448  	 * the GPU (preempt-to-busy). If that request is inside an
449  	 * unpreemptible critical section, it will not be removed. Some
450  	 * GPU functions may even be stuck waiting for the paired request
451  	 * (__await_execution) to be submitted and cannot be preempted
452  	 * until the bond is executing.
453  	 *
454  	 * As we know that there are always preemption points between
455  	 * requests, we know that only the currently executing request
456  	 * may be still active even though we have cleared the flag.
457  	 * However, we can't rely on our tracking of ELSP[0] to know
458  	 * which request is currently active and so maybe stuck, as
459  	 * the tracking maybe an event behind. Instead assume that
460  	 * if the context is still inflight, then it is still active
461  	 * even if the active flag has been cleared.
462  	 *
463  	 * To further complicate matters, if there a pending promotion, the HW
464  	 * may either perform a context switch to the second inflight execlists,
465  	 * or it may switch to the pending set of execlists. In the case of the
466  	 * latter, it may send the ACK and we process the event copying the
467  	 * pending[] over top of inflight[], _overwriting_ our *active. Since
468  	 * this implies the HW is arbitrating and not struck in *active, we do
469  	 * not worry about complete accuracy, but we do require no read/write
470  	 * tearing of the pointer [the read of the pointer must be valid, even
471  	 * as the array is being overwritten, for which we require the writes
472  	 * to avoid tearing.]
473  	 *
474  	 * Note that the read of *execlists->active may race with the promotion
475  	 * of execlists->pending[] to execlists->inflight[], overwritting
476  	 * the value at *execlists->active. This is fine. The promotion implies
477  	 * that we received an ACK from the HW, and so the context is not
478  	 * stuck -- if we do not see ourselves in *active, the inflight status
479  	 * is valid. If instead we see ourselves being copied into *active,
480  	 * we are inflight and may signal the callback.
481  	 */
482  	if (!intel_context_inflight(signal->context))
483  		return false;
484  
485  	rcu_read_lock();
486  	for (port = __engine_active(signal->engine);
487  	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
488  	     port++) {
489  		if (rq->context == signal->context) {
490  			inflight = i915_seqno_passed(rq->fence.seqno,
491  						     signal->fence.seqno);
492  			break;
493  		}
494  	}
495  	rcu_read_unlock();
496  
497  	return inflight;
498  }
499  
500  static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)501  __await_execution(struct i915_request *rq,
502  		  struct i915_request *signal,
503  		  gfp_t gfp)
504  {
505  	struct execute_cb *cb;
506  
507  	if (i915_request_is_active(signal))
508  		return 0;
509  
510  	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
511  	if (!cb)
512  		return -ENOMEM;
513  
514  	cb->fence = &rq->submit;
515  	i915_sw_fence_await(cb->fence);
516  	init_irq_work(&cb->work, irq_execute_cb);
517  
518  	/*
519  	 * Register the callback first, then see if the signaler is already
520  	 * active. This ensures that if we race with the
521  	 * __notify_execute_cb from i915_request_submit() and we are not
522  	 * included in that list, we get a second bite of the cherry and
523  	 * execute it ourselves. After this point, a future
524  	 * i915_request_submit() will notify us.
525  	 *
526  	 * In i915_request_retire() we set the ACTIVE bit on a completed
527  	 * request (then flush the execute_cb). So by registering the
528  	 * callback first, then checking the ACTIVE bit, we serialise with
529  	 * the completed/retired request.
530  	 */
531  	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
532  		if (i915_request_is_active(signal) ||
533  		    __request_in_flight(signal))
534  			i915_request_notify_execute_cb_imm(signal);
535  	}
536  
537  	return 0;
538  }
539  
fatal_error(int error)540  static bool fatal_error(int error)
541  {
542  	switch (error) {
543  	case 0: /* not an error! */
544  	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
545  	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
546  		return false;
547  	default:
548  		return true;
549  	}
550  }
551  
__i915_request_skip(struct i915_request * rq)552  void __i915_request_skip(struct i915_request *rq)
553  {
554  	GEM_BUG_ON(!fatal_error(rq->fence.error));
555  
556  	if (rq->infix == rq->postfix)
557  		return;
558  
559  	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
560  
561  	/*
562  	 * As this request likely depends on state from the lost
563  	 * context, clear out all the user operations leaving the
564  	 * breadcrumb at the end (so we get the fence notifications).
565  	 */
566  	__i915_request_fill(rq, 0);
567  	rq->infix = rq->postfix;
568  }
569  
i915_request_set_error_once(struct i915_request * rq,int error)570  bool i915_request_set_error_once(struct i915_request *rq, int error)
571  {
572  	int old;
573  
574  	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
575  
576  	if (i915_request_signaled(rq))
577  		return false;
578  
579  	old = READ_ONCE(rq->fence.error);
580  	do {
581  		if (fatal_error(old))
582  			return false;
583  	} while (!try_cmpxchg(&rq->fence.error, &old, error));
584  
585  	return true;
586  }
587  
i915_request_mark_eio(struct i915_request * rq)588  struct i915_request *i915_request_mark_eio(struct i915_request *rq)
589  {
590  	if (__i915_request_is_complete(rq))
591  		return NULL;
592  
593  	GEM_BUG_ON(i915_request_signaled(rq));
594  
595  	/* As soon as the request is completed, it may be retired */
596  	rq = i915_request_get(rq);
597  
598  	i915_request_set_error_once(rq, -EIO);
599  	i915_request_mark_complete(rq);
600  
601  	return rq;
602  }
603  
__i915_request_submit(struct i915_request * request)604  bool __i915_request_submit(struct i915_request *request)
605  {
606  	struct intel_engine_cs *engine = request->engine;
607  	bool result = false;
608  
609  	RQ_TRACE(request, "\n");
610  
611  	GEM_BUG_ON(!irqs_disabled());
612  	lockdep_assert_held(&engine->sched_engine->lock);
613  
614  	/*
615  	 * With the advent of preempt-to-busy, we frequently encounter
616  	 * requests that we have unsubmitted from HW, but left running
617  	 * until the next ack and so have completed in the meantime. On
618  	 * resubmission of that completed request, we can skip
619  	 * updating the payload, and execlists can even skip submitting
620  	 * the request.
621  	 *
622  	 * We must remove the request from the caller's priority queue,
623  	 * and the caller must only call us when the request is in their
624  	 * priority queue, under the sched_engine->lock. This ensures that the
625  	 * request has *not* yet been retired and we can safely move
626  	 * the request into the engine->active.list where it will be
627  	 * dropped upon retiring. (Otherwise if resubmit a *retired*
628  	 * request, this would be a horrible use-after-free.)
629  	 */
630  	if (__i915_request_is_complete(request)) {
631  		list_del_init(&request->sched.link);
632  		goto active;
633  	}
634  
635  	if (unlikely(!intel_context_is_schedulable(request->context)))
636  		i915_request_set_error_once(request, -EIO);
637  
638  	if (unlikely(fatal_error(request->fence.error)))
639  		__i915_request_skip(request);
640  
641  	/*
642  	 * Are we using semaphores when the gpu is already saturated?
643  	 *
644  	 * Using semaphores incurs a cost in having the GPU poll a
645  	 * memory location, busywaiting for it to change. The continual
646  	 * memory reads can have a noticeable impact on the rest of the
647  	 * system with the extra bus traffic, stalling the cpu as it too
648  	 * tries to access memory across the bus (perf stat -e bus-cycles).
649  	 *
650  	 * If we installed a semaphore on this request and we only submit
651  	 * the request after the signaler completed, that indicates the
652  	 * system is overloaded and using semaphores at this time only
653  	 * increases the amount of work we are doing. If so, we disable
654  	 * further use of semaphores until we are idle again, whence we
655  	 * optimistically try again.
656  	 */
657  	if (request->sched.semaphores &&
658  	    i915_sw_fence_signaled(&request->semaphore))
659  		engine->saturated |= request->sched.semaphores;
660  
661  	engine->emit_fini_breadcrumb(request,
662  				     request->ring->vaddr + request->postfix);
663  
664  	trace_i915_request_execute(request);
665  	if (engine->bump_serial)
666  		engine->bump_serial(engine);
667  	else
668  		engine->serial++;
669  
670  	result = true;
671  
672  	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
673  	engine->add_active_request(request);
674  active:
675  	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
676  	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
677  
678  	/*
679  	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
680  	 *
681  	 * In the future, perhaps when we have an active time-slicing scheduler,
682  	 * it will be interesting to unsubmit parallel execution and remove
683  	 * busywaits from the GPU until their master is restarted. This is
684  	 * quite hairy, we have to carefully rollback the fence and do a
685  	 * preempt-to-idle cycle on the target engine, all the while the
686  	 * master execute_cb may refire.
687  	 */
688  	__notify_execute_cb_irq(request);
689  
690  	/* We may be recursing from the signal callback of another i915 fence */
691  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
692  		i915_request_enable_breadcrumb(request);
693  
694  	return result;
695  }
696  
i915_request_submit(struct i915_request * request)697  void i915_request_submit(struct i915_request *request)
698  {
699  	struct intel_engine_cs *engine = request->engine;
700  	unsigned long flags;
701  
702  	/* Will be called from irq-context when using foreign fences. */
703  	spin_lock_irqsave(&engine->sched_engine->lock, flags);
704  
705  	__i915_request_submit(request);
706  
707  	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
708  }
709  
__i915_request_unsubmit(struct i915_request * request)710  void __i915_request_unsubmit(struct i915_request *request)
711  {
712  	struct intel_engine_cs *engine = request->engine;
713  
714  	/*
715  	 * Only unwind in reverse order, required so that the per-context list
716  	 * is kept in seqno/ring order.
717  	 */
718  	RQ_TRACE(request, "\n");
719  
720  	GEM_BUG_ON(!irqs_disabled());
721  	lockdep_assert_held(&engine->sched_engine->lock);
722  
723  	/*
724  	 * Before we remove this breadcrumb from the signal list, we have
725  	 * to ensure that a concurrent dma_fence_enable_signaling() does not
726  	 * attach itself. We first mark the request as no longer active and
727  	 * make sure that is visible to other cores, and then remove the
728  	 * breadcrumb if attached.
729  	 */
730  	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
731  	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
732  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
733  		i915_request_cancel_breadcrumb(request);
734  
735  	/* We've already spun, don't charge on resubmitting. */
736  	if (request->sched.semaphores && __i915_request_has_started(request))
737  		request->sched.semaphores = 0;
738  
739  	/*
740  	 * We don't need to wake_up any waiters on request->execute, they
741  	 * will get woken by any other event or us re-adding this request
742  	 * to the engine timeline (__i915_request_submit()). The waiters
743  	 * should be quite adapt at finding that the request now has a new
744  	 * global_seqno to the one they went to sleep on.
745  	 */
746  }
747  
i915_request_unsubmit(struct i915_request * request)748  void i915_request_unsubmit(struct i915_request *request)
749  {
750  	struct intel_engine_cs *engine = request->engine;
751  	unsigned long flags;
752  
753  	/* Will be called from irq-context when using foreign fences. */
754  	spin_lock_irqsave(&engine->sched_engine->lock, flags);
755  
756  	__i915_request_unsubmit(request);
757  
758  	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
759  }
760  
i915_request_cancel(struct i915_request * rq,int error)761  void i915_request_cancel(struct i915_request *rq, int error)
762  {
763  	if (!i915_request_set_error_once(rq, error))
764  		return;
765  
766  	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
767  
768  	intel_context_cancel_request(rq->context, rq);
769  }
770  
771  static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)772  submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
773  {
774  	struct i915_request *request =
775  		container_of(fence, typeof(*request), submit);
776  
777  	switch (state) {
778  	case FENCE_COMPLETE:
779  		trace_i915_request_submit(request);
780  
781  		if (unlikely(fence->error))
782  			i915_request_set_error_once(request, fence->error);
783  		else
784  			__rq_arm_watchdog(request);
785  
786  		/*
787  		 * We need to serialize use of the submit_request() callback
788  		 * with its hotplugging performed during an emergency
789  		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
790  		 * critical section in order to force i915_gem_set_wedged() to
791  		 * wait until the submit_request() is completed before
792  		 * proceeding.
793  		 */
794  		rcu_read_lock();
795  		request->engine->submit_request(request);
796  		rcu_read_unlock();
797  		break;
798  
799  	case FENCE_FREE:
800  		i915_request_put(request);
801  		break;
802  	}
803  
804  	return NOTIFY_DONE;
805  }
806  
807  static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)808  semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
809  {
810  	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
811  
812  	switch (state) {
813  	case FENCE_COMPLETE:
814  		break;
815  
816  	case FENCE_FREE:
817  		i915_request_put(rq);
818  		break;
819  	}
820  
821  	return NOTIFY_DONE;
822  }
823  
retire_requests(struct intel_timeline * tl)824  static void retire_requests(struct intel_timeline *tl)
825  {
826  	struct i915_request *rq, *rn;
827  
828  	list_for_each_entry_safe(rq, rn, &tl->requests, link)
829  		if (!i915_request_retire(rq))
830  			break;
831  }
832  
833  static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)834  request_alloc_slow(struct intel_timeline *tl,
835  		   struct i915_request **rsvd,
836  		   gfp_t gfp)
837  {
838  	struct i915_request *rq;
839  
840  	/* If we cannot wait, dip into our reserves */
841  	if (!gfpflags_allow_blocking(gfp)) {
842  		rq = xchg(rsvd, NULL);
843  		if (!rq) /* Use the normal failure path for one final WARN */
844  			goto out;
845  
846  		return rq;
847  	}
848  
849  	if (list_empty(&tl->requests))
850  		goto out;
851  
852  	/* Move our oldest request to the slab-cache (if not in use!) */
853  	rq = list_first_entry(&tl->requests, typeof(*rq), link);
854  	i915_request_retire(rq);
855  
856  	rq = kmem_cache_alloc(slab_requests,
857  			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
858  	if (rq)
859  		return rq;
860  
861  	/* Ratelimit ourselves to prevent oom from malicious clients */
862  	rq = list_last_entry(&tl->requests, typeof(*rq), link);
863  	cond_synchronize_rcu(rq->rcustate);
864  
865  	/* Retire our old requests in the hope that we free some */
866  	retire_requests(tl);
867  
868  out:
869  	return kmem_cache_alloc(slab_requests, gfp);
870  }
871  
__i915_request_ctor(void * arg)872  static void __i915_request_ctor(void *arg)
873  {
874  	struct i915_request *rq = arg;
875  
876  	spin_lock_init(&rq->lock);
877  	i915_sched_node_init(&rq->sched);
878  	i915_sw_fence_init(&rq->submit, submit_notify);
879  	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
880  
881  	clear_capture_list(rq);
882  	rq->batch_res = NULL;
883  
884  	init_llist_head(&rq->execute_cb);
885  }
886  
887  #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
888  #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
889  #else
890  #define clear_batch_ptr(_a) do {} while (0)
891  #endif
892  
893  struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)894  __i915_request_create(struct intel_context *ce, gfp_t gfp)
895  {
896  	struct intel_timeline *tl = ce->timeline;
897  	struct i915_request *rq;
898  	u32 seqno;
899  	int ret;
900  
901  	might_alloc(gfp);
902  
903  	/* Check that the caller provided an already pinned context */
904  	__intel_context_pin(ce);
905  
906  	/*
907  	 * Beware: Dragons be flying overhead.
908  	 *
909  	 * We use RCU to look up requests in flight. The lookups may
910  	 * race with the request being allocated from the slab freelist.
911  	 * That is the request we are writing to here, may be in the process
912  	 * of being read by __i915_active_request_get_rcu(). As such,
913  	 * we have to be very careful when overwriting the contents. During
914  	 * the RCU lookup, we change chase the request->engine pointer,
915  	 * read the request->global_seqno and increment the reference count.
916  	 *
917  	 * The reference count is incremented atomically. If it is zero,
918  	 * the lookup knows the request is unallocated and complete. Otherwise,
919  	 * it is either still in use, or has been reallocated and reset
920  	 * with dma_fence_init(). This increment is safe for release as we
921  	 * check that the request we have a reference to and matches the active
922  	 * request.
923  	 *
924  	 * Before we increment the refcount, we chase the request->engine
925  	 * pointer. We must not call kmem_cache_zalloc() or else we set
926  	 * that pointer to NULL and cause a crash during the lookup. If
927  	 * we see the request is completed (based on the value of the
928  	 * old engine and seqno), the lookup is complete and reports NULL.
929  	 * If we decide the request is not completed (new engine or seqno),
930  	 * then we grab a reference and double check that it is still the
931  	 * active request - which it won't be and restart the lookup.
932  	 *
933  	 * Do not use kmem_cache_zalloc() here!
934  	 */
935  	rq = kmem_cache_alloc(slab_requests,
936  			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
937  	if (unlikely(!rq)) {
938  		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
939  		if (!rq) {
940  			ret = -ENOMEM;
941  			goto err_unreserve;
942  		}
943  	}
944  
945  	rq->context = ce;
946  	rq->engine = ce->engine;
947  	rq->ring = ce->ring;
948  	rq->execution_mask = ce->engine->mask;
949  	rq->i915 = ce->engine->i915;
950  
951  	ret = intel_timeline_get_seqno(tl, rq, &seqno);
952  	if (ret)
953  		goto err_free;
954  
955  	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
956  		       tl->fence_context, seqno);
957  
958  	RCU_INIT_POINTER(rq->timeline, tl);
959  	rq->hwsp_seqno = tl->hwsp_seqno;
960  	GEM_BUG_ON(__i915_request_is_complete(rq));
961  
962  	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
963  
964  	rq->guc_prio = GUC_PRIO_INIT;
965  
966  	/* We bump the ref for the fence chain */
967  	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
968  	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
969  
970  	i915_sched_node_reinit(&rq->sched);
971  
972  	/* No zalloc, everything must be cleared after use */
973  	clear_batch_ptr(rq);
974  	__rq_init_watchdog(rq);
975  	assert_capture_list_is_null(rq);
976  	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
977  	GEM_BUG_ON(rq->batch_res);
978  
979  	/*
980  	 * Reserve space in the ring buffer for all the commands required to
981  	 * eventually emit this request. This is to guarantee that the
982  	 * i915_request_add() call can't fail. Note that the reserve may need
983  	 * to be redone if the request is not actually submitted straight
984  	 * away, e.g. because a GPU scheduler has deferred it.
985  	 *
986  	 * Note that due to how we add reserved_space to intel_ring_begin()
987  	 * we need to double our request to ensure that if we need to wrap
988  	 * around inside i915_request_add() there is sufficient space at
989  	 * the beginning of the ring as well.
990  	 */
991  	rq->reserved_space =
992  		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
993  
994  	/*
995  	 * Record the position of the start of the request so that
996  	 * should we detect the updated seqno part-way through the
997  	 * GPU processing the request, we never over-estimate the
998  	 * position of the head.
999  	 */
1000  	rq->head = rq->ring->emit;
1001  
1002  	ret = rq->engine->request_alloc(rq);
1003  	if (ret)
1004  		goto err_unwind;
1005  
1006  	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1007  
1008  	intel_context_mark_active(ce);
1009  	list_add_tail_rcu(&rq->link, &tl->requests);
1010  
1011  	return rq;
1012  
1013  err_unwind:
1014  	ce->ring->emit = rq->head;
1015  
1016  	/* Make sure we didn't add ourselves to external state before freeing */
1017  	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1018  	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1019  
1020  err_free:
1021  	kmem_cache_free(slab_requests, rq);
1022  err_unreserve:
1023  	intel_context_unpin(ce);
1024  	return ERR_PTR(ret);
1025  }
1026  
1027  struct i915_request *
i915_request_create(struct intel_context * ce)1028  i915_request_create(struct intel_context *ce)
1029  {
1030  	struct i915_request *rq;
1031  	struct intel_timeline *tl;
1032  
1033  	tl = intel_context_timeline_lock(ce);
1034  	if (IS_ERR(tl))
1035  		return ERR_CAST(tl);
1036  
1037  	/* Move our oldest request to the slab-cache (if not in use!) */
1038  	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1039  	if (!list_is_last(&rq->link, &tl->requests))
1040  		i915_request_retire(rq);
1041  
1042  	intel_context_enter(ce);
1043  	rq = __i915_request_create(ce, GFP_KERNEL);
1044  	intel_context_exit(ce); /* active reference transferred to request */
1045  	if (IS_ERR(rq))
1046  		goto err_unlock;
1047  
1048  	/* Check that we do not interrupt ourselves with a new request */
1049  	rq->cookie = lockdep_pin_lock(&tl->mutex);
1050  
1051  	return rq;
1052  
1053  err_unlock:
1054  	intel_context_timeline_unlock(tl);
1055  	return rq;
1056  }
1057  
1058  static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1059  i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1060  {
1061  	struct dma_fence *fence;
1062  	int err;
1063  
1064  	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1065  		return 0;
1066  
1067  	if (i915_request_started(signal))
1068  		return 0;
1069  
1070  	/*
1071  	 * The caller holds a reference on @signal, but we do not serialise
1072  	 * against it being retired and removed from the lists.
1073  	 *
1074  	 * We do not hold a reference to the request before @signal, and
1075  	 * so must be very careful to ensure that it is not _recycled_ as
1076  	 * we follow the link backwards.
1077  	 */
1078  	fence = NULL;
1079  	rcu_read_lock();
1080  	do {
1081  		struct list_head *pos = READ_ONCE(signal->link.prev);
1082  		struct i915_request *prev;
1083  
1084  		/* Confirm signal has not been retired, the link is valid */
1085  		if (unlikely(__i915_request_has_started(signal)))
1086  			break;
1087  
1088  		/* Is signal the earliest request on its timeline? */
1089  		if (pos == &rcu_dereference(signal->timeline)->requests)
1090  			break;
1091  
1092  		/*
1093  		 * Peek at the request before us in the timeline. That
1094  		 * request will only be valid before it is retired, so
1095  		 * after acquiring a reference to it, confirm that it is
1096  		 * still part of the signaler's timeline.
1097  		 */
1098  		prev = list_entry(pos, typeof(*prev), link);
1099  		if (!i915_request_get_rcu(prev))
1100  			break;
1101  
1102  		/* After the strong barrier, confirm prev is still attached */
1103  		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1104  			i915_request_put(prev);
1105  			break;
1106  		}
1107  
1108  		fence = &prev->fence;
1109  	} while (0);
1110  	rcu_read_unlock();
1111  	if (!fence)
1112  		return 0;
1113  
1114  	err = 0;
1115  	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1116  		err = i915_sw_fence_await_dma_fence(&rq->submit,
1117  						    fence, 0,
1118  						    I915_FENCE_GFP);
1119  	dma_fence_put(fence);
1120  
1121  	return err;
1122  }
1123  
1124  static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1125  already_busywaiting(struct i915_request *rq)
1126  {
1127  	/*
1128  	 * Polling a semaphore causes bus traffic, delaying other users of
1129  	 * both the GPU and CPU. We want to limit the impact on others,
1130  	 * while taking advantage of early submission to reduce GPU
1131  	 * latency. Therefore we restrict ourselves to not using more
1132  	 * than one semaphore from each source, and not using a semaphore
1133  	 * if we have detected the engine is saturated (i.e. would not be
1134  	 * submitted early and cause bus traffic reading an already passed
1135  	 * semaphore).
1136  	 *
1137  	 * See the are-we-too-late? check in __i915_request_submit().
1138  	 */
1139  	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1140  }
1141  
1142  static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1143  __emit_semaphore_wait(struct i915_request *to,
1144  		      struct i915_request *from,
1145  		      u32 seqno)
1146  {
1147  	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1148  	u32 hwsp_offset;
1149  	int len, err;
1150  	u32 *cs;
1151  
1152  	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1153  	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1154  
1155  	/* We need to pin the signaler's HWSP until we are finished reading. */
1156  	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1157  	if (err)
1158  		return err;
1159  
1160  	len = 4;
1161  	if (has_token)
1162  		len += 2;
1163  
1164  	cs = intel_ring_begin(to, len);
1165  	if (IS_ERR(cs))
1166  		return PTR_ERR(cs);
1167  
1168  	/*
1169  	 * Using greater-than-or-equal here means we have to worry
1170  	 * about seqno wraparound. To side step that issue, we swap
1171  	 * the timeline HWSP upon wrapping, so that everyone listening
1172  	 * for the old (pre-wrap) values do not see the much smaller
1173  	 * (post-wrap) values than they were expecting (and so wait
1174  	 * forever).
1175  	 */
1176  	*cs++ = (MI_SEMAPHORE_WAIT |
1177  		 MI_SEMAPHORE_GLOBAL_GTT |
1178  		 MI_SEMAPHORE_POLL |
1179  		 MI_SEMAPHORE_SAD_GTE_SDD) +
1180  		has_token;
1181  	*cs++ = seqno;
1182  	*cs++ = hwsp_offset;
1183  	*cs++ = 0;
1184  	if (has_token) {
1185  		*cs++ = 0;
1186  		*cs++ = MI_NOOP;
1187  	}
1188  
1189  	intel_ring_advance(to, cs);
1190  	return 0;
1191  }
1192  
1193  static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1194  can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1195  {
1196  	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1197  }
1198  
1199  static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1200  emit_semaphore_wait(struct i915_request *to,
1201  		    struct i915_request *from,
1202  		    gfp_t gfp)
1203  {
1204  	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1205  	struct i915_sw_fence *wait = &to->submit;
1206  
1207  	if (!can_use_semaphore_wait(to, from))
1208  		goto await_fence;
1209  
1210  	if (!intel_context_use_semaphores(to->context))
1211  		goto await_fence;
1212  
1213  	if (i915_request_has_initial_breadcrumb(to))
1214  		goto await_fence;
1215  
1216  	/*
1217  	 * If this or its dependents are waiting on an external fence
1218  	 * that may fail catastrophically, then we want to avoid using
1219  	 * semaphores as they bypass the fence signaling metadata, and we
1220  	 * lose the fence->error propagation.
1221  	 */
1222  	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1223  		goto await_fence;
1224  
1225  	/* Just emit the first semaphore we see as request space is limited. */
1226  	if (already_busywaiting(to) & mask)
1227  		goto await_fence;
1228  
1229  	if (i915_request_await_start(to, from) < 0)
1230  		goto await_fence;
1231  
1232  	/* Only submit our spinner after the signaler is running! */
1233  	if (__await_execution(to, from, gfp))
1234  		goto await_fence;
1235  
1236  	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1237  		goto await_fence;
1238  
1239  	to->sched.semaphores |= mask;
1240  	wait = &to->semaphore;
1241  
1242  await_fence:
1243  	return i915_sw_fence_await_dma_fence(wait,
1244  					     &from->fence, 0,
1245  					     I915_FENCE_GFP);
1246  }
1247  
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1248  static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1249  					  struct dma_fence *fence)
1250  {
1251  	return __intel_timeline_sync_is_later(tl,
1252  					      fence->context,
1253  					      fence->seqno - 1);
1254  }
1255  
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1256  static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1257  					 const struct dma_fence *fence)
1258  {
1259  	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1260  }
1261  
1262  static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1263  __i915_request_await_execution(struct i915_request *to,
1264  			       struct i915_request *from)
1265  {
1266  	int err;
1267  
1268  	GEM_BUG_ON(intel_context_is_barrier(from->context));
1269  
1270  	/* Submit both requests at the same time */
1271  	err = __await_execution(to, from, I915_FENCE_GFP);
1272  	if (err)
1273  		return err;
1274  
1275  	/* Squash repeated depenendices to the same timelines */
1276  	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1277  					  &from->fence))
1278  		return 0;
1279  
1280  	/*
1281  	 * Wait until the start of this request.
1282  	 *
1283  	 * The execution cb fires when we submit the request to HW. But in
1284  	 * many cases this may be long before the request itself is ready to
1285  	 * run (consider that we submit 2 requests for the same context, where
1286  	 * the request of interest is behind an indefinite spinner). So we hook
1287  	 * up to both to reduce our queues and keep the execution lag minimised
1288  	 * in the worst case, though we hope that the await_start is elided.
1289  	 */
1290  	err = i915_request_await_start(to, from);
1291  	if (err < 0)
1292  		return err;
1293  
1294  	/*
1295  	 * Ensure both start together [after all semaphores in signal]
1296  	 *
1297  	 * Now that we are queued to the HW at roughly the same time (thanks
1298  	 * to the execute cb) and are ready to run at roughly the same time
1299  	 * (thanks to the await start), our signaler may still be indefinitely
1300  	 * delayed by waiting on a semaphore from a remote engine. If our
1301  	 * signaler depends on a semaphore, so indirectly do we, and we do not
1302  	 * want to start our payload until our signaler also starts theirs.
1303  	 * So we wait.
1304  	 *
1305  	 * However, there is also a second condition for which we need to wait
1306  	 * for the precise start of the signaler. Consider that the signaler
1307  	 * was submitted in a chain of requests following another context
1308  	 * (with just an ordinary intra-engine fence dependency between the
1309  	 * two). In this case the signaler is queued to HW, but not for
1310  	 * immediate execution, and so we must wait until it reaches the
1311  	 * active slot.
1312  	 */
1313  	if (can_use_semaphore_wait(to, from) &&
1314  	    intel_engine_has_semaphores(to->engine) &&
1315  	    !i915_request_has_initial_breadcrumb(to)) {
1316  		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1317  		if (err < 0)
1318  			return err;
1319  	}
1320  
1321  	/* Couple the dependency tree for PI on this exposed to->fence */
1322  	if (to->engine->sched_engine->schedule) {
1323  		err = i915_sched_node_add_dependency(&to->sched,
1324  						     &from->sched,
1325  						     I915_DEPENDENCY_WEAK);
1326  		if (err < 0)
1327  			return err;
1328  	}
1329  
1330  	return intel_timeline_sync_set_start(i915_request_timeline(to),
1331  					     &from->fence);
1332  }
1333  
mark_external(struct i915_request * rq)1334  static void mark_external(struct i915_request *rq)
1335  {
1336  	/*
1337  	 * The downside of using semaphores is that we lose metadata passing
1338  	 * along the signaling chain. This is particularly nasty when we
1339  	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1340  	 * fatal errors we want to scrub the request before it is executed,
1341  	 * which means that we cannot preload the request onto HW and have
1342  	 * it wait upon a semaphore.
1343  	 */
1344  	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1345  }
1346  
1347  static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1348  __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1349  {
1350  	mark_external(rq);
1351  	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1352  					     i915_fence_context_timeout(rq->i915,
1353  									fence->context),
1354  					     I915_FENCE_GFP);
1355  }
1356  
1357  static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1358  i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1359  {
1360  	struct dma_fence *iter;
1361  	int err = 0;
1362  
1363  	if (!to_dma_fence_chain(fence))
1364  		return __i915_request_await_external(rq, fence);
1365  
1366  	dma_fence_chain_for_each(iter, fence) {
1367  		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1368  
1369  		if (!dma_fence_is_i915(chain->fence)) {
1370  			err = __i915_request_await_external(rq, iter);
1371  			break;
1372  		}
1373  
1374  		err = i915_request_await_dma_fence(rq, chain->fence);
1375  		if (err < 0)
1376  			break;
1377  	}
1378  
1379  	dma_fence_put(iter);
1380  	return err;
1381  }
1382  
is_parallel_rq(struct i915_request * rq)1383  static inline bool is_parallel_rq(struct i915_request *rq)
1384  {
1385  	return intel_context_is_parallel(rq->context);
1386  }
1387  
request_to_parent(struct i915_request * rq)1388  static inline struct intel_context *request_to_parent(struct i915_request *rq)
1389  {
1390  	return intel_context_to_parent(rq->context);
1391  }
1392  
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1393  static bool is_same_parallel_context(struct i915_request *to,
1394  				     struct i915_request *from)
1395  {
1396  	if (is_parallel_rq(to))
1397  		return request_to_parent(to) == request_to_parent(from);
1398  
1399  	return false;
1400  }
1401  
1402  int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1403  i915_request_await_execution(struct i915_request *rq,
1404  			     struct dma_fence *fence)
1405  {
1406  	struct dma_fence **child = &fence;
1407  	unsigned int nchild = 1;
1408  	int ret;
1409  
1410  	if (dma_fence_is_array(fence)) {
1411  		struct dma_fence_array *array = to_dma_fence_array(fence);
1412  
1413  		/* XXX Error for signal-on-any fence arrays */
1414  
1415  		child = array->fences;
1416  		nchild = array->num_fences;
1417  		GEM_BUG_ON(!nchild);
1418  	}
1419  
1420  	do {
1421  		fence = *child++;
1422  		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1423  			continue;
1424  
1425  		if (fence->context == rq->fence.context)
1426  			continue;
1427  
1428  		/*
1429  		 * We don't squash repeated fence dependencies here as we
1430  		 * want to run our callback in all cases.
1431  		 */
1432  
1433  		if (dma_fence_is_i915(fence)) {
1434  			if (is_same_parallel_context(rq, to_request(fence)))
1435  				continue;
1436  			ret = __i915_request_await_execution(rq,
1437  							     to_request(fence));
1438  		} else {
1439  			ret = i915_request_await_external(rq, fence);
1440  		}
1441  		if (ret < 0)
1442  			return ret;
1443  	} while (--nchild);
1444  
1445  	return 0;
1446  }
1447  
1448  static int
await_request_submit(struct i915_request * to,struct i915_request * from)1449  await_request_submit(struct i915_request *to, struct i915_request *from)
1450  {
1451  	/*
1452  	 * If we are waiting on a virtual engine, then it may be
1453  	 * constrained to execute on a single engine *prior* to submission.
1454  	 * When it is submitted, it will be first submitted to the virtual
1455  	 * engine and then passed to the physical engine. We cannot allow
1456  	 * the waiter to be submitted immediately to the physical engine
1457  	 * as it may then bypass the virtual request.
1458  	 */
1459  	if (to->engine == READ_ONCE(from->engine))
1460  		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1461  							&from->submit,
1462  							I915_FENCE_GFP);
1463  	else
1464  		return __i915_request_await_execution(to, from);
1465  }
1466  
1467  static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1468  i915_request_await_request(struct i915_request *to, struct i915_request *from)
1469  {
1470  	int ret;
1471  
1472  	GEM_BUG_ON(to == from);
1473  	GEM_BUG_ON(to->timeline == from->timeline);
1474  
1475  	if (i915_request_completed(from)) {
1476  		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1477  		return 0;
1478  	}
1479  
1480  	if (to->engine->sched_engine->schedule) {
1481  		ret = i915_sched_node_add_dependency(&to->sched,
1482  						     &from->sched,
1483  						     I915_DEPENDENCY_EXTERNAL);
1484  		if (ret < 0)
1485  			return ret;
1486  	}
1487  
1488  	if (!intel_engine_uses_guc(to->engine) &&
1489  	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1490  		ret = await_request_submit(to, from);
1491  	else
1492  		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1493  	if (ret < 0)
1494  		return ret;
1495  
1496  	return 0;
1497  }
1498  
1499  int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1500  i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1501  {
1502  	struct dma_fence **child = &fence;
1503  	unsigned int nchild = 1;
1504  	int ret;
1505  
1506  	/*
1507  	 * Note that if the fence-array was created in signal-on-any mode,
1508  	 * we should *not* decompose it into its individual fences. However,
1509  	 * we don't currently store which mode the fence-array is operating
1510  	 * in. Fortunately, the only user of signal-on-any is private to
1511  	 * amdgpu and we should not see any incoming fence-array from
1512  	 * sync-file being in signal-on-any mode.
1513  	 */
1514  	if (dma_fence_is_array(fence)) {
1515  		struct dma_fence_array *array = to_dma_fence_array(fence);
1516  
1517  		child = array->fences;
1518  		nchild = array->num_fences;
1519  		GEM_BUG_ON(!nchild);
1520  	}
1521  
1522  	do {
1523  		fence = *child++;
1524  		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1525  			continue;
1526  
1527  		/*
1528  		 * Requests on the same timeline are explicitly ordered, along
1529  		 * with their dependencies, by i915_request_add() which ensures
1530  		 * that requests are submitted in-order through each ring.
1531  		 */
1532  		if (fence->context == rq->fence.context)
1533  			continue;
1534  
1535  		/* Squash repeated waits to the same timelines */
1536  		if (fence->context &&
1537  		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1538  						 fence))
1539  			continue;
1540  
1541  		if (dma_fence_is_i915(fence)) {
1542  			if (is_same_parallel_context(rq, to_request(fence)))
1543  				continue;
1544  			ret = i915_request_await_request(rq, to_request(fence));
1545  		} else {
1546  			ret = i915_request_await_external(rq, fence);
1547  		}
1548  		if (ret < 0)
1549  			return ret;
1550  
1551  		/* Record the latest fence used against each timeline */
1552  		if (fence->context)
1553  			intel_timeline_sync_set(i915_request_timeline(rq),
1554  						fence);
1555  	} while (--nchild);
1556  
1557  	return 0;
1558  }
1559  
1560  /**
1561   * i915_request_await_deps - set this request to (async) wait upon a struct
1562   * i915_deps dma_fence collection
1563   * @rq: request we are wishing to use
1564   * @deps: The struct i915_deps containing the dependencies.
1565   *
1566   * Returns 0 if successful, negative error code on error.
1567   */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1568  int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1569  {
1570  	int i, err;
1571  
1572  	for (i = 0; i < deps->num_deps; ++i) {
1573  		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1574  		if (err)
1575  			return err;
1576  	}
1577  
1578  	return 0;
1579  }
1580  
1581  /**
1582   * i915_request_await_object - set this request to (async) wait upon a bo
1583   * @to: request we are wishing to use
1584   * @obj: object which may be in use on another ring.
1585   * @write: whether the wait is on behalf of a writer
1586   *
1587   * This code is meant to abstract object synchronization with the GPU.
1588   * Conceptually we serialise writes between engines inside the GPU.
1589   * We only allow one engine to write into a buffer at any time, but
1590   * multiple readers. To ensure each has a coherent view of memory, we must:
1591   *
1592   * - If there is an outstanding write request to the object, the new
1593   *   request must wait for it to complete (either CPU or in hw, requests
1594   *   on the same ring will be naturally ordered).
1595   *
1596   * - If we are a write request (pending_write_domain is set), the new
1597   *   request must wait for outstanding read requests to complete.
1598   *
1599   * Returns 0 if successful, else propagates up the lower layer error.
1600   */
1601  int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1602  i915_request_await_object(struct i915_request *to,
1603  			  struct drm_i915_gem_object *obj,
1604  			  bool write)
1605  {
1606  	struct dma_resv_iter cursor;
1607  	struct dma_fence *fence;
1608  	int ret = 0;
1609  
1610  	dma_resv_for_each_fence(&cursor, obj->base.resv,
1611  				dma_resv_usage_rw(write), fence) {
1612  		ret = i915_request_await_dma_fence(to, fence);
1613  		if (ret)
1614  			break;
1615  	}
1616  
1617  	return ret;
1618  }
1619  
i915_request_await_huc(struct i915_request * rq)1620  static void i915_request_await_huc(struct i915_request *rq)
1621  {
1622  	struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1623  
1624  	/* don't stall kernel submissions! */
1625  	if (!rcu_access_pointer(rq->context->gem_context))
1626  		return;
1627  
1628  	if (intel_huc_wait_required(huc))
1629  		i915_sw_fence_await_sw_fence(&rq->submit,
1630  					     &huc->delayed_load.fence,
1631  					     &rq->hucq);
1632  }
1633  
1634  static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1635  __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1636  					struct intel_timeline *timeline)
1637  {
1638  	struct i915_request *prev;
1639  
1640  	GEM_BUG_ON(!is_parallel_rq(rq));
1641  
1642  	prev = request_to_parent(rq)->parallel.last_rq;
1643  	if (prev) {
1644  		if (!__i915_request_is_complete(prev)) {
1645  			i915_sw_fence_await_sw_fence(&rq->submit,
1646  						     &prev->submit,
1647  						     &rq->submitq);
1648  
1649  			if (rq->engine->sched_engine->schedule)
1650  				__i915_sched_node_add_dependency(&rq->sched,
1651  								 &prev->sched,
1652  								 &rq->dep,
1653  								 0);
1654  		}
1655  		i915_request_put(prev);
1656  	}
1657  
1658  	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1659  
1660  	/*
1661  	 * Users have to put a reference potentially got by
1662  	 * __i915_active_fence_set() to the returned request
1663  	 * when no longer needed
1664  	 */
1665  	return to_request(__i915_active_fence_set(&timeline->last_request,
1666  						  &rq->fence));
1667  }
1668  
1669  static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1670  __i915_request_ensure_ordering(struct i915_request *rq,
1671  			       struct intel_timeline *timeline)
1672  {
1673  	struct i915_request *prev;
1674  
1675  	GEM_BUG_ON(is_parallel_rq(rq));
1676  
1677  	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1678  						  &rq->fence));
1679  
1680  	if (prev && !__i915_request_is_complete(prev)) {
1681  		bool uses_guc = intel_engine_uses_guc(rq->engine);
1682  		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1683  					  rq->engine->mask);
1684  		bool same_context = prev->context == rq->context;
1685  
1686  		/*
1687  		 * The requests are supposed to be kept in order. However,
1688  		 * we need to be wary in case the timeline->last_request
1689  		 * is used as a barrier for external modification to this
1690  		 * context.
1691  		 */
1692  		GEM_BUG_ON(same_context &&
1693  			   i915_seqno_passed(prev->fence.seqno,
1694  					     rq->fence.seqno));
1695  
1696  		if ((same_context && uses_guc) || (!uses_guc && pow2))
1697  			i915_sw_fence_await_sw_fence(&rq->submit,
1698  						     &prev->submit,
1699  						     &rq->submitq);
1700  		else
1701  			__i915_sw_fence_await_dma_fence(&rq->submit,
1702  							&prev->fence,
1703  							&rq->dmaq);
1704  		if (rq->engine->sched_engine->schedule)
1705  			__i915_sched_node_add_dependency(&rq->sched,
1706  							 &prev->sched,
1707  							 &rq->dep,
1708  							 0);
1709  	}
1710  
1711  	/*
1712  	 * Users have to put the reference to prev potentially got
1713  	 * by __i915_active_fence_set() when no longer needed
1714  	 */
1715  	return prev;
1716  }
1717  
1718  static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1719  __i915_request_add_to_timeline(struct i915_request *rq)
1720  {
1721  	struct intel_timeline *timeline = i915_request_timeline(rq);
1722  	struct i915_request *prev;
1723  
1724  	/*
1725  	 * Media workloads may require HuC, so stall them until HuC loading is
1726  	 * complete. Note that HuC not being loaded when a user submission
1727  	 * arrives can only happen when HuC is loaded via GSC and in that case
1728  	 * we still expect the window between us starting to accept submissions
1729  	 * and HuC loading completion to be small (a few hundred ms).
1730  	 */
1731  	if (rq->engine->class == VIDEO_DECODE_CLASS)
1732  		i915_request_await_huc(rq);
1733  
1734  	/*
1735  	 * Dependency tracking and request ordering along the timeline
1736  	 * is special cased so that we can eliminate redundant ordering
1737  	 * operations while building the request (we know that the timeline
1738  	 * itself is ordered, and here we guarantee it).
1739  	 *
1740  	 * As we know we will need to emit tracking along the timeline,
1741  	 * we embed the hooks into our request struct -- at the cost of
1742  	 * having to have specialised no-allocation interfaces (which will
1743  	 * be beneficial elsewhere).
1744  	 *
1745  	 * A second benefit to open-coding i915_request_await_request is
1746  	 * that we can apply a slight variant of the rules specialised
1747  	 * for timelines that jump between engines (such as virtual engines).
1748  	 * If we consider the case of virtual engine, we must emit a dma-fence
1749  	 * to prevent scheduling of the second request until the first is
1750  	 * complete (to maximise our greedy late load balancing) and this
1751  	 * precludes optimising to use semaphores serialisation of a single
1752  	 * timeline across engines.
1753  	 *
1754  	 * We do not order parallel submission requests on the timeline as each
1755  	 * parallel submission context has its own timeline and the ordering
1756  	 * rules for parallel requests are that they must be submitted in the
1757  	 * order received from the execbuf IOCTL. So rather than using the
1758  	 * timeline we store a pointer to last request submitted in the
1759  	 * relationship in the gem context and insert a submission fence
1760  	 * between that request and request passed into this function or
1761  	 * alternatively we use completion fence if gem context has a single
1762  	 * timeline and this is the first submission of an execbuf IOCTL.
1763  	 */
1764  	if (likely(!is_parallel_rq(rq)))
1765  		prev = __i915_request_ensure_ordering(rq, timeline);
1766  	else
1767  		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1768  	if (prev)
1769  		i915_request_put(prev);
1770  
1771  	/*
1772  	 * Make sure that no request gazumped us - if it was allocated after
1773  	 * our i915_request_alloc() and called __i915_request_add() before
1774  	 * us, the timeline will hold its seqno which is later than ours.
1775  	 */
1776  	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1777  
1778  	return prev;
1779  }
1780  
1781  /*
1782   * NB: This function is not allowed to fail. Doing so would mean the the
1783   * request is not being tracked for completion but the work itself is
1784   * going to happen on the hardware. This would be a Bad Thing(tm).
1785   */
__i915_request_commit(struct i915_request * rq)1786  struct i915_request *__i915_request_commit(struct i915_request *rq)
1787  {
1788  	struct intel_engine_cs *engine = rq->engine;
1789  	struct intel_ring *ring = rq->ring;
1790  	u32 *cs;
1791  
1792  	RQ_TRACE(rq, "\n");
1793  
1794  	/*
1795  	 * To ensure that this call will not fail, space for its emissions
1796  	 * should already have been reserved in the ring buffer. Let the ring
1797  	 * know that it is time to use that space up.
1798  	 */
1799  	GEM_BUG_ON(rq->reserved_space > ring->space);
1800  	rq->reserved_space = 0;
1801  	rq->emitted_jiffies = jiffies;
1802  
1803  	/*
1804  	 * Record the position of the start of the breadcrumb so that
1805  	 * should we detect the updated seqno part-way through the
1806  	 * GPU processing the request, we never over-estimate the
1807  	 * position of the ring's HEAD.
1808  	 */
1809  	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1810  	GEM_BUG_ON(IS_ERR(cs));
1811  	rq->postfix = intel_ring_offset(rq, cs);
1812  
1813  	return __i915_request_add_to_timeline(rq);
1814  }
1815  
__i915_request_queue_bh(struct i915_request * rq)1816  void __i915_request_queue_bh(struct i915_request *rq)
1817  {
1818  	i915_sw_fence_commit(&rq->semaphore);
1819  	i915_sw_fence_commit(&rq->submit);
1820  }
1821  
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1822  void __i915_request_queue(struct i915_request *rq,
1823  			  const struct i915_sched_attr *attr)
1824  {
1825  	/*
1826  	 * Let the backend know a new request has arrived that may need
1827  	 * to adjust the existing execution schedule due to a high priority
1828  	 * request - i.e. we may want to preempt the current request in order
1829  	 * to run a high priority dependency chain *before* we can execute this
1830  	 * request.
1831  	 *
1832  	 * This is called before the request is ready to run so that we can
1833  	 * decide whether to preempt the entire chain so that it is ready to
1834  	 * run at the earliest possible convenience.
1835  	 */
1836  	if (attr && rq->engine->sched_engine->schedule)
1837  		rq->engine->sched_engine->schedule(rq, attr);
1838  
1839  	local_bh_disable();
1840  	__i915_request_queue_bh(rq);
1841  	local_bh_enable(); /* kick tasklets */
1842  }
1843  
i915_request_add(struct i915_request * rq)1844  void i915_request_add(struct i915_request *rq)
1845  {
1846  	struct intel_timeline * const tl = i915_request_timeline(rq);
1847  	struct i915_sched_attr attr = {};
1848  	struct i915_gem_context *ctx;
1849  
1850  	lockdep_assert_held(&tl->mutex);
1851  	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1852  
1853  	trace_i915_request_add(rq);
1854  	__i915_request_commit(rq);
1855  
1856  	/* XXX placeholder for selftests */
1857  	rcu_read_lock();
1858  	ctx = rcu_dereference(rq->context->gem_context);
1859  	if (ctx)
1860  		attr = ctx->sched;
1861  	rcu_read_unlock();
1862  
1863  	__i915_request_queue(rq, &attr);
1864  
1865  	mutex_unlock(&tl->mutex);
1866  }
1867  
local_clock_ns(unsigned int * cpu)1868  static unsigned long local_clock_ns(unsigned int *cpu)
1869  {
1870  	unsigned long t;
1871  
1872  	/*
1873  	 * Cheaply and approximately convert from nanoseconds to microseconds.
1874  	 * The result and subsequent calculations are also defined in the same
1875  	 * approximate microseconds units. The principal source of timing
1876  	 * error here is from the simple truncation.
1877  	 *
1878  	 * Note that local_clock() is only defined wrt to the current CPU;
1879  	 * the comparisons are no longer valid if we switch CPUs. Instead of
1880  	 * blocking preemption for the entire busywait, we can detect the CPU
1881  	 * switch and use that as indicator of system load and a reason to
1882  	 * stop busywaiting, see busywait_stop().
1883  	 */
1884  	*cpu = get_cpu();
1885  	t = local_clock();
1886  	put_cpu();
1887  
1888  	return t;
1889  }
1890  
busywait_stop(unsigned long timeout,unsigned int cpu)1891  static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1892  {
1893  	unsigned int this_cpu;
1894  
1895  	if (time_after(local_clock_ns(&this_cpu), timeout))
1896  		return true;
1897  
1898  	return this_cpu != cpu;
1899  }
1900  
__i915_spin_request(struct i915_request * const rq,int state)1901  static bool __i915_spin_request(struct i915_request * const rq, int state)
1902  {
1903  	unsigned long timeout_ns;
1904  	unsigned int cpu;
1905  
1906  	/*
1907  	 * Only wait for the request if we know it is likely to complete.
1908  	 *
1909  	 * We don't track the timestamps around requests, nor the average
1910  	 * request length, so we do not have a good indicator that this
1911  	 * request will complete within the timeout. What we do know is the
1912  	 * order in which requests are executed by the context and so we can
1913  	 * tell if the request has been started. If the request is not even
1914  	 * running yet, it is a fair assumption that it will not complete
1915  	 * within our relatively short timeout.
1916  	 */
1917  	if (!i915_request_is_running(rq))
1918  		return false;
1919  
1920  	/*
1921  	 * When waiting for high frequency requests, e.g. during synchronous
1922  	 * rendering split between the CPU and GPU, the finite amount of time
1923  	 * required to set up the irq and wait upon it limits the response
1924  	 * rate. By busywaiting on the request completion for a short while we
1925  	 * can service the high frequency waits as quick as possible. However,
1926  	 * if it is a slow request, we want to sleep as quickly as possible.
1927  	 * The tradeoff between waiting and sleeping is roughly the time it
1928  	 * takes to sleep on a request, on the order of a microsecond.
1929  	 */
1930  
1931  	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1932  	timeout_ns += local_clock_ns(&cpu);
1933  	do {
1934  		if (dma_fence_is_signaled(&rq->fence))
1935  			return true;
1936  
1937  		if (signal_pending_state(state, current))
1938  			break;
1939  
1940  		if (busywait_stop(timeout_ns, cpu))
1941  			break;
1942  
1943  		cpu_relax();
1944  	} while (!need_resched());
1945  
1946  	return false;
1947  }
1948  
1949  struct request_wait {
1950  	struct dma_fence_cb cb;
1951  	struct task_struct *tsk;
1952  };
1953  
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1954  static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1955  {
1956  	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1957  
1958  	wake_up_process(fetch_and_zero(&wait->tsk));
1959  }
1960  
1961  /**
1962   * i915_request_wait_timeout - wait until execution of request has finished
1963   * @rq: the request to wait upon
1964   * @flags: how to wait
1965   * @timeout: how long to wait in jiffies
1966   *
1967   * i915_request_wait_timeout() waits for the request to be completed, for a
1968   * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1969   * unbounded wait).
1970   *
1971   * Returns the remaining time (in jiffies) if the request completed, which may
1972   * be zero if the request is unfinished after the timeout expires.
1973   * If the timeout is 0, it will return 1 if the fence is signaled.
1974   *
1975   * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1976   * pending before the request completes.
1977   *
1978   * NOTE: This function has the same wait semantics as dma-fence.
1979   */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)1980  long i915_request_wait_timeout(struct i915_request *rq,
1981  			       unsigned int flags,
1982  			       long timeout)
1983  {
1984  	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1985  		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1986  	struct request_wait wait;
1987  
1988  	might_sleep();
1989  	GEM_BUG_ON(timeout < 0);
1990  
1991  	if (dma_fence_is_signaled(&rq->fence))
1992  		return timeout ?: 1;
1993  
1994  	if (!timeout)
1995  		return -ETIME;
1996  
1997  	trace_i915_request_wait_begin(rq, flags);
1998  
1999  	/*
2000  	 * We must never wait on the GPU while holding a lock as we
2001  	 * may need to perform a GPU reset. So while we don't need to
2002  	 * serialise wait/reset with an explicit lock, we do want
2003  	 * lockdep to detect potential dependency cycles.
2004  	 */
2005  	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2006  
2007  	/*
2008  	 * Optimistic spin before touching IRQs.
2009  	 *
2010  	 * We may use a rather large value here to offset the penalty of
2011  	 * switching away from the active task. Frequently, the client will
2012  	 * wait upon an old swapbuffer to throttle itself to remain within a
2013  	 * frame of the gpu. If the client is running in lockstep with the gpu,
2014  	 * then it should not be waiting long at all, and a sleep now will incur
2015  	 * extra scheduler latency in producing the next frame. To try to
2016  	 * avoid adding the cost of enabling/disabling the interrupt to the
2017  	 * short wait, we first spin to see if the request would have completed
2018  	 * in the time taken to setup the interrupt.
2019  	 *
2020  	 * We need upto 5us to enable the irq, and upto 20us to hide the
2021  	 * scheduler latency of a context switch, ignoring the secondary
2022  	 * impacts from a context switch such as cache eviction.
2023  	 *
2024  	 * The scheme used for low-latency IO is called "hybrid interrupt
2025  	 * polling". The suggestion there is to sleep until just before you
2026  	 * expect to be woken by the device interrupt and then poll for its
2027  	 * completion. That requires having a good predictor for the request
2028  	 * duration, which we currently lack.
2029  	 */
2030  	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2031  	    __i915_spin_request(rq, state))
2032  		goto out;
2033  
2034  	/*
2035  	 * This client is about to stall waiting for the GPU. In many cases
2036  	 * this is undesirable and limits the throughput of the system, as
2037  	 * many clients cannot continue processing user input/output whilst
2038  	 * blocked. RPS autotuning may take tens of milliseconds to respond
2039  	 * to the GPU load and thus incurs additional latency for the client.
2040  	 * We can circumvent that by promoting the GPU frequency to maximum
2041  	 * before we sleep. This makes the GPU throttle up much more quickly
2042  	 * (good for benchmarks and user experience, e.g. window animations),
2043  	 * but at a cost of spending more power processing the workload
2044  	 * (bad for battery).
2045  	 */
2046  	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2047  		intel_rps_boost(rq);
2048  
2049  	wait.tsk = current;
2050  	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2051  		goto out;
2052  
2053  	/*
2054  	 * Flush the submission tasklet, but only if it may help this request.
2055  	 *
2056  	 * We sometimes experience some latency between the HW interrupts and
2057  	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2058  	 * be due to lazy CS events), so lets run the tasklet manually if there
2059  	 * is a chance it may submit this request. If the request is not ready
2060  	 * to run, as it is waiting for other fences to be signaled, flushing
2061  	 * the tasklet is busy work without any advantage for this client.
2062  	 *
2063  	 * If the HW is being lazy, this is the last chance before we go to
2064  	 * sleep to catch any pending events. We will check periodically in
2065  	 * the heartbeat to flush the submission tasklets as a last resort
2066  	 * for unhappy HW.
2067  	 */
2068  	if (i915_request_is_ready(rq))
2069  		__intel_engine_flush_submission(rq->engine, false);
2070  
2071  	for (;;) {
2072  		set_current_state(state);
2073  
2074  		if (dma_fence_is_signaled(&rq->fence))
2075  			break;
2076  
2077  		if (signal_pending_state(state, current)) {
2078  			timeout = -ERESTARTSYS;
2079  			break;
2080  		}
2081  
2082  		if (!timeout) {
2083  			timeout = -ETIME;
2084  			break;
2085  		}
2086  
2087  		timeout = io_schedule_timeout(timeout);
2088  	}
2089  	__set_current_state(TASK_RUNNING);
2090  
2091  	if (READ_ONCE(wait.tsk))
2092  		dma_fence_remove_callback(&rq->fence, &wait.cb);
2093  	GEM_BUG_ON(!list_empty(&wait.cb.node));
2094  
2095  out:
2096  	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2097  	trace_i915_request_wait_end(rq);
2098  	return timeout;
2099  }
2100  
2101  /**
2102   * i915_request_wait - wait until execution of request has finished
2103   * @rq: the request to wait upon
2104   * @flags: how to wait
2105   * @timeout: how long to wait in jiffies
2106   *
2107   * i915_request_wait() waits for the request to be completed, for a
2108   * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2109   * unbounded wait).
2110   *
2111   * Returns the remaining time (in jiffies) if the request completed, which may
2112   * be zero or -ETIME if the request is unfinished after the timeout expires.
2113   * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2114   * pending before the request completes.
2115   *
2116   * NOTE: This function behaves differently from dma-fence wait semantics for
2117   * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2118   */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2119  long i915_request_wait(struct i915_request *rq,
2120  		       unsigned int flags,
2121  		       long timeout)
2122  {
2123  	long ret = i915_request_wait_timeout(rq, flags, timeout);
2124  
2125  	if (!ret)
2126  		return -ETIME;
2127  
2128  	if (ret > 0 && !timeout)
2129  		return 0;
2130  
2131  	return ret;
2132  }
2133  
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2134  static int print_sched_attr(const struct i915_sched_attr *attr,
2135  			    char *buf, int x, int len)
2136  {
2137  	if (attr->priority == I915_PRIORITY_INVALID)
2138  		return x;
2139  
2140  	x += snprintf(buf + x, len - x,
2141  		      " prio=%d", attr->priority);
2142  
2143  	return x;
2144  }
2145  
queue_status(const struct i915_request * rq)2146  static char queue_status(const struct i915_request *rq)
2147  {
2148  	if (i915_request_is_active(rq))
2149  		return 'E';
2150  
2151  	if (i915_request_is_ready(rq))
2152  		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2153  
2154  	return 'U';
2155  }
2156  
run_status(const struct i915_request * rq)2157  static const char *run_status(const struct i915_request *rq)
2158  {
2159  	if (__i915_request_is_complete(rq))
2160  		return "!";
2161  
2162  	if (__i915_request_has_started(rq))
2163  		return "*";
2164  
2165  	if (!i915_sw_fence_signaled(&rq->semaphore))
2166  		return "&";
2167  
2168  	return "";
2169  }
2170  
fence_status(const struct i915_request * rq)2171  static const char *fence_status(const struct i915_request *rq)
2172  {
2173  	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2174  		return "+";
2175  
2176  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2177  		return "-";
2178  
2179  	return "";
2180  }
2181  
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2182  void i915_request_show(struct drm_printer *m,
2183  		       const struct i915_request *rq,
2184  		       const char *prefix,
2185  		       int indent)
2186  {
2187  	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2188  	char buf[80] = "";
2189  	int x = 0;
2190  
2191  	/*
2192  	 * The prefix is used to show the queue status, for which we use
2193  	 * the following flags:
2194  	 *
2195  	 *  U [Unready]
2196  	 *    - initial status upon being submitted by the user
2197  	 *
2198  	 *    - the request is not ready for execution as it is waiting
2199  	 *      for external fences
2200  	 *
2201  	 *  R [Ready]
2202  	 *    - all fences the request was waiting on have been signaled,
2203  	 *      and the request is now ready for execution and will be
2204  	 *      in a backend queue
2205  	 *
2206  	 *    - a ready request may still need to wait on semaphores
2207  	 *      [internal fences]
2208  	 *
2209  	 *  V [Ready/virtual]
2210  	 *    - same as ready, but queued over multiple backends
2211  	 *
2212  	 *  E [Executing]
2213  	 *    - the request has been transferred from the backend queue and
2214  	 *      submitted for execution on HW
2215  	 *
2216  	 *    - a completed request may still be regarded as executing, its
2217  	 *      status may not be updated until it is retired and removed
2218  	 *      from the lists
2219  	 */
2220  
2221  	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2222  
2223  	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2224  		   prefix, indent, "                ",
2225  		   queue_status(rq),
2226  		   rq->fence.context, rq->fence.seqno,
2227  		   run_status(rq),
2228  		   fence_status(rq),
2229  		   buf,
2230  		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2231  		   name);
2232  }
2233  
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2234  static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2235  {
2236  	u32 ring = ENGINE_READ(engine, RING_START);
2237  
2238  	return ring == i915_ggtt_offset(rq->ring->vma);
2239  }
2240  
match_ring(struct i915_request * rq)2241  static bool match_ring(struct i915_request *rq)
2242  {
2243  	struct intel_engine_cs *engine;
2244  	bool found;
2245  	int i;
2246  
2247  	if (!intel_engine_is_virtual(rq->engine))
2248  		return engine_match_ring(rq->engine, rq);
2249  
2250  	found = false;
2251  	i = 0;
2252  	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2253  		found = engine_match_ring(engine, rq);
2254  		if (found)
2255  			break;
2256  	}
2257  
2258  	return found;
2259  }
2260  
i915_test_request_state(struct i915_request * rq)2261  enum i915_request_state i915_test_request_state(struct i915_request *rq)
2262  {
2263  	if (i915_request_completed(rq))
2264  		return I915_REQUEST_COMPLETE;
2265  
2266  	if (!i915_request_started(rq))
2267  		return I915_REQUEST_PENDING;
2268  
2269  	if (match_ring(rq))
2270  		return I915_REQUEST_ACTIVE;
2271  
2272  	return I915_REQUEST_QUEUED;
2273  }
2274  
2275  #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2276  #include "selftests/mock_request.c"
2277  #include "selftests/i915_request.c"
2278  #endif
2279  
i915_request_module_exit(void)2280  void i915_request_module_exit(void)
2281  {
2282  	kmem_cache_destroy(slab_execute_cbs);
2283  	kmem_cache_destroy(slab_requests);
2284  }
2285  
i915_request_module_init(void)2286  int __init i915_request_module_init(void)
2287  {
2288  	slab_requests =
2289  		kmem_cache_create("i915_request",
2290  				  sizeof(struct i915_request),
2291  				  __alignof__(struct i915_request),
2292  				  SLAB_HWCACHE_ALIGN |
2293  				  SLAB_RECLAIM_ACCOUNT |
2294  				  SLAB_TYPESAFE_BY_RCU,
2295  				  __i915_request_ctor);
2296  	if (!slab_requests)
2297  		return -ENOMEM;
2298  
2299  	slab_execute_cbs = KMEM_CACHE(execute_cb,
2300  					     SLAB_HWCACHE_ALIGN |
2301  					     SLAB_RECLAIM_ACCOUNT |
2302  					     SLAB_TYPESAFE_BY_RCU);
2303  	if (!slab_execute_cbs)
2304  		goto err_requests;
2305  
2306  	return 0;
2307  
2308  err_requests:
2309  	kmem_cache_destroy(slab_requests);
2310  	return -ENOMEM;
2311  }
2312