1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Brad Volkin <bradley.d.volkin@intel.com>
25  *
26  */
27 
28 #include <linux/highmem.h>
29 
30 #include <drm/drm_cache.h>
31 
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_regs.h"
34 #include "gt/intel_gpu_commands.h"
35 #include "gt/intel_gt_regs.h"
36 
37 #include "i915_cmd_parser.h"
38 #include "i915_drv.h"
39 #include "i915_memcpy.h"
40 #include "i915_reg.h"
41 
42 /**
43  * DOC: batch buffer command parser
44  *
45  * Motivation:
46  * Certain OpenGL features (e.g. transform feedback, performance monitoring)
47  * require userspace code to submit batches containing commands such as
48  * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
49  * generations of the hardware will noop these commands in "unsecure" batches
50  * (which includes all userspace batches submitted via i915) even though the
51  * commands may be safe and represent the intended programming model of the
52  * device.
53  *
54  * The software command parser is similar in operation to the command parsing
55  * done in hardware for unsecure batches. However, the software parser allows
56  * some operations that would be noop'd by hardware, if the parser determines
57  * the operation is safe, and submits the batch as "secure" to prevent hardware
58  * parsing.
59  *
60  * Threats:
61  * At a high level, the hardware (and software) checks attempt to prevent
62  * granting userspace undue privileges. There are three categories of privilege.
63  *
64  * First, commands which are explicitly defined as privileged or which should
65  * only be used by the kernel driver. The parser rejects such commands
66  *
67  * Second, commands which access registers. To support correct/enhanced
68  * userspace functionality, particularly certain OpenGL extensions, the parser
69  * provides a whitelist of registers which userspace may safely access
70  *
71  * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
72  * The parser always rejects such commands.
73  *
74  * The majority of the problematic commands fall in the MI_* range, with only a
75  * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
76  *
77  * Implementation:
78  * Each engine maintains tables of commands and registers which the parser
79  * uses in scanning batch buffers submitted to that engine.
80  *
81  * Since the set of commands that the parser must check for is significantly
82  * smaller than the number of commands supported, the parser tables contain only
83  * those commands required by the parser. This generally works because command
84  * opcode ranges have standard command length encodings. So for commands that
85  * the parser does not need to check, it can easily skip them. This is
86  * implemented via a per-engine length decoding vfunc.
87  *
88  * Unfortunately, there are a number of commands that do not follow the standard
89  * length encoding for their opcode range, primarily amongst the MI_* commands.
90  * To handle this, the parser provides a way to define explicit "skip" entries
91  * in the per-engine command tables.
92  *
93  * Other command table entries map fairly directly to high level categories
94  * mentioned above: rejected, register whitelist. The parser implements a number
95  * of checks, including the privileged memory checks, via a general bitmasking
96  * mechanism.
97  */
98 
99 /*
100  * A command that requires special handling by the command parser.
101  */
102 struct drm_i915_cmd_descriptor {
103 	/*
104 	 * Flags describing how the command parser processes the command.
105 	 *
106 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
107 	 *                 a length mask if not set
108 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
109 	 *                standard length encoding for the opcode range in
110 	 *                which it falls
111 	 * CMD_DESC_REJECT: The command is never allowed
112 	 * CMD_DESC_REGISTER: The command should be checked against the
113 	 *                    register whitelist for the appropriate ring
114 	 */
115 	u32 flags;
116 #define CMD_DESC_FIXED    (1<<0)
117 #define CMD_DESC_SKIP     (1<<1)
118 #define CMD_DESC_REJECT   (1<<2)
119 #define CMD_DESC_REGISTER (1<<3)
120 #define CMD_DESC_BITMASK  (1<<4)
121 
122 	/*
123 	 * The command's unique identification bits and the bitmask to get them.
124 	 * This isn't strictly the opcode field as defined in the spec and may
125 	 * also include type, subtype, and/or subop fields.
126 	 */
127 	struct {
128 		u32 value;
129 		u32 mask;
130 	} cmd;
131 
132 	/*
133 	 * The command's length. The command is either fixed length (i.e. does
134 	 * not include a length field) or has a length field mask. The flag
135 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
136 	 * a length mask. All command entries in a command table must include
137 	 * length information.
138 	 */
139 	union {
140 		u32 fixed;
141 		u32 mask;
142 	} length;
143 
144 	/*
145 	 * Describes where to find a register address in the command to check
146 	 * against the ring's register whitelist. Only valid if flags has the
147 	 * CMD_DESC_REGISTER bit set.
148 	 *
149 	 * A non-zero step value implies that the command may access multiple
150 	 * registers in sequence (e.g. LRI), in that case step gives the
151 	 * distance in dwords between individual offset fields.
152 	 */
153 	struct {
154 		u32 offset;
155 		u32 mask;
156 		u32 step;
157 	} reg;
158 
159 #define MAX_CMD_DESC_BITMASKS 3
160 	/*
161 	 * Describes command checks where a particular dword is masked and
162 	 * compared against an expected value. If the command does not match
163 	 * the expected value, the parser rejects it. Only valid if flags has
164 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
165 	 * are valid.
166 	 *
167 	 * If the check specifies a non-zero condition_mask then the parser
168 	 * only performs the check when the bits specified by condition_mask
169 	 * are non-zero.
170 	 */
171 	struct {
172 		u32 offset;
173 		u32 mask;
174 		u32 expected;
175 		u32 condition_offset;
176 		u32 condition_mask;
177 	} bits[MAX_CMD_DESC_BITMASKS];
178 };
179 
180 /*
181  * A table of commands requiring special handling by the command parser.
182  *
183  * Each engine has an array of tables. Each table consists of an array of
184  * command descriptors, which must be sorted with command opcodes in
185  * ascending order.
186  */
187 struct drm_i915_cmd_table {
188 	const struct drm_i915_cmd_descriptor *table;
189 	int count;
190 };
191 
192 #define STD_MI_OPCODE_SHIFT  (32 - 9)
193 #define STD_3D_OPCODE_SHIFT  (32 - 16)
194 #define STD_2D_OPCODE_SHIFT  (32 - 10)
195 #define STD_MFX_OPCODE_SHIFT (32 - 16)
196 #define MIN_OPCODE_SHIFT 16
197 
198 #define CMD(op, opm, f, lm, fl, ...)				\
199 	{							\
200 		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
201 		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
202 		.length = { (lm) },				\
203 		__VA_ARGS__					\
204 	}
205 
206 /* Convenience macros to compress the tables */
207 #define SMI STD_MI_OPCODE_SHIFT
208 #define S3D STD_3D_OPCODE_SHIFT
209 #define S2D STD_2D_OPCODE_SHIFT
210 #define SMFX STD_MFX_OPCODE_SHIFT
211 #define F true
212 #define S CMD_DESC_SKIP
213 #define R CMD_DESC_REJECT
214 #define W CMD_DESC_REGISTER
215 #define B CMD_DESC_BITMASK
216 
217 /*            Command                          Mask   Fixed Len   Action
218 	      ---------------------------------------------------------- */
219 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
220 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
221 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
222 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
223 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
224 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
225 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
226 	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
227 	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
228 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
229 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
230 	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
231 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
232 	      .bits = {{
233 			.offset = 0,
234 			.mask = MI_GLOBAL_GTT,
235 			.expected = 0,
236 	      }},						       ),
237 	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
238 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
239 	      .bits = {{
240 			.offset = 0,
241 			.mask = MI_GLOBAL_GTT,
242 			.expected = 0,
243 	      }},						       ),
244 	/*
245 	 * MI_BATCH_BUFFER_START requires some special handling. It's not
246 	 * really a 'skip' action but it doesn't seem like it's worth adding
247 	 * a new action. See intel_engine_cmd_parser().
248 	 */
249 	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
250 };
251 
252 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
253 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
254 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
255 	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
256 	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
257 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
258 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
259 	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
260 	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
261 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
262 	      .bits = {{
263 			.offset = 0,
264 			.mask = MI_GLOBAL_GTT,
265 			.expected = 0,
266 	      }},						       ),
267 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
268 	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
269 	      .bits = {{
270 			.offset = 0,
271 			.mask = MI_GLOBAL_GTT,
272 			.expected = 0,
273 	      }},						       ),
274 	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
275 	      .bits = {{
276 			.offset = 1,
277 			.mask = MI_REPORT_PERF_COUNT_GGTT,
278 			.expected = 0,
279 	      }},						       ),
280 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
281 	      .bits = {{
282 			.offset = 0,
283 			.mask = MI_GLOBAL_GTT,
284 			.expected = 0,
285 	      }},						       ),
286 	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
287 	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
288 	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
289 	      .bits = {{
290 			.offset = 2,
291 			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
292 			.expected = 0,
293 	      }},						       ),
294 	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
295 	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
296 	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
297 	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
298 	      .bits = {{
299 			.offset = 1,
300 			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
301 			.expected = 0,
302 	      },
303 	      {
304 			.offset = 1,
305 		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
306 				 PIPE_CONTROL_STORE_DATA_INDEX),
307 			.expected = 0,
308 			.condition_offset = 1,
309 			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
310 	      }},						       ),
311 };
312 
313 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
314 	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
315 	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
316 	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
317 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
318 	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
319 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
320 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
321 	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
322 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
323 	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
324 	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
325 	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
326 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
327 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
328 
329 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
330 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
331 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
332 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
333 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
334 };
335 
336 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
337 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
338 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
339 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
340 	      .bits = {{
341 			.offset = 0,
342 			.mask = MI_GLOBAL_GTT,
343 			.expected = 0,
344 	      }},						       ),
345 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
346 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
347 	      .bits = {{
348 			.offset = 0,
349 			.mask = MI_FLUSH_DW_NOTIFY,
350 			.expected = 0,
351 	      },
352 	      {
353 			.offset = 1,
354 			.mask = MI_FLUSH_DW_USE_GTT,
355 			.expected = 0,
356 			.condition_offset = 0,
357 			.condition_mask = MI_FLUSH_DW_OP_MASK,
358 	      },
359 	      {
360 			.offset = 0,
361 			.mask = MI_FLUSH_DW_STORE_INDEX,
362 			.expected = 0,
363 			.condition_offset = 0,
364 			.condition_mask = MI_FLUSH_DW_OP_MASK,
365 	      }},						       ),
366 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
367 	      .bits = {{
368 			.offset = 0,
369 			.mask = MI_GLOBAL_GTT,
370 			.expected = 0,
371 	      }},						       ),
372 	/*
373 	 * MFX_WAIT doesn't fit the way we handle length for most commands.
374 	 * It has a length field but it uses a non-standard length bias.
375 	 * It is always 1 dword though, so just treat it as fixed length.
376 	 */
377 	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
378 };
379 
380 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
381 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
382 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
383 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
384 	      .bits = {{
385 			.offset = 0,
386 			.mask = MI_GLOBAL_GTT,
387 			.expected = 0,
388 	      }},						       ),
389 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
390 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
391 	      .bits = {{
392 			.offset = 0,
393 			.mask = MI_FLUSH_DW_NOTIFY,
394 			.expected = 0,
395 	      },
396 	      {
397 			.offset = 1,
398 			.mask = MI_FLUSH_DW_USE_GTT,
399 			.expected = 0,
400 			.condition_offset = 0,
401 			.condition_mask = MI_FLUSH_DW_OP_MASK,
402 	      },
403 	      {
404 			.offset = 0,
405 			.mask = MI_FLUSH_DW_STORE_INDEX,
406 			.expected = 0,
407 			.condition_offset = 0,
408 			.condition_mask = MI_FLUSH_DW_OP_MASK,
409 	      }},						       ),
410 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
411 	      .bits = {{
412 			.offset = 0,
413 			.mask = MI_GLOBAL_GTT,
414 			.expected = 0,
415 	      }},						       ),
416 };
417 
418 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
419 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
420 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
421 	      .bits = {{
422 			.offset = 0,
423 			.mask = MI_GLOBAL_GTT,
424 			.expected = 0,
425 	      }},						       ),
426 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
427 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
428 	      .bits = {{
429 			.offset = 0,
430 			.mask = MI_FLUSH_DW_NOTIFY,
431 			.expected = 0,
432 	      },
433 	      {
434 			.offset = 1,
435 			.mask = MI_FLUSH_DW_USE_GTT,
436 			.expected = 0,
437 			.condition_offset = 0,
438 			.condition_mask = MI_FLUSH_DW_OP_MASK,
439 	      },
440 	      {
441 			.offset = 0,
442 			.mask = MI_FLUSH_DW_STORE_INDEX,
443 			.expected = 0,
444 			.condition_offset = 0,
445 			.condition_mask = MI_FLUSH_DW_OP_MASK,
446 	      }},						       ),
447 	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
448 	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
449 };
450 
451 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
452 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
453 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
454 };
455 
456 /*
457  * For Gen9 we can still rely on the h/w to enforce cmd security, and only
458  * need to re-enforce the register access checks. We therefore only need to
459  * teach the cmdparser how to find the end of each command, and identify
460  * register accesses. The table doesn't need to reject any commands, and so
461  * the only commands listed here are:
462  *   1) Those that touch registers
463  *   2) Those that do not have the default 8-bit length
464  *
465  * Note that the default MI length mask chosen for this table is 0xFF, not
466  * the 0x3F used on older devices. This is because the vast majority of MI
467  * cmds on Gen9 use a standard 8-bit Length field.
468  * All the Gen9 blitter instructions are standard 0xFF length mask, and
469  * none allow access to non-general registers, so in fact no BLT cmds are
470  * included in the table at all.
471  *
472  */
473 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
474 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
475 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
476 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
477 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
478 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
479 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
480 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
481 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
482 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
483 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
484 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
485 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
486 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
487 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
488 	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
489 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
490 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
491 	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
492 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
493 	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
494 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
495 
496 	/*
497 	 * We allow BB_START but apply further checks. We just sanitize the
498 	 * basic fields here.
499 	 */
500 #define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
501 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
502 	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
503 	      .bits = {{
504 			.offset = 0,
505 			.mask = MI_BB_START_OPERAND_MASK,
506 			.expected = MI_BB_START_OPERAND_EXPECT,
507 	      }},						       ),
508 };
509 
510 static const struct drm_i915_cmd_descriptor noop_desc =
511 	CMD(MI_NOOP, SMI, F, 1, S);
512 
513 #undef CMD
514 #undef SMI
515 #undef S3D
516 #undef S2D
517 #undef SMFX
518 #undef F
519 #undef S
520 #undef R
521 #undef W
522 #undef B
523 
524 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
525 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
526 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
527 };
528 
529 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
530 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
531 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
532 	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
533 };
534 
535 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
536 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
537 	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
538 };
539 
540 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
541 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
542 	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
543 };
544 
545 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
546 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
547 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
548 };
549 
550 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
551 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
552 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
553 	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
554 };
555 
556 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
557 	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
558 };
559 
560 
561 /*
562  * Register whitelists, sorted by increasing register offset.
563  */
564 
565 /*
566  * An individual whitelist entry granting access to register addr.  If
567  * mask is non-zero the argument of immediate register writes will be
568  * AND-ed with mask, and the command will be rejected if the result
569  * doesn't match value.
570  *
571  * Registers with non-zero mask are only allowed to be written using
572  * LRI.
573  */
574 struct drm_i915_reg_descriptor {
575 	i915_reg_t addr;
576 	u32 mask;
577 	u32 value;
578 };
579 
580 /* Convenience macro for adding 32-bit registers. */
581 #define REG32(_reg, ...) \
582 	{ .addr = (_reg), __VA_ARGS__ }
583 
584 #define REG32_IDX(_reg, idx) \
585 	{ .addr = _reg(idx) }
586 
587 /*
588  * Convenience macro for adding 64-bit registers.
589  *
590  * Some registers that userspace accesses are 64 bits. The register
591  * access commands only allow 32-bit accesses. Hence, we have to include
592  * entries for both halves of the 64-bit registers.
593  */
594 #define REG64(_reg) \
595 	{ .addr = _reg }, \
596 	{ .addr = _reg ## _UDW }
597 
598 #define REG64_IDX(_reg, idx) \
599 	{ .addr = _reg(idx) }, \
600 	{ .addr = _reg ## _UDW(idx) }
601 
602 #define REG64_BASE_IDX(_reg, base, idx) \
603 	{ .addr = _reg(base, idx) }, \
604 	{ .addr = _reg ## _UDW(base, idx) }
605 
606 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
607 	REG64(GPGPU_THREADS_DISPATCHED),
608 	REG64(HS_INVOCATION_COUNT),
609 	REG64(DS_INVOCATION_COUNT),
610 	REG64(IA_VERTICES_COUNT),
611 	REG64(IA_PRIMITIVES_COUNT),
612 	REG64(VS_INVOCATION_COUNT),
613 	REG64(GS_INVOCATION_COUNT),
614 	REG64(GS_PRIMITIVES_COUNT),
615 	REG64(CL_INVOCATION_COUNT),
616 	REG64(CL_PRIMITIVES_COUNT),
617 	REG64(PS_INVOCATION_COUNT),
618 	REG64(PS_DEPTH_COUNT),
619 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
620 	REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE),
621 	REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE),
622 	REG32(GEN7_3DPRIM_END_OFFSET),
623 	REG32(GEN7_3DPRIM_START_VERTEX),
624 	REG32(GEN7_3DPRIM_VERTEX_COUNT),
625 	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
626 	REG32(GEN7_3DPRIM_START_INSTANCE),
627 	REG32(GEN7_3DPRIM_BASE_VERTEX),
628 	REG32(GEN7_GPGPU_DISPATCHDIMX),
629 	REG32(GEN7_GPGPU_DISPATCHDIMY),
630 	REG32(GEN7_GPGPU_DISPATCHDIMZ),
631 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
632 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
633 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
634 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
635 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
636 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
637 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
638 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
639 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
640 	REG32(GEN7_SO_WRITE_OFFSET(0)),
641 	REG32(GEN7_SO_WRITE_OFFSET(1)),
642 	REG32(GEN7_SO_WRITE_OFFSET(2)),
643 	REG32(GEN7_SO_WRITE_OFFSET(3)),
644 	REG32(GEN7_L3SQCREG1),
645 	REG32(GEN7_L3CNTLREG2),
646 	REG32(GEN7_L3CNTLREG3),
647 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
648 };
649 
650 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
651 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0),
652 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1),
653 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2),
654 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3),
655 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4),
656 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5),
657 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6),
658 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7),
659 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8),
660 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9),
661 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10),
662 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11),
663 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12),
664 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13),
665 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14),
666 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15),
667 	REG32(HSW_SCRATCH1,
668 	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
669 	      .value = 0),
670 	REG32(HSW_ROW_CHICKEN3,
671 	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
672                         HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
673 	      .value = 0),
674 };
675 
676 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
677 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
678 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
679 	REG32(BCS_SWCTRL),
680 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
681 };
682 
683 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
684 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
685 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
686 	REG32(BCS_SWCTRL),
687 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
688 	REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
689 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0),
690 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1),
691 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2),
692 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3),
693 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4),
694 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5),
695 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6),
696 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7),
697 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8),
698 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9),
699 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10),
700 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11),
701 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12),
702 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13),
703 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14),
704 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15),
705 };
706 
707 #undef REG64
708 #undef REG32
709 
710 struct drm_i915_reg_table {
711 	const struct drm_i915_reg_descriptor *regs;
712 	int num_regs;
713 };
714 
715 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
716 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
717 };
718 
719 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
720 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
721 };
722 
723 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
724 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
725 	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
726 };
727 
728 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
729 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
730 };
731 
732 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
733 	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
734 };
735 
gen7_render_get_cmd_length_mask(u32 cmd_header)736 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
737 {
738 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
739 	u32 subclient =
740 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
741 
742 	if (client == INSTR_MI_CLIENT)
743 		return 0x3F;
744 	else if (client == INSTR_RC_CLIENT) {
745 		if (subclient == INSTR_MEDIA_SUBCLIENT)
746 			return 0xFFFF;
747 		else
748 			return 0xFF;
749 	}
750 
751 	DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
752 	return 0;
753 }
754 
gen7_bsd_get_cmd_length_mask(u32 cmd_header)755 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
756 {
757 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
758 	u32 subclient =
759 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
760 	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
761 
762 	if (client == INSTR_MI_CLIENT)
763 		return 0x3F;
764 	else if (client == INSTR_RC_CLIENT) {
765 		if (subclient == INSTR_MEDIA_SUBCLIENT) {
766 			if (op == 6)
767 				return 0xFFFF;
768 			else
769 				return 0xFFF;
770 		} else
771 			return 0xFF;
772 	}
773 
774 	DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
775 	return 0;
776 }
777 
gen7_blt_get_cmd_length_mask(u32 cmd_header)778 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
779 {
780 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
781 
782 	if (client == INSTR_MI_CLIENT)
783 		return 0x3F;
784 	else if (client == INSTR_BC_CLIENT)
785 		return 0xFF;
786 
787 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
788 	return 0;
789 }
790 
gen9_blt_get_cmd_length_mask(u32 cmd_header)791 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
792 {
793 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
794 
795 	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
796 		return 0xFF;
797 
798 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
799 	return 0;
800 }
801 
validate_cmds_sorted(const struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)802 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
803 				 const struct drm_i915_cmd_table *cmd_tables,
804 				 int cmd_table_count)
805 {
806 	int i;
807 	bool ret = true;
808 
809 	if (!cmd_tables || cmd_table_count == 0)
810 		return true;
811 
812 	for (i = 0; i < cmd_table_count; i++) {
813 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
814 		u32 previous = 0;
815 		int j;
816 
817 		for (j = 0; j < table->count; j++) {
818 			const struct drm_i915_cmd_descriptor *desc =
819 				&table->table[j];
820 			u32 curr = desc->cmd.value & desc->cmd.mask;
821 
822 			if (curr < previous) {
823 				drm_err(&engine->i915->drm,
824 					"CMD: %s [%d] command table not sorted: "
825 					"table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
826 					engine->name, engine->id,
827 					i, j, curr, previous);
828 				ret = false;
829 			}
830 
831 			previous = curr;
832 		}
833 	}
834 
835 	return ret;
836 }
837 
check_sorted(const struct intel_engine_cs * engine,const struct drm_i915_reg_descriptor * reg_table,int reg_count)838 static bool check_sorted(const struct intel_engine_cs *engine,
839 			 const struct drm_i915_reg_descriptor *reg_table,
840 			 int reg_count)
841 {
842 	int i;
843 	u32 previous = 0;
844 	bool ret = true;
845 
846 	for (i = 0; i < reg_count; i++) {
847 		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
848 
849 		if (curr < previous) {
850 			drm_err(&engine->i915->drm,
851 				"CMD: %s [%d] register table not sorted: "
852 				"entry=%d reg=0x%08X prev=0x%08X\n",
853 				engine->name, engine->id,
854 				i, curr, previous);
855 			ret = false;
856 		}
857 
858 		previous = curr;
859 	}
860 
861 	return ret;
862 }
863 
validate_regs_sorted(struct intel_engine_cs * engine)864 static bool validate_regs_sorted(struct intel_engine_cs *engine)
865 {
866 	int i;
867 	const struct drm_i915_reg_table *table;
868 
869 	for (i = 0; i < engine->reg_table_count; i++) {
870 		table = &engine->reg_tables[i];
871 		if (!check_sorted(engine, table->regs, table->num_regs))
872 			return false;
873 	}
874 
875 	return true;
876 }
877 
878 struct cmd_node {
879 	const struct drm_i915_cmd_descriptor *desc;
880 	struct hlist_node node;
881 };
882 
883 /*
884  * Different command ranges have different numbers of bits for the opcode. For
885  * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
886  * problem is that, for example, MI commands use bits 22:16 for other fields
887  * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
888  * we mask a command from a batch it could hash to the wrong bucket due to
889  * non-opcode bits being set. But if we don't include those bits, some 3D
890  * commands may hash to the same bucket due to not including opcode bits that
891  * make the command unique. For now, we will risk hashing to the same bucket.
892  */
cmd_header_key(u32 x)893 static inline u32 cmd_header_key(u32 x)
894 {
895 	switch (x >> INSTR_CLIENT_SHIFT) {
896 	default:
897 	case INSTR_MI_CLIENT:
898 		return x >> STD_MI_OPCODE_SHIFT;
899 	case INSTR_RC_CLIENT:
900 		return x >> STD_3D_OPCODE_SHIFT;
901 	case INSTR_BC_CLIENT:
902 		return x >> STD_2D_OPCODE_SHIFT;
903 	}
904 }
905 
init_hash_table(struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)906 static int init_hash_table(struct intel_engine_cs *engine,
907 			   const struct drm_i915_cmd_table *cmd_tables,
908 			   int cmd_table_count)
909 {
910 	int i, j;
911 
912 	hash_init(engine->cmd_hash);
913 
914 	for (i = 0; i < cmd_table_count; i++) {
915 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
916 
917 		for (j = 0; j < table->count; j++) {
918 			const struct drm_i915_cmd_descriptor *desc =
919 				&table->table[j];
920 			struct cmd_node *desc_node =
921 				kmalloc(sizeof(*desc_node), GFP_KERNEL);
922 
923 			if (!desc_node)
924 				return -ENOMEM;
925 
926 			desc_node->desc = desc;
927 			hash_add(engine->cmd_hash, &desc_node->node,
928 				 cmd_header_key(desc->cmd.value));
929 		}
930 	}
931 
932 	return 0;
933 }
934 
fini_hash_table(struct intel_engine_cs * engine)935 static void fini_hash_table(struct intel_engine_cs *engine)
936 {
937 	struct hlist_node *tmp;
938 	struct cmd_node *desc_node;
939 	int i;
940 
941 	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
942 		hash_del(&desc_node->node);
943 		kfree(desc_node);
944 	}
945 }
946 
947 /**
948  * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
949  * @engine: the engine to initialize
950  *
951  * Optionally initializes fields related to batch buffer command parsing in the
952  * struct intel_engine_cs based on whether the platform requires software
953  * command parsing.
954  */
intel_engine_init_cmd_parser(struct intel_engine_cs * engine)955 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
956 {
957 	const struct drm_i915_cmd_table *cmd_tables;
958 	int cmd_table_count;
959 	int ret;
960 
961 	if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 &&
962 						 engine->class == COPY_ENGINE_CLASS))
963 		return 0;
964 
965 	switch (engine->class) {
966 	case RENDER_CLASS:
967 		if (IS_HASWELL(engine->i915)) {
968 			cmd_tables = hsw_render_ring_cmd_table;
969 			cmd_table_count =
970 				ARRAY_SIZE(hsw_render_ring_cmd_table);
971 		} else {
972 			cmd_tables = gen7_render_cmd_table;
973 			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
974 		}
975 
976 		if (IS_HASWELL(engine->i915)) {
977 			engine->reg_tables = hsw_render_reg_tables;
978 			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
979 		} else {
980 			engine->reg_tables = ivb_render_reg_tables;
981 			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
982 		}
983 		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
984 		break;
985 	case VIDEO_DECODE_CLASS:
986 		cmd_tables = gen7_video_cmd_table;
987 		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
988 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
989 		break;
990 	case COPY_ENGINE_CLASS:
991 		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
992 		if (GRAPHICS_VER(engine->i915) == 9) {
993 			cmd_tables = gen9_blt_cmd_table;
994 			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
995 			engine->get_cmd_length_mask =
996 				gen9_blt_get_cmd_length_mask;
997 
998 			/* BCS Engine unsafe without parser */
999 			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
1000 		} else if (IS_HASWELL(engine->i915)) {
1001 			cmd_tables = hsw_blt_ring_cmd_table;
1002 			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
1003 		} else {
1004 			cmd_tables = gen7_blt_cmd_table;
1005 			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
1006 		}
1007 
1008 		if (GRAPHICS_VER(engine->i915) == 9) {
1009 			engine->reg_tables = gen9_blt_reg_tables;
1010 			engine->reg_table_count =
1011 				ARRAY_SIZE(gen9_blt_reg_tables);
1012 		} else if (IS_HASWELL(engine->i915)) {
1013 			engine->reg_tables = hsw_blt_reg_tables;
1014 			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1015 		} else {
1016 			engine->reg_tables = ivb_blt_reg_tables;
1017 			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1018 		}
1019 		break;
1020 	case VIDEO_ENHANCEMENT_CLASS:
1021 		cmd_tables = hsw_vebox_cmd_table;
1022 		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1023 		/* VECS can use the same length_mask function as VCS */
1024 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1025 		break;
1026 	default:
1027 		MISSING_CASE(engine->class);
1028 		goto out;
1029 	}
1030 
1031 	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1032 		drm_err(&engine->i915->drm,
1033 			"%s: command descriptions are not sorted\n",
1034 			engine->name);
1035 		goto out;
1036 	}
1037 	if (!validate_regs_sorted(engine)) {
1038 		drm_err(&engine->i915->drm,
1039 			"%s: registers are not sorted\n", engine->name);
1040 		goto out;
1041 	}
1042 
1043 	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1044 	if (ret) {
1045 		drm_err(&engine->i915->drm,
1046 			"%s: initialised failed!\n", engine->name);
1047 		fini_hash_table(engine);
1048 		goto out;
1049 	}
1050 
1051 	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1052 
1053 out:
1054 	if (intel_engine_requires_cmd_parser(engine) &&
1055 	    !intel_engine_using_cmd_parser(engine))
1056 		return -EINVAL;
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1063  * @engine: the engine to clean up
1064  *
1065  * Releases any resources related to command parsing that may have been
1066  * initialized for the specified engine.
1067  */
intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)1068 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1069 {
1070 	if (!intel_engine_using_cmd_parser(engine))
1071 		return;
1072 
1073 	fini_hash_table(engine);
1074 }
1075 
1076 static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs * engine,u32 cmd_header)1077 find_cmd_in_table(struct intel_engine_cs *engine,
1078 		  u32 cmd_header)
1079 {
1080 	struct cmd_node *desc_node;
1081 
1082 	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1083 			       cmd_header_key(cmd_header)) {
1084 		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1085 		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1086 			return desc;
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 /*
1093  * Returns a pointer to a descriptor for the command specified by cmd_header.
1094  *
1095  * The caller must supply space for a default descriptor via the default_desc
1096  * parameter. If no descriptor for the specified command exists in the engine's
1097  * command parser tables, this function fills in default_desc based on the
1098  * engine's default length encoding and returns default_desc.
1099  */
1100 static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs * engine,u32 cmd_header,const struct drm_i915_cmd_descriptor * desc,struct drm_i915_cmd_descriptor * default_desc)1101 find_cmd(struct intel_engine_cs *engine,
1102 	 u32 cmd_header,
1103 	 const struct drm_i915_cmd_descriptor *desc,
1104 	 struct drm_i915_cmd_descriptor *default_desc)
1105 {
1106 	u32 mask;
1107 
1108 	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1109 		return desc;
1110 
1111 	desc = find_cmd_in_table(engine, cmd_header);
1112 	if (desc)
1113 		return desc;
1114 
1115 	mask = engine->get_cmd_length_mask(cmd_header);
1116 	if (!mask)
1117 		return NULL;
1118 
1119 	default_desc->cmd.value = cmd_header;
1120 	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1121 	default_desc->length.mask = mask;
1122 	default_desc->flags = CMD_DESC_SKIP;
1123 	return default_desc;
1124 }
1125 
1126 static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor * table,int count,u32 addr)1127 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1128 {
1129 	int start = 0, end = count;
1130 	while (start < end) {
1131 		int mid = start + (end - start) / 2;
1132 		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1133 		if (ret < 0)
1134 			end = mid;
1135 		else if (ret > 0)
1136 			start = mid + 1;
1137 		else
1138 			return &table[mid];
1139 	}
1140 	return NULL;
1141 }
1142 
1143 static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs * engine,u32 addr)1144 find_reg(const struct intel_engine_cs *engine, u32 addr)
1145 {
1146 	const struct drm_i915_reg_table *table = engine->reg_tables;
1147 	const struct drm_i915_reg_descriptor *reg = NULL;
1148 	int count = engine->reg_table_count;
1149 
1150 	for (; !reg && (count > 0); ++table, --count)
1151 		reg = __find_reg(table->regs, table->num_regs, addr);
1152 
1153 	return reg;
1154 }
1155 
1156 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
copy_batch(struct drm_i915_gem_object * dst_obj,struct drm_i915_gem_object * src_obj,unsigned long offset,unsigned long length,bool * needs_clflush_after)1157 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1158 		       struct drm_i915_gem_object *src_obj,
1159 		       unsigned long offset, unsigned long length,
1160 		       bool *needs_clflush_after)
1161 {
1162 	unsigned int src_needs_clflush;
1163 	unsigned int dst_needs_clflush;
1164 	void *dst, *src;
1165 	int ret;
1166 
1167 	ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1168 	if (ret)
1169 		return ERR_PTR(ret);
1170 
1171 	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1172 	i915_gem_object_finish_access(dst_obj);
1173 	if (IS_ERR(dst))
1174 		return dst;
1175 
1176 	ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1177 	if (ret) {
1178 		i915_gem_object_unpin_map(dst_obj);
1179 		return ERR_PTR(ret);
1180 	}
1181 
1182 	src = ERR_PTR(-ENODEV);
1183 	if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1184 		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1185 		if (!IS_ERR(src)) {
1186 			i915_unaligned_memcpy_from_wc(dst,
1187 						      src + offset,
1188 						      length);
1189 			i915_gem_object_unpin_map(src_obj);
1190 		}
1191 	}
1192 	if (IS_ERR(src)) {
1193 		unsigned long x, n, remain;
1194 		void *ptr;
1195 
1196 		/*
1197 		 * We can avoid clflushing partial cachelines before the write
1198 		 * if we only every write full cache-lines. Since we know that
1199 		 * both the source and destination are in multiples of
1200 		 * PAGE_SIZE, we can simply round up to the next cacheline.
1201 		 * We don't care about copying too much here as we only
1202 		 * validate up to the end of the batch.
1203 		 */
1204 		remain = length;
1205 		if (dst_needs_clflush & CLFLUSH_BEFORE)
1206 			remain = round_up(remain,
1207 					  boot_cpu_data.x86_clflush_size);
1208 
1209 		ptr = dst;
1210 		x = offset_in_page(offset);
1211 		for (n = offset >> PAGE_SHIFT; remain; n++) {
1212 			int len = min(remain, PAGE_SIZE - x);
1213 
1214 			src = kmap_local_page(i915_gem_object_get_page(src_obj, n));
1215 			if (src_needs_clflush)
1216 				drm_clflush_virt_range(src + x, len);
1217 			memcpy(ptr, src + x, len);
1218 			kunmap_local(src);
1219 
1220 			ptr += len;
1221 			remain -= len;
1222 			x = 0;
1223 		}
1224 	}
1225 
1226 	i915_gem_object_finish_access(src_obj);
1227 
1228 	memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1229 
1230 	/* dst_obj is returned with vmap pinned */
1231 	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1232 
1233 	return dst;
1234 }
1235 
cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,const u32 cmd)1236 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1237 			       const u32 cmd)
1238 {
1239 	return desc->cmd.value == (cmd & desc->cmd.mask);
1240 }
1241 
check_cmd(const struct intel_engine_cs * engine,const struct drm_i915_cmd_descriptor * desc,const u32 * cmd,u32 length)1242 static bool check_cmd(const struct intel_engine_cs *engine,
1243 		      const struct drm_i915_cmd_descriptor *desc,
1244 		      const u32 *cmd, u32 length)
1245 {
1246 	if (desc->flags & CMD_DESC_SKIP)
1247 		return true;
1248 
1249 	if (desc->flags & CMD_DESC_REJECT) {
1250 		DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1251 		return false;
1252 	}
1253 
1254 	if (desc->flags & CMD_DESC_REGISTER) {
1255 		/*
1256 		 * Get the distance between individual register offset
1257 		 * fields if the command can perform more than one
1258 		 * access at a time.
1259 		 */
1260 		const u32 step = desc->reg.step ? desc->reg.step : length;
1261 		u32 offset;
1262 
1263 		for (offset = desc->reg.offset; offset < length;
1264 		     offset += step) {
1265 			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1266 			const struct drm_i915_reg_descriptor *reg =
1267 				find_reg(engine, reg_addr);
1268 
1269 			if (!reg) {
1270 				DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1271 					  reg_addr, *cmd, engine->name);
1272 				return false;
1273 			}
1274 
1275 			/*
1276 			 * Check the value written to the register against the
1277 			 * allowed mask/value pair given in the whitelist entry.
1278 			 */
1279 			if (reg->mask) {
1280 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1281 					DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1282 						  reg_addr);
1283 					return false;
1284 				}
1285 
1286 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1287 					DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1288 						  reg_addr);
1289 					return false;
1290 				}
1291 
1292 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1293 				    (offset + 2 > length ||
1294 				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1295 					DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1296 						  reg_addr);
1297 					return false;
1298 				}
1299 			}
1300 		}
1301 	}
1302 
1303 	if (desc->flags & CMD_DESC_BITMASK) {
1304 		int i;
1305 
1306 		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1307 			u32 dword;
1308 
1309 			if (desc->bits[i].mask == 0)
1310 				break;
1311 
1312 			if (desc->bits[i].condition_mask != 0) {
1313 				u32 offset =
1314 					desc->bits[i].condition_offset;
1315 				u32 condition = cmd[offset] &
1316 					desc->bits[i].condition_mask;
1317 
1318 				if (condition == 0)
1319 					continue;
1320 			}
1321 
1322 			if (desc->bits[i].offset >= length) {
1323 				DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1324 					  *cmd, engine->name);
1325 				return false;
1326 			}
1327 
1328 			dword = cmd[desc->bits[i].offset] &
1329 				desc->bits[i].mask;
1330 
1331 			if (dword != desc->bits[i].expected) {
1332 				DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1333 					  *cmd,
1334 					  desc->bits[i].mask,
1335 					  desc->bits[i].expected,
1336 					  dword, engine->name);
1337 				return false;
1338 			}
1339 		}
1340 	}
1341 
1342 	return true;
1343 }
1344 
check_bbstart(u32 * cmd,u32 offset,u32 length,u32 batch_length,u64 batch_addr,u64 shadow_addr,const unsigned long * jump_whitelist)1345 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1346 			 u32 batch_length,
1347 			 u64 batch_addr,
1348 			 u64 shadow_addr,
1349 			 const unsigned long *jump_whitelist)
1350 {
1351 	u64 jump_offset, jump_target;
1352 	u32 target_cmd_offset, target_cmd_index;
1353 
1354 	/* For igt compatibility on older platforms */
1355 	if (!jump_whitelist) {
1356 		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1357 		return -EACCES;
1358 	}
1359 
1360 	if (length != 3) {
1361 		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1362 			  length);
1363 		return -EINVAL;
1364 	}
1365 
1366 	jump_target = *(u64 *)(cmd + 1);
1367 	jump_offset = jump_target - batch_addr;
1368 
1369 	/*
1370 	 * Any underflow of jump_target is guaranteed to be outside the range
1371 	 * of a u32, so >= test catches both too large and too small
1372 	 */
1373 	if (jump_offset >= batch_length) {
1374 		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1375 			  jump_target);
1376 		return -EINVAL;
1377 	}
1378 
1379 	/*
1380 	 * This cannot overflow a u32 because we already checked jump_offset
1381 	 * is within the BB, and the batch_length is a u32
1382 	 */
1383 	target_cmd_offset = lower_32_bits(jump_offset);
1384 	target_cmd_index = target_cmd_offset / sizeof(u32);
1385 
1386 	*(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1387 
1388 	if (target_cmd_index == offset)
1389 		return 0;
1390 
1391 	if (IS_ERR(jump_whitelist))
1392 		return PTR_ERR(jump_whitelist);
1393 
1394 	if (!test_bit(target_cmd_index, jump_whitelist)) {
1395 		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1396 			  jump_target);
1397 		return -EINVAL;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
alloc_whitelist(u32 batch_length)1403 static unsigned long *alloc_whitelist(u32 batch_length)
1404 {
1405 	unsigned long *jmp;
1406 
1407 	/*
1408 	 * We expect batch_length to be less than 256KiB for known users,
1409 	 * i.e. we need at most an 8KiB bitmap allocation which should be
1410 	 * reasonably cheap due to kmalloc caches.
1411 	 */
1412 
1413 	/* Prefer to report transient allocation failure rather than hit oom */
1414 	jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1415 			    GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1416 	if (!jmp)
1417 		return ERR_PTR(-ENOMEM);
1418 
1419 	return jmp;
1420 }
1421 
1422 #define LENGTH_BIAS 2
1423 
1424 /**
1425  * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1426  * @engine: the engine on which the batch is to execute
1427  * @batch: the batch buffer in question
1428  * @batch_offset: byte offset in the batch at which execution starts
1429  * @batch_length: length of the commands in batch_obj
1430  * @shadow: validated copy of the batch buffer in question
1431  * @trampoline: true if we need to trampoline into privileged execution
1432  *
1433  * Parses the specified batch buffer looking for privilege violations as
1434  * described in the overview.
1435  *
1436  * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1437  * if the batch appears legal but should use hardware parsing
1438  */
1439 
intel_engine_cmd_parser(struct intel_engine_cs * engine,struct i915_vma * batch,unsigned long batch_offset,unsigned long batch_length,struct i915_vma * shadow,bool trampoline)1440 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1441 			    struct i915_vma *batch,
1442 			    unsigned long batch_offset,
1443 			    unsigned long batch_length,
1444 			    struct i915_vma *shadow,
1445 			    bool trampoline)
1446 {
1447 	u32 *cmd, *batch_end, offset = 0;
1448 	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1449 	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1450 	bool needs_clflush_after = false;
1451 	unsigned long *jump_whitelist;
1452 	u64 batch_addr, shadow_addr;
1453 	int ret = 0;
1454 
1455 	GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1456 	GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1457 	GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1458 				     batch->size));
1459 	GEM_BUG_ON(!batch_length);
1460 
1461 	cmd = copy_batch(shadow->obj, batch->obj,
1462 			 batch_offset, batch_length,
1463 			 &needs_clflush_after);
1464 	if (IS_ERR(cmd)) {
1465 		DRM_DEBUG("CMD: Failed to copy batch\n");
1466 		return PTR_ERR(cmd);
1467 	}
1468 
1469 	jump_whitelist = NULL;
1470 	if (!trampoline)
1471 		/* Defer failure until attempted use */
1472 		jump_whitelist = alloc_whitelist(batch_length);
1473 
1474 	shadow_addr = gen8_canonical_addr(i915_vma_offset(shadow));
1475 	batch_addr = gen8_canonical_addr(i915_vma_offset(batch) + batch_offset);
1476 
1477 	/*
1478 	 * We use the batch length as size because the shadow object is as
1479 	 * large or larger and copy_batch() will write MI_NOPs to the extra
1480 	 * space. Parsing should be faster in some cases this way.
1481 	 */
1482 	batch_end = cmd + batch_length / sizeof(*batch_end);
1483 	do {
1484 		u32 length;
1485 
1486 		if (*cmd == MI_BATCH_BUFFER_END)
1487 			break;
1488 
1489 		desc = find_cmd(engine, *cmd, desc, &default_desc);
1490 		if (!desc) {
1491 			DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1492 			ret = -EINVAL;
1493 			break;
1494 		}
1495 
1496 		if (desc->flags & CMD_DESC_FIXED)
1497 			length = desc->length.fixed;
1498 		else
1499 			length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1500 
1501 		if ((batch_end - cmd) < length) {
1502 			DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1503 				  *cmd,
1504 				  length,
1505 				  batch_end - cmd);
1506 			ret = -EINVAL;
1507 			break;
1508 		}
1509 
1510 		if (!check_cmd(engine, desc, cmd, length)) {
1511 			ret = -EACCES;
1512 			break;
1513 		}
1514 
1515 		if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1516 			ret = check_bbstart(cmd, offset, length, batch_length,
1517 					    batch_addr, shadow_addr,
1518 					    jump_whitelist);
1519 			break;
1520 		}
1521 
1522 		if (!IS_ERR_OR_NULL(jump_whitelist))
1523 			__set_bit(offset, jump_whitelist);
1524 
1525 		cmd += length;
1526 		offset += length;
1527 		if  (cmd >= batch_end) {
1528 			DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1529 			ret = -EINVAL;
1530 			break;
1531 		}
1532 	} while (1);
1533 
1534 	if (trampoline) {
1535 		/*
1536 		 * With the trampoline, the shadow is executed twice.
1537 		 *
1538 		 *   1 - starting at offset 0, in privileged mode
1539 		 *   2 - starting at offset batch_len, as non-privileged
1540 		 *
1541 		 * Only if the batch is valid and safe to execute, do we
1542 		 * allow the first privileged execution to proceed. If not,
1543 		 * we terminate the first batch and use the second batchbuffer
1544 		 * entry to chain to the original unsafe non-privileged batch,
1545 		 * leaving it to the HW to validate.
1546 		 */
1547 		*batch_end = MI_BATCH_BUFFER_END;
1548 
1549 		if (ret) {
1550 			/* Batch unsafe to execute with privileges, cancel! */
1551 			cmd = page_mask_bits(shadow->obj->mm.mapping);
1552 			*cmd = MI_BATCH_BUFFER_END;
1553 
1554 			/* If batch is unsafe but valid, jump to the original */
1555 			if (ret == -EACCES) {
1556 				unsigned int flags;
1557 
1558 				flags = MI_BATCH_NON_SECURE_I965;
1559 				if (IS_HASWELL(engine->i915))
1560 					flags = MI_BATCH_NON_SECURE_HSW;
1561 
1562 				GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7));
1563 				__gen6_emit_bb_start(batch_end,
1564 						     batch_addr,
1565 						     flags);
1566 
1567 				ret = 0; /* allow execution */
1568 			}
1569 		}
1570 	}
1571 
1572 	i915_gem_object_flush_map(shadow->obj);
1573 
1574 	if (!IS_ERR_OR_NULL(jump_whitelist))
1575 		kfree(jump_whitelist);
1576 	i915_gem_object_unpin_map(shadow->obj);
1577 	return ret;
1578 }
1579 
1580 /**
1581  * i915_cmd_parser_get_version() - get the cmd parser version number
1582  * @dev_priv: i915 device private
1583  *
1584  * The cmd parser maintains a simple increasing integer version number suitable
1585  * for passing to userspace clients to determine what operations are permitted.
1586  *
1587  * Return: the current version number of the cmd parser
1588  */
i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)1589 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1590 {
1591 	struct intel_engine_cs *engine;
1592 	bool active = false;
1593 
1594 	/* If the command parser is not enabled, report 0 - unsupported */
1595 	for_each_uabi_engine(engine, dev_priv) {
1596 		if (intel_engine_using_cmd_parser(engine)) {
1597 			active = true;
1598 			break;
1599 		}
1600 	}
1601 	if (!active)
1602 		return 0;
1603 
1604 	/*
1605 	 * Command parser version history
1606 	 *
1607 	 * 1. Initial version. Checks batches and reports violations, but leaves
1608 	 *    hardware parsing enabled (so does not allow new use cases).
1609 	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1610 	 *    MI_PREDICATE_SRC1 registers.
1611 	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1612 	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1613 	 * 5. GPGPU dispatch compute indirect registers.
1614 	 * 6. TIMESTAMP register and Haswell CS GPR registers
1615 	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1616 	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1617 	 *    rely on the HW to NOOP disallowed commands as it would without
1618 	 *    the parser enabled.
1619 	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1620 	 *    for oacontrol state is moving to i915-perf.
1621 	 * 10. Support for Gen9 BCS Parsing
1622 	 */
1623 	return 10;
1624 }
1625