1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 2013 - 2018 Intel Corporation. */
3  
4  #include <linux/bpf_trace.h>
5  #include <linux/net/intel/libie/rx.h>
6  #include <linux/prefetch.h>
7  #include <linux/sctp.h>
8  #include <net/mpls.h>
9  #include <net/xdp.h>
10  #include "i40e_txrx_common.h"
11  #include "i40e_trace.h"
12  #include "i40e_xsk.h"
13  
14  #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15  /**
16   * i40e_fdir - Generate a Flow Director descriptor based on fdata
17   * @tx_ring: Tx ring to send buffer on
18   * @fdata: Flow director filter data
19   * @add: Indicate if we are adding a rule or deleting one
20   *
21   **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22  static void i40e_fdir(struct i40e_ring *tx_ring,
23  		      struct i40e_fdir_filter *fdata, bool add)
24  {
25  	struct i40e_filter_program_desc *fdir_desc;
26  	struct i40e_pf *pf = tx_ring->vsi->back;
27  	u32 flex_ptype, dtype_cmd, vsi_id;
28  	u16 i;
29  
30  	/* grab the next descriptor */
31  	i = tx_ring->next_to_use;
32  	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33  
34  	i++;
35  	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36  
37  	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
38  
39  	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
40  				 fdata->flex_off);
41  
42  	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
43  
44  	/* Use LAN VSI Id if not programmed by user */
45  	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
46  	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
47  
48  	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
49  
50  	dtype_cmd |= add ?
51  		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
52  		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
53  		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
54  		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
55  
56  	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
57  
58  	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
59  				fdata->fd_status);
60  
61  	if (fdata->cnt_index) {
62  		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
63  		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
64  					fdata->cnt_index);
65  	}
66  
67  	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
68  	fdir_desc->rsvd = cpu_to_le32(0);
69  	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
70  	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
71  }
72  
73  #define I40E_FD_CLEAN_DELAY 10
74  /**
75   * i40e_program_fdir_filter - Program a Flow Director filter
76   * @fdir_data: Packet data that will be filter parameters
77   * @raw_packet: the pre-allocated packet buffer for FDir
78   * @pf: The PF pointer
79   * @add: True for add/update, False for remove
80   **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)81  static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
82  				    u8 *raw_packet, struct i40e_pf *pf,
83  				    bool add)
84  {
85  	struct i40e_tx_buffer *tx_buf, *first;
86  	struct i40e_tx_desc *tx_desc;
87  	struct i40e_ring *tx_ring;
88  	struct i40e_vsi *vsi;
89  	struct device *dev;
90  	dma_addr_t dma;
91  	u32 td_cmd = 0;
92  	u16 i;
93  
94  	/* find existing FDIR VSI */
95  	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
96  	if (!vsi)
97  		return -ENOENT;
98  
99  	tx_ring = vsi->tx_rings[0];
100  	dev = tx_ring->dev;
101  
102  	/* we need two descriptors to add/del a filter and we can wait */
103  	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
104  		if (!i)
105  			return -EAGAIN;
106  		msleep_interruptible(1);
107  	}
108  
109  	dma = dma_map_single(dev, raw_packet,
110  			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
111  	if (dma_mapping_error(dev, dma))
112  		goto dma_fail;
113  
114  	/* grab the next descriptor */
115  	i = tx_ring->next_to_use;
116  	first = &tx_ring->tx_bi[i];
117  	i40e_fdir(tx_ring, fdir_data, add);
118  
119  	/* Now program a dummy descriptor */
120  	i = tx_ring->next_to_use;
121  	tx_desc = I40E_TX_DESC(tx_ring, i);
122  	tx_buf = &tx_ring->tx_bi[i];
123  
124  	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
125  
126  	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
127  
128  	/* record length, and DMA address */
129  	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
130  	dma_unmap_addr_set(tx_buf, dma, dma);
131  
132  	tx_desc->buffer_addr = cpu_to_le64(dma);
133  	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
134  
135  	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
136  	tx_buf->raw_buf = (void *)raw_packet;
137  
138  	tx_desc->cmd_type_offset_bsz =
139  		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
140  
141  	/* Force memory writes to complete before letting h/w
142  	 * know there are new descriptors to fetch.
143  	 */
144  	wmb();
145  
146  	/* Mark the data descriptor to be watched */
147  	first->next_to_watch = tx_desc;
148  
149  	writel(tx_ring->next_to_use, tx_ring->tail);
150  	return 0;
151  
152  dma_fail:
153  	return -1;
154  }
155  
156  /**
157   * i40e_create_dummy_packet - Constructs dummy packet for HW
158   * @dummy_packet: preallocated space for dummy packet
159   * @ipv4: is layer 3 packet of version 4 or 6
160   * @l4proto: next level protocol used in data portion of l3
161   * @data: filter data
162   *
163   * Returns address of layer 4 protocol dummy packet.
164   **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)165  static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
166  				      struct i40e_fdir_filter *data)
167  {
168  	bool is_vlan = !!data->vlan_tag;
169  	struct vlan_hdr vlan = {};
170  	struct ipv6hdr ipv6 = {};
171  	struct ethhdr eth = {};
172  	struct iphdr ip = {};
173  	u8 *tmp;
174  
175  	if (ipv4) {
176  		eth.h_proto = cpu_to_be16(ETH_P_IP);
177  		ip.protocol = l4proto;
178  		ip.version = 0x4;
179  		ip.ihl = 0x5;
180  
181  		ip.daddr = data->dst_ip;
182  		ip.saddr = data->src_ip;
183  	} else {
184  		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
185  		ipv6.nexthdr = l4proto;
186  		ipv6.version = 0x6;
187  
188  		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
189  		       sizeof(__be32) * 4);
190  		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
191  		       sizeof(__be32) * 4);
192  	}
193  
194  	if (is_vlan) {
195  		vlan.h_vlan_TCI = data->vlan_tag;
196  		vlan.h_vlan_encapsulated_proto = eth.h_proto;
197  		eth.h_proto = data->vlan_etype;
198  	}
199  
200  	tmp = dummy_packet;
201  	memcpy(tmp, &eth, sizeof(eth));
202  	tmp += sizeof(eth);
203  
204  	if (is_vlan) {
205  		memcpy(tmp, &vlan, sizeof(vlan));
206  		tmp += sizeof(vlan);
207  	}
208  
209  	if (ipv4) {
210  		memcpy(tmp, &ip, sizeof(ip));
211  		tmp += sizeof(ip);
212  	} else {
213  		memcpy(tmp, &ipv6, sizeof(ipv6));
214  		tmp += sizeof(ipv6);
215  	}
216  
217  	return tmp;
218  }
219  
220  /**
221   * i40e_create_dummy_udp_packet - helper function to create UDP packet
222   * @raw_packet: preallocated space for dummy packet
223   * @ipv4: is layer 3 packet of version 4 or 6
224   * @l4proto: next level protocol used in data portion of l3
225   * @data: filter data
226   *
227   * Helper function to populate udp fields.
228   **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)229  static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
230  					 struct i40e_fdir_filter *data)
231  {
232  	struct udphdr *udp;
233  	u8 *tmp;
234  
235  	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
236  	udp = (struct udphdr *)(tmp);
237  	udp->dest = data->dst_port;
238  	udp->source = data->src_port;
239  }
240  
241  /**
242   * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243   * @raw_packet: preallocated space for dummy packet
244   * @ipv4: is layer 3 packet of version 4 or 6
245   * @l4proto: next level protocol used in data portion of l3
246   * @data: filter data
247   *
248   * Helper function to populate tcp fields.
249   **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)250  static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
251  					 struct i40e_fdir_filter *data)
252  {
253  	struct tcphdr *tcp;
254  	u8 *tmp;
255  	/* Dummy tcp packet */
256  	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257  		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
258  
259  	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
260  
261  	tcp = (struct tcphdr *)tmp;
262  	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
263  	tcp->dest = data->dst_port;
264  	tcp->source = data->src_port;
265  }
266  
267  /**
268   * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269   * @raw_packet: preallocated space for dummy packet
270   * @ipv4: is layer 3 packet of version 4 or 6
271   * @l4proto: next level protocol used in data portion of l3
272   * @data: filter data
273   *
274   * Helper function to populate sctp fields.
275   **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)276  static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
277  					  u8 l4proto,
278  					  struct i40e_fdir_filter *data)
279  {
280  	struct sctphdr *sctp;
281  	u8 *tmp;
282  
283  	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
284  
285  	sctp = (struct sctphdr *)tmp;
286  	sctp->dest = data->dst_port;
287  	sctp->source = data->src_port;
288  }
289  
290  /**
291   * i40e_prepare_fdir_filter - Prepare and program fdir filter
292   * @pf: physical function to attach filter to
293   * @fd_data: filter data
294   * @add: add or delete filter
295   * @packet_addr: address of dummy packet, used in filtering
296   * @payload_offset: offset from dummy packet address to user defined data
297   * @pctype: Packet type for which filter is used
298   *
299   * Helper function to offset data of dummy packet, program it and
300   * handle errors.
301   **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)302  static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
303  				    struct i40e_fdir_filter *fd_data,
304  				    bool add, char *packet_addr,
305  				    int payload_offset, u8 pctype)
306  {
307  	int ret;
308  
309  	if (fd_data->flex_filter) {
310  		u8 *payload;
311  		__be16 pattern = fd_data->flex_word;
312  		u16 off = fd_data->flex_offset;
313  
314  		payload = packet_addr + payload_offset;
315  
316  		/* If user provided vlan, offset payload by vlan header length */
317  		if (!!fd_data->vlan_tag)
318  			payload += VLAN_HLEN;
319  
320  		*((__force __be16 *)(payload + off)) = pattern;
321  	}
322  
323  	fd_data->pctype = pctype;
324  	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
325  	if (ret) {
326  		dev_info(&pf->pdev->dev,
327  			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328  			 fd_data->pctype, fd_data->fd_id, ret);
329  		/* Free the packet buffer since it wasn't added to the ring */
330  		return -EOPNOTSUPP;
331  	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
332  		if (add)
333  			dev_info(&pf->pdev->dev,
334  				 "Filter OK for PCTYPE %d loc = %d\n",
335  				 fd_data->pctype, fd_data->fd_id);
336  		else
337  			dev_info(&pf->pdev->dev,
338  				 "Filter deleted for PCTYPE %d loc = %d\n",
339  				 fd_data->pctype, fd_data->fd_id);
340  	}
341  
342  	return ret;
343  }
344  
345  /**
346   * i40e_change_filter_num - Prepare and program fdir filter
347   * @ipv4: is layer 3 packet of version 4 or 6
348   * @add: add or delete filter
349   * @ipv4_filter_num: field to update
350   * @ipv6_filter_num: field to update
351   *
352   * Update filter number field for pf.
353   **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)354  static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
355  				   u16 *ipv6_filter_num)
356  {
357  	if (add) {
358  		if (ipv4)
359  			(*ipv4_filter_num)++;
360  		else
361  			(*ipv6_filter_num)++;
362  	} else {
363  		if (ipv4)
364  			(*ipv4_filter_num)--;
365  		else
366  			(*ipv6_filter_num)--;
367  	}
368  }
369  
370  #define I40E_UDPIP_DUMMY_PACKET_LEN	42
371  #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
372  /**
373   * i40e_add_del_fdir_udp - Add/Remove UDP filters
374   * @vsi: pointer to the targeted VSI
375   * @fd_data: the flow director data required for the FDir descriptor
376   * @add: true adds a filter, false removes it
377   * @ipv4: true is v4, false is v6
378   *
379   * Returns 0 if the filters were successfully added or removed
380   **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)381  static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
382  				 struct i40e_fdir_filter *fd_data,
383  				 bool add,
384  				 bool ipv4)
385  {
386  	struct i40e_pf *pf = vsi->back;
387  	u8 *raw_packet;
388  	int ret;
389  
390  	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
391  	if (!raw_packet)
392  		return -ENOMEM;
393  
394  	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
395  
396  	if (ipv4)
397  		ret = i40e_prepare_fdir_filter
398  			(pf, fd_data, add, raw_packet,
399  			 I40E_UDPIP_DUMMY_PACKET_LEN,
400  			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
401  	else
402  		ret = i40e_prepare_fdir_filter
403  			(pf, fd_data, add, raw_packet,
404  			 I40E_UDPIP6_DUMMY_PACKET_LEN,
405  			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
406  
407  	if (ret) {
408  		kfree(raw_packet);
409  		return ret;
410  	}
411  
412  	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
413  			       &pf->fd_udp6_filter_cnt);
414  
415  	return 0;
416  }
417  
418  #define I40E_TCPIP_DUMMY_PACKET_LEN	54
419  #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
420  /**
421   * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422   * @vsi: pointer to the targeted VSI
423   * @fd_data: the flow director data required for the FDir descriptor
424   * @add: true adds a filter, false removes it
425   * @ipv4: true is v4, false is v6
426   *
427   * Returns 0 if the filters were successfully added or removed
428   **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)429  static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
430  				 struct i40e_fdir_filter *fd_data,
431  				 bool add,
432  				 bool ipv4)
433  {
434  	struct i40e_pf *pf = vsi->back;
435  	u8 *raw_packet;
436  	int ret;
437  
438  	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
439  	if (!raw_packet)
440  		return -ENOMEM;
441  
442  	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
443  	if (ipv4)
444  		ret = i40e_prepare_fdir_filter
445  			(pf, fd_data, add, raw_packet,
446  			 I40E_TCPIP_DUMMY_PACKET_LEN,
447  			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
448  	else
449  		ret = i40e_prepare_fdir_filter
450  			(pf, fd_data, add, raw_packet,
451  			 I40E_TCPIP6_DUMMY_PACKET_LEN,
452  			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
453  
454  	if (ret) {
455  		kfree(raw_packet);
456  		return ret;
457  	}
458  
459  	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
460  			       &pf->fd_tcp6_filter_cnt);
461  
462  	if (add) {
463  		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
464  		    I40E_DEBUG_FD & pf->hw.debug_mask)
465  			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466  		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
467  	}
468  	return 0;
469  }
470  
471  #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
472  #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
473  /**
474   * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475   * a specific flow spec
476   * @vsi: pointer to the targeted VSI
477   * @fd_data: the flow director data required for the FDir descriptor
478   * @add: true adds a filter, false removes it
479   * @ipv4: true is v4, false is v6
480   *
481   * Returns 0 if the filters were successfully added or removed
482   **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)483  static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
484  				  struct i40e_fdir_filter *fd_data,
485  				  bool add,
486  				  bool ipv4)
487  {
488  	struct i40e_pf *pf = vsi->back;
489  	u8 *raw_packet;
490  	int ret;
491  
492  	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
493  	if (!raw_packet)
494  		return -ENOMEM;
495  
496  	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
497  
498  	if (ipv4)
499  		ret = i40e_prepare_fdir_filter
500  			(pf, fd_data, add, raw_packet,
501  			 I40E_SCTPIP_DUMMY_PACKET_LEN,
502  			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
503  	else
504  		ret = i40e_prepare_fdir_filter
505  			(pf, fd_data, add, raw_packet,
506  			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
507  			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
508  
509  	if (ret) {
510  		kfree(raw_packet);
511  		return ret;
512  	}
513  
514  	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
515  			       &pf->fd_sctp6_filter_cnt);
516  
517  	return 0;
518  }
519  
520  #define I40E_IP_DUMMY_PACKET_LEN	34
521  #define I40E_IP6_DUMMY_PACKET_LEN	54
522  /**
523   * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524   * a specific flow spec
525   * @vsi: pointer to the targeted VSI
526   * @fd_data: the flow director data required for the FDir descriptor
527   * @add: true adds a filter, false removes it
528   * @ipv4: true is v4, false is v6
529   *
530   * Returns 0 if the filters were successfully added or removed
531   **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)532  static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
533  				struct i40e_fdir_filter *fd_data,
534  				bool add,
535  				bool ipv4)
536  {
537  	struct i40e_pf *pf = vsi->back;
538  	int payload_offset;
539  	u8 *raw_packet;
540  	int iter_start;
541  	int iter_end;
542  	int ret;
543  	int i;
544  
545  	if (ipv4) {
546  		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
547  		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
548  	} else {
549  		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
550  		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
551  	}
552  
553  	for (i = iter_start; i <= iter_end; i++) {
554  		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
555  		if (!raw_packet)
556  			return -ENOMEM;
557  
558  		/* IPv6 no header option differs from IPv4 */
559  		(void)i40e_create_dummy_packet
560  			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
561  			 fd_data);
562  
563  		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
564  			I40E_IP6_DUMMY_PACKET_LEN;
565  		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
566  					       payload_offset, i);
567  		if (ret)
568  			goto err;
569  	}
570  
571  	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
572  			       &pf->fd_ip6_filter_cnt);
573  
574  	return 0;
575  err:
576  	kfree(raw_packet);
577  	return ret;
578  }
579  
580  /**
581   * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582   * @vsi: pointer to the targeted VSI
583   * @input: filter to add or delete
584   * @add: true adds a filter, false removes it
585   *
586   **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)587  int i40e_add_del_fdir(struct i40e_vsi *vsi,
588  		      struct i40e_fdir_filter *input, bool add)
589  {
590  	enum ip_ver { ipv6 = 0, ipv4 = 1 };
591  	struct i40e_pf *pf = vsi->back;
592  	int ret;
593  
594  	switch (input->flow_type & ~FLOW_EXT) {
595  	case TCP_V4_FLOW:
596  		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
597  		break;
598  	case UDP_V4_FLOW:
599  		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
600  		break;
601  	case SCTP_V4_FLOW:
602  		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
603  		break;
604  	case TCP_V6_FLOW:
605  		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
606  		break;
607  	case UDP_V6_FLOW:
608  		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
609  		break;
610  	case SCTP_V6_FLOW:
611  		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
612  		break;
613  	case IP_USER_FLOW:
614  		switch (input->ipl4_proto) {
615  		case IPPROTO_TCP:
616  			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
617  			break;
618  		case IPPROTO_UDP:
619  			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
620  			break;
621  		case IPPROTO_SCTP:
622  			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
623  			break;
624  		case IPPROTO_IP:
625  			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
626  			break;
627  		default:
628  			/* We cannot support masking based on protocol */
629  			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
630  				 input->ipl4_proto);
631  			return -EINVAL;
632  		}
633  		break;
634  	case IPV6_USER_FLOW:
635  		switch (input->ipl4_proto) {
636  		case IPPROTO_TCP:
637  			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
638  			break;
639  		case IPPROTO_UDP:
640  			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
641  			break;
642  		case IPPROTO_SCTP:
643  			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
644  			break;
645  		case IPPROTO_IP:
646  			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
647  			break;
648  		default:
649  			/* We cannot support masking based on protocol */
650  			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
651  				 input->ipl4_proto);
652  			return -EINVAL;
653  		}
654  		break;
655  	default:
656  		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
657  			 input->flow_type);
658  		return -EINVAL;
659  	}
660  
661  	/* The buffer allocated here will be normally be freed by
662  	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663  	 * completion. In the event of an error adding the buffer to the FDIR
664  	 * ring, it will immediately be freed. It may also be freed by
665  	 * i40e_clean_tx_ring() when closing the VSI.
666  	 */
667  	return ret;
668  }
669  
670  /**
671   * i40e_fd_handle_status - check the Programming Status for FD
672   * @rx_ring: the Rx ring for this descriptor
673   * @qword0_raw: qword0
674   * @qword1: qword1 after le_to_cpu
675   * @prog_id: the id originally used for programming
676   *
677   * This is used to verify if the FD programming or invalidation
678   * requested by SW to the HW is successful or not and take actions accordingly.
679   **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)680  static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
681  				  u64 qword1, u8 prog_id)
682  {
683  	struct i40e_pf *pf = rx_ring->vsi->back;
684  	struct pci_dev *pdev = pf->pdev;
685  	struct i40e_16b_rx_wb_qw0 *qw0;
686  	u32 fcnt_prog, fcnt_avail;
687  	u32 error;
688  
689  	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
690  	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
691  
692  	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
693  		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
694  		if (qw0->hi_dword.fd_id != 0 ||
695  		    (I40E_DEBUG_FD & pf->hw.debug_mask))
696  			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
697  				 pf->fd_inv);
698  
699  		/* Check if the programming error is for ATR.
700  		 * If so, auto disable ATR and set a state for
701  		 * flush in progress. Next time we come here if flush is in
702  		 * progress do nothing, once flush is complete the state will
703  		 * be cleared.
704  		 */
705  		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
706  			return;
707  
708  		pf->fd_add_err++;
709  		/* store the current atr filter count */
710  		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
711  
712  		if (qw0->hi_dword.fd_id == 0 &&
713  		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
714  			/* These set_bit() calls aren't atomic with the
715  			 * test_bit() here, but worse case we potentially
716  			 * disable ATR and queue a flush right after SB
717  			 * support is re-enabled. That shouldn't cause an
718  			 * issue in practice
719  			 */
720  			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
721  			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
722  		}
723  
724  		/* filter programming failed most likely due to table full */
725  		fcnt_prog = i40e_get_global_fd_count(pf);
726  		fcnt_avail = pf->fdir_pf_filter_count;
727  		/* If ATR is running fcnt_prog can quickly change,
728  		 * if we are very close to full, it makes sense to disable
729  		 * FD ATR/SB and then re-enable it when there is room.
730  		 */
731  		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
732  			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
733  			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
734  					      pf->state))
735  				if (I40E_DEBUG_FD & pf->hw.debug_mask)
736  					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
737  		}
738  	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
739  		if (I40E_DEBUG_FD & pf->hw.debug_mask)
740  			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
741  				 qw0->hi_dword.fd_id);
742  	}
743  }
744  
745  /**
746   * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747   * @ring:      the ring that owns the buffer
748   * @tx_buffer: the buffer to free
749   **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)750  static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
751  					    struct i40e_tx_buffer *tx_buffer)
752  {
753  	if (tx_buffer->skb) {
754  		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
755  			kfree(tx_buffer->raw_buf);
756  		else if (ring_is_xdp(ring))
757  			xdp_return_frame(tx_buffer->xdpf);
758  		else
759  			dev_kfree_skb_any(tx_buffer->skb);
760  		if (dma_unmap_len(tx_buffer, len))
761  			dma_unmap_single(ring->dev,
762  					 dma_unmap_addr(tx_buffer, dma),
763  					 dma_unmap_len(tx_buffer, len),
764  					 DMA_TO_DEVICE);
765  	} else if (dma_unmap_len(tx_buffer, len)) {
766  		dma_unmap_page(ring->dev,
767  			       dma_unmap_addr(tx_buffer, dma),
768  			       dma_unmap_len(tx_buffer, len),
769  			       DMA_TO_DEVICE);
770  	}
771  
772  	tx_buffer->next_to_watch = NULL;
773  	tx_buffer->skb = NULL;
774  	dma_unmap_len_set(tx_buffer, len, 0);
775  	/* tx_buffer must be completely set up in the transmit path */
776  }
777  
778  /**
779   * i40e_clean_tx_ring - Free any empty Tx buffers
780   * @tx_ring: ring to be cleaned
781   **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)782  void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
783  {
784  	unsigned long bi_size;
785  	u16 i;
786  
787  	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
788  		i40e_xsk_clean_tx_ring(tx_ring);
789  	} else {
790  		/* ring already cleared, nothing to do */
791  		if (!tx_ring->tx_bi)
792  			return;
793  
794  		/* Free all the Tx ring sk_buffs */
795  		for (i = 0; i < tx_ring->count; i++)
796  			i40e_unmap_and_free_tx_resource(tx_ring,
797  							&tx_ring->tx_bi[i]);
798  	}
799  
800  	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
801  	memset(tx_ring->tx_bi, 0, bi_size);
802  
803  	/* Zero out the descriptor ring */
804  	memset(tx_ring->desc, 0, tx_ring->size);
805  
806  	tx_ring->next_to_use = 0;
807  	tx_ring->next_to_clean = 0;
808  
809  	if (!tx_ring->netdev)
810  		return;
811  
812  	/* cleanup Tx queue statistics */
813  	netdev_tx_reset_queue(txring_txq(tx_ring));
814  }
815  
816  /**
817   * i40e_free_tx_resources - Free Tx resources per queue
818   * @tx_ring: Tx descriptor ring for a specific queue
819   *
820   * Free all transmit software resources
821   **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)822  void i40e_free_tx_resources(struct i40e_ring *tx_ring)
823  {
824  	i40e_clean_tx_ring(tx_ring);
825  	kfree(tx_ring->tx_bi);
826  	tx_ring->tx_bi = NULL;
827  
828  	if (tx_ring->desc) {
829  		dma_free_coherent(tx_ring->dev, tx_ring->size,
830  				  tx_ring->desc, tx_ring->dma);
831  		tx_ring->desc = NULL;
832  	}
833  }
834  
835  /**
836   * i40e_get_tx_pending - how many tx descriptors not processed
837   * @ring: the ring of descriptors
838   * @in_sw: use SW variables
839   *
840   * Since there is no access to the ring head register
841   * in XL710, we need to use our local copies
842   **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)843  u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
844  {
845  	u32 head, tail;
846  
847  	if (!in_sw) {
848  		head = i40e_get_head(ring);
849  		tail = readl(ring->tail);
850  	} else {
851  		head = ring->next_to_clean;
852  		tail = ring->next_to_use;
853  	}
854  
855  	if (head != tail)
856  		return (head < tail) ?
857  			tail - head : (tail + ring->count - head);
858  
859  	return 0;
860  }
861  
862  /**
863   * i40e_detect_recover_hung - Function to detect and recover hung_queues
864   * @pf: pointer to PF struct
865   *
866   * LAN VSI has netdev and netdev has TX queues. This function is to check
867   * each of those TX queues if they are hung, trigger recovery by issuing
868   * SW interrupt.
869   **/
i40e_detect_recover_hung(struct i40e_pf * pf)870  void i40e_detect_recover_hung(struct i40e_pf *pf)
871  {
872  	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
873  	struct i40e_ring *tx_ring = NULL;
874  	struct net_device *netdev;
875  	unsigned int i;
876  	int packets;
877  
878  	if (!vsi)
879  		return;
880  
881  	if (test_bit(__I40E_VSI_DOWN, vsi->state))
882  		return;
883  
884  	netdev = vsi->netdev;
885  	if (!netdev)
886  		return;
887  
888  	if (!netif_carrier_ok(netdev))
889  		return;
890  
891  	for (i = 0; i < vsi->num_queue_pairs; i++) {
892  		tx_ring = vsi->tx_rings[i];
893  		if (tx_ring && tx_ring->desc) {
894  			/* If packet counter has not changed the queue is
895  			 * likely stalled, so force an interrupt for this
896  			 * queue.
897  			 *
898  			 * prev_pkt_ctr would be negative if there was no
899  			 * pending work.
900  			 */
901  			packets = tx_ring->stats.packets & INT_MAX;
902  			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
903  				i40e_force_wb(vsi, tx_ring->q_vector);
904  				continue;
905  			}
906  
907  			/* Memory barrier between read of packet count and call
908  			 * to i40e_get_tx_pending()
909  			 */
910  			smp_rmb();
911  			tx_ring->tx_stats.prev_pkt_ctr =
912  			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
913  		}
914  	}
915  }
916  
917  /**
918   * i40e_clean_tx_irq - Reclaim resources after transmit completes
919   * @vsi: the VSI we care about
920   * @tx_ring: Tx ring to clean
921   * @napi_budget: Used to determine if we are in netpoll
922   * @tx_cleaned: Out parameter set to the number of TXes cleaned
923   *
924   * Returns true if there's any budget left (e.g. the clean is finished)
925   **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)926  static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
927  			      struct i40e_ring *tx_ring, int napi_budget,
928  			      unsigned int *tx_cleaned)
929  {
930  	int i = tx_ring->next_to_clean;
931  	struct i40e_tx_buffer *tx_buf;
932  	struct i40e_tx_desc *tx_head;
933  	struct i40e_tx_desc *tx_desc;
934  	unsigned int total_bytes = 0, total_packets = 0;
935  	unsigned int budget = vsi->work_limit;
936  
937  	tx_buf = &tx_ring->tx_bi[i];
938  	tx_desc = I40E_TX_DESC(tx_ring, i);
939  	i -= tx_ring->count;
940  
941  	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
942  
943  	do {
944  		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
945  
946  		/* if next_to_watch is not set then there is no work pending */
947  		if (!eop_desc)
948  			break;
949  
950  		/* prevent any other reads prior to eop_desc */
951  		smp_rmb();
952  
953  		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
954  		/* we have caught up to head, no work left to do */
955  		if (tx_head == tx_desc)
956  			break;
957  
958  		/* clear next_to_watch to prevent false hangs */
959  		tx_buf->next_to_watch = NULL;
960  
961  		/* update the statistics for this packet */
962  		total_bytes += tx_buf->bytecount;
963  		total_packets += tx_buf->gso_segs;
964  
965  		/* free the skb/XDP data */
966  		if (ring_is_xdp(tx_ring))
967  			xdp_return_frame(tx_buf->xdpf);
968  		else
969  			napi_consume_skb(tx_buf->skb, napi_budget);
970  
971  		/* unmap skb header data */
972  		dma_unmap_single(tx_ring->dev,
973  				 dma_unmap_addr(tx_buf, dma),
974  				 dma_unmap_len(tx_buf, len),
975  				 DMA_TO_DEVICE);
976  
977  		/* clear tx_buffer data */
978  		tx_buf->skb = NULL;
979  		dma_unmap_len_set(tx_buf, len, 0);
980  
981  		/* unmap remaining buffers */
982  		while (tx_desc != eop_desc) {
983  			i40e_trace(clean_tx_irq_unmap,
984  				   tx_ring, tx_desc, tx_buf);
985  
986  			tx_buf++;
987  			tx_desc++;
988  			i++;
989  			if (unlikely(!i)) {
990  				i -= tx_ring->count;
991  				tx_buf = tx_ring->tx_bi;
992  				tx_desc = I40E_TX_DESC(tx_ring, 0);
993  			}
994  
995  			/* unmap any remaining paged data */
996  			if (dma_unmap_len(tx_buf, len)) {
997  				dma_unmap_page(tx_ring->dev,
998  					       dma_unmap_addr(tx_buf, dma),
999  					       dma_unmap_len(tx_buf, len),
1000  					       DMA_TO_DEVICE);
1001  				dma_unmap_len_set(tx_buf, len, 0);
1002  			}
1003  		}
1004  
1005  		/* move us one more past the eop_desc for start of next pkt */
1006  		tx_buf++;
1007  		tx_desc++;
1008  		i++;
1009  		if (unlikely(!i)) {
1010  			i -= tx_ring->count;
1011  			tx_buf = tx_ring->tx_bi;
1012  			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013  		}
1014  
1015  		prefetch(tx_desc);
1016  
1017  		/* update budget accounting */
1018  		budget--;
1019  	} while (likely(budget));
1020  
1021  	i += tx_ring->count;
1022  	tx_ring->next_to_clean = i;
1023  	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024  	i40e_arm_wb(tx_ring, vsi, budget);
1025  
1026  	if (ring_is_xdp(tx_ring))
1027  		return !!budget;
1028  
1029  	/* notify netdev of completed buffers */
1030  	netdev_tx_completed_queue(txring_txq(tx_ring),
1031  				  total_packets, total_bytes);
1032  
1033  #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034  	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035  		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036  		/* Make sure that anybody stopping the queue after this
1037  		 * sees the new next_to_clean.
1038  		 */
1039  		smp_mb();
1040  		if (__netif_subqueue_stopped(tx_ring->netdev,
1041  					     tx_ring->queue_index) &&
1042  		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043  			netif_wake_subqueue(tx_ring->netdev,
1044  					    tx_ring->queue_index);
1045  			++tx_ring->tx_stats.restart_queue;
1046  		}
1047  	}
1048  
1049  	*tx_cleaned = total_packets;
1050  	return !!budget;
1051  }
1052  
1053  /**
1054   * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055   * @vsi: the VSI we care about
1056   * @q_vector: the vector on which to enable writeback
1057   *
1058   **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1059  static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060  				  struct i40e_q_vector *q_vector)
1061  {
1062  	u16 flags = q_vector->tx.ring[0].flags;
1063  	u32 val;
1064  
1065  	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066  		return;
1067  
1068  	if (q_vector->arm_wb_state)
1069  		return;
1070  
1071  	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072  		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073  		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074  
1075  		wr32(&vsi->back->hw,
1076  		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077  		     val);
1078  	} else {
1079  		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080  		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081  
1082  		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083  	}
1084  	q_vector->arm_wb_state = true;
1085  }
1086  
1087  /**
1088   * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089   * @vsi: the VSI we care about
1090   * @q_vector: the vector  on which to force writeback
1091   *
1092   **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1093  void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094  {
1095  	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096  		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097  			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098  			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099  			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100  			  /* allow 00 to be written to the index */
1101  
1102  		wr32(&vsi->back->hw,
1103  		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104  	} else {
1105  		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106  			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107  			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108  			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109  			/* allow 00 to be written to the index */
1110  
1111  		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112  	}
1113  }
1114  
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1115  static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116  					struct i40e_ring_container *rc)
1117  {
1118  	return &q_vector->rx == rc;
1119  }
1120  
i40e_itr_divisor(struct i40e_q_vector * q_vector)1121  static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122  {
1123  	unsigned int divisor;
1124  
1125  	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126  	case I40E_LINK_SPEED_40GB:
1127  		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128  		break;
1129  	case I40E_LINK_SPEED_25GB:
1130  	case I40E_LINK_SPEED_20GB:
1131  		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132  		break;
1133  	default:
1134  	case I40E_LINK_SPEED_10GB:
1135  		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136  		break;
1137  	case I40E_LINK_SPEED_1GB:
1138  	case I40E_LINK_SPEED_100MB:
1139  		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140  		break;
1141  	}
1142  
1143  	return divisor;
1144  }
1145  
1146  /**
1147   * i40e_update_itr - update the dynamic ITR value based on statistics
1148   * @q_vector: structure containing interrupt and ring information
1149   * @rc: structure containing ring performance data
1150   *
1151   * Stores a new ITR value based on packets and byte
1152   * counts during the last interrupt.  The advantage of per interrupt
1153   * computation is faster updates and more accurate ITR for the current
1154   * traffic pattern.  Constants in this function were computed
1155   * based on theoretical maximum wire speed and thresholds were set based
1156   * on testing data as well as attempting to minimize response time
1157   * while increasing bulk throughput.
1158   **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1159  static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160  			    struct i40e_ring_container *rc)
1161  {
1162  	unsigned int avg_wire_size, packets, bytes, itr;
1163  	unsigned long next_update = jiffies;
1164  
1165  	/* If we don't have any rings just leave ourselves set for maximum
1166  	 * possible latency so we take ourselves out of the equation.
1167  	 */
1168  	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169  		return;
1170  
1171  	/* For Rx we want to push the delay up and default to low latency.
1172  	 * for Tx we want to pull the delay down and default to high latency.
1173  	 */
1174  	itr = i40e_container_is_rx(q_vector, rc) ?
1175  	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176  	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177  
1178  	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179  	 * that either packets are coming in so slow there hasn't been
1180  	 * any work, or that there is so much work that NAPI is dealing
1181  	 * with interrupt moderation and we don't need to do anything.
1182  	 */
1183  	if (time_after(next_update, rc->next_update))
1184  		goto clear_counts;
1185  
1186  	/* If itr_countdown is set it means we programmed an ITR within
1187  	 * the last 4 interrupt cycles. This has a side effect of us
1188  	 * potentially firing an early interrupt. In order to work around
1189  	 * this we need to throw out any data received for a few
1190  	 * interrupts following the update.
1191  	 */
1192  	if (q_vector->itr_countdown) {
1193  		itr = rc->target_itr;
1194  		goto clear_counts;
1195  	}
1196  
1197  	packets = rc->total_packets;
1198  	bytes = rc->total_bytes;
1199  
1200  	if (i40e_container_is_rx(q_vector, rc)) {
1201  		/* If Rx there are 1 to 4 packets and bytes are less than
1202  		 * 9000 assume insufficient data to use bulk rate limiting
1203  		 * approach unless Tx is already in bulk rate limiting. We
1204  		 * are likely latency driven.
1205  		 */
1206  		if (packets && packets < 4 && bytes < 9000 &&
1207  		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208  			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209  			goto adjust_by_size;
1210  		}
1211  	} else if (packets < 4) {
1212  		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213  		 * bulk mode and we are receiving 4 or fewer packets just
1214  		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215  		 * that the Rx can relax.
1216  		 */
1217  		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218  		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219  		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220  			goto clear_counts;
1221  	} else if (packets > 32) {
1222  		/* If we have processed over 32 packets in a single interrupt
1223  		 * for Tx assume we need to switch over to "bulk" mode.
1224  		 */
1225  		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226  	}
1227  
1228  	/* We have no packets to actually measure against. This means
1229  	 * either one of the other queues on this vector is active or
1230  	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231  	 *
1232  	 * Between 4 and 56 we can assume that our current interrupt delay
1233  	 * is only slightly too low. As such we should increase it by a small
1234  	 * fixed amount.
1235  	 */
1236  	if (packets < 56) {
1237  		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238  		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239  			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240  			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241  		}
1242  		goto clear_counts;
1243  	}
1244  
1245  	if (packets <= 256) {
1246  		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247  		itr &= I40E_ITR_MASK;
1248  
1249  		/* Between 56 and 112 is our "goldilocks" zone where we are
1250  		 * working out "just right". Just report that our current
1251  		 * ITR is good for us.
1252  		 */
1253  		if (packets <= 112)
1254  			goto clear_counts;
1255  
1256  		/* If packet count is 128 or greater we are likely looking
1257  		 * at a slight overrun of the delay we want. Try halving
1258  		 * our delay to see if that will cut the number of packets
1259  		 * in half per interrupt.
1260  		 */
1261  		itr /= 2;
1262  		itr &= I40E_ITR_MASK;
1263  		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264  			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265  
1266  		goto clear_counts;
1267  	}
1268  
1269  	/* The paths below assume we are dealing with a bulk ITR since
1270  	 * number of packets is greater than 256. We are just going to have
1271  	 * to compute a value and try to bring the count under control,
1272  	 * though for smaller packet sizes there isn't much we can do as
1273  	 * NAPI polling will likely be kicking in sooner rather than later.
1274  	 */
1275  	itr = I40E_ITR_ADAPTIVE_BULK;
1276  
1277  adjust_by_size:
1278  	/* If packet counts are 256 or greater we can assume we have a gross
1279  	 * overestimation of what the rate should be. Instead of trying to fine
1280  	 * tune it just use the formula below to try and dial in an exact value
1281  	 * give the current packet size of the frame.
1282  	 */
1283  	avg_wire_size = bytes / packets;
1284  
1285  	/* The following is a crude approximation of:
1286  	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287  	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288  	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289  	 *
1290  	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291  	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292  	 * formula down to
1293  	 *
1294  	 *  (170 * (size + 24)) / (size + 640) = ITR
1295  	 *
1296  	 * We first do some math on the packet size and then finally bitshift
1297  	 * by 8 after rounding up. We also have to account for PCIe link speed
1298  	 * difference as ITR scales based on this.
1299  	 */
1300  	if (avg_wire_size <= 60) {
1301  		/* Start at 250k ints/sec */
1302  		avg_wire_size = 4096;
1303  	} else if (avg_wire_size <= 380) {
1304  		/* 250K ints/sec to 60K ints/sec */
1305  		avg_wire_size *= 40;
1306  		avg_wire_size += 1696;
1307  	} else if (avg_wire_size <= 1084) {
1308  		/* 60K ints/sec to 36K ints/sec */
1309  		avg_wire_size *= 15;
1310  		avg_wire_size += 11452;
1311  	} else if (avg_wire_size <= 1980) {
1312  		/* 36K ints/sec to 30K ints/sec */
1313  		avg_wire_size *= 5;
1314  		avg_wire_size += 22420;
1315  	} else {
1316  		/* plateau at a limit of 30K ints/sec */
1317  		avg_wire_size = 32256;
1318  	}
1319  
1320  	/* If we are in low latency mode halve our delay which doubles the
1321  	 * rate to somewhere between 100K to 16K ints/sec
1322  	 */
1323  	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324  		avg_wire_size /= 2;
1325  
1326  	/* Resultant value is 256 times larger than it needs to be. This
1327  	 * gives us room to adjust the value as needed to either increase
1328  	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329  	 *
1330  	 * Use addition as we have already recorded the new latency flag
1331  	 * for the ITR value.
1332  	 */
1333  	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334  	       I40E_ITR_ADAPTIVE_MIN_INC;
1335  
1336  	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337  		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338  		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339  	}
1340  
1341  clear_counts:
1342  	/* write back value */
1343  	rc->target_itr = itr;
1344  
1345  	/* next update should occur within next jiffy */
1346  	rc->next_update = next_update + 1;
1347  
1348  	rc->total_bytes = 0;
1349  	rc->total_packets = 0;
1350  }
1351  
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1352  static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353  {
1354  	return &rx_ring->rx_bi[idx];
1355  }
1356  
1357  /**
1358   * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359   * @rx_ring: rx descriptor ring to store buffers on
1360   * @old_buff: donor buffer to have page reused
1361   *
1362   * Synchronizes page for reuse by the adapter
1363   **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1364  static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365  			       struct i40e_rx_buffer *old_buff)
1366  {
1367  	struct i40e_rx_buffer *new_buff;
1368  	u16 nta = rx_ring->next_to_alloc;
1369  
1370  	new_buff = i40e_rx_bi(rx_ring, nta);
1371  
1372  	/* update, and store next to alloc */
1373  	nta++;
1374  	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375  
1376  	/* transfer page from old buffer to new buffer */
1377  	new_buff->dma		= old_buff->dma;
1378  	new_buff->page		= old_buff->page;
1379  	new_buff->page_offset	= old_buff->page_offset;
1380  	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1381  
1382  	/* clear contents of buffer_info */
1383  	old_buff->page = NULL;
1384  }
1385  
1386  /**
1387   * i40e_clean_programming_status - clean the programming status descriptor
1388   * @rx_ring: the rx ring that has this descriptor
1389   * @qword0_raw: qword0
1390   * @qword1: qword1 representing status_error_len in CPU ordering
1391   *
1392   * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393   * status being successful or not and take actions accordingly. FCoE should
1394   * handle its context/filter programming/invalidation status and take actions.
1395   *
1396   * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397   **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1398  void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399  				   u64 qword1)
1400  {
1401  	u8 id;
1402  
1403  	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1404  
1405  	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406  		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407  }
1408  
1409  /**
1410   * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411   * @tx_ring: the tx ring to set up
1412   *
1413   * Return 0 on success, negative on error
1414   **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1415  int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416  {
1417  	struct device *dev = tx_ring->dev;
1418  	int bi_size;
1419  
1420  	if (!dev)
1421  		return -ENOMEM;
1422  
1423  	/* warn if we are about to overwrite the pointer */
1424  	WARN_ON(tx_ring->tx_bi);
1425  	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426  	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427  	if (!tx_ring->tx_bi)
1428  		goto err;
1429  
1430  	u64_stats_init(&tx_ring->syncp);
1431  
1432  	/* round up to nearest 4K */
1433  	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434  	/* add u32 for head writeback, align after this takes care of
1435  	 * guaranteeing this is at least one cache line in size
1436  	 */
1437  	tx_ring->size += sizeof(u32);
1438  	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439  	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440  					   &tx_ring->dma, GFP_KERNEL);
1441  	if (!tx_ring->desc) {
1442  		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443  			 tx_ring->size);
1444  		goto err;
1445  	}
1446  
1447  	tx_ring->next_to_use = 0;
1448  	tx_ring->next_to_clean = 0;
1449  	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450  	return 0;
1451  
1452  err:
1453  	kfree(tx_ring->tx_bi);
1454  	tx_ring->tx_bi = NULL;
1455  	return -ENOMEM;
1456  }
1457  
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1458  static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459  {
1460  	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461  }
1462  
1463  /**
1464   * i40e_clean_rx_ring - Free Rx buffers
1465   * @rx_ring: ring to be cleaned
1466   **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1467  void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468  {
1469  	u16 i;
1470  
1471  	/* ring already cleared, nothing to do */
1472  	if (!rx_ring->rx_bi)
1473  		return;
1474  
1475  	if (rx_ring->xsk_pool) {
1476  		i40e_xsk_clean_rx_ring(rx_ring);
1477  		goto skip_free;
1478  	}
1479  
1480  	/* Free all the Rx ring sk_buffs */
1481  	for (i = 0; i < rx_ring->count; i++) {
1482  		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483  
1484  		if (!rx_bi->page)
1485  			continue;
1486  
1487  		/* Invalidate cache lines that may have been written to by
1488  		 * device so that we avoid corrupting memory.
1489  		 */
1490  		dma_sync_single_range_for_cpu(rx_ring->dev,
1491  					      rx_bi->dma,
1492  					      rx_bi->page_offset,
1493  					      rx_ring->rx_buf_len,
1494  					      DMA_FROM_DEVICE);
1495  
1496  		/* free resources associated with mapping */
1497  		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498  				     i40e_rx_pg_size(rx_ring),
1499  				     DMA_FROM_DEVICE,
1500  				     I40E_RX_DMA_ATTR);
1501  
1502  		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503  
1504  		rx_bi->page = NULL;
1505  		rx_bi->page_offset = 0;
1506  	}
1507  
1508  skip_free:
1509  	if (rx_ring->xsk_pool)
1510  		i40e_clear_rx_bi_zc(rx_ring);
1511  	else
1512  		i40e_clear_rx_bi(rx_ring);
1513  
1514  	/* Zero out the descriptor ring */
1515  	memset(rx_ring->desc, 0, rx_ring->size);
1516  
1517  	rx_ring->next_to_alloc = 0;
1518  	rx_ring->next_to_clean = 0;
1519  	rx_ring->next_to_process = 0;
1520  	rx_ring->next_to_use = 0;
1521  }
1522  
1523  /**
1524   * i40e_free_rx_resources - Free Rx resources
1525   * @rx_ring: ring to clean the resources from
1526   *
1527   * Free all receive software resources
1528   **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1529  void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530  {
1531  	i40e_clean_rx_ring(rx_ring);
1532  	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533  		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534  	rx_ring->xdp_prog = NULL;
1535  	kfree(rx_ring->rx_bi);
1536  	rx_ring->rx_bi = NULL;
1537  
1538  	if (rx_ring->desc) {
1539  		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540  				  rx_ring->desc, rx_ring->dma);
1541  		rx_ring->desc = NULL;
1542  	}
1543  }
1544  
1545  /**
1546   * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547   * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548   *
1549   * Returns 0 on success, negative on failure
1550   **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1551  int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552  {
1553  	struct device *dev = rx_ring->dev;
1554  
1555  	u64_stats_init(&rx_ring->syncp);
1556  
1557  	/* Round up to nearest 4K */
1558  	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559  	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560  	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561  					   &rx_ring->dma, GFP_KERNEL);
1562  
1563  	if (!rx_ring->desc) {
1564  		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565  			 rx_ring->size);
1566  		return -ENOMEM;
1567  	}
1568  
1569  	rx_ring->next_to_alloc = 0;
1570  	rx_ring->next_to_clean = 0;
1571  	rx_ring->next_to_process = 0;
1572  	rx_ring->next_to_use = 0;
1573  
1574  	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575  
1576  	rx_ring->rx_bi =
1577  		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578  	if (!rx_ring->rx_bi)
1579  		return -ENOMEM;
1580  
1581  	return 0;
1582  }
1583  
1584  /**
1585   * i40e_release_rx_desc - Store the new tail and head values
1586   * @rx_ring: ring to bump
1587   * @val: new head index
1588   **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1589  void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590  {
1591  	rx_ring->next_to_use = val;
1592  
1593  	/* update next to alloc since we have filled the ring */
1594  	rx_ring->next_to_alloc = val;
1595  
1596  	/* Force memory writes to complete before letting h/w
1597  	 * know there are new descriptors to fetch.  (Only
1598  	 * applicable for weak-ordered memory model archs,
1599  	 * such as IA-64).
1600  	 */
1601  	wmb();
1602  	writel(val, rx_ring->tail);
1603  }
1604  
1605  #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1606  static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607  					   unsigned int size)
1608  {
1609  	unsigned int truesize;
1610  
1611  	truesize = rx_ring->rx_offset ?
1612  		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613  		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614  		SKB_DATA_ALIGN(size);
1615  	return truesize;
1616  }
1617  #endif
1618  
1619  /**
1620   * i40e_alloc_mapped_page - recycle or make a new page
1621   * @rx_ring: ring to use
1622   * @bi: rx_buffer struct to modify
1623   *
1624   * Returns true if the page was successfully allocated or
1625   * reused.
1626   **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1627  static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628  				   struct i40e_rx_buffer *bi)
1629  {
1630  	struct page *page = bi->page;
1631  	dma_addr_t dma;
1632  
1633  	/* since we are recycling buffers we should seldom need to alloc */
1634  	if (likely(page)) {
1635  		rx_ring->rx_stats.page_reuse_count++;
1636  		return true;
1637  	}
1638  
1639  	/* alloc new page for storage */
1640  	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641  	if (unlikely(!page)) {
1642  		rx_ring->rx_stats.alloc_page_failed++;
1643  		return false;
1644  	}
1645  
1646  	rx_ring->rx_stats.page_alloc_count++;
1647  
1648  	/* map page for use */
1649  	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650  				 i40e_rx_pg_size(rx_ring),
1651  				 DMA_FROM_DEVICE,
1652  				 I40E_RX_DMA_ATTR);
1653  
1654  	/* if mapping failed free memory back to system since
1655  	 * there isn't much point in holding memory we can't use
1656  	 */
1657  	if (dma_mapping_error(rx_ring->dev, dma)) {
1658  		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659  		rx_ring->rx_stats.alloc_page_failed++;
1660  		return false;
1661  	}
1662  
1663  	bi->dma = dma;
1664  	bi->page = page;
1665  	bi->page_offset = rx_ring->rx_offset;
1666  	page_ref_add(page, USHRT_MAX - 1);
1667  	bi->pagecnt_bias = USHRT_MAX;
1668  
1669  	return true;
1670  }
1671  
1672  /**
1673   * i40e_alloc_rx_buffers - Replace used receive buffers
1674   * @rx_ring: ring to place buffers on
1675   * @cleaned_count: number of buffers to replace
1676   *
1677   * Returns false if all allocations were successful, true if any fail
1678   **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1679  bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680  {
1681  	u16 ntu = rx_ring->next_to_use;
1682  	union i40e_rx_desc *rx_desc;
1683  	struct i40e_rx_buffer *bi;
1684  
1685  	/* do nothing if no valid netdev defined */
1686  	if (!rx_ring->netdev || !cleaned_count)
1687  		return false;
1688  
1689  	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690  	bi = i40e_rx_bi(rx_ring, ntu);
1691  
1692  	do {
1693  		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694  			goto no_buffers;
1695  
1696  		/* sync the buffer for use by the device */
1697  		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698  						 bi->page_offset,
1699  						 rx_ring->rx_buf_len,
1700  						 DMA_FROM_DEVICE);
1701  
1702  		/* Refresh the desc even if buffer_addrs didn't change
1703  		 * because each write-back erases this info.
1704  		 */
1705  		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706  
1707  		rx_desc++;
1708  		bi++;
1709  		ntu++;
1710  		if (unlikely(ntu == rx_ring->count)) {
1711  			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712  			bi = i40e_rx_bi(rx_ring, 0);
1713  			ntu = 0;
1714  		}
1715  
1716  		/* clear the status bits for the next_to_use descriptor */
1717  		rx_desc->wb.qword1.status_error_len = 0;
1718  
1719  		cleaned_count--;
1720  	} while (cleaned_count);
1721  
1722  	if (rx_ring->next_to_use != ntu)
1723  		i40e_release_rx_desc(rx_ring, ntu);
1724  
1725  	return false;
1726  
1727  no_buffers:
1728  	if (rx_ring->next_to_use != ntu)
1729  		i40e_release_rx_desc(rx_ring, ntu);
1730  
1731  	/* make sure to come back via polling to try again after
1732  	 * allocation failure
1733  	 */
1734  	return true;
1735  }
1736  
1737  /**
1738   * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739   * @vsi: the VSI we care about
1740   * @skb: skb currently being received and modified
1741   * @rx_desc: the receive descriptor
1742   **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1743  static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744  				    struct sk_buff *skb,
1745  				    union i40e_rx_desc *rx_desc)
1746  {
1747  	struct libeth_rx_pt decoded;
1748  	u32 rx_error, rx_status;
1749  	bool ipv4, ipv6;
1750  	u8 ptype;
1751  	u64 qword;
1752  
1753  	skb->ip_summed = CHECKSUM_NONE;
1754  
1755  	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756  	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757  
1758  	decoded = libie_rx_pt_parse(ptype);
1759  	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760  		return;
1761  
1762  	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763  	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764  
1765  	/* did the hardware decode the packet and checksum? */
1766  	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767  		return;
1768  
1769  	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770  	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1771  
1772  	if (ipv4 &&
1773  	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774  			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775  		goto checksum_fail;
1776  
1777  	/* likely incorrect csum if alternate IP extension headers found */
1778  	if (ipv6 &&
1779  	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780  		/* don't increment checksum err here, non-fatal err */
1781  		return;
1782  
1783  	/* there was some L4 error, count error and punt packet to the stack */
1784  	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785  		goto checksum_fail;
1786  
1787  	/* handle packets that were not able to be checksummed due
1788  	 * to arrival speed, in this case the stack can compute
1789  	 * the csum.
1790  	 */
1791  	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792  		return;
1793  
1794  	/* If there is an outer header present that might contain a checksum
1795  	 * we need to bump the checksum level by 1 to reflect the fact that
1796  	 * we are indicating we validated the inner checksum.
1797  	 */
1798  	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799  		skb->csum_level = 1;
1800  
1801  	skb->ip_summed = CHECKSUM_UNNECESSARY;
1802  	return;
1803  
1804  checksum_fail:
1805  	vsi->back->hw_csum_rx_error++;
1806  }
1807  
1808  /**
1809   * i40e_rx_hash - set the hash value in the skb
1810   * @ring: descriptor ring
1811   * @rx_desc: specific descriptor
1812   * @skb: skb currently being received and modified
1813   * @rx_ptype: Rx packet type
1814   **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1815  static inline void i40e_rx_hash(struct i40e_ring *ring,
1816  				union i40e_rx_desc *rx_desc,
1817  				struct sk_buff *skb,
1818  				u8 rx_ptype)
1819  {
1820  	struct libeth_rx_pt decoded;
1821  	u32 hash;
1822  	const __le64 rss_mask =
1823  		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824  			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825  
1826  	decoded = libie_rx_pt_parse(rx_ptype);
1827  	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828  		return;
1829  
1830  	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831  		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832  		libeth_rx_pt_set_hash(skb, hash, decoded);
1833  	}
1834  }
1835  
1836  /**
1837   * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838   * @rx_ring: rx descriptor ring packet is being transacted on
1839   * @rx_desc: pointer to the EOP Rx descriptor
1840   * @skb: pointer to current skb being populated
1841   *
1842   * This function checks the ring, descriptor, and packet information in
1843   * order to populate the hash, checksum, VLAN, protocol, and
1844   * other fields within the skb.
1845   **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1846  void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847  			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848  {
1849  	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850  	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1851  	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852  	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853  	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854  
1855  	if (unlikely(tsynvalid))
1856  		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857  
1858  	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859  
1860  	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861  
1862  	skb_record_rx_queue(skb, rx_ring->queue_index);
1863  
1864  	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865  		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866  
1867  		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868  				       le16_to_cpu(vlan_tag));
1869  	}
1870  
1871  	/* modifies the skb - consumes the enet header */
1872  	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873  }
1874  
1875  /**
1876   * i40e_cleanup_headers - Correct empty headers
1877   * @rx_ring: rx descriptor ring packet is being transacted on
1878   * @skb: pointer to current skb being fixed
1879   * @rx_desc: pointer to the EOP Rx descriptor
1880   *
1881   * In addition if skb is not at least 60 bytes we need to pad it so that
1882   * it is large enough to qualify as a valid Ethernet frame.
1883   *
1884   * Returns true if an error was encountered and skb was freed.
1885   **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1886  static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887  				 union i40e_rx_desc *rx_desc)
1888  
1889  {
1890  	/* ERR_MASK will only have valid bits if EOP set, and
1891  	 * what we are doing here is actually checking
1892  	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893  	 * the error field
1894  	 */
1895  	if (unlikely(i40e_test_staterr(rx_desc,
1896  				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897  		dev_kfree_skb_any(skb);
1898  		return true;
1899  	}
1900  
1901  	/* if eth_skb_pad returns an error the skb was freed */
1902  	if (eth_skb_pad(skb))
1903  		return true;
1904  
1905  	return false;
1906  }
1907  
1908  /**
1909   * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910   * @rx_buffer: buffer containing the page
1911   * @rx_stats: rx stats structure for the rx ring
1912   *
1913   * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914   * which will assign the current buffer to the buffer that next_to_alloc is
1915   * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916   * page freed.
1917   *
1918   * rx_stats will be updated to indicate whether the page was waived
1919   * or busy if it could not be reused.
1920   */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1921  static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922  				   struct i40e_rx_queue_stats *rx_stats)
1923  {
1924  	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925  	struct page *page = rx_buffer->page;
1926  
1927  	/* Is any reuse possible? */
1928  	if (!dev_page_is_reusable(page)) {
1929  		rx_stats->page_waive_count++;
1930  		return false;
1931  	}
1932  
1933  #if (PAGE_SIZE < 8192)
1934  	/* if we are only owner of page we can reuse it */
1935  	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936  		rx_stats->page_busy_count++;
1937  		return false;
1938  	}
1939  #else
1940  #define I40E_LAST_OFFSET \
1941  	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942  	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943  		rx_stats->page_busy_count++;
1944  		return false;
1945  	}
1946  #endif
1947  
1948  	/* If we have drained the page fragment pool we need to update
1949  	 * the pagecnt_bias and page count so that we fully restock the
1950  	 * number of references the driver holds.
1951  	 */
1952  	if (unlikely(pagecnt_bias == 1)) {
1953  		page_ref_add(page, USHRT_MAX - 1);
1954  		rx_buffer->pagecnt_bias = USHRT_MAX;
1955  	}
1956  
1957  	return true;
1958  }
1959  
1960  /**
1961   * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962   * @rx_buffer: Rx buffer to adjust
1963   * @truesize: Size of adjustment
1964   **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)1965  static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966  				unsigned int truesize)
1967  {
1968  #if (PAGE_SIZE < 8192)
1969  	rx_buffer->page_offset ^= truesize;
1970  #else
1971  	rx_buffer->page_offset += truesize;
1972  #endif
1973  }
1974  
1975  /**
1976   * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977   * @rx_ring: rx descriptor ring to transact packets on
1978   * @size: size of buffer to add to skb
1979   *
1980   * This function will pull an Rx buffer from the ring and synchronize it
1981   * for use by the CPU.
1982   */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)1983  static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984  						 const unsigned int size)
1985  {
1986  	struct i40e_rx_buffer *rx_buffer;
1987  
1988  	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989  	rx_buffer->page_count =
1990  #if (PAGE_SIZE < 8192)
1991  		page_count(rx_buffer->page);
1992  #else
1993  		0;
1994  #endif
1995  	prefetch_page_address(rx_buffer->page);
1996  
1997  	/* we are reusing so sync this buffer for CPU use */
1998  	dma_sync_single_range_for_cpu(rx_ring->dev,
1999  				      rx_buffer->dma,
2000  				      rx_buffer->page_offset,
2001  				      size,
2002  				      DMA_FROM_DEVICE);
2003  
2004  	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005  	rx_buffer->pagecnt_bias--;
2006  
2007  	return rx_buffer;
2008  }
2009  
2010  /**
2011   * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012   * @rx_ring: rx descriptor ring to transact packets on
2013   * @rx_buffer: rx buffer to pull data from
2014   *
2015   * This function will clean up the contents of the rx_buffer.  It will
2016   * either recycle the buffer or unmap it and free the associated resources.
2017   */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2018  static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019  			       struct i40e_rx_buffer *rx_buffer)
2020  {
2021  	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022  		/* hand second half of page back to the ring */
2023  		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024  	} else {
2025  		/* we are not reusing the buffer so unmap it */
2026  		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027  				     i40e_rx_pg_size(rx_ring),
2028  				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029  		__page_frag_cache_drain(rx_buffer->page,
2030  					rx_buffer->pagecnt_bias);
2031  		/* clear contents of buffer_info */
2032  		rx_buffer->page = NULL;
2033  	}
2034  }
2035  
2036  /**
2037   * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038   * @rx_ring: Rx descriptor ring to transact packets on
2039   * @xdp_res: Result of the XDP program
2040   * @xdp: xdp_buff pointing to the data
2041   **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2042  static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043  				  struct xdp_buff *xdp)
2044  {
2045  	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046  	u32 next = rx_ring->next_to_clean, i = 0;
2047  	struct i40e_rx_buffer *rx_buffer;
2048  
2049  	xdp->flags = 0;
2050  
2051  	while (1) {
2052  		rx_buffer = i40e_rx_bi(rx_ring, next);
2053  		if (++next == rx_ring->count)
2054  			next = 0;
2055  
2056  		if (!rx_buffer->page)
2057  			continue;
2058  
2059  		if (xdp_res != I40E_XDP_CONSUMED)
2060  			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061  		else if (i++ <= nr_frags)
2062  			rx_buffer->pagecnt_bias++;
2063  
2064  		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065  		if (next == rx_ring->next_to_process)
2066  			return;
2067  
2068  		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069  	}
2070  }
2071  
2072  /**
2073   * i40e_construct_skb - Allocate skb and populate it
2074   * @rx_ring: rx descriptor ring to transact packets on
2075   * @xdp: xdp_buff pointing to the data
2076   *
2077   * This function allocates an skb.  It then populates it with the page
2078   * data from the current receive descriptor, taking care to set up the
2079   * skb correctly.
2080   */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2081  static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082  					  struct xdp_buff *xdp)
2083  {
2084  	unsigned int size = xdp->data_end - xdp->data;
2085  	struct i40e_rx_buffer *rx_buffer;
2086  	struct skb_shared_info *sinfo;
2087  	unsigned int headlen;
2088  	struct sk_buff *skb;
2089  	u32 nr_frags = 0;
2090  
2091  	/* prefetch first cache line of first page */
2092  	net_prefetch(xdp->data);
2093  
2094  	/* Note, we get here by enabling legacy-rx via:
2095  	 *
2096  	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097  	 *
2098  	 * In this mode, we currently get 0 extra XDP headroom as
2099  	 * opposed to having legacy-rx off, where we process XDP
2100  	 * packets going to stack via i40e_build_skb(). The latter
2101  	 * provides us currently with 192 bytes of headroom.
2102  	 *
2103  	 * For i40e_construct_skb() mode it means that the
2104  	 * xdp->data_meta will always point to xdp->data, since
2105  	 * the helper cannot expand the head. Should this ever
2106  	 * change in future for legacy-rx mode on, then lets also
2107  	 * add xdp->data_meta handling here.
2108  	 */
2109  
2110  	/* allocate a skb to store the frags */
2111  	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112  	if (unlikely(!skb))
2113  		return NULL;
2114  
2115  	/* Determine available headroom for copy */
2116  	headlen = size;
2117  	if (headlen > I40E_RX_HDR_SIZE)
2118  		headlen = eth_get_headlen(skb->dev, xdp->data,
2119  					  I40E_RX_HDR_SIZE);
2120  
2121  	/* align pull length to size of long to optimize memcpy performance */
2122  	memcpy(__skb_put(skb, headlen), xdp->data,
2123  	       ALIGN(headlen, sizeof(long)));
2124  
2125  	if (unlikely(xdp_buff_has_frags(xdp))) {
2126  		sinfo = xdp_get_shared_info_from_buff(xdp);
2127  		nr_frags = sinfo->nr_frags;
2128  	}
2129  	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130  	/* update all of the pointers */
2131  	size -= headlen;
2132  	if (size) {
2133  		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134  			dev_kfree_skb(skb);
2135  			return NULL;
2136  		}
2137  		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138  				rx_buffer->page_offset + headlen,
2139  				size, xdp->frame_sz);
2140  		/* buffer is used by skb, update page_offset */
2141  		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142  	} else {
2143  		/* buffer is unused, reset bias back to rx_buffer */
2144  		rx_buffer->pagecnt_bias++;
2145  	}
2146  
2147  	if (unlikely(xdp_buff_has_frags(xdp))) {
2148  		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149  
2150  		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151  		       sizeof(skb_frag_t) * nr_frags);
2152  
2153  		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154  					   sinfo->xdp_frags_size,
2155  					   nr_frags * xdp->frame_sz,
2156  					   xdp_buff_is_frag_pfmemalloc(xdp));
2157  
2158  		/* First buffer has already been processed, so bump ntc */
2159  		if (++rx_ring->next_to_clean == rx_ring->count)
2160  			rx_ring->next_to_clean = 0;
2161  
2162  		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163  	}
2164  
2165  	return skb;
2166  }
2167  
2168  /**
2169   * i40e_build_skb - Build skb around an existing buffer
2170   * @rx_ring: Rx descriptor ring to transact packets on
2171   * @xdp: xdp_buff pointing to the data
2172   *
2173   * This function builds an skb around an existing Rx buffer, taking care
2174   * to set up the skb correctly and avoid any memcpy overhead.
2175   */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2176  static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177  				      struct xdp_buff *xdp)
2178  {
2179  	unsigned int metasize = xdp->data - xdp->data_meta;
2180  	struct skb_shared_info *sinfo;
2181  	struct sk_buff *skb;
2182  	u32 nr_frags;
2183  
2184  	/* Prefetch first cache line of first page. If xdp->data_meta
2185  	 * is unused, this points exactly as xdp->data, otherwise we
2186  	 * likely have a consumer accessing first few bytes of meta
2187  	 * data, and then actual data.
2188  	 */
2189  	net_prefetch(xdp->data_meta);
2190  
2191  	if (unlikely(xdp_buff_has_frags(xdp))) {
2192  		sinfo = xdp_get_shared_info_from_buff(xdp);
2193  		nr_frags = sinfo->nr_frags;
2194  	}
2195  
2196  	/* build an skb around the page buffer */
2197  	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198  	if (unlikely(!skb))
2199  		return NULL;
2200  
2201  	/* update pointers within the skb to store the data */
2202  	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203  	__skb_put(skb, xdp->data_end - xdp->data);
2204  	if (metasize)
2205  		skb_metadata_set(skb, metasize);
2206  
2207  	if (unlikely(xdp_buff_has_frags(xdp))) {
2208  		xdp_update_skb_shared_info(skb, nr_frags,
2209  					   sinfo->xdp_frags_size,
2210  					   nr_frags * xdp->frame_sz,
2211  					   xdp_buff_is_frag_pfmemalloc(xdp));
2212  
2213  		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214  	} else {
2215  		struct i40e_rx_buffer *rx_buffer;
2216  
2217  		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218  		/* buffer is used by skb, update page_offset */
2219  		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220  	}
2221  
2222  	return skb;
2223  }
2224  
2225  /**
2226   * i40e_is_non_eop - process handling of non-EOP buffers
2227   * @rx_ring: Rx ring being processed
2228   * @rx_desc: Rx descriptor for current buffer
2229   *
2230   * If the buffer is an EOP buffer, this function exits returning false,
2231   * otherwise return true indicating that this is in fact a non-EOP buffer.
2232   */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2233  bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234  		     union i40e_rx_desc *rx_desc)
2235  {
2236  	/* if we are the last buffer then there is nothing else to do */
2237  #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238  	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239  		return false;
2240  
2241  	rx_ring->rx_stats.non_eop_descs++;
2242  
2243  	return true;
2244  }
2245  
2246  static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247  			      struct i40e_ring *xdp_ring);
2248  
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2249  int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250  {
2251  	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252  
2253  	if (unlikely(!xdpf))
2254  		return I40E_XDP_CONSUMED;
2255  
2256  	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257  }
2258  
2259  /**
2260   * i40e_run_xdp - run an XDP program
2261   * @rx_ring: Rx ring being processed
2262   * @xdp: XDP buffer containing the frame
2263   * @xdp_prog: XDP program to run
2264   **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2265  static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266  {
2267  	int err, result = I40E_XDP_PASS;
2268  	struct i40e_ring *xdp_ring;
2269  	u32 act;
2270  
2271  	if (!xdp_prog)
2272  		goto xdp_out;
2273  
2274  	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275  
2276  	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277  	switch (act) {
2278  	case XDP_PASS:
2279  		break;
2280  	case XDP_TX:
2281  		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282  		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283  		if (result == I40E_XDP_CONSUMED)
2284  			goto out_failure;
2285  		break;
2286  	case XDP_REDIRECT:
2287  		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288  		if (err)
2289  			goto out_failure;
2290  		result = I40E_XDP_REDIR;
2291  		break;
2292  	default:
2293  		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294  		fallthrough;
2295  	case XDP_ABORTED:
2296  out_failure:
2297  		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298  		fallthrough; /* handle aborts by dropping packet */
2299  	case XDP_DROP:
2300  		result = I40E_XDP_CONSUMED;
2301  		break;
2302  	}
2303  xdp_out:
2304  	return result;
2305  }
2306  
2307  /**
2308   * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309   * @xdp_ring: XDP Tx ring
2310   *
2311   * This function updates the XDP Tx ring tail register.
2312   **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2313  void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314  {
2315  	/* Force memory writes to complete before letting h/w
2316  	 * know there are new descriptors to fetch.
2317  	 */
2318  	wmb();
2319  	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320  }
2321  
2322  /**
2323   * i40e_update_rx_stats - Update Rx ring statistics
2324   * @rx_ring: rx descriptor ring
2325   * @total_rx_bytes: number of bytes received
2326   * @total_rx_packets: number of packets received
2327   *
2328   * This function updates the Rx ring statistics.
2329   **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2330  void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331  			  unsigned int total_rx_bytes,
2332  			  unsigned int total_rx_packets)
2333  {
2334  	u64_stats_update_begin(&rx_ring->syncp);
2335  	rx_ring->stats.packets += total_rx_packets;
2336  	rx_ring->stats.bytes += total_rx_bytes;
2337  	u64_stats_update_end(&rx_ring->syncp);
2338  	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339  	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340  }
2341  
2342  /**
2343   * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344   * @rx_ring: Rx ring
2345   * @xdp_res: Result of the receive batch
2346   *
2347   * This function bumps XDP Tx tail and/or flush redirect map, and
2348   * should be called when a batch of packets has been processed in the
2349   * napi loop.
2350   **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2351  void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352  {
2353  	if (xdp_res & I40E_XDP_REDIR)
2354  		xdp_do_flush();
2355  
2356  	if (xdp_res & I40E_XDP_TX) {
2357  		struct i40e_ring *xdp_ring =
2358  			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359  
2360  		i40e_xdp_ring_update_tail(xdp_ring);
2361  	}
2362  }
2363  
2364  /**
2365   * i40e_inc_ntp: Advance the next_to_process index
2366   * @rx_ring: Rx ring
2367   **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2368  static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369  {
2370  	u32 ntp = rx_ring->next_to_process + 1;
2371  
2372  	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373  	rx_ring->next_to_process = ntp;
2374  	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375  }
2376  
2377  /**
2378   * i40e_add_xdp_frag: Add a frag to xdp_buff
2379   * @xdp: xdp_buff pointing to the data
2380   * @nr_frags: return number of buffers for the packet
2381   * @rx_buffer: rx_buffer holding data of the current frag
2382   * @size: size of data of current frag
2383   */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2384  static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385  			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386  {
2387  	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388  
2389  	if (!xdp_buff_has_frags(xdp)) {
2390  		sinfo->nr_frags = 0;
2391  		sinfo->xdp_frags_size = 0;
2392  		xdp_buff_set_frags_flag(xdp);
2393  	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394  		/* Overflowing packet: All frags need to be dropped */
2395  		return -ENOMEM;
2396  	}
2397  
2398  	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399  				   rx_buffer->page_offset, size);
2400  
2401  	sinfo->xdp_frags_size += size;
2402  
2403  	if (page_is_pfmemalloc(rx_buffer->page))
2404  		xdp_buff_set_frag_pfmemalloc(xdp);
2405  	*nr_frags = sinfo->nr_frags;
2406  
2407  	return 0;
2408  }
2409  
2410  /**
2411   * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412   * @rx_ring: rx descriptor ring to transact packets on
2413   * @xdp: xdp_buff pointing to the data
2414   * @rx_buffer: rx_buffer of eop desc
2415   */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2416  static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417  				  struct xdp_buff *xdp,
2418  				  struct i40e_rx_buffer *rx_buffer)
2419  {
2420  	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421  	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422  	rx_ring->next_to_clean = rx_ring->next_to_process;
2423  	xdp->data = NULL;
2424  }
2425  
2426  /**
2427   * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428   * @rx_ring: rx descriptor ring to transact packets on
2429   * @budget: Total limit on number of packets to process
2430   * @rx_cleaned: Out parameter of the number of packets processed
2431   *
2432   * This function provides a "bounce buffer" approach to Rx interrupt
2433   * processing.  The advantage to this is that on systems that have
2434   * expensive overhead for IOMMU access this provides a means of avoiding
2435   * it by maintaining the mapping of the page to the system.
2436   *
2437   * Returns amount of work completed
2438   **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2439  static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440  			     unsigned int *rx_cleaned)
2441  {
2442  	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443  	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444  	u16 clean_threshold = rx_ring->count / 2;
2445  	unsigned int offset = rx_ring->rx_offset;
2446  	struct xdp_buff *xdp = &rx_ring->xdp;
2447  	unsigned int xdp_xmit = 0;
2448  	struct bpf_prog *xdp_prog;
2449  	bool failure = false;
2450  	int xdp_res = 0;
2451  
2452  	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453  
2454  	while (likely(total_rx_packets < (unsigned int)budget)) {
2455  		u16 ntp = rx_ring->next_to_process;
2456  		struct i40e_rx_buffer *rx_buffer;
2457  		union i40e_rx_desc *rx_desc;
2458  		struct sk_buff *skb;
2459  		unsigned int size;
2460  		u32 nfrags = 0;
2461  		bool neop;
2462  		u64 qword;
2463  
2464  		/* return some buffers to hardware, one at a time is too slow */
2465  		if (cleaned_count >= clean_threshold) {
2466  			failure = failure ||
2467  				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468  			cleaned_count = 0;
2469  		}
2470  
2471  		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472  
2473  		/* status_error_len will always be zero for unused descriptors
2474  		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475  		 * which is always zero because packet split isn't used, if the
2476  		 * hardware wrote DD then the length will be non-zero
2477  		 */
2478  		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479  
2480  		/* This memory barrier is needed to keep us from reading
2481  		 * any other fields out of the rx_desc until we have
2482  		 * verified the descriptor has been written back.
2483  		 */
2484  		dma_rmb();
2485  
2486  		if (i40e_rx_is_programming_status(qword)) {
2487  			i40e_clean_programming_status(rx_ring,
2488  						      rx_desc->raw.qword[0],
2489  						      qword);
2490  			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491  			i40e_inc_ntp(rx_ring);
2492  			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493  			/* Update ntc and bump cleaned count if not in the
2494  			 * middle of mb packet.
2495  			 */
2496  			if (rx_ring->next_to_clean == ntp) {
2497  				rx_ring->next_to_clean =
2498  					rx_ring->next_to_process;
2499  				cleaned_count++;
2500  			}
2501  			continue;
2502  		}
2503  
2504  		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505  		if (!size)
2506  			break;
2507  
2508  		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509  		/* retrieve a buffer from the ring */
2510  		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511  
2512  		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513  		i40e_inc_ntp(rx_ring);
2514  
2515  		if (!xdp->data) {
2516  			unsigned char *hard_start;
2517  
2518  			hard_start = page_address(rx_buffer->page) +
2519  				     rx_buffer->page_offset - offset;
2520  			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521  #if (PAGE_SIZE > 4096)
2522  			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523  			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524  #endif
2525  		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526  			   !neop) {
2527  			/* Overflowing packet: Drop all frags on EOP */
2528  			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529  			break;
2530  		}
2531  
2532  		if (neop)
2533  			continue;
2534  
2535  		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536  
2537  		if (xdp_res) {
2538  			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539  
2540  			if (unlikely(xdp_buff_has_frags(xdp))) {
2541  				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542  				size = xdp_get_buff_len(xdp);
2543  			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544  				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545  			} else {
2546  				rx_buffer->pagecnt_bias++;
2547  			}
2548  			total_rx_bytes += size;
2549  		} else {
2550  			if (ring_uses_build_skb(rx_ring))
2551  				skb = i40e_build_skb(rx_ring, xdp);
2552  			else
2553  				skb = i40e_construct_skb(rx_ring, xdp);
2554  
2555  			/* drop if we failed to retrieve a buffer */
2556  			if (!skb) {
2557  				rx_ring->rx_stats.alloc_buff_failed++;
2558  				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559  				break;
2560  			}
2561  
2562  			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563  				goto process_next;
2564  
2565  			/* probably a little skewed due to removing CRC */
2566  			total_rx_bytes += skb->len;
2567  
2568  			/* populate checksum, VLAN, and protocol */
2569  			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570  
2571  			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572  			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573  		}
2574  
2575  		/* update budget accounting */
2576  		total_rx_packets++;
2577  process_next:
2578  		cleaned_count += nfrags + 1;
2579  		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580  		rx_ring->next_to_clean = rx_ring->next_to_process;
2581  
2582  		xdp->data = NULL;
2583  	}
2584  
2585  	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586  
2587  	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588  
2589  	*rx_cleaned = total_rx_packets;
2590  
2591  	/* guarantee a trip back through this routine if there was a failure */
2592  	return failure ? budget : (int)total_rx_packets;
2593  }
2594  
2595  /**
2596   * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597   * @itr_idx: interrupt throttling index
2598   * @interval: interrupt throttling interval value in usecs
2599   * @force_swint: force software interrupt
2600   *
2601   * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602   * is used to update interrupt throttling interval for specified ITR index
2603   * and optionally enforces a software interrupt. If the @itr_idx is equal
2604   * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605   * parameter is taken into account. If the interval change and enforced
2606   * software interrupt are not requested then the built value just enables
2607   * appropriate vector interrupt.
2608   **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2609  static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610  			     bool force_swint)
2611  {
2612  	u32 val;
2613  
2614  	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615  	 * points out doing so is "meaningless since it was already
2616  	 * auto-cleared". The auto-clearing happens when the interrupt is
2617  	 * asserted.
2618  	 *
2619  	 * Hardware errata 28 for also indicates that writing to a
2620  	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621  	 * an event in the PBA anyway so we need to rely on the automask
2622  	 * to hold pending events for us until the interrupt is re-enabled
2623  	 *
2624  	 * We have to shift the given value as it is reported in microseconds
2625  	 * and the register value is recorded in 2 microsecond units.
2626  	 */
2627  	interval >>= 1;
2628  
2629  	/* 1. Enable vector interrupt
2630  	 * 2. Update the interval for the specified ITR index
2631  	 *    (I40E_ITR_NONE in the register is used to indicate that
2632  	 *     no interval update is requested)
2633  	 */
2634  	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635  	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636  	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637  
2638  	/* 3. Enforce software interrupt trigger if requested
2639  	 *    (These software interrupts rate is limited by ITR2 that is
2640  	 *     set to 20K interrupts per second)
2641  	 */
2642  	if (force_swint)
2643  		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644  		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645  		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646  				  I40E_SW_ITR);
2647  
2648  	return val;
2649  }
2650  
2651  /* The act of updating the ITR will cause it to immediately trigger. In order
2652   * to prevent this from throwing off adaptive update statistics we defer the
2653   * update so that it can only happen so often. So after either Tx or Rx are
2654   * updated we make the adaptive scheme wait until either the ITR completely
2655   * expires via the next_update expiration or we have been through at least
2656   * 3 interrupts.
2657   */
2658  #define ITR_COUNTDOWN_START 3
2659  
2660  /**
2661   * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662   * @vsi: the VSI we care about
2663   * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664   *
2665   **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2666  static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667  					  struct i40e_q_vector *q_vector)
2668  {
2669  	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670  	struct i40e_hw *hw = &vsi->back->hw;
2671  	u16 interval = 0;
2672  	u32 itr_val;
2673  
2674  	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675  	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676  		i40e_irq_dynamic_enable_icr0(vsi->back);
2677  		return;
2678  	}
2679  
2680  	/* These will do nothing if dynamic updates are not enabled */
2681  	i40e_update_itr(q_vector, &q_vector->tx);
2682  	i40e_update_itr(q_vector, &q_vector->rx);
2683  
2684  	/* This block of logic allows us to get away with only updating
2685  	 * one ITR value with each interrupt. The idea is to perform a
2686  	 * pseudo-lazy update with the following criteria.
2687  	 *
2688  	 * 1. Rx is given higher priority than Tx if both are in same state
2689  	 * 2. If we must reduce an ITR that is given highest priority.
2690  	 * 3. We then give priority to increasing ITR based on amount.
2691  	 */
2692  	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693  		/* Rx ITR needs to be reduced, this is highest priority */
2694  		itr_idx = I40E_RX_ITR;
2695  		interval = q_vector->rx.target_itr;
2696  		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697  		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698  	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699  		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700  		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701  		/* Tx ITR needs to be reduced, this is second priority
2702  		 * Tx ITR needs to be increased more than Rx, fourth priority
2703  		 */
2704  		itr_idx = I40E_TX_ITR;
2705  		interval = q_vector->tx.target_itr;
2706  		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707  		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708  	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709  		/* Rx ITR needs to be increased, third priority */
2710  		itr_idx = I40E_RX_ITR;
2711  		interval = q_vector->rx.target_itr;
2712  		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713  		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714  	} else {
2715  		/* No ITR update, lowest priority */
2716  		if (q_vector->itr_countdown)
2717  			q_vector->itr_countdown--;
2718  	}
2719  
2720  	/* Do not update interrupt control register if VSI is down */
2721  	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722  		return;
2723  
2724  	/* Update ITR interval if necessary and enforce software interrupt
2725  	 * if we are exiting busy poll.
2726  	 */
2727  	if (q_vector->in_busy_poll) {
2728  		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729  		q_vector->in_busy_poll = false;
2730  	} else {
2731  		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732  	}
2733  	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734  }
2735  
2736  /**
2737   * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738   * @napi: napi struct with our devices info in it
2739   * @budget: amount of work driver is allowed to do this pass, in packets
2740   *
2741   * This function will clean all queues associated with a q_vector.
2742   *
2743   * Returns the amount of work done
2744   **/
i40e_napi_poll(struct napi_struct * napi,int budget)2745  int i40e_napi_poll(struct napi_struct *napi, int budget)
2746  {
2747  	struct i40e_q_vector *q_vector =
2748  			       container_of(napi, struct i40e_q_vector, napi);
2749  	struct i40e_vsi *vsi = q_vector->vsi;
2750  	struct i40e_ring *ring;
2751  	bool tx_clean_complete = true;
2752  	bool rx_clean_complete = true;
2753  	unsigned int tx_cleaned = 0;
2754  	unsigned int rx_cleaned = 0;
2755  	bool clean_complete = true;
2756  	bool arm_wb = false;
2757  	int budget_per_ring;
2758  	int work_done = 0;
2759  
2760  	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761  		napi_complete(napi);
2762  		return 0;
2763  	}
2764  
2765  	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766  	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767  	 */
2768  	i40e_for_each_ring(ring, q_vector->tx) {
2769  		bool wd = ring->xsk_pool ?
2770  			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771  			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772  
2773  		if (!wd) {
2774  			clean_complete = tx_clean_complete = false;
2775  			continue;
2776  		}
2777  		arm_wb |= ring->arm_wb;
2778  		ring->arm_wb = false;
2779  	}
2780  
2781  	/* Handle case where we are called by netpoll with a budget of 0 */
2782  	if (budget <= 0)
2783  		goto tx_only;
2784  
2785  	/* normally we have 1 Rx ring per q_vector */
2786  	if (unlikely(q_vector->num_ringpairs > 1))
2787  		/* We attempt to distribute budget to each Rx queue fairly, but
2788  		 * don't allow the budget to go below 1 because that would exit
2789  		 * polling early.
2790  		 */
2791  		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792  	else
2793  		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794  		budget_per_ring = budget;
2795  
2796  	i40e_for_each_ring(ring, q_vector->rx) {
2797  		int cleaned = ring->xsk_pool ?
2798  			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799  			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800  
2801  		work_done += cleaned;
2802  		/* if we clean as many as budgeted, we must not be done */
2803  		if (cleaned >= budget_per_ring)
2804  			clean_complete = rx_clean_complete = false;
2805  	}
2806  
2807  	if (!i40e_enabled_xdp_vsi(vsi))
2808  		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809  				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810  
2811  	/* If work not completed, return budget and polling will return */
2812  	if (!clean_complete) {
2813  		int cpu_id = smp_processor_id();
2814  
2815  		/* It is possible that the interrupt affinity has changed but,
2816  		 * if the cpu is pegged at 100%, polling will never exit while
2817  		 * traffic continues and the interrupt will be stuck on this
2818  		 * cpu.  We check to make sure affinity is correct before we
2819  		 * continue to poll, otherwise we must stop polling so the
2820  		 * interrupt can move to the correct cpu.
2821  		 */
2822  		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823  			/* Tell napi that we are done polling */
2824  			napi_complete_done(napi, work_done);
2825  
2826  			/* Force an interrupt */
2827  			i40e_force_wb(vsi, q_vector);
2828  
2829  			/* Return budget-1 so that polling stops */
2830  			return budget - 1;
2831  		}
2832  tx_only:
2833  		if (arm_wb) {
2834  			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835  			i40e_enable_wb_on_itr(vsi, q_vector);
2836  		}
2837  		return budget;
2838  	}
2839  
2840  	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841  		q_vector->arm_wb_state = false;
2842  
2843  	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844  	 * poll us due to busy-polling
2845  	 */
2846  	if (likely(napi_complete_done(napi, work_done)))
2847  		i40e_update_enable_itr(vsi, q_vector);
2848  	else
2849  		q_vector->in_busy_poll = true;
2850  
2851  	return min(work_done, budget - 1);
2852  }
2853  
2854  /**
2855   * i40e_atr - Add a Flow Director ATR filter
2856   * @tx_ring:  ring to add programming descriptor to
2857   * @skb:      send buffer
2858   * @tx_flags: send tx flags
2859   **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2860  static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861  		     u32 tx_flags)
2862  {
2863  	struct i40e_filter_program_desc *fdir_desc;
2864  	struct i40e_pf *pf = tx_ring->vsi->back;
2865  	union {
2866  		unsigned char *network;
2867  		struct iphdr *ipv4;
2868  		struct ipv6hdr *ipv6;
2869  	} hdr;
2870  	struct tcphdr *th;
2871  	unsigned int hlen;
2872  	u32 flex_ptype, dtype_cmd;
2873  	int l4_proto;
2874  	u16 i;
2875  
2876  	/* make sure ATR is enabled */
2877  	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878  		return;
2879  
2880  	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881  		return;
2882  
2883  	/* if sampling is disabled do nothing */
2884  	if (!tx_ring->atr_sample_rate)
2885  		return;
2886  
2887  	/* Currently only IPv4/IPv6 with TCP is supported */
2888  	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889  		return;
2890  
2891  	/* snag network header to get L4 type and address */
2892  	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893  		      skb_inner_network_header(skb) : skb_network_header(skb);
2894  
2895  	/* Note: tx_flags gets modified to reflect inner protocols in
2896  	 * tx_enable_csum function if encap is enabled.
2897  	 */
2898  	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899  		/* access ihl as u8 to avoid unaligned access on ia64 */
2900  		hlen = (hdr.network[0] & 0x0F) << 2;
2901  		l4_proto = hdr.ipv4->protocol;
2902  	} else {
2903  		/* find the start of the innermost ipv6 header */
2904  		unsigned int inner_hlen = hdr.network - skb->data;
2905  		unsigned int h_offset = inner_hlen;
2906  
2907  		/* this function updates h_offset to the end of the header */
2908  		l4_proto =
2909  		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910  		/* hlen will contain our best estimate of the tcp header */
2911  		hlen = h_offset - inner_hlen;
2912  	}
2913  
2914  	if (l4_proto != IPPROTO_TCP)
2915  		return;
2916  
2917  	th = (struct tcphdr *)(hdr.network + hlen);
2918  
2919  	/* Due to lack of space, no more new filters can be programmed */
2920  	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921  		return;
2922  	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923  		/* HW ATR eviction will take care of removing filters on FIN
2924  		 * and RST packets.
2925  		 */
2926  		if (th->fin || th->rst)
2927  			return;
2928  	}
2929  
2930  	tx_ring->atr_count++;
2931  
2932  	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933  	if (!th->fin &&
2934  	    !th->syn &&
2935  	    !th->rst &&
2936  	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937  		return;
2938  
2939  	tx_ring->atr_count = 0;
2940  
2941  	/* grab the next descriptor */
2942  	i = tx_ring->next_to_use;
2943  	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944  
2945  	i++;
2946  	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947  
2948  	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949  				tx_ring->queue_index);
2950  	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951  		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952  		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953  		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954  		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955  
2956  	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957  
2958  	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959  
2960  	dtype_cmd |= (th->fin || th->rst) ?
2961  		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962  		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963  		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964  		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965  
2966  	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967  		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968  
2969  	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970  		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971  
2972  	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973  	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974  		dtype_cmd |=
2975  			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976  				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977  	else
2978  		dtype_cmd |=
2979  			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980  				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981  
2982  	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983  		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984  
2985  	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986  	fdir_desc->rsvd = cpu_to_le32(0);
2987  	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988  	fdir_desc->fd_id = cpu_to_le32(0);
2989  }
2990  
2991  /**
2992   * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993   * @skb:     send buffer
2994   * @tx_ring: ring to send buffer on
2995   * @flags:   the tx flags to be set
2996   *
2997   * Checks the skb and set up correspondingly several generic transmit flags
2998   * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999   *
3000   * Returns error code indicate the frame should be dropped upon error and the
3001   * otherwise  returns 0 to indicate the flags has been set properly.
3002   **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3003  static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004  					     struct i40e_ring *tx_ring,
3005  					     u32 *flags)
3006  {
3007  	__be16 protocol = skb->protocol;
3008  	u32  tx_flags = 0;
3009  
3010  	if (protocol == htons(ETH_P_8021Q) &&
3011  	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012  		/* When HW VLAN acceleration is turned off by the user the
3013  		 * stack sets the protocol to 8021q so that the driver
3014  		 * can take any steps required to support the SW only
3015  		 * VLAN handling.  In our case the driver doesn't need
3016  		 * to take any further steps so just set the protocol
3017  		 * to the encapsulated ethertype.
3018  		 */
3019  		skb->protocol = vlan_get_protocol(skb);
3020  		goto out;
3021  	}
3022  
3023  	/* if we have a HW VLAN tag being added, default to the HW one */
3024  	if (skb_vlan_tag_present(skb)) {
3025  		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026  		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027  	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028  	} else if (protocol == htons(ETH_P_8021Q)) {
3029  		struct vlan_hdr *vhdr, _vhdr;
3030  
3031  		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032  		if (!vhdr)
3033  			return -EINVAL;
3034  
3035  		protocol = vhdr->h_vlan_encapsulated_proto;
3036  		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037  		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038  	}
3039  
3040  	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041  		goto out;
3042  
3043  	/* Insert 802.1p priority into VLAN header */
3044  	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045  	    (skb->priority != TC_PRIO_CONTROL)) {
3046  		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047  		tx_flags |= (skb->priority & 0x7) <<
3048  				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049  		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050  			struct vlan_ethhdr *vhdr;
3051  			int rc;
3052  
3053  			rc = skb_cow_head(skb, 0);
3054  			if (rc < 0)
3055  				return rc;
3056  			vhdr = skb_vlan_eth_hdr(skb);
3057  			vhdr->h_vlan_TCI = htons(tx_flags >>
3058  						 I40E_TX_FLAGS_VLAN_SHIFT);
3059  		} else {
3060  			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061  		}
3062  	}
3063  
3064  out:
3065  	*flags = tx_flags;
3066  	return 0;
3067  }
3068  
3069  /**
3070   * i40e_tso - set up the tso context descriptor
3071   * @first:    pointer to first Tx buffer for xmit
3072   * @hdr_len:  ptr to the size of the packet header
3073   * @cd_type_cmd_tso_mss: Quad Word 1
3074   *
3075   * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076   **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3077  static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078  		    u64 *cd_type_cmd_tso_mss)
3079  {
3080  	struct sk_buff *skb = first->skb;
3081  	u64 cd_cmd, cd_tso_len, cd_mss;
3082  	__be16 protocol;
3083  	union {
3084  		struct iphdr *v4;
3085  		struct ipv6hdr *v6;
3086  		unsigned char *hdr;
3087  	} ip;
3088  	union {
3089  		struct tcphdr *tcp;
3090  		struct udphdr *udp;
3091  		unsigned char *hdr;
3092  	} l4;
3093  	u32 paylen, l4_offset;
3094  	u16 gso_size;
3095  	int err;
3096  
3097  	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098  		return 0;
3099  
3100  	if (!skb_is_gso(skb))
3101  		return 0;
3102  
3103  	err = skb_cow_head(skb, 0);
3104  	if (err < 0)
3105  		return err;
3106  
3107  	protocol = vlan_get_protocol(skb);
3108  
3109  	if (eth_p_mpls(protocol))
3110  		ip.hdr = skb_inner_network_header(skb);
3111  	else
3112  		ip.hdr = skb_network_header(skb);
3113  	l4.hdr = skb_checksum_start(skb);
3114  
3115  	/* initialize outer IP header fields */
3116  	if (ip.v4->version == 4) {
3117  		ip.v4->tot_len = 0;
3118  		ip.v4->check = 0;
3119  
3120  		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121  	} else {
3122  		ip.v6->payload_len = 0;
3123  		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124  	}
3125  
3126  	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127  					 SKB_GSO_GRE_CSUM |
3128  					 SKB_GSO_IPXIP4 |
3129  					 SKB_GSO_IPXIP6 |
3130  					 SKB_GSO_UDP_TUNNEL |
3131  					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132  		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133  		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134  			l4.udp->len = 0;
3135  
3136  			/* determine offset of outer transport header */
3137  			l4_offset = l4.hdr - skb->data;
3138  
3139  			/* remove payload length from outer checksum */
3140  			paylen = skb->len - l4_offset;
3141  			csum_replace_by_diff(&l4.udp->check,
3142  					     (__force __wsum)htonl(paylen));
3143  		}
3144  
3145  		/* reset pointers to inner headers */
3146  		ip.hdr = skb_inner_network_header(skb);
3147  		l4.hdr = skb_inner_transport_header(skb);
3148  
3149  		/* initialize inner IP header fields */
3150  		if (ip.v4->version == 4) {
3151  			ip.v4->tot_len = 0;
3152  			ip.v4->check = 0;
3153  		} else {
3154  			ip.v6->payload_len = 0;
3155  		}
3156  	}
3157  
3158  	/* determine offset of inner transport header */
3159  	l4_offset = l4.hdr - skb->data;
3160  
3161  	/* remove payload length from inner checksum */
3162  	paylen = skb->len - l4_offset;
3163  
3164  	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165  		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166  		/* compute length of segmentation header */
3167  		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168  	} else {
3169  		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170  		/* compute length of segmentation header */
3171  		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172  	}
3173  
3174  	/* pull values out of skb_shinfo */
3175  	gso_size = skb_shinfo(skb)->gso_size;
3176  
3177  	/* update GSO size and bytecount with header size */
3178  	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179  	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180  
3181  	/* find the field values */
3182  	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183  	cd_tso_len = skb->len - *hdr_len;
3184  	cd_mss = gso_size;
3185  	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186  				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187  				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188  	return 1;
3189  }
3190  
3191  /**
3192   * i40e_tsyn - set up the tsyn context descriptor
3193   * @tx_ring:  ptr to the ring to send
3194   * @skb:      ptr to the skb we're sending
3195   * @tx_flags: the collected send information
3196   * @cd_type_cmd_tso_mss: Quad Word 1
3197   *
3198   * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199   **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3200  static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201  		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202  {
3203  	struct i40e_pf *pf;
3204  
3205  	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206  		return 0;
3207  
3208  	/* Tx timestamps cannot be sampled when doing TSO */
3209  	if (tx_flags & I40E_TX_FLAGS_TSO)
3210  		return 0;
3211  
3212  	/* only timestamp the outbound packet if the user has requested it and
3213  	 * we are not already transmitting a packet to be timestamped
3214  	 */
3215  	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216  	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217  		return 0;
3218  
3219  	if (pf->ptp_tx &&
3220  	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221  		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222  		pf->ptp_tx_start = jiffies;
3223  		pf->ptp_tx_skb = skb_get(skb);
3224  	} else {
3225  		pf->tx_hwtstamp_skipped++;
3226  		return 0;
3227  	}
3228  
3229  	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230  				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231  
3232  	return 1;
3233  }
3234  
3235  /**
3236   * i40e_tx_enable_csum - Enable Tx checksum offloads
3237   * @skb: send buffer
3238   * @tx_flags: pointer to Tx flags currently set
3239   * @td_cmd: Tx descriptor command bits to set
3240   * @td_offset: Tx descriptor header offsets to set
3241   * @tx_ring: Tx descriptor ring
3242   * @cd_tunneling: ptr to context desc bits
3243   **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3244  static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245  			       u32 *td_cmd, u32 *td_offset,
3246  			       struct i40e_ring *tx_ring,
3247  			       u32 *cd_tunneling)
3248  {
3249  	union {
3250  		struct iphdr *v4;
3251  		struct ipv6hdr *v6;
3252  		unsigned char *hdr;
3253  	} ip;
3254  	union {
3255  		struct tcphdr *tcp;
3256  		struct udphdr *udp;
3257  		unsigned char *hdr;
3258  	} l4;
3259  	unsigned char *exthdr;
3260  	u32 offset, cmd = 0;
3261  	__be16 frag_off;
3262  	__be16 protocol;
3263  	u8 l4_proto = 0;
3264  
3265  	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266  		return 0;
3267  
3268  	protocol = vlan_get_protocol(skb);
3269  
3270  	if (eth_p_mpls(protocol)) {
3271  		ip.hdr = skb_inner_network_header(skb);
3272  		l4.hdr = skb_checksum_start(skb);
3273  	} else {
3274  		ip.hdr = skb_network_header(skb);
3275  		l4.hdr = skb_transport_header(skb);
3276  	}
3277  
3278  	/* set the tx_flags to indicate the IP protocol type. this is
3279  	 * required so that checksum header computation below is accurate.
3280  	 */
3281  	if (ip.v4->version == 4)
3282  		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283  	else
3284  		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285  
3286  	/* compute outer L2 header size */
3287  	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288  
3289  	if (skb->encapsulation) {
3290  		u32 tunnel = 0;
3291  		/* define outer network header type */
3292  		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293  			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294  				  I40E_TX_CTX_EXT_IP_IPV4 :
3295  				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296  
3297  			l4_proto = ip.v4->protocol;
3298  		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299  			int ret;
3300  
3301  			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302  
3303  			exthdr = ip.hdr + sizeof(*ip.v6);
3304  			l4_proto = ip.v6->nexthdr;
3305  			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306  					       &l4_proto, &frag_off);
3307  			if (ret < 0)
3308  				return -1;
3309  		}
3310  
3311  		/* define outer transport */
3312  		switch (l4_proto) {
3313  		case IPPROTO_UDP:
3314  			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315  			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316  			break;
3317  		case IPPROTO_GRE:
3318  			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319  			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320  			break;
3321  		case IPPROTO_IPIP:
3322  		case IPPROTO_IPV6:
3323  			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324  			l4.hdr = skb_inner_network_header(skb);
3325  			break;
3326  		default:
3327  			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328  				return -1;
3329  
3330  			skb_checksum_help(skb);
3331  			return 0;
3332  		}
3333  
3334  		/* compute outer L3 header size */
3335  		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336  			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337  
3338  		/* switch IP header pointer from outer to inner header */
3339  		ip.hdr = skb_inner_network_header(skb);
3340  
3341  		/* compute tunnel header size */
3342  		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343  			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344  
3345  		/* indicate if we need to offload outer UDP header */
3346  		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347  		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348  		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349  			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350  
3351  		/* record tunnel offload values */
3352  		*cd_tunneling |= tunnel;
3353  
3354  		/* switch L4 header pointer from outer to inner */
3355  		l4.hdr = skb_inner_transport_header(skb);
3356  		l4_proto = 0;
3357  
3358  		/* reset type as we transition from outer to inner headers */
3359  		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360  		if (ip.v4->version == 4)
3361  			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362  		if (ip.v6->version == 6)
3363  			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364  	}
3365  
3366  	/* Enable IP checksum offloads */
3367  	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368  		l4_proto = ip.v4->protocol;
3369  		/* the stack computes the IP header already, the only time we
3370  		 * need the hardware to recompute it is in the case of TSO.
3371  		 */
3372  		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373  		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374  		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375  	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376  		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377  
3378  		exthdr = ip.hdr + sizeof(*ip.v6);
3379  		l4_proto = ip.v6->nexthdr;
3380  		if (l4.hdr != exthdr)
3381  			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382  					 &l4_proto, &frag_off);
3383  	}
3384  
3385  	/* compute inner L3 header size */
3386  	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387  
3388  	/* Enable L4 checksum offloads */
3389  	switch (l4_proto) {
3390  	case IPPROTO_TCP:
3391  		/* enable checksum offloads */
3392  		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393  		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394  		break;
3395  	case IPPROTO_SCTP:
3396  		/* enable SCTP checksum offload */
3397  		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398  		offset |= (sizeof(struct sctphdr) >> 2) <<
3399  			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400  		break;
3401  	case IPPROTO_UDP:
3402  		/* enable UDP checksum offload */
3403  		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404  		offset |= (sizeof(struct udphdr) >> 2) <<
3405  			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406  		break;
3407  	default:
3408  		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409  			return -1;
3410  		skb_checksum_help(skb);
3411  		return 0;
3412  	}
3413  
3414  	*td_cmd |= cmd;
3415  	*td_offset |= offset;
3416  
3417  	return 1;
3418  }
3419  
3420  /**
3421   * i40e_create_tx_ctx - Build the Tx context descriptor
3422   * @tx_ring:  ring to create the descriptor on
3423   * @cd_type_cmd_tso_mss: Quad Word 1
3424   * @cd_tunneling: Quad Word 0 - bits 0-31
3425   * @cd_l2tag2: Quad Word 0 - bits 32-63
3426   **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3427  static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428  			       const u64 cd_type_cmd_tso_mss,
3429  			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430  {
3431  	struct i40e_tx_context_desc *context_desc;
3432  	int i = tx_ring->next_to_use;
3433  
3434  	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435  	    !cd_tunneling && !cd_l2tag2)
3436  		return;
3437  
3438  	/* grab the next descriptor */
3439  	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440  
3441  	i++;
3442  	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443  
3444  	/* cpu_to_le32 and assign to struct fields */
3445  	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446  	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447  	context_desc->rsvd = cpu_to_le16(0);
3448  	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449  }
3450  
3451  /**
3452   * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453   * @tx_ring: the ring to be checked
3454   * @size:    the size buffer we want to assure is available
3455   *
3456   * Returns -EBUSY if a stop is needed, else 0
3457   **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3458  int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459  {
3460  	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461  	/* Memory barrier before checking head and tail */
3462  	smp_mb();
3463  
3464  	++tx_ring->tx_stats.tx_stopped;
3465  
3466  	/* Check again in a case another CPU has just made room available. */
3467  	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468  		return -EBUSY;
3469  
3470  	/* A reprieve! - use start_queue because it doesn't call schedule */
3471  	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472  	++tx_ring->tx_stats.restart_queue;
3473  	return 0;
3474  }
3475  
3476  /**
3477   * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478   * @skb:      send buffer
3479   *
3480   * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481   * and so we need to figure out the cases where we need to linearize the skb.
3482   *
3483   * For TSO we need to count the TSO header and segment payload separately.
3484   * As such we need to check cases where we have 7 fragments or more as we
3485   * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486   * the segment payload in the first descriptor, and another 7 for the
3487   * fragments.
3488   **/
__i40e_chk_linearize(struct sk_buff * skb)3489  bool __i40e_chk_linearize(struct sk_buff *skb)
3490  {
3491  	const skb_frag_t *frag, *stale;
3492  	int nr_frags, sum;
3493  
3494  	/* no need to check if number of frags is less than 7 */
3495  	nr_frags = skb_shinfo(skb)->nr_frags;
3496  	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497  		return false;
3498  
3499  	/* We need to walk through the list and validate that each group
3500  	 * of 6 fragments totals at least gso_size.
3501  	 */
3502  	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503  	frag = &skb_shinfo(skb)->frags[0];
3504  
3505  	/* Initialize size to the negative value of gso_size minus 1.  We
3506  	 * use this as the worst case scenerio in which the frag ahead
3507  	 * of us only provides one byte which is why we are limited to 6
3508  	 * descriptors for a single transmit as the header and previous
3509  	 * fragment are already consuming 2 descriptors.
3510  	 */
3511  	sum = 1 - skb_shinfo(skb)->gso_size;
3512  
3513  	/* Add size of frags 0 through 4 to create our initial sum */
3514  	sum += skb_frag_size(frag++);
3515  	sum += skb_frag_size(frag++);
3516  	sum += skb_frag_size(frag++);
3517  	sum += skb_frag_size(frag++);
3518  	sum += skb_frag_size(frag++);
3519  
3520  	/* Walk through fragments adding latest fragment, testing it, and
3521  	 * then removing stale fragments from the sum.
3522  	 */
3523  	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524  		int stale_size = skb_frag_size(stale);
3525  
3526  		sum += skb_frag_size(frag++);
3527  
3528  		/* The stale fragment may present us with a smaller
3529  		 * descriptor than the actual fragment size. To account
3530  		 * for that we need to remove all the data on the front and
3531  		 * figure out what the remainder would be in the last
3532  		 * descriptor associated with the fragment.
3533  		 */
3534  		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535  			int align_pad = -(skb_frag_off(stale)) &
3536  					(I40E_MAX_READ_REQ_SIZE - 1);
3537  
3538  			sum -= align_pad;
3539  			stale_size -= align_pad;
3540  
3541  			do {
3542  				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543  				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544  			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545  		}
3546  
3547  		/* if sum is negative we failed to make sufficient progress */
3548  		if (sum < 0)
3549  			return true;
3550  
3551  		if (!nr_frags--)
3552  			break;
3553  
3554  		sum -= stale_size;
3555  	}
3556  
3557  	return false;
3558  }
3559  
3560  /**
3561   * i40e_tx_map - Build the Tx descriptor
3562   * @tx_ring:  ring to send buffer on
3563   * @skb:      send buffer
3564   * @first:    first buffer info buffer to use
3565   * @tx_flags: collected send information
3566   * @hdr_len:  size of the packet header
3567   * @td_cmd:   the command field in the descriptor
3568   * @td_offset: offset for checksum or crc
3569   *
3570   * Returns 0 on success, -1 on failure to DMA
3571   **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3572  static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573  			      struct i40e_tx_buffer *first, u32 tx_flags,
3574  			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575  {
3576  	unsigned int data_len = skb->data_len;
3577  	unsigned int size = skb_headlen(skb);
3578  	skb_frag_t *frag;
3579  	struct i40e_tx_buffer *tx_bi;
3580  	struct i40e_tx_desc *tx_desc;
3581  	u16 i = tx_ring->next_to_use;
3582  	u32 td_tag = 0;
3583  	dma_addr_t dma;
3584  	u16 desc_count = 1;
3585  
3586  	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587  		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588  		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589  	}
3590  
3591  	first->tx_flags = tx_flags;
3592  
3593  	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594  
3595  	tx_desc = I40E_TX_DESC(tx_ring, i);
3596  	tx_bi = first;
3597  
3598  	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599  		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600  
3601  		if (dma_mapping_error(tx_ring->dev, dma))
3602  			goto dma_error;
3603  
3604  		/* record length, and DMA address */
3605  		dma_unmap_len_set(tx_bi, len, size);
3606  		dma_unmap_addr_set(tx_bi, dma, dma);
3607  
3608  		/* align size to end of page */
3609  		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610  		tx_desc->buffer_addr = cpu_to_le64(dma);
3611  
3612  		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613  			tx_desc->cmd_type_offset_bsz =
3614  				build_ctob(td_cmd, td_offset,
3615  					   max_data, td_tag);
3616  
3617  			tx_desc++;
3618  			i++;
3619  			desc_count++;
3620  
3621  			if (i == tx_ring->count) {
3622  				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623  				i = 0;
3624  			}
3625  
3626  			dma += max_data;
3627  			size -= max_data;
3628  
3629  			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630  			tx_desc->buffer_addr = cpu_to_le64(dma);
3631  		}
3632  
3633  		if (likely(!data_len))
3634  			break;
3635  
3636  		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637  							  size, td_tag);
3638  
3639  		tx_desc++;
3640  		i++;
3641  		desc_count++;
3642  
3643  		if (i == tx_ring->count) {
3644  			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645  			i = 0;
3646  		}
3647  
3648  		size = skb_frag_size(frag);
3649  		data_len -= size;
3650  
3651  		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652  				       DMA_TO_DEVICE);
3653  
3654  		tx_bi = &tx_ring->tx_bi[i];
3655  	}
3656  
3657  	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658  
3659  	i++;
3660  	if (i == tx_ring->count)
3661  		i = 0;
3662  
3663  	tx_ring->next_to_use = i;
3664  
3665  	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666  
3667  	/* write last descriptor with EOP bit */
3668  	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669  
3670  	/* We OR these values together to check both against 4 (WB_STRIDE)
3671  	 * below. This is safe since we don't re-use desc_count afterwards.
3672  	 */
3673  	desc_count |= ++tx_ring->packet_stride;
3674  
3675  	if (desc_count >= WB_STRIDE) {
3676  		/* write last descriptor with RS bit set */
3677  		td_cmd |= I40E_TX_DESC_CMD_RS;
3678  		tx_ring->packet_stride = 0;
3679  	}
3680  
3681  	tx_desc->cmd_type_offset_bsz =
3682  			build_ctob(td_cmd, td_offset, size, td_tag);
3683  
3684  	skb_tx_timestamp(skb);
3685  
3686  	/* Force memory writes to complete before letting h/w know there
3687  	 * are new descriptors to fetch.
3688  	 *
3689  	 * We also use this memory barrier to make certain all of the
3690  	 * status bits have been updated before next_to_watch is written.
3691  	 */
3692  	wmb();
3693  
3694  	/* set next_to_watch value indicating a packet is present */
3695  	first->next_to_watch = tx_desc;
3696  
3697  	/* notify HW of packet */
3698  	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699  		writel(i, tx_ring->tail);
3700  	}
3701  
3702  	return 0;
3703  
3704  dma_error:
3705  	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706  
3707  	/* clear dma mappings for failed tx_bi map */
3708  	for (;;) {
3709  		tx_bi = &tx_ring->tx_bi[i];
3710  		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711  		if (tx_bi == first)
3712  			break;
3713  		if (i == 0)
3714  			i = tx_ring->count;
3715  		i--;
3716  	}
3717  
3718  	tx_ring->next_to_use = i;
3719  
3720  	return -1;
3721  }
3722  
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3723  static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724  				  const struct sk_buff *skb,
3725  				  u16 num_tx_queues)
3726  {
3727  	u32 jhash_initval_salt = 0xd631614b;
3728  	u32 hash;
3729  
3730  	if (skb->sk && skb->sk->sk_hash)
3731  		hash = skb->sk->sk_hash;
3732  	else
3733  		hash = (__force u16)skb->protocol ^ skb->hash;
3734  
3735  	hash = jhash_1word(hash, jhash_initval_salt);
3736  
3737  	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738  }
3739  
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3740  u16 i40e_lan_select_queue(struct net_device *netdev,
3741  			  struct sk_buff *skb,
3742  			  struct net_device __always_unused *sb_dev)
3743  {
3744  	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745  	struct i40e_vsi *vsi = np->vsi;
3746  	struct i40e_hw *hw;
3747  	u16 qoffset;
3748  	u16 qcount;
3749  	u8 tclass;
3750  	u16 hash;
3751  	u8 prio;
3752  
3753  	/* is DCB enabled at all? */
3754  	if (vsi->tc_config.numtc == 1 ||
3755  	    i40e_is_tc_mqprio_enabled(vsi->back))
3756  		return netdev_pick_tx(netdev, skb, sb_dev);
3757  
3758  	prio = skb->priority;
3759  	hw = &vsi->back->hw;
3760  	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761  	/* sanity check */
3762  	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763  		tclass = 0;
3764  
3765  	/* select a queue assigned for the given TC */
3766  	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767  	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768  
3769  	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770  	return qoffset + hash;
3771  }
3772  
3773  /**
3774   * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775   * @xdpf: data to transmit
3776   * @xdp_ring: XDP Tx ring
3777   **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3778  static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779  			      struct i40e_ring *xdp_ring)
3780  {
3781  	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782  	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783  	u16 i = 0, index = xdp_ring->next_to_use;
3784  	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785  	struct i40e_tx_buffer *tx_bi = tx_head;
3786  	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787  	void *data = xdpf->data;
3788  	u32 size = xdpf->len;
3789  
3790  	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791  		xdp_ring->tx_stats.tx_busy++;
3792  		return I40E_XDP_CONSUMED;
3793  	}
3794  
3795  	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796  	tx_head->gso_segs = 1;
3797  	tx_head->xdpf = xdpf;
3798  
3799  	for (;;) {
3800  		dma_addr_t dma;
3801  
3802  		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803  		if (dma_mapping_error(xdp_ring->dev, dma))
3804  			goto unmap;
3805  
3806  		/* record length, and DMA address */
3807  		dma_unmap_len_set(tx_bi, len, size);
3808  		dma_unmap_addr_set(tx_bi, dma, dma);
3809  
3810  		tx_desc->buffer_addr = cpu_to_le64(dma);
3811  		tx_desc->cmd_type_offset_bsz =
3812  			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813  
3814  		if (++index == xdp_ring->count)
3815  			index = 0;
3816  
3817  		if (i == nr_frags)
3818  			break;
3819  
3820  		tx_bi = &xdp_ring->tx_bi[index];
3821  		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822  
3823  		data = skb_frag_address(&sinfo->frags[i]);
3824  		size = skb_frag_size(&sinfo->frags[i]);
3825  		i++;
3826  	}
3827  
3828  	tx_desc->cmd_type_offset_bsz |=
3829  		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830  
3831  	/* Make certain all of the status bits have been updated
3832  	 * before next_to_watch is written.
3833  	 */
3834  	smp_wmb();
3835  
3836  	xdp_ring->xdp_tx_active++;
3837  
3838  	tx_head->next_to_watch = tx_desc;
3839  	xdp_ring->next_to_use = index;
3840  
3841  	return I40E_XDP_TX;
3842  
3843  unmap:
3844  	for (;;) {
3845  		tx_bi = &xdp_ring->tx_bi[index];
3846  		if (dma_unmap_len(tx_bi, len))
3847  			dma_unmap_page(xdp_ring->dev,
3848  				       dma_unmap_addr(tx_bi, dma),
3849  				       dma_unmap_len(tx_bi, len),
3850  				       DMA_TO_DEVICE);
3851  		dma_unmap_len_set(tx_bi, len, 0);
3852  		if (tx_bi == tx_head)
3853  			break;
3854  
3855  		if (!index)
3856  			index += xdp_ring->count;
3857  		index--;
3858  	}
3859  
3860  	return I40E_XDP_CONSUMED;
3861  }
3862  
3863  /**
3864   * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865   * @skb:     send buffer
3866   * @tx_ring: ring to send buffer on
3867   *
3868   * Returns NETDEV_TX_OK if sent, else an error code
3869   **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3870  static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871  					struct i40e_ring *tx_ring)
3872  {
3873  	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874  	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875  	struct i40e_tx_buffer *first;
3876  	u32 td_offset = 0;
3877  	u32 tx_flags = 0;
3878  	u32 td_cmd = 0;
3879  	u8 hdr_len = 0;
3880  	int tso, count;
3881  	int tsyn;
3882  
3883  	/* prefetch the data, we'll need it later */
3884  	prefetch(skb->data);
3885  
3886  	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887  
3888  	count = i40e_xmit_descriptor_count(skb);
3889  	if (i40e_chk_linearize(skb, count)) {
3890  		if (__skb_linearize(skb)) {
3891  			dev_kfree_skb_any(skb);
3892  			return NETDEV_TX_OK;
3893  		}
3894  		count = i40e_txd_use_count(skb->len);
3895  		tx_ring->tx_stats.tx_linearize++;
3896  	}
3897  
3898  	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899  	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900  	 *       + 4 desc gap to avoid the cache line where head is,
3901  	 *       + 1 desc for context descriptor,
3902  	 * otherwise try next time
3903  	 */
3904  	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905  		tx_ring->tx_stats.tx_busy++;
3906  		return NETDEV_TX_BUSY;
3907  	}
3908  
3909  	/* record the location of the first descriptor for this packet */
3910  	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911  	first->skb = skb;
3912  	first->bytecount = skb->len;
3913  	first->gso_segs = 1;
3914  
3915  	/* prepare the xmit flags */
3916  	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917  		goto out_drop;
3918  
3919  	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920  
3921  	if (tso < 0)
3922  		goto out_drop;
3923  	else if (tso)
3924  		tx_flags |= I40E_TX_FLAGS_TSO;
3925  
3926  	/* Always offload the checksum, since it's in the data descriptor */
3927  	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928  				  tx_ring, &cd_tunneling);
3929  	if (tso < 0)
3930  		goto out_drop;
3931  
3932  	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933  
3934  	if (tsyn)
3935  		tx_flags |= I40E_TX_FLAGS_TSYN;
3936  
3937  	/* always enable CRC insertion offload */
3938  	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939  
3940  	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941  			   cd_tunneling, cd_l2tag2);
3942  
3943  	/* Add Flow Director ATR if it's enabled.
3944  	 *
3945  	 * NOTE: this must always be directly before the data descriptor.
3946  	 */
3947  	i40e_atr(tx_ring, skb, tx_flags);
3948  
3949  	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950  			td_cmd, td_offset))
3951  		goto cleanup_tx_tstamp;
3952  
3953  	return NETDEV_TX_OK;
3954  
3955  out_drop:
3956  	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957  	dev_kfree_skb_any(first->skb);
3958  	first->skb = NULL;
3959  cleanup_tx_tstamp:
3960  	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961  		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962  
3963  		dev_kfree_skb_any(pf->ptp_tx_skb);
3964  		pf->ptp_tx_skb = NULL;
3965  		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966  	}
3967  
3968  	return NETDEV_TX_OK;
3969  }
3970  
3971  /**
3972   * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973   * @skb:    send buffer
3974   * @netdev: network interface device structure
3975   *
3976   * Returns NETDEV_TX_OK if sent, else an error code
3977   **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3978  netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979  {
3980  	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981  	struct i40e_vsi *vsi = np->vsi;
3982  	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983  
3984  	/* hardware can't handle really short frames, hardware padding works
3985  	 * beyond this point
3986  	 */
3987  	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988  		return NETDEV_TX_OK;
3989  
3990  	return i40e_xmit_frame_ring(skb, tx_ring);
3991  }
3992  
3993  /**
3994   * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995   * @dev: netdev
3996   * @n: number of frames
3997   * @frames: array of XDP buffer pointers
3998   * @flags: XDP extra info
3999   *
4000   * Returns number of frames successfully sent. Failed frames
4001   * will be free'ed by XDP core.
4002   *
4003   * For error cases, a negative errno code is returned and no-frames
4004   * are transmitted (caller must handle freeing frames).
4005   **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4006  int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007  		  u32 flags)
4008  {
4009  	struct i40e_netdev_priv *np = netdev_priv(dev);
4010  	unsigned int queue_index = smp_processor_id();
4011  	struct i40e_vsi *vsi = np->vsi;
4012  	struct i40e_pf *pf = vsi->back;
4013  	struct i40e_ring *xdp_ring;
4014  	int nxmit = 0;
4015  	int i;
4016  
4017  	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018  		return -ENETDOWN;
4019  
4020  	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021  	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022  		return -ENXIO;
4023  
4024  	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025  		return -EINVAL;
4026  
4027  	xdp_ring = vsi->xdp_rings[queue_index];
4028  
4029  	for (i = 0; i < n; i++) {
4030  		struct xdp_frame *xdpf = frames[i];
4031  		int err;
4032  
4033  		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034  		if (err != I40E_XDP_TX)
4035  			break;
4036  		nxmit++;
4037  	}
4038  
4039  	if (unlikely(flags & XDP_XMIT_FLUSH))
4040  		i40e_xdp_ring_update_tail(xdp_ring);
4041  
4042  	return nxmit;
4043  }
4044