1  // SPDX-License-Identifier: GPL-2.0
2  
3  /*
4   * Clocksource driver for the synthetic counter and timers
5   * provided by the Hyper-V hypervisor to guest VMs, as described
6   * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7   * is instruction set architecture independent.
8   *
9   * Copyright (C) 2019, Microsoft, Inc.
10   *
11   * Author:  Michael Kelley <mikelley@microsoft.com>
12   */
13  
14  #include <linux/percpu.h>
15  #include <linux/cpumask.h>
16  #include <linux/clockchips.h>
17  #include <linux/clocksource.h>
18  #include <linux/sched_clock.h>
19  #include <linux/mm.h>
20  #include <linux/cpuhotplug.h>
21  #include <linux/interrupt.h>
22  #include <linux/irq.h>
23  #include <linux/acpi.h>
24  #include <linux/hyperv.h>
25  #include <clocksource/hyperv_timer.h>
26  #include <asm/hyperv-tlfs.h>
27  #include <asm/mshyperv.h>
28  
29  static struct clock_event_device __percpu *hv_clock_event;
30  static u64 hv_sched_clock_offset __ro_after_init;
31  
32  /*
33   * If false, we're using the old mechanism for stimer0 interrupts
34   * where it sends a VMbus message when it expires. The old
35   * mechanism is used when running on older versions of Hyper-V
36   * that don't support Direct Mode. While Hyper-V provides
37   * four stimer's per CPU, Linux uses only stimer0.
38   *
39   * Because Direct Mode does not require processing a VMbus
40   * message, stimer interrupts can be enabled earlier in the
41   * process of booting a CPU, and consistent with when timer
42   * interrupts are enabled for other clocksource drivers.
43   * However, for legacy versions of Hyper-V when Direct Mode
44   * is not enabled, setting up stimer interrupts must be
45   * delayed until VMbus is initialized and can process the
46   * interrupt message.
47   */
48  static bool direct_mode_enabled;
49  
50  static int stimer0_irq = -1;
51  static int stimer0_message_sint;
52  static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
53  
54  /*
55   * Common code for stimer0 interrupts coming via Direct Mode or
56   * as a VMbus message.
57   */
hv_stimer0_isr(void)58  void hv_stimer0_isr(void)
59  {
60  	struct clock_event_device *ce;
61  
62  	ce = this_cpu_ptr(hv_clock_event);
63  	ce->event_handler(ce);
64  }
65  EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66  
67  /*
68   * stimer0 interrupt handler for architectures that support
69   * per-cpu interrupts, which also implies Direct Mode.
70   */
hv_stimer0_percpu_isr(int irq,void * dev_id)71  static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
72  {
73  	hv_stimer0_isr();
74  	return IRQ_HANDLED;
75  }
76  
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)77  static int hv_ce_set_next_event(unsigned long delta,
78  				struct clock_event_device *evt)
79  {
80  	u64 current_tick;
81  
82  	current_tick = hv_read_reference_counter();
83  	current_tick += delta;
84  	hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
85  	return 0;
86  }
87  
hv_ce_shutdown(struct clock_event_device * evt)88  static int hv_ce_shutdown(struct clock_event_device *evt)
89  {
90  	hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
91  	hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
92  	if (direct_mode_enabled && stimer0_irq >= 0)
93  		disable_percpu_irq(stimer0_irq);
94  
95  	return 0;
96  }
97  
hv_ce_set_oneshot(struct clock_event_device * evt)98  static int hv_ce_set_oneshot(struct clock_event_device *evt)
99  {
100  	union hv_stimer_config timer_cfg;
101  
102  	timer_cfg.as_uint64 = 0;
103  	timer_cfg.enable = 1;
104  	timer_cfg.auto_enable = 1;
105  	if (direct_mode_enabled) {
106  		/*
107  		 * When it expires, the timer will directly interrupt
108  		 * on the specified hardware vector/IRQ.
109  		 */
110  		timer_cfg.direct_mode = 1;
111  		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112  		if (stimer0_irq >= 0)
113  			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114  	} else {
115  		/*
116  		 * When it expires, the timer will generate a VMbus message,
117  		 * to be handled by the normal VMbus interrupt handler.
118  		 */
119  		timer_cfg.direct_mode = 0;
120  		timer_cfg.sintx = stimer0_message_sint;
121  	}
122  	hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
123  	return 0;
124  }
125  
126  /*
127   * hv_stimer_init - Per-cpu initialization of the clockevent
128   */
hv_stimer_init(unsigned int cpu)129  static int hv_stimer_init(unsigned int cpu)
130  {
131  	struct clock_event_device *ce;
132  
133  	if (!hv_clock_event)
134  		return 0;
135  
136  	ce = per_cpu_ptr(hv_clock_event, cpu);
137  	ce->name = "Hyper-V clockevent";
138  	ce->features = CLOCK_EVT_FEAT_ONESHOT;
139  	ce->cpumask = cpumask_of(cpu);
140  
141  	/*
142  	 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
143  	 * so the local APIC timer (lapic_clockevent) is the default timer in
144  	 * such a VM. The Hyper-V timer is not preferred in such a VM because
145  	 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
146  	 * page is not enbled in such a VM because the VM uses Invariant TSC
147  	 * as a better clocksource and it's challenging to mark the Hyper-V
148  	 * TSC page shared in very early boot).
149  	 */
150  	if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
151  		ce->rating = 90;
152  	else
153  		ce->rating = 1000;
154  
155  	ce->set_state_shutdown = hv_ce_shutdown;
156  	ce->set_state_oneshot = hv_ce_set_oneshot;
157  	ce->set_next_event = hv_ce_set_next_event;
158  
159  	clockevents_config_and_register(ce,
160  					HV_CLOCK_HZ,
161  					HV_MIN_DELTA_TICKS,
162  					HV_MAX_MAX_DELTA_TICKS);
163  	return 0;
164  }
165  
166  /*
167   * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
168   */
hv_stimer_cleanup(unsigned int cpu)169  int hv_stimer_cleanup(unsigned int cpu)
170  {
171  	struct clock_event_device *ce;
172  
173  	if (!hv_clock_event)
174  		return 0;
175  
176  	/*
177  	 * In the legacy case where Direct Mode is not enabled
178  	 * (which can only be on x86/64), stimer cleanup happens
179  	 * relatively early in the CPU offlining process. We
180  	 * must unbind the stimer-based clockevent device so
181  	 * that the LAPIC timer can take over until clockevents
182  	 * are no longer needed in the offlining process. Note
183  	 * that clockevents_unbind_device() eventually calls
184  	 * hv_ce_shutdown().
185  	 *
186  	 * The unbind should not be done when Direct Mode is
187  	 * enabled because we may be on an architecture where
188  	 * there are no other clockevent devices to fallback to.
189  	 */
190  	ce = per_cpu_ptr(hv_clock_event, cpu);
191  	if (direct_mode_enabled)
192  		hv_ce_shutdown(ce);
193  	else
194  		clockevents_unbind_device(ce, cpu);
195  
196  	return 0;
197  }
198  EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
199  
200  /*
201   * These placeholders are overridden by arch specific code on
202   * architectures that need special setup of the stimer0 IRQ because
203   * they don't support per-cpu IRQs (such as x86/x64).
204   */
hv_setup_stimer0_handler(void (* handler)(void))205  void __weak hv_setup_stimer0_handler(void (*handler)(void))
206  {
207  };
208  
hv_remove_stimer0_handler(void)209  void __weak hv_remove_stimer0_handler(void)
210  {
211  };
212  
213  #ifdef CONFIG_ACPI
214  /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)215  static int hv_setup_stimer0_irq(void)
216  {
217  	int ret;
218  
219  	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
220  			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
221  	if (ret < 0) {
222  		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
223  		return ret;
224  	}
225  	stimer0_irq = ret;
226  
227  	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
228  		"Hyper-V stimer0", &stimer0_evt);
229  	if (ret) {
230  		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
231  			stimer0_irq, ret);
232  		acpi_unregister_gsi(stimer0_irq);
233  		stimer0_irq = -1;
234  	}
235  	return ret;
236  }
237  
hv_remove_stimer0_irq(void)238  static void hv_remove_stimer0_irq(void)
239  {
240  	if (stimer0_irq == -1) {
241  		hv_remove_stimer0_handler();
242  	} else {
243  		free_percpu_irq(stimer0_irq, &stimer0_evt);
244  		acpi_unregister_gsi(stimer0_irq);
245  		stimer0_irq = -1;
246  	}
247  }
248  #else
hv_setup_stimer0_irq(void)249  static int hv_setup_stimer0_irq(void)
250  {
251  	return 0;
252  }
253  
hv_remove_stimer0_irq(void)254  static void hv_remove_stimer0_irq(void)
255  {
256  }
257  #endif
258  
259  /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)260  int hv_stimer_alloc(bool have_percpu_irqs)
261  {
262  	int ret;
263  
264  	/*
265  	 * Synthetic timers are always available except on old versions of
266  	 * Hyper-V on x86.  In that case, return as error as Linux will use a
267  	 * clockevent based on emulated LAPIC timer hardware.
268  	 */
269  	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
270  		return -EINVAL;
271  
272  	hv_clock_event = alloc_percpu(struct clock_event_device);
273  	if (!hv_clock_event)
274  		return -ENOMEM;
275  
276  	direct_mode_enabled = ms_hyperv.misc_features &
277  			HV_STIMER_DIRECT_MODE_AVAILABLE;
278  
279  	/*
280  	 * If Direct Mode isn't enabled, the remainder of the initialization
281  	 * is done later by hv_stimer_legacy_init()
282  	 */
283  	if (!direct_mode_enabled)
284  		return 0;
285  
286  	if (have_percpu_irqs) {
287  		ret = hv_setup_stimer0_irq();
288  		if (ret)
289  			goto free_clock_event;
290  	} else {
291  		hv_setup_stimer0_handler(hv_stimer0_isr);
292  	}
293  
294  	/*
295  	 * Since we are in Direct Mode, stimer initialization
296  	 * can be done now with a CPUHP value in the same range
297  	 * as other clockevent devices.
298  	 */
299  	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
300  			"clockevents/hyperv/stimer:starting",
301  			hv_stimer_init, hv_stimer_cleanup);
302  	if (ret < 0) {
303  		hv_remove_stimer0_irq();
304  		goto free_clock_event;
305  	}
306  	return ret;
307  
308  free_clock_event:
309  	free_percpu(hv_clock_event);
310  	hv_clock_event = NULL;
311  	return ret;
312  }
313  EXPORT_SYMBOL_GPL(hv_stimer_alloc);
314  
315  /*
316   * hv_stimer_legacy_init -- Called from the VMbus driver to handle
317   * the case when Direct Mode is not enabled, and the stimer
318   * must be initialized late in the CPU onlining process.
319   *
320   */
hv_stimer_legacy_init(unsigned int cpu,int sint)321  void hv_stimer_legacy_init(unsigned int cpu, int sint)
322  {
323  	if (direct_mode_enabled)
324  		return;
325  
326  	/*
327  	 * This function gets called by each vCPU, so setting the
328  	 * global stimer_message_sint value each time is conceptually
329  	 * not ideal, but the value passed in is always the same and
330  	 * it avoids introducing yet another interface into this
331  	 * clocksource driver just to set the sint in the legacy case.
332  	 */
333  	stimer0_message_sint = sint;
334  	(void)hv_stimer_init(cpu);
335  }
336  EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
337  
338  /*
339   * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
340   * handle the case when Direct Mode is not enabled, and the
341   * stimer must be cleaned up early in the CPU offlining
342   * process.
343   */
hv_stimer_legacy_cleanup(unsigned int cpu)344  void hv_stimer_legacy_cleanup(unsigned int cpu)
345  {
346  	if (direct_mode_enabled)
347  		return;
348  	(void)hv_stimer_cleanup(cpu);
349  }
350  EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
351  
352  /*
353   * Do a global cleanup of clockevents for the cases of kexec and
354   * vmbus exit
355   */
hv_stimer_global_cleanup(void)356  void hv_stimer_global_cleanup(void)
357  {
358  	int	cpu;
359  
360  	/*
361  	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
362  	 * Mode is not enabled, and fallback to the LAPIC timer.
363  	 */
364  	for_each_present_cpu(cpu) {
365  		hv_stimer_legacy_cleanup(cpu);
366  	}
367  
368  	if (!hv_clock_event)
369  		return;
370  
371  	if (direct_mode_enabled) {
372  		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
373  		hv_remove_stimer0_irq();
374  		stimer0_irq = -1;
375  	}
376  	free_percpu(hv_clock_event);
377  	hv_clock_event = NULL;
378  
379  }
380  EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
381  
read_hv_clock_msr(void)382  static __always_inline u64 read_hv_clock_msr(void)
383  {
384  	/*
385  	 * Read the partition counter to get the current tick count. This count
386  	 * is set to 0 when the partition is created and is incremented in 100
387  	 * nanosecond units.
388  	 *
389  	 * Use hv_raw_get_msr() because this function is used from
390  	 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
391  	 * register it doesn't need the GHCB path.
392  	 */
393  	return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
394  }
395  
396  /*
397   * Code and definitions for the Hyper-V clocksources.  Two
398   * clocksources are defined: one that reads the Hyper-V defined MSR, and
399   * the other that uses the TSC reference page feature as defined in the
400   * TLFS.  The MSR version is for compatibility with old versions of
401   * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
402   */
403  
404  static union {
405  	struct ms_hyperv_tsc_page page;
406  	u8 reserved[PAGE_SIZE];
407  } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
408  
409  static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
410  static unsigned long tsc_pfn;
411  
hv_get_tsc_pfn(void)412  unsigned long hv_get_tsc_pfn(void)
413  {
414  	return tsc_pfn;
415  }
416  EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
417  
hv_get_tsc_page(void)418  struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
419  {
420  	return tsc_page;
421  }
422  EXPORT_SYMBOL_GPL(hv_get_tsc_page);
423  
read_hv_clock_tsc(void)424  static __always_inline u64 read_hv_clock_tsc(void)
425  {
426  	u64 cur_tsc, time;
427  
428  	/*
429  	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
430  	 * subsection Refererence Counter, guarantees that the TSC and MSR
431  	 * times are in sync and monotonic. Therefore we can fall back
432  	 * to the MSR in case the TSC page indicates unavailability.
433  	 */
434  	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
435  		time = read_hv_clock_msr();
436  
437  	return time;
438  }
439  
read_hv_clock_tsc_cs(struct clocksource * arg)440  static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
441  {
442  	return read_hv_clock_tsc();
443  }
444  
read_hv_sched_clock_tsc(void)445  static u64 noinstr read_hv_sched_clock_tsc(void)
446  {
447  	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
448  		(NSEC_PER_SEC / HV_CLOCK_HZ);
449  }
450  
suspend_hv_clock_tsc(struct clocksource * arg)451  static void suspend_hv_clock_tsc(struct clocksource *arg)
452  {
453  	union hv_reference_tsc_msr tsc_msr;
454  
455  	/* Disable the TSC page */
456  	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
457  	tsc_msr.enable = 0;
458  	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
459  }
460  
461  
resume_hv_clock_tsc(struct clocksource * arg)462  static void resume_hv_clock_tsc(struct clocksource *arg)
463  {
464  	union hv_reference_tsc_msr tsc_msr;
465  
466  	/* Re-enable the TSC page */
467  	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
468  	tsc_msr.enable = 1;
469  	tsc_msr.pfn = tsc_pfn;
470  	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
471  }
472  
473  #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)474  static int hv_cs_enable(struct clocksource *cs)
475  {
476  	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
477  	return 0;
478  }
479  #endif
480  
481  static struct clocksource hyperv_cs_tsc = {
482  	.name	= "hyperv_clocksource_tsc_page",
483  	.rating	= 500,
484  	.read	= read_hv_clock_tsc_cs,
485  	.mask	= CLOCKSOURCE_MASK(64),
486  	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
487  	.suspend= suspend_hv_clock_tsc,
488  	.resume	= resume_hv_clock_tsc,
489  #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
490  	.enable = hv_cs_enable,
491  	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
492  #else
493  	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
494  #endif
495  };
496  
read_hv_clock_msr_cs(struct clocksource * arg)497  static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
498  {
499  	return read_hv_clock_msr();
500  }
501  
502  static struct clocksource hyperv_cs_msr = {
503  	.name	= "hyperv_clocksource_msr",
504  	.rating	= 495,
505  	.read	= read_hv_clock_msr_cs,
506  	.mask	= CLOCKSOURCE_MASK(64),
507  	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
508  };
509  
510  /*
511   * Reference to pv_ops must be inline so objtool
512   * detection of noinstr violations can work correctly.
513   */
514  #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)515  static __always_inline void hv_setup_sched_clock(void *sched_clock)
516  {
517  	/*
518  	 * We're on an architecture with generic sched clock (not x86/x64).
519  	 * The Hyper-V sched clock read function returns nanoseconds, not
520  	 * the normal 100ns units of the Hyper-V synthetic clock.
521  	 */
522  	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
523  }
524  #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)525  static __always_inline void hv_setup_sched_clock(void *sched_clock)
526  {
527  	/* We're on x86/x64 *and* using PV ops */
528  	paravirt_set_sched_clock(sched_clock);
529  }
530  #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)531  static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
532  #endif /* CONFIG_GENERIC_SCHED_CLOCK */
533  
hv_init_tsc_clocksource(void)534  static void __init hv_init_tsc_clocksource(void)
535  {
536  	union hv_reference_tsc_msr tsc_msr;
537  
538  	/*
539  	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
540  	 * handles frequency and offset changes due to live migration,
541  	 * pause/resume, and other VM management operations.  So lower the
542  	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
543  	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
544  	 * TSC will be preferred over the virtualized ARM64 arch counter.
545  	 */
546  	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
547  		hyperv_cs_tsc.rating = 250;
548  		hyperv_cs_msr.rating = 245;
549  	}
550  
551  	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
552  		return;
553  
554  	hv_read_reference_counter = read_hv_clock_tsc;
555  
556  	/*
557  	 * TSC page mapping works differently in root compared to guest.
558  	 * - In guest partition the guest PFN has to be passed to the
559  	 *   hypervisor.
560  	 * - In root partition it's other way around: it has to map the PFN
561  	 *   provided by the hypervisor.
562  	 *   But it can't be mapped right here as it's too early and MMU isn't
563  	 *   ready yet. So, we only set the enable bit here and will remap the
564  	 *   page later in hv_remap_tsc_clocksource().
565  	 *
566  	 * It worth mentioning, that TSC clocksource read function
567  	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
568  	 * TSC page is zeroed (which is the case until the PFN is remapped) and
569  	 * thus TSC clocksource will work even without the real TSC page
570  	 * mapped.
571  	 */
572  	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
573  	if (hv_root_partition)
574  		tsc_pfn = tsc_msr.pfn;
575  	else
576  		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
577  	tsc_msr.enable = 1;
578  	tsc_msr.pfn = tsc_pfn;
579  	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
580  
581  	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
582  
583  	/*
584  	 * If TSC is invariant, then let it stay as the sched clock since it
585  	 * will be faster than reading the TSC page. But if not invariant, use
586  	 * the TSC page so that live migrations across hosts with different
587  	 * frequencies is handled correctly.
588  	 */
589  	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
590  		hv_sched_clock_offset = hv_read_reference_counter();
591  		hv_setup_sched_clock(read_hv_sched_clock_tsc);
592  	}
593  }
594  
hv_init_clocksource(void)595  void __init hv_init_clocksource(void)
596  {
597  	/*
598  	 * Try to set up the TSC page clocksource, then the MSR clocksource.
599  	 * At least one of these will always be available except on very old
600  	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
601  	 * clocksource, but Linux will still run with a clocksource based
602  	 * on the emulated PIT or LAPIC timer.
603  	 *
604  	 * Never use the MSR clocksource as sched clock.  It's too slow.
605  	 * Better to use the native sched clock as the fallback.
606  	 */
607  	hv_init_tsc_clocksource();
608  
609  	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
610  		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
611  }
612  
hv_remap_tsc_clocksource(void)613  void __init hv_remap_tsc_clocksource(void)
614  {
615  	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
616  		return;
617  
618  	if (!hv_root_partition) {
619  		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
620  		     __func__);
621  		return;
622  	}
623  
624  	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
625  			    MEMREMAP_WB);
626  	if (!tsc_page)
627  		pr_err("Failed to remap Hyper-V TSC page.\n");
628  }
629