1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 #include "i40e_alloc.h"
7 #include "i40e_prototype.h"
8 
9 /**
10  * i40e_init_nvm - Initialize NVM function pointers
11  * @hw: pointer to the HW structure
12  *
13  * Setup the function pointers and the NVM info structure. Should be called
14  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15  * Please notice that the NVM term is used here (& in all methods covered
16  * in this file) as an equivalent of the FLASH part mapped into the SR.
17  * We are accessing FLASH always thru the Shadow RAM.
18  **/
i40e_init_nvm(struct i40e_hw * hw)19 int i40e_init_nvm(struct i40e_hw *hw)
20 {
21 	struct i40e_nvm_info *nvm = &hw->nvm;
22 	int ret_code = 0;
23 	u32 fla, gens;
24 	u8 sr_size;
25 
26 	/* The SR size is stored regardless of the nvm programming mode
27 	 * as the blank mode may be used in the factory line.
28 	 */
29 	gens = rd32(hw, I40E_GLNVM_GENS);
30 	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
31 	/* Switching to words (sr_size contains power of 2KB) */
32 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
33 
34 	/* Check if we are in the normal or blank NVM programming mode */
35 	fla = rd32(hw, I40E_GLNVM_FLA);
36 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
37 		/* Max NVM timeout */
38 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
39 		nvm->blank_nvm_mode = false;
40 	} else { /* Blank programming mode */
41 		nvm->blank_nvm_mode = true;
42 		ret_code = -EIO;
43 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
44 	}
45 
46 	return ret_code;
47 }
48 
49 /**
50  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
51  * @hw: pointer to the HW structure
52  * @access: NVM access type (read or write)
53  *
54  * This function will request NVM ownership for reading
55  * via the proper Admin Command.
56  **/
i40e_acquire_nvm(struct i40e_hw * hw,enum i40e_aq_resource_access_type access)57 int i40e_acquire_nvm(struct i40e_hw *hw,
58 		     enum i40e_aq_resource_access_type access)
59 {
60 	u64 gtime, timeout;
61 	u64 time_left = 0;
62 	int ret_code = 0;
63 
64 	if (hw->nvm.blank_nvm_mode)
65 		goto i40e_i40e_acquire_nvm_exit;
66 
67 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
68 					    0, &time_left, NULL);
69 	/* Reading the Global Device Timer */
70 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
71 
72 	/* Store the timeout */
73 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
74 
75 	if (ret_code)
76 		i40e_debug(hw, I40E_DEBUG_NVM,
77 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
78 			   access, time_left, ret_code, hw->aq.asq_last_status);
79 
80 	if (ret_code && time_left) {
81 		/* Poll until the current NVM owner timeouts */
82 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
83 		while ((gtime < timeout) && time_left) {
84 			usleep_range(10000, 20000);
85 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
86 			ret_code = i40e_aq_request_resource(hw,
87 							I40E_NVM_RESOURCE_ID,
88 							access, 0, &time_left,
89 							NULL);
90 			if (!ret_code) {
91 				hw->nvm.hw_semaphore_timeout =
92 					    I40E_MS_TO_GTIME(time_left) + gtime;
93 				break;
94 			}
95 		}
96 		if (ret_code) {
97 			hw->nvm.hw_semaphore_timeout = 0;
98 			i40e_debug(hw, I40E_DEBUG_NVM,
99 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
100 				   time_left, ret_code, hw->aq.asq_last_status);
101 		}
102 	}
103 
104 i40e_i40e_acquire_nvm_exit:
105 	return ret_code;
106 }
107 
108 /**
109  * i40e_release_nvm - Generic request for releasing the NVM ownership
110  * @hw: pointer to the HW structure
111  *
112  * This function will release NVM resource via the proper Admin Command.
113  **/
i40e_release_nvm(struct i40e_hw * hw)114 void i40e_release_nvm(struct i40e_hw *hw)
115 {
116 	u32 total_delay = 0;
117 	int ret_code = 0;
118 
119 	if (hw->nvm.blank_nvm_mode)
120 		return;
121 
122 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
123 
124 	/* there are some rare cases when trying to release the resource
125 	 * results in an admin Q timeout, so handle them correctly
126 	 */
127 	while ((ret_code == -EIO) &&
128 	       (total_delay < hw->aq.asq_cmd_timeout)) {
129 		usleep_range(1000, 2000);
130 		ret_code = i40e_aq_release_resource(hw,
131 						    I40E_NVM_RESOURCE_ID,
132 						    0, NULL);
133 		total_delay++;
134 	}
135 }
136 
137 /**
138  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
139  * @hw: pointer to the HW structure
140  *
141  * Polls the SRCTL Shadow RAM register done bit.
142  **/
i40e_poll_sr_srctl_done_bit(struct i40e_hw * hw)143 static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
144 {
145 	int ret_code = -EIO;
146 	u32 srctl, wait_cnt;
147 
148 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
149 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
150 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
151 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
152 			ret_code = 0;
153 			break;
154 		}
155 		udelay(5);
156 	}
157 	if (ret_code == -EIO)
158 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
159 	return ret_code;
160 }
161 
162 /**
163  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
164  * @hw: pointer to the HW structure
165  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
166  * @data: word read from the Shadow RAM
167  *
168  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
169  **/
i40e_read_nvm_word_srctl(struct i40e_hw * hw,u16 offset,u16 * data)170 static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
171 				    u16 *data)
172 {
173 	int ret_code = -EIO;
174 	u32 sr_reg;
175 
176 	if (offset >= hw->nvm.sr_size) {
177 		i40e_debug(hw, I40E_DEBUG_NVM,
178 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
179 			   offset, hw->nvm.sr_size);
180 		ret_code = -EINVAL;
181 		goto read_nvm_exit;
182 	}
183 
184 	/* Poll the done bit first */
185 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
186 	if (!ret_code) {
187 		/* Write the address and start reading */
188 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
189 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
190 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
191 
192 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
193 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
194 		if (!ret_code) {
195 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
196 			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
197 					  sr_reg);
198 		}
199 	}
200 	if (ret_code)
201 		i40e_debug(hw, I40E_DEBUG_NVM,
202 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
203 			   offset);
204 
205 read_nvm_exit:
206 	return ret_code;
207 }
208 
209 /**
210  * i40e_read_nvm_aq - Read Shadow RAM.
211  * @hw: pointer to the HW structure.
212  * @module_pointer: module pointer location in words from the NVM beginning
213  * @offset: offset in words from module start
214  * @words: number of words to read
215  * @data: buffer with words to read to the Shadow RAM
216  * @last_command: tells the AdminQ that this is the last command
217  *
218  * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
219  **/
i40e_read_nvm_aq(struct i40e_hw * hw,u8 module_pointer,u32 offset,u16 words,void * data,bool last_command)220 static int i40e_read_nvm_aq(struct i40e_hw *hw,
221 			    u8 module_pointer, u32 offset,
222 			    u16 words, void *data,
223 			    bool last_command)
224 {
225 	struct i40e_asq_cmd_details cmd_details;
226 	int ret_code = -EIO;
227 
228 	memset(&cmd_details, 0, sizeof(cmd_details));
229 	cmd_details.wb_desc = &hw->nvm_wb_desc;
230 
231 	/* Here we are checking the SR limit only for the flat memory model.
232 	 * We cannot do it for the module-based model, as we did not acquire
233 	 * the NVM resource yet (we cannot get the module pointer value).
234 	 * Firmware will check the module-based model.
235 	 */
236 	if ((offset + words) > hw->nvm.sr_size)
237 		i40e_debug(hw, I40E_DEBUG_NVM,
238 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
239 			   (offset + words), hw->nvm.sr_size);
240 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
241 		/* We can read only up to 4KB (one sector), in one AQ write */
242 		i40e_debug(hw, I40E_DEBUG_NVM,
243 			   "NVM read fail error: tried to read %d words, limit is %d.\n",
244 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
245 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
246 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
247 		/* A single read cannot spread over two sectors */
248 		i40e_debug(hw, I40E_DEBUG_NVM,
249 			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
250 			   offset, words);
251 	else
252 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
253 					    2 * offset,  /*bytes*/
254 					    2 * words,   /*bytes*/
255 					    data, last_command, &cmd_details);
256 
257 	return ret_code;
258 }
259 
260 /**
261  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
262  * @hw: pointer to the HW structure
263  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
264  * @data: word read from the Shadow RAM
265  *
266  * Reads one 16 bit word from the Shadow RAM using the AdminQ
267  **/
i40e_read_nvm_word_aq(struct i40e_hw * hw,u16 offset,u16 * data)268 static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
269 				 u16 *data)
270 {
271 	int ret_code = -EIO;
272 
273 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
274 	*data = le16_to_cpu(*(__le16 *)data);
275 
276 	return ret_code;
277 }
278 
279 /**
280  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
281  * @hw: pointer to the HW structure
282  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
283  * @data: word read from the Shadow RAM
284  *
285  * Reads one 16 bit word from the Shadow RAM.
286  *
287  * Do not use this function except in cases where the nvm lock is already
288  * taken via i40e_acquire_nvm().
289  **/
__i40e_read_nvm_word(struct i40e_hw * hw,u16 offset,u16 * data)290 static int __i40e_read_nvm_word(struct i40e_hw *hw,
291 				u16 offset, u16 *data)
292 {
293 	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
294 		return i40e_read_nvm_word_aq(hw, offset, data);
295 
296 	return i40e_read_nvm_word_srctl(hw, offset, data);
297 }
298 
299 /**
300  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
301  * @hw: pointer to the HW structure
302  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
303  * @data: word read from the Shadow RAM
304  *
305  * Reads one 16 bit word from the Shadow RAM.
306  **/
i40e_read_nvm_word(struct i40e_hw * hw,u16 offset,u16 * data)307 int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
308 		       u16 *data)
309 {
310 	int ret_code = 0;
311 
312 	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
313 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
314 	if (ret_code)
315 		return ret_code;
316 
317 	ret_code = __i40e_read_nvm_word(hw, offset, data);
318 
319 	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
320 		i40e_release_nvm(hw);
321 
322 	return ret_code;
323 }
324 
325 /**
326  * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
327  * @hw: Pointer to the HW structure
328  * @module_ptr: Pointer to module in words with respect to NVM beginning
329  * @module_offset: Offset in words from module start
330  * @data_offset: Offset in words from reading data area start
331  * @words_data_size: Words to read from NVM
332  * @data_ptr: Pointer to memory location where resulting buffer will be stored
333  **/
i40e_read_nvm_module_data(struct i40e_hw * hw,u8 module_ptr,u16 module_offset,u16 data_offset,u16 words_data_size,u16 * data_ptr)334 int i40e_read_nvm_module_data(struct i40e_hw *hw,
335 			      u8 module_ptr,
336 			      u16 module_offset,
337 			      u16 data_offset,
338 			      u16 words_data_size,
339 			      u16 *data_ptr)
340 {
341 	u16 specific_ptr = 0;
342 	u16 ptr_value = 0;
343 	u32 offset = 0;
344 	int status;
345 
346 	if (module_ptr != 0) {
347 		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
348 		if (status) {
349 			i40e_debug(hw, I40E_DEBUG_ALL,
350 				   "Reading nvm word failed.Error code: %d.\n",
351 				   status);
352 			return -EIO;
353 		}
354 	}
355 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF
356 #define I40E_NVM_INVALID_VAL 0xFFFF
357 
358 	/* Pointer not initialized */
359 	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
360 	    ptr_value == I40E_NVM_INVALID_VAL) {
361 		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
362 		return -EINVAL;
363 	}
364 
365 	/* Check whether the module is in SR mapped area or outside */
366 	if (ptr_value & I40E_PTR_TYPE) {
367 		/* Pointer points outside of the Shared RAM mapped area */
368 		i40e_debug(hw, I40E_DEBUG_ALL,
369 			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
370 
371 		return -EINVAL;
372 	} else {
373 		/* Read from the Shadow RAM */
374 
375 		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
376 					    &specific_ptr);
377 		if (status) {
378 			i40e_debug(hw, I40E_DEBUG_ALL,
379 				   "Reading nvm word failed.Error code: %d.\n",
380 				   status);
381 			return -EIO;
382 		}
383 
384 		offset = ptr_value + module_offset + specific_ptr +
385 			data_offset;
386 
387 		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
388 					      data_ptr);
389 		if (status) {
390 			i40e_debug(hw, I40E_DEBUG_ALL,
391 				   "Reading nvm buffer failed.Error code: %d.\n",
392 				   status);
393 		}
394 	}
395 
396 	return status;
397 }
398 
399 /**
400  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
401  * @hw: pointer to the HW structure
402  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
403  * @words: (in) number of words to read; (out) number of words actually read
404  * @data: words read from the Shadow RAM
405  *
406  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
407  * method. The buffer read is preceded by the NVM ownership take
408  * and followed by the release.
409  **/
i40e_read_nvm_buffer_srctl(struct i40e_hw * hw,u16 offset,u16 * words,u16 * data)410 static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
411 				      u16 *words, u16 *data)
412 {
413 	int ret_code = 0;
414 	u16 index, word;
415 
416 	/* Loop thru the selected region */
417 	for (word = 0; word < *words; word++) {
418 		index = offset + word;
419 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
420 		if (ret_code)
421 			break;
422 	}
423 
424 	/* Update the number of words read from the Shadow RAM */
425 	*words = word;
426 
427 	return ret_code;
428 }
429 
430 /**
431  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
432  * @hw: pointer to the HW structure
433  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
434  * @words: (in) number of words to read; (out) number of words actually read
435  * @data: words read from the Shadow RAM
436  *
437  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
438  * method. The buffer read is preceded by the NVM ownership take
439  * and followed by the release.
440  **/
i40e_read_nvm_buffer_aq(struct i40e_hw * hw,u16 offset,u16 * words,u16 * data)441 static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
442 				   u16 *words, u16 *data)
443 {
444 	bool last_cmd = false;
445 	u16 words_read = 0;
446 	u16 read_size;
447 	int ret_code;
448 	u16 i = 0;
449 
450 	do {
451 		/* Calculate number of bytes we should read in this step.
452 		 * FVL AQ do not allow to read more than one page at a time or
453 		 * to cross page boundaries.
454 		 */
455 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
456 			read_size = min(*words,
457 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
458 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
459 		else
460 			read_size = min((*words - words_read),
461 					I40E_SR_SECTOR_SIZE_IN_WORDS);
462 
463 		/* Check if this is last command, if so set proper flag */
464 		if ((words_read + read_size) >= *words)
465 			last_cmd = true;
466 
467 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
468 					    data + words_read, last_cmd);
469 		if (ret_code)
470 			goto read_nvm_buffer_aq_exit;
471 
472 		/* Increment counter for words already read and move offset to
473 		 * new read location
474 		 */
475 		words_read += read_size;
476 		offset += read_size;
477 	} while (words_read < *words);
478 
479 	for (i = 0; i < *words; i++)
480 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
481 
482 read_nvm_buffer_aq_exit:
483 	*words = words_read;
484 	return ret_code;
485 }
486 
487 /**
488  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
489  * @hw: pointer to the HW structure
490  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
491  * @words: (in) number of words to read; (out) number of words actually read
492  * @data: words read from the Shadow RAM
493  *
494  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
495  * method.
496  **/
__i40e_read_nvm_buffer(struct i40e_hw * hw,u16 offset,u16 * words,u16 * data)497 static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
498 				  u16 offset, u16 *words,
499 				  u16 *data)
500 {
501 	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
502 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
503 
504 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
505 }
506 
507 /**
508  * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
509  * @hw: pointer to the HW structure
510  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
511  * @words: (in) number of words to read; (out) number of words actually read
512  * @data: words read from the Shadow RAM
513  *
514  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
515  * method. The buffer read is preceded by the NVM ownership take
516  * and followed by the release.
517  **/
i40e_read_nvm_buffer(struct i40e_hw * hw,u16 offset,u16 * words,u16 * data)518 int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
519 			 u16 *words, u16 *data)
520 {
521 	int ret_code = 0;
522 
523 	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
524 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
525 		if (!ret_code) {
526 			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
527 							   data);
528 			i40e_release_nvm(hw);
529 		}
530 	} else {
531 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
532 	}
533 
534 	return ret_code;
535 }
536 
537 /**
538  * i40e_write_nvm_aq - Writes Shadow RAM.
539  * @hw: pointer to the HW structure.
540  * @module_pointer: module pointer location in words from the NVM beginning
541  * @offset: offset in words from module start
542  * @words: number of words to write
543  * @data: buffer with words to write to the Shadow RAM
544  * @last_command: tells the AdminQ that this is the last command
545  *
546  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
547  **/
i40e_write_nvm_aq(struct i40e_hw * hw,u8 module_pointer,u32 offset,u16 words,void * data,bool last_command)548 static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
549 			     u32 offset, u16 words, void *data,
550 			     bool last_command)
551 {
552 	struct i40e_asq_cmd_details cmd_details;
553 	int ret_code = -EIO;
554 
555 	memset(&cmd_details, 0, sizeof(cmd_details));
556 	cmd_details.wb_desc = &hw->nvm_wb_desc;
557 
558 	/* Here we are checking the SR limit only for the flat memory model.
559 	 * We cannot do it for the module-based model, as we did not acquire
560 	 * the NVM resource yet (we cannot get the module pointer value).
561 	 * Firmware will check the module-based model.
562 	 */
563 	if ((offset + words) > hw->nvm.sr_size)
564 		i40e_debug(hw, I40E_DEBUG_NVM,
565 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
566 			   (offset + words), hw->nvm.sr_size);
567 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
568 		/* We can write only up to 4KB (one sector), in one AQ write */
569 		i40e_debug(hw, I40E_DEBUG_NVM,
570 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
571 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
572 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
573 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
574 		/* A single write cannot spread over two sectors */
575 		i40e_debug(hw, I40E_DEBUG_NVM,
576 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
577 			   offset, words);
578 	else
579 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
580 					      2 * offset,  /*bytes*/
581 					      2 * words,   /*bytes*/
582 					      data, last_command, 0,
583 					      &cmd_details);
584 
585 	return ret_code;
586 }
587 
588 /**
589  * i40e_calc_nvm_checksum - Calculates and returns the checksum
590  * @hw: pointer to hardware structure
591  * @checksum: pointer to the checksum
592  *
593  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
594  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
595  * is customer specific and unknown. Therefore, this function skips all maximum
596  * possible size of VPD (1kB).
597  **/
i40e_calc_nvm_checksum(struct i40e_hw * hw,u16 * checksum)598 static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
599 				  u16 *checksum)
600 {
601 	struct i40e_virt_mem vmem;
602 	u16 pcie_alt_module = 0;
603 	u16 checksum_local = 0;
604 	u16 vpd_module = 0;
605 	int ret_code;
606 	u16 *data;
607 	u16 i = 0;
608 
609 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
610 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
611 	if (ret_code)
612 		goto i40e_calc_nvm_checksum_exit;
613 	data = (u16 *)vmem.va;
614 
615 	/* read pointer to VPD area */
616 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
617 	if (ret_code) {
618 		ret_code = -EIO;
619 		goto i40e_calc_nvm_checksum_exit;
620 	}
621 
622 	/* read pointer to PCIe Alt Auto-load module */
623 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
624 					&pcie_alt_module);
625 	if (ret_code) {
626 		ret_code = -EIO;
627 		goto i40e_calc_nvm_checksum_exit;
628 	}
629 
630 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
631 	 * except the VPD and PCIe ALT Auto-load modules
632 	 */
633 	for (i = 0; i < hw->nvm.sr_size; i++) {
634 		/* Read SR page */
635 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
636 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
637 
638 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
639 			if (ret_code) {
640 				ret_code = -EIO;
641 				goto i40e_calc_nvm_checksum_exit;
642 			}
643 		}
644 
645 		/* Skip Checksum word */
646 		if (i == I40E_SR_SW_CHECKSUM_WORD)
647 			continue;
648 		/* Skip VPD module (convert byte size to word count) */
649 		if ((i >= (u32)vpd_module) &&
650 		    (i < ((u32)vpd_module +
651 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
652 			continue;
653 		}
654 		/* Skip PCIe ALT module (convert byte size to word count) */
655 		if ((i >= (u32)pcie_alt_module) &&
656 		    (i < ((u32)pcie_alt_module +
657 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
658 			continue;
659 		}
660 
661 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
662 	}
663 
664 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
665 
666 i40e_calc_nvm_checksum_exit:
667 	i40e_free_virt_mem(hw, &vmem);
668 	return ret_code;
669 }
670 
671 /**
672  * i40e_update_nvm_checksum - Updates the NVM checksum
673  * @hw: pointer to hardware structure
674  *
675  * NVM ownership must be acquired before calling this function and released
676  * on ARQ completion event reception by caller.
677  * This function will commit SR to NVM.
678  **/
i40e_update_nvm_checksum(struct i40e_hw * hw)679 int i40e_update_nvm_checksum(struct i40e_hw *hw)
680 {
681 	__le16 le_sum;
682 	int ret_code;
683 	u16 checksum;
684 
685 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
686 	if (!ret_code) {
687 		le_sum = cpu_to_le16(checksum);
688 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
689 					     1, &le_sum, true);
690 	}
691 
692 	return ret_code;
693 }
694 
695 /**
696  * i40e_validate_nvm_checksum - Validate EEPROM checksum
697  * @hw: pointer to hardware structure
698  * @checksum: calculated checksum
699  *
700  * Performs checksum calculation and validates the NVM SW checksum. If the
701  * caller does not need checksum, the value can be NULL.
702  **/
i40e_validate_nvm_checksum(struct i40e_hw * hw,u16 * checksum)703 int i40e_validate_nvm_checksum(struct i40e_hw *hw,
704 			       u16 *checksum)
705 {
706 	u16 checksum_local = 0;
707 	u16 checksum_sr = 0;
708 	int ret_code = 0;
709 
710 	/* We must acquire the NVM lock in order to correctly synchronize the
711 	 * NVM accesses across multiple PFs. Without doing so it is possible
712 	 * for one of the PFs to read invalid data potentially indicating that
713 	 * the checksum is invalid.
714 	 */
715 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
716 	if (ret_code)
717 		return ret_code;
718 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
719 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
720 	i40e_release_nvm(hw);
721 	if (ret_code)
722 		return ret_code;
723 
724 	/* Verify read checksum from EEPROM is the same as
725 	 * calculated checksum
726 	 */
727 	if (checksum_local != checksum_sr)
728 		ret_code = -EIO;
729 
730 	/* If the user cares, return the calculated checksum */
731 	if (checksum)
732 		*checksum = checksum_local;
733 
734 	return ret_code;
735 }
736 
i40e_nvmupd_get_module(u32 val)737 static u8 i40e_nvmupd_get_module(u32 val)
738 {
739 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
740 }
i40e_nvmupd_get_transaction(u32 val)741 static inline u8 i40e_nvmupd_get_transaction(u32 val)
742 {
743 	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
744 }
745 
i40e_nvmupd_get_preservation_flags(u32 val)746 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
747 {
748 	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
749 }
750 
751 static const char * const i40e_nvm_update_state_str[] = {
752 	"I40E_NVMUPD_INVALID",
753 	"I40E_NVMUPD_READ_CON",
754 	"I40E_NVMUPD_READ_SNT",
755 	"I40E_NVMUPD_READ_LCB",
756 	"I40E_NVMUPD_READ_SA",
757 	"I40E_NVMUPD_WRITE_ERA",
758 	"I40E_NVMUPD_WRITE_CON",
759 	"I40E_NVMUPD_WRITE_SNT",
760 	"I40E_NVMUPD_WRITE_LCB",
761 	"I40E_NVMUPD_WRITE_SA",
762 	"I40E_NVMUPD_CSUM_CON",
763 	"I40E_NVMUPD_CSUM_SA",
764 	"I40E_NVMUPD_CSUM_LCB",
765 	"I40E_NVMUPD_STATUS",
766 	"I40E_NVMUPD_EXEC_AQ",
767 	"I40E_NVMUPD_GET_AQ_RESULT",
768 	"I40E_NVMUPD_GET_AQ_EVENT",
769 };
770 
771 /**
772  * i40e_nvmupd_validate_command - Validate given command
773  * @hw: pointer to hardware structure
774  * @cmd: pointer to nvm update command buffer
775  * @perrno: pointer to return error code
776  *
777  * Return one of the valid command types or I40E_NVMUPD_INVALID
778  **/
779 static enum i40e_nvmupd_cmd
i40e_nvmupd_validate_command(struct i40e_hw * hw,struct i40e_nvm_access * cmd,int * perrno)780 i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd,
781 			     int *perrno)
782 {
783 	enum i40e_nvmupd_cmd upd_cmd;
784 	u8 module, transaction;
785 
786 	/* anything that doesn't match a recognized case is an error */
787 	upd_cmd = I40E_NVMUPD_INVALID;
788 
789 	transaction = i40e_nvmupd_get_transaction(cmd->config);
790 	module = i40e_nvmupd_get_module(cmd->config);
791 
792 	/* limits on data size */
793 	if (cmd->data_size < 1 || cmd->data_size > I40E_NVMUPD_MAX_DATA) {
794 		i40e_debug(hw, I40E_DEBUG_NVM,
795 			   "%s data_size %d\n", __func__, cmd->data_size);
796 		*perrno = -EFAULT;
797 		return I40E_NVMUPD_INVALID;
798 	}
799 
800 	switch (cmd->command) {
801 	case I40E_NVM_READ:
802 		switch (transaction) {
803 		case I40E_NVM_CON:
804 			upd_cmd = I40E_NVMUPD_READ_CON;
805 			break;
806 		case I40E_NVM_SNT:
807 			upd_cmd = I40E_NVMUPD_READ_SNT;
808 			break;
809 		case I40E_NVM_LCB:
810 			upd_cmd = I40E_NVMUPD_READ_LCB;
811 			break;
812 		case I40E_NVM_SA:
813 			upd_cmd = I40E_NVMUPD_READ_SA;
814 			break;
815 		case I40E_NVM_EXEC:
816 			if (module == 0xf)
817 				upd_cmd = I40E_NVMUPD_STATUS;
818 			else if (module == 0)
819 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
820 			break;
821 		case I40E_NVM_AQE:
822 			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
823 			break;
824 		}
825 		break;
826 
827 	case I40E_NVM_WRITE:
828 		switch (transaction) {
829 		case I40E_NVM_CON:
830 			upd_cmd = I40E_NVMUPD_WRITE_CON;
831 			break;
832 		case I40E_NVM_SNT:
833 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
834 			break;
835 		case I40E_NVM_LCB:
836 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
837 			break;
838 		case I40E_NVM_SA:
839 			upd_cmd = I40E_NVMUPD_WRITE_SA;
840 			break;
841 		case I40E_NVM_ERA:
842 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
843 			break;
844 		case I40E_NVM_CSUM:
845 			upd_cmd = I40E_NVMUPD_CSUM_CON;
846 			break;
847 		case (I40E_NVM_CSUM | I40E_NVM_SA):
848 			upd_cmd = I40E_NVMUPD_CSUM_SA;
849 			break;
850 		case (I40E_NVM_CSUM | I40E_NVM_LCB):
851 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
852 			break;
853 		case I40E_NVM_EXEC:
854 			if (module == 0)
855 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
856 			break;
857 		}
858 		break;
859 	}
860 
861 	return upd_cmd;
862 }
863 
864 /**
865  * i40e_nvmupd_nvm_erase - Erase an NVM module
866  * @hw: pointer to hardware structure
867  * @cmd: pointer to nvm update command buffer
868  * @perrno: pointer to return error code
869  *
870  * module, offset, data_size and data are in cmd structure
871  **/
i40e_nvmupd_nvm_erase(struct i40e_hw * hw,struct i40e_nvm_access * cmd,int * perrno)872 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
873 				 struct i40e_nvm_access *cmd,
874 				 int *perrno)
875 {
876 	struct i40e_asq_cmd_details cmd_details;
877 	u8 module, transaction;
878 	int status = 0;
879 	bool last;
880 
881 	transaction = i40e_nvmupd_get_transaction(cmd->config);
882 	module = i40e_nvmupd_get_module(cmd->config);
883 	last = (transaction & I40E_NVM_LCB);
884 
885 	memset(&cmd_details, 0, sizeof(cmd_details));
886 	cmd_details.wb_desc = &hw->nvm_wb_desc;
887 
888 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
889 				   last, &cmd_details);
890 	if (status) {
891 		i40e_debug(hw, I40E_DEBUG_NVM,
892 			   "%s mod 0x%x  off 0x%x len 0x%x\n",
893 			   __func__, module, cmd->offset, cmd->data_size);
894 		i40e_debug(hw, I40E_DEBUG_NVM,
895 			   "%s status %d aq %d\n",
896 			   __func__, status, hw->aq.asq_last_status);
897 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
898 	}
899 
900 	return status;
901 }
902 
903 /**
904  * i40e_nvmupd_nvm_write - Write NVM
905  * @hw: pointer to hardware structure
906  * @cmd: pointer to nvm update command buffer
907  * @bytes: pointer to the data buffer
908  * @perrno: pointer to return error code
909  *
910  * module, offset, data_size and data are in cmd structure
911  **/
i40e_nvmupd_nvm_write(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)912 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
913 				 struct i40e_nvm_access *cmd,
914 				 u8 *bytes, int *perrno)
915 {
916 	struct i40e_asq_cmd_details cmd_details;
917 	u8 module, transaction;
918 	u8 preservation_flags;
919 	int status = 0;
920 	bool last;
921 
922 	transaction = i40e_nvmupd_get_transaction(cmd->config);
923 	module = i40e_nvmupd_get_module(cmd->config);
924 	last = (transaction & I40E_NVM_LCB);
925 	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
926 
927 	memset(&cmd_details, 0, sizeof(cmd_details));
928 	cmd_details.wb_desc = &hw->nvm_wb_desc;
929 
930 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
931 				    (u16)cmd->data_size, bytes, last,
932 				    preservation_flags, &cmd_details);
933 	if (status) {
934 		i40e_debug(hw, I40E_DEBUG_NVM,
935 			   "%s mod 0x%x off 0x%x len 0x%x\n",
936 			   __func__, module, cmd->offset, cmd->data_size);
937 		i40e_debug(hw, I40E_DEBUG_NVM,
938 			   "%s status %d aq %d\n",
939 			   __func__, status, hw->aq.asq_last_status);
940 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
941 	}
942 
943 	return status;
944 }
945 
946 /**
947  * i40e_nvmupd_nvm_read - Read NVM
948  * @hw: pointer to hardware structure
949  * @cmd: pointer to nvm update command buffer
950  * @bytes: pointer to the data buffer
951  * @perrno: pointer to return error code
952  *
953  * cmd structure contains identifiers and data buffer
954  **/
i40e_nvmupd_nvm_read(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)955 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
956 				struct i40e_nvm_access *cmd,
957 				u8 *bytes, int *perrno)
958 {
959 	struct i40e_asq_cmd_details cmd_details;
960 	u8 module, transaction;
961 	int status;
962 	bool last;
963 
964 	transaction = i40e_nvmupd_get_transaction(cmd->config);
965 	module = i40e_nvmupd_get_module(cmd->config);
966 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
967 
968 	memset(&cmd_details, 0, sizeof(cmd_details));
969 	cmd_details.wb_desc = &hw->nvm_wb_desc;
970 
971 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
972 				  bytes, last, &cmd_details);
973 	if (status) {
974 		i40e_debug(hw, I40E_DEBUG_NVM,
975 			   "%s mod 0x%x  off 0x%x  len 0x%x\n",
976 			   __func__, module, cmd->offset, cmd->data_size);
977 		i40e_debug(hw, I40E_DEBUG_NVM,
978 			   "%s status %d aq %d\n",
979 			   __func__, status, hw->aq.asq_last_status);
980 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
981 	}
982 
983 	return status;
984 }
985 
986 /**
987  * i40e_nvmupd_exec_aq - Run an AQ command
988  * @hw: pointer to hardware structure
989  * @cmd: pointer to nvm update command buffer
990  * @bytes: pointer to the data buffer
991  * @perrno: pointer to return error code
992  *
993  * cmd structure contains identifiers and data buffer
994  **/
i40e_nvmupd_exec_aq(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)995 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
996 			       struct i40e_nvm_access *cmd,
997 			       u8 *bytes, int *perrno)
998 {
999 	struct i40e_asq_cmd_details cmd_details;
1000 	struct i40e_aq_desc *aq_desc;
1001 	u32 buff_size = 0;
1002 	u8 *buff = NULL;
1003 	u32 aq_desc_len;
1004 	u32 aq_data_len;
1005 	int status;
1006 
1007 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1008 	if (cmd->offset == 0xffff)
1009 		return 0;
1010 
1011 	memset(&cmd_details, 0, sizeof(cmd_details));
1012 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1013 
1014 	aq_desc_len = sizeof(struct i40e_aq_desc);
1015 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1016 
1017 	/* get the aq descriptor */
1018 	if (cmd->data_size < aq_desc_len) {
1019 		i40e_debug(hw, I40E_DEBUG_NVM,
1020 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1021 			   cmd->data_size, aq_desc_len);
1022 		*perrno = -EINVAL;
1023 		return -EINVAL;
1024 	}
1025 	aq_desc = (struct i40e_aq_desc *)bytes;
1026 
1027 	/* if data buffer needed, make sure it's ready */
1028 	aq_data_len = cmd->data_size - aq_desc_len;
1029 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1030 	if (buff_size) {
1031 		if (!hw->nvm_buff.va) {
1032 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1033 							hw->aq.asq_buf_size);
1034 			if (status)
1035 				i40e_debug(hw, I40E_DEBUG_NVM,
1036 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1037 					   status);
1038 		}
1039 
1040 		if (hw->nvm_buff.va) {
1041 			buff = hw->nvm_buff.va;
1042 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1043 		}
1044 	}
1045 
1046 	if (cmd->offset)
1047 		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1048 
1049 	/* and away we go! */
1050 	status = i40e_asq_send_command(hw, aq_desc, buff,
1051 				       buff_size, &cmd_details);
1052 	if (status) {
1053 		i40e_debug(hw, I40E_DEBUG_NVM,
1054 			   "%s err %pe aq_err %s\n",
1055 			   __func__, ERR_PTR(status),
1056 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1057 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1058 		return status;
1059 	}
1060 
1061 	/* should we wait for a followup event? */
1062 	if (cmd->offset) {
1063 		hw->nvm_wait_opcode = cmd->offset;
1064 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1065 	}
1066 
1067 	return status;
1068 }
1069 
1070 /**
1071  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1072  * @hw: pointer to hardware structure
1073  * @cmd: pointer to nvm update command buffer
1074  * @bytes: pointer to the data buffer
1075  * @perrno: pointer to return error code
1076  *
1077  * cmd structure contains identifiers and data buffer
1078  **/
i40e_nvmupd_get_aq_result(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1079 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1080 				     struct i40e_nvm_access *cmd,
1081 				     u8 *bytes, int *perrno)
1082 {
1083 	u32 aq_total_len;
1084 	u32 aq_desc_len;
1085 	int remainder;
1086 	u8 *buff;
1087 
1088 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1089 
1090 	aq_desc_len = sizeof(struct i40e_aq_desc);
1091 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1092 
1093 	/* check offset range */
1094 	if (cmd->offset > aq_total_len) {
1095 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1096 			   __func__, cmd->offset, aq_total_len);
1097 		*perrno = -EINVAL;
1098 		return -EINVAL;
1099 	}
1100 
1101 	/* check copylength range */
1102 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1103 		int new_len = aq_total_len - cmd->offset;
1104 
1105 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1106 			   __func__, cmd->data_size, new_len);
1107 		cmd->data_size = new_len;
1108 	}
1109 
1110 	remainder = cmd->data_size;
1111 	if (cmd->offset < aq_desc_len) {
1112 		u32 len = aq_desc_len - cmd->offset;
1113 
1114 		len = min(len, cmd->data_size);
1115 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1116 			   __func__, cmd->offset, cmd->offset + len);
1117 
1118 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1119 		memcpy(bytes, buff, len);
1120 
1121 		bytes += len;
1122 		remainder -= len;
1123 		buff = hw->nvm_buff.va;
1124 	} else {
1125 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1126 	}
1127 
1128 	if (remainder > 0) {
1129 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1130 
1131 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1132 			   __func__, start_byte, start_byte + remainder);
1133 		memcpy(bytes, buff, remainder);
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 /**
1140  * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1141  * @hw: pointer to hardware structure
1142  * @cmd: pointer to nvm update command buffer
1143  * @bytes: pointer to the data buffer
1144  * @perrno: pointer to return error code
1145  *
1146  * cmd structure contains identifiers and data buffer
1147  **/
i40e_nvmupd_get_aq_event(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1148 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1149 				    struct i40e_nvm_access *cmd,
1150 				    u8 *bytes, int *perrno)
1151 {
1152 	u32 aq_total_len;
1153 	u32 aq_desc_len;
1154 
1155 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1156 
1157 	aq_desc_len = sizeof(struct i40e_aq_desc);
1158 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1159 
1160 	/* check copylength range */
1161 	if (cmd->data_size > aq_total_len) {
1162 		i40e_debug(hw, I40E_DEBUG_NVM,
1163 			   "%s: copy length %d too big, trimming to %d\n",
1164 			   __func__, cmd->data_size, aq_total_len);
1165 		cmd->data_size = aq_total_len;
1166 	}
1167 
1168 	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1169 
1170 	return 0;
1171 }
1172 
1173 /**
1174  * i40e_nvmupd_state_init - Handle NVM update state Init
1175  * @hw: pointer to hardware structure
1176  * @cmd: pointer to nvm update command buffer
1177  * @bytes: pointer to the data buffer
1178  * @perrno: pointer to return error code
1179  *
1180  * Process legitimate commands of the Init state and conditionally set next
1181  * state. Reject all other commands.
1182  **/
i40e_nvmupd_state_init(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1183 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
1184 				  struct i40e_nvm_access *cmd,
1185 				  u8 *bytes, int *perrno)
1186 {
1187 	enum i40e_nvmupd_cmd upd_cmd;
1188 	int status = 0;
1189 
1190 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1191 
1192 	switch (upd_cmd) {
1193 	case I40E_NVMUPD_READ_SA:
1194 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1195 		if (status) {
1196 			*perrno = i40e_aq_rc_to_posix(status,
1197 						      hw->aq.asq_last_status);
1198 		} else {
1199 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1200 			i40e_release_nvm(hw);
1201 		}
1202 		break;
1203 
1204 	case I40E_NVMUPD_READ_SNT:
1205 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1206 		if (status) {
1207 			*perrno = i40e_aq_rc_to_posix(status,
1208 						      hw->aq.asq_last_status);
1209 		} else {
1210 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1211 			if (status)
1212 				i40e_release_nvm(hw);
1213 			else
1214 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
1215 		}
1216 		break;
1217 
1218 	case I40E_NVMUPD_WRITE_ERA:
1219 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1220 		if (status) {
1221 			*perrno = i40e_aq_rc_to_posix(status,
1222 						      hw->aq.asq_last_status);
1223 		} else {
1224 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
1225 			if (status) {
1226 				i40e_release_nvm(hw);
1227 			} else {
1228 				hw->nvm_release_on_done = true;
1229 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
1230 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1231 			}
1232 		}
1233 		break;
1234 
1235 	case I40E_NVMUPD_WRITE_SA:
1236 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1237 		if (status) {
1238 			*perrno = i40e_aq_rc_to_posix(status,
1239 						      hw->aq.asq_last_status);
1240 		} else {
1241 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1242 			if (status) {
1243 				i40e_release_nvm(hw);
1244 			} else {
1245 				hw->nvm_release_on_done = true;
1246 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1247 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1248 			}
1249 		}
1250 		break;
1251 
1252 	case I40E_NVMUPD_WRITE_SNT:
1253 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1254 		if (status) {
1255 			*perrno = i40e_aq_rc_to_posix(status,
1256 						      hw->aq.asq_last_status);
1257 		} else {
1258 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1259 			if (status) {
1260 				i40e_release_nvm(hw);
1261 			} else {
1262 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1263 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1264 			}
1265 		}
1266 		break;
1267 
1268 	case I40E_NVMUPD_CSUM_SA:
1269 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1270 		if (status) {
1271 			*perrno = i40e_aq_rc_to_posix(status,
1272 						      hw->aq.asq_last_status);
1273 		} else {
1274 			status = i40e_update_nvm_checksum(hw);
1275 			if (status) {
1276 				*perrno = hw->aq.asq_last_status ?
1277 				   i40e_aq_rc_to_posix(status,
1278 						       hw->aq.asq_last_status) :
1279 				   -EIO;
1280 				i40e_release_nvm(hw);
1281 			} else {
1282 				hw->nvm_release_on_done = true;
1283 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1284 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1285 			}
1286 		}
1287 		break;
1288 
1289 	case I40E_NVMUPD_EXEC_AQ:
1290 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1291 		break;
1292 
1293 	case I40E_NVMUPD_GET_AQ_RESULT:
1294 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1295 		break;
1296 
1297 	case I40E_NVMUPD_GET_AQ_EVENT:
1298 		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1299 		break;
1300 
1301 	default:
1302 		i40e_debug(hw, I40E_DEBUG_NVM,
1303 			   "NVMUPD: bad cmd %s in init state\n",
1304 			   i40e_nvm_update_state_str[upd_cmd]);
1305 		status = -EIO;
1306 		*perrno = -ESRCH;
1307 		break;
1308 	}
1309 	return status;
1310 }
1311 
1312 /**
1313  * i40e_nvmupd_state_reading - Handle NVM update state Reading
1314  * @hw: pointer to hardware structure
1315  * @cmd: pointer to nvm update command buffer
1316  * @bytes: pointer to the data buffer
1317  * @perrno: pointer to return error code
1318  *
1319  * NVM ownership is already held.  Process legitimate commands and set any
1320  * change in state; reject all other commands.
1321  **/
i40e_nvmupd_state_reading(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1322 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1323 				     struct i40e_nvm_access *cmd,
1324 				     u8 *bytes, int *perrno)
1325 {
1326 	enum i40e_nvmupd_cmd upd_cmd;
1327 	int status = 0;
1328 
1329 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1330 
1331 	switch (upd_cmd) {
1332 	case I40E_NVMUPD_READ_SA:
1333 	case I40E_NVMUPD_READ_CON:
1334 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1335 		break;
1336 
1337 	case I40E_NVMUPD_READ_LCB:
1338 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1339 		i40e_release_nvm(hw);
1340 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1341 		break;
1342 
1343 	default:
1344 		i40e_debug(hw, I40E_DEBUG_NVM,
1345 			   "NVMUPD: bad cmd %s in reading state.\n",
1346 			   i40e_nvm_update_state_str[upd_cmd]);
1347 		status = -EOPNOTSUPP;
1348 		*perrno = -ESRCH;
1349 		break;
1350 	}
1351 	return status;
1352 }
1353 
1354 /**
1355  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1356  * @hw: pointer to hardware structure
1357  * @cmd: pointer to nvm update command buffer
1358  * @bytes: pointer to the data buffer
1359  * @perrno: pointer to return error code
1360  *
1361  * NVM ownership is already held.  Process legitimate commands and set any
1362  * change in state; reject all other commands
1363  **/
i40e_nvmupd_state_writing(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1364 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1365 				     struct i40e_nvm_access *cmd,
1366 				     u8 *bytes, int *perrno)
1367 {
1368 	enum i40e_nvmupd_cmd upd_cmd;
1369 	bool retry_attempt = false;
1370 	int status = 0;
1371 
1372 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1373 
1374 retry:
1375 	switch (upd_cmd) {
1376 	case I40E_NVMUPD_WRITE_CON:
1377 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1378 		if (!status) {
1379 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1380 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1381 		}
1382 		break;
1383 
1384 	case I40E_NVMUPD_WRITE_LCB:
1385 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1386 		if (status) {
1387 			*perrno = hw->aq.asq_last_status ?
1388 				   i40e_aq_rc_to_posix(status,
1389 						       hw->aq.asq_last_status) :
1390 				   -EIO;
1391 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1392 		} else {
1393 			hw->nvm_release_on_done = true;
1394 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1395 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1396 		}
1397 		break;
1398 
1399 	case I40E_NVMUPD_CSUM_CON:
1400 		/* Assumes the caller has acquired the nvm */
1401 		status = i40e_update_nvm_checksum(hw);
1402 		if (status) {
1403 			*perrno = hw->aq.asq_last_status ?
1404 				   i40e_aq_rc_to_posix(status,
1405 						       hw->aq.asq_last_status) :
1406 				   -EIO;
1407 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1408 		} else {
1409 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1410 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1411 		}
1412 		break;
1413 
1414 	case I40E_NVMUPD_CSUM_LCB:
1415 		/* Assumes the caller has acquired the nvm */
1416 		status = i40e_update_nvm_checksum(hw);
1417 		if (status) {
1418 			*perrno = hw->aq.asq_last_status ?
1419 				   i40e_aq_rc_to_posix(status,
1420 						       hw->aq.asq_last_status) :
1421 				   -EIO;
1422 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1423 		} else {
1424 			hw->nvm_release_on_done = true;
1425 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1426 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1427 		}
1428 		break;
1429 
1430 	default:
1431 		i40e_debug(hw, I40E_DEBUG_NVM,
1432 			   "NVMUPD: bad cmd %s in writing state.\n",
1433 			   i40e_nvm_update_state_str[upd_cmd]);
1434 		status = -EOPNOTSUPP;
1435 		*perrno = -ESRCH;
1436 		break;
1437 	}
1438 
1439 	/* In some circumstances, a multi-write transaction takes longer
1440 	 * than the default 3 minute timeout on the write semaphore.  If
1441 	 * the write failed with an EBUSY status, this is likely the problem,
1442 	 * so here we try to reacquire the semaphore then retry the write.
1443 	 * We only do one retry, then give up.
1444 	 */
1445 	if (status && hw->aq.asq_last_status == I40E_AQ_RC_EBUSY &&
1446 	    !retry_attempt) {
1447 		u32 old_asq_status = hw->aq.asq_last_status;
1448 		int old_status = status;
1449 		u32 gtime;
1450 
1451 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1452 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1453 			i40e_debug(hw, I40E_DEBUG_ALL,
1454 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1455 				   gtime, hw->nvm.hw_semaphore_timeout);
1456 			i40e_release_nvm(hw);
1457 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1458 			if (status) {
1459 				i40e_debug(hw, I40E_DEBUG_ALL,
1460 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1461 					   hw->aq.asq_last_status);
1462 				status = old_status;
1463 				hw->aq.asq_last_status = old_asq_status;
1464 			} else {
1465 				retry_attempt = true;
1466 				goto retry;
1467 			}
1468 		}
1469 	}
1470 
1471 	return status;
1472 }
1473 
1474 /**
1475  * i40e_nvmupd_command - Process an NVM update command
1476  * @hw: pointer to hardware structure
1477  * @cmd: pointer to nvm update command
1478  * @bytes: pointer to the data buffer
1479  * @perrno: pointer to return error code
1480  *
1481  * Dispatches command depending on what update state is current
1482  **/
i40e_nvmupd_command(struct i40e_hw * hw,struct i40e_nvm_access * cmd,u8 * bytes,int * perrno)1483 int i40e_nvmupd_command(struct i40e_hw *hw,
1484 			struct i40e_nvm_access *cmd,
1485 			u8 *bytes, int *perrno)
1486 {
1487 	enum i40e_nvmupd_cmd upd_cmd;
1488 	int status;
1489 
1490 	/* assume success */
1491 	*perrno = 0;
1492 
1493 	/* early check for status command and debug msgs */
1494 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1495 
1496 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
1497 		   i40e_nvm_update_state_str[upd_cmd],
1498 		   hw->nvmupd_state,
1499 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
1500 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
1501 
1502 	if (upd_cmd == I40E_NVMUPD_INVALID) {
1503 		*perrno = -EFAULT;
1504 		i40e_debug(hw, I40E_DEBUG_NVM,
1505 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
1506 			   upd_cmd, *perrno);
1507 	}
1508 
1509 	/* a status request returns immediately rather than
1510 	 * going into the state machine
1511 	 */
1512 	if (upd_cmd == I40E_NVMUPD_STATUS) {
1513 		if (!cmd->data_size) {
1514 			*perrno = -EFAULT;
1515 			return -EINVAL;
1516 		}
1517 
1518 		bytes[0] = hw->nvmupd_state;
1519 
1520 		if (cmd->data_size >= 4) {
1521 			bytes[1] = 0;
1522 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
1523 		}
1524 
1525 		/* Clear error status on read */
1526 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
1527 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1528 
1529 		return 0;
1530 	}
1531 
1532 	/* Clear status even it is not read and log */
1533 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
1534 		i40e_debug(hw, I40E_DEBUG_NVM,
1535 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
1536 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1537 	}
1538 
1539 	/* Acquire lock to prevent race condition where adminq_task
1540 	 * can execute after i40e_nvmupd_nvm_read/write but before state
1541 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
1542 	 *
1543 	 * During NVMUpdate, it is observed that lock could be held for
1544 	 * ~5ms for most commands. However lock is held for ~60ms for
1545 	 * NVMUPD_CSUM_LCB command.
1546 	 */
1547 	mutex_lock(&hw->aq.arq_mutex);
1548 	switch (hw->nvmupd_state) {
1549 	case I40E_NVMUPD_STATE_INIT:
1550 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
1551 		break;
1552 
1553 	case I40E_NVMUPD_STATE_READING:
1554 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
1555 		break;
1556 
1557 	case I40E_NVMUPD_STATE_WRITING:
1558 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
1559 		break;
1560 
1561 	case I40E_NVMUPD_STATE_INIT_WAIT:
1562 	case I40E_NVMUPD_STATE_WRITE_WAIT:
1563 		/* if we need to stop waiting for an event, clear
1564 		 * the wait info and return before doing anything else
1565 		 */
1566 		if (cmd->offset == 0xffff) {
1567 			i40e_nvmupd_clear_wait_state(hw);
1568 			status = 0;
1569 			break;
1570 		}
1571 
1572 		status = -EBUSY;
1573 		*perrno = -EBUSY;
1574 		break;
1575 
1576 	default:
1577 		/* invalid state, should never happen */
1578 		i40e_debug(hw, I40E_DEBUG_NVM,
1579 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
1580 		status = -EOPNOTSUPP;
1581 		*perrno = -ESRCH;
1582 		break;
1583 	}
1584 
1585 	mutex_unlock(&hw->aq.arq_mutex);
1586 	return status;
1587 }
1588 
1589 /**
1590  * i40e_nvmupd_clear_wait_state - clear wait state on hw
1591  * @hw: pointer to the hardware structure
1592  **/
i40e_nvmupd_clear_wait_state(struct i40e_hw * hw)1593 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1594 {
1595 	i40e_debug(hw, I40E_DEBUG_NVM,
1596 		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1597 		   hw->nvm_wait_opcode);
1598 
1599 	if (hw->nvm_release_on_done) {
1600 		i40e_release_nvm(hw);
1601 		hw->nvm_release_on_done = false;
1602 	}
1603 	hw->nvm_wait_opcode = 0;
1604 
1605 	if (hw->aq.arq_last_status) {
1606 		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1607 		return;
1608 	}
1609 
1610 	switch (hw->nvmupd_state) {
1611 	case I40E_NVMUPD_STATE_INIT_WAIT:
1612 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1613 		break;
1614 
1615 	case I40E_NVMUPD_STATE_WRITE_WAIT:
1616 		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1617 		break;
1618 
1619 	default:
1620 		break;
1621 	}
1622 }
1623 
1624 /**
1625  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1626  * @hw: pointer to the hardware structure
1627  * @opcode: the event that just happened
1628  * @desc: AdminQ descriptor
1629  **/
i40e_nvmupd_check_wait_event(struct i40e_hw * hw,u16 opcode,struct i40e_aq_desc * desc)1630 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1631 				  struct i40e_aq_desc *desc)
1632 {
1633 	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1634 
1635 	if (opcode == hw->nvm_wait_opcode) {
1636 		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1637 		i40e_nvmupd_clear_wait_state(hw);
1638 	}
1639 }
1640