1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         folio_lock
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 #include <linux/oom.h>
79 
80 #include <asm/tlbflush.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/tlb.h>
84 #include <trace/events/migrate.h>
85 
86 #include "internal.h"
87 
88 static struct kmem_cache *anon_vma_cachep;
89 static struct kmem_cache *anon_vma_chain_cachep;
90 
anon_vma_alloc(void)91 static inline struct anon_vma *anon_vma_alloc(void)
92 {
93 	struct anon_vma *anon_vma;
94 
95 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
96 	if (anon_vma) {
97 		atomic_set(&anon_vma->refcount, 1);
98 		anon_vma->num_children = 0;
99 		anon_vma->num_active_vmas = 0;
100 		anon_vma->parent = anon_vma;
101 		/*
102 		 * Initialise the anon_vma root to point to itself. If called
103 		 * from fork, the root will be reset to the parents anon_vma.
104 		 */
105 		anon_vma->root = anon_vma;
106 	}
107 
108 	return anon_vma;
109 }
110 
anon_vma_free(struct anon_vma * anon_vma)111 static inline void anon_vma_free(struct anon_vma *anon_vma)
112 {
113 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
114 
115 	/*
116 	 * Synchronize against folio_lock_anon_vma_read() such that
117 	 * we can safely hold the lock without the anon_vma getting
118 	 * freed.
119 	 *
120 	 * Relies on the full mb implied by the atomic_dec_and_test() from
121 	 * put_anon_vma() against the acquire barrier implied by
122 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
123 	 *
124 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
125 	 *   down_read_trylock()		  atomic_dec_and_test()
126 	 *   LOCK				  MB
127 	 *   atomic_read()			  rwsem_is_locked()
128 	 *
129 	 * LOCK should suffice since the actual taking of the lock must
130 	 * happen _before_ what follows.
131 	 */
132 	might_sleep();
133 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
134 		anon_vma_lock_write(anon_vma);
135 		anon_vma_unlock_write(anon_vma);
136 	}
137 
138 	kmem_cache_free(anon_vma_cachep, anon_vma);
139 }
140 
anon_vma_chain_alloc(gfp_t gfp)141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
142 {
143 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 }
145 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
147 {
148 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 }
150 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)151 static void anon_vma_chain_link(struct vm_area_struct *vma,
152 				struct anon_vma_chain *avc,
153 				struct anon_vma *anon_vma)
154 {
155 	avc->vma = vma;
156 	avc->anon_vma = anon_vma;
157 	list_add(&avc->same_vma, &vma->anon_vma_chain);
158 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
159 }
160 
161 /**
162  * __anon_vma_prepare - attach an anon_vma to a memory region
163  * @vma: the memory region in question
164  *
165  * This makes sure the memory mapping described by 'vma' has
166  * an 'anon_vma' attached to it, so that we can associate the
167  * anonymous pages mapped into it with that anon_vma.
168  *
169  * The common case will be that we already have one, which
170  * is handled inline by anon_vma_prepare(). But if
171  * not we either need to find an adjacent mapping that we
172  * can re-use the anon_vma from (very common when the only
173  * reason for splitting a vma has been mprotect()), or we
174  * allocate a new one.
175  *
176  * Anon-vma allocations are very subtle, because we may have
177  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
178  * and that may actually touch the rwsem even in the newly
179  * allocated vma (it depends on RCU to make sure that the
180  * anon_vma isn't actually destroyed).
181  *
182  * As a result, we need to do proper anon_vma locking even
183  * for the new allocation. At the same time, we do not want
184  * to do any locking for the common case of already having
185  * an anon_vma.
186  */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	mmap_assert_locked(mm);
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
unlock_anon_vma_root(struct anon_vma * root)256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
unlink_anon_vmas(struct vm_area_struct * vma)397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
anon_vma_ctor(void * data)452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
anon_vma_init(void)461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against folio_remove_rmap_*()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  *
494  * NOTE: the caller should normally hold folio lock when calling this.  If
495  * not, the caller needs to double check the anon_vma didn't change after
496  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
497  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
498  * which has already covered that, and comment above remap_pages().
499  */
folio_get_anon_vma(struct folio * folio)500 struct anon_vma *folio_get_anon_vma(struct folio *folio)
501 {
502 	struct anon_vma *anon_vma = NULL;
503 	unsigned long anon_mapping;
504 
505 	rcu_read_lock();
506 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
507 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
508 		goto out;
509 	if (!folio_mapped(folio))
510 		goto out;
511 
512 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
513 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
514 		anon_vma = NULL;
515 		goto out;
516 	}
517 
518 	/*
519 	 * If this folio is still mapped, then its anon_vma cannot have been
520 	 * freed.  But if it has been unmapped, we have no security against the
521 	 * anon_vma structure being freed and reused (for another anon_vma:
522 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
523 	 * above cannot corrupt).
524 	 */
525 	if (!folio_mapped(folio)) {
526 		rcu_read_unlock();
527 		put_anon_vma(anon_vma);
528 		return NULL;
529 	}
530 out:
531 	rcu_read_unlock();
532 
533 	return anon_vma;
534 }
535 
536 /*
537  * Similar to folio_get_anon_vma() except it locks the anon_vma.
538  *
539  * Its a little more complex as it tries to keep the fast path to a single
540  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
541  * reference like with folio_get_anon_vma() and then block on the mutex
542  * on !rwc->try_lock case.
543  */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
545 					  struct rmap_walk_control *rwc)
546 {
547 	struct anon_vma *anon_vma = NULL;
548 	struct anon_vma *root_anon_vma;
549 	unsigned long anon_mapping;
550 
551 retry:
552 	rcu_read_lock();
553 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
554 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
555 		goto out;
556 	if (!folio_mapped(folio))
557 		goto out;
558 
559 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
560 	root_anon_vma = READ_ONCE(anon_vma->root);
561 	if (down_read_trylock(&root_anon_vma->rwsem)) {
562 		/*
563 		 * folio_move_anon_rmap() might have changed the anon_vma as we
564 		 * might not hold the folio lock here.
565 		 */
566 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
567 			     anon_mapping)) {
568 			up_read(&root_anon_vma->rwsem);
569 			rcu_read_unlock();
570 			goto retry;
571 		}
572 
573 		/*
574 		 * If the folio is still mapped, then this anon_vma is still
575 		 * its anon_vma, and holding the mutex ensures that it will
576 		 * not go away, see anon_vma_free().
577 		 */
578 		if (!folio_mapped(folio)) {
579 			up_read(&root_anon_vma->rwsem);
580 			anon_vma = NULL;
581 		}
582 		goto out;
583 	}
584 
585 	if (rwc && rwc->try_lock) {
586 		anon_vma = NULL;
587 		rwc->contended = true;
588 		goto out;
589 	}
590 
591 	/* trylock failed, we got to sleep */
592 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
593 		anon_vma = NULL;
594 		goto out;
595 	}
596 
597 	if (!folio_mapped(folio)) {
598 		rcu_read_unlock();
599 		put_anon_vma(anon_vma);
600 		return NULL;
601 	}
602 
603 	/* we pinned the anon_vma, its safe to sleep */
604 	rcu_read_unlock();
605 	anon_vma_lock_read(anon_vma);
606 
607 	/*
608 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
609 	 * not hold the folio lock here.
610 	 */
611 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
612 		     anon_mapping)) {
613 		anon_vma_unlock_read(anon_vma);
614 		put_anon_vma(anon_vma);
615 		anon_vma = NULL;
616 		goto retry;
617 	}
618 
619 	if (atomic_dec_and_test(&anon_vma->refcount)) {
620 		/*
621 		 * Oops, we held the last refcount, release the lock
622 		 * and bail -- can't simply use put_anon_vma() because
623 		 * we'll deadlock on the anon_vma_lock_write() recursion.
624 		 */
625 		anon_vma_unlock_read(anon_vma);
626 		__put_anon_vma(anon_vma);
627 		anon_vma = NULL;
628 	}
629 
630 	return anon_vma;
631 
632 out:
633 	rcu_read_unlock();
634 	return anon_vma;
635 }
636 
637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
638 /*
639  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
640  * important if a PTE was dirty when it was unmapped that it's flushed
641  * before any IO is initiated on the page to prevent lost writes. Similarly,
642  * it must be flushed before freeing to prevent data leakage.
643  */
try_to_unmap_flush(void)644 void try_to_unmap_flush(void)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 
648 	if (!tlb_ubc->flush_required)
649 		return;
650 
651 	arch_tlbbatch_flush(&tlb_ubc->arch);
652 	tlb_ubc->flush_required = false;
653 	tlb_ubc->writable = false;
654 }
655 
656 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)657 void try_to_unmap_flush_dirty(void)
658 {
659 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
660 
661 	if (tlb_ubc->writable)
662 		try_to_unmap_flush();
663 }
664 
665 /*
666  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
667  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
668  */
669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
670 #define TLB_FLUSH_BATCH_PENDING_MASK			\
671 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
672 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
673 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
674 
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
676 				      unsigned long uaddr)
677 {
678 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
679 	int batch;
680 	bool writable = pte_dirty(pteval);
681 
682 	if (!pte_accessible(mm, pteval))
683 		return;
684 
685 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
686 	tlb_ubc->flush_required = true;
687 
688 	/*
689 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
690 	 * before the PTE is cleared.
691 	 */
692 	barrier();
693 	batch = atomic_read(&mm->tlb_flush_batched);
694 retry:
695 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
696 		/*
697 		 * Prevent `pending' from catching up with `flushed' because of
698 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
699 		 * `pending' becomes large.
700 		 */
701 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
702 			goto retry;
703 	} else {
704 		atomic_inc(&mm->tlb_flush_batched);
705 	}
706 
707 	/*
708 	 * If the PTE was dirty then it's best to assume it's writable. The
709 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
710 	 * before the page is queued for IO.
711 	 */
712 	if (writable)
713 		tlb_ubc->writable = true;
714 }
715 
716 /*
717  * Returns true if the TLB flush should be deferred to the end of a batch of
718  * unmap operations to reduce IPIs.
719  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
721 {
722 	if (!(flags & TTU_BATCH_FLUSH))
723 		return false;
724 
725 	return arch_tlbbatch_should_defer(mm);
726 }
727 
728 /*
729  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
730  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
731  * operation such as mprotect or munmap to race between reclaim unmapping
732  * the page and flushing the page. If this race occurs, it potentially allows
733  * access to data via a stale TLB entry. Tracking all mm's that have TLB
734  * batching in flight would be expensive during reclaim so instead track
735  * whether TLB batching occurred in the past and if so then do a flush here
736  * if required. This will cost one additional flush per reclaim cycle paid
737  * by the first operation at risk such as mprotect and mumap.
738  *
739  * This must be called under the PTL so that an access to tlb_flush_batched
740  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
741  * via the PTL.
742  */
flush_tlb_batched_pending(struct mm_struct * mm)743 void flush_tlb_batched_pending(struct mm_struct *mm)
744 {
745 	int batch = atomic_read(&mm->tlb_flush_batched);
746 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
747 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
748 
749 	if (pending != flushed) {
750 		arch_flush_tlb_batched_pending(mm);
751 		/*
752 		 * If the new TLB flushing is pending during flushing, leave
753 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
754 		 */
755 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
756 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
757 	}
758 }
759 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
761 				      unsigned long uaddr)
762 {
763 }
764 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
766 {
767 	return false;
768 }
769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
770 
771 /*
772  * At what user virtual address is page expected in vma?
773  * Caller should check the page is actually part of the vma.
774  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
776 {
777 	struct folio *folio = page_folio(page);
778 	pgoff_t pgoff;
779 
780 	if (folio_test_anon(folio)) {
781 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
782 		/*
783 		 * Note: swapoff's unuse_vma() is more efficient with this
784 		 * check, and needs it to match anon_vma when KSM is active.
785 		 */
786 		if (!vma->anon_vma || !page__anon_vma ||
787 		    vma->anon_vma->root != page__anon_vma->root)
788 			return -EFAULT;
789 	} else if (!vma->vm_file) {
790 		return -EFAULT;
791 	} else if (vma->vm_file->f_mapping != folio->mapping) {
792 		return -EFAULT;
793 	}
794 
795 	/* The !page__anon_vma above handles KSM folios */
796 	pgoff = folio->index + folio_page_idx(folio, page);
797 	return vma_address(vma, pgoff, 1);
798 }
799 
800 /*
801  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
802  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
803  * represents.
804  */
mm_find_pmd(struct mm_struct * mm,unsigned long address)805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
806 {
807 	pgd_t *pgd;
808 	p4d_t *p4d;
809 	pud_t *pud;
810 	pmd_t *pmd = NULL;
811 
812 	pgd = pgd_offset(mm, address);
813 	if (!pgd_present(*pgd))
814 		goto out;
815 
816 	p4d = p4d_offset(pgd, address);
817 	if (!p4d_present(*p4d))
818 		goto out;
819 
820 	pud = pud_offset(p4d, address);
821 	if (!pud_present(*pud))
822 		goto out;
823 
824 	pmd = pmd_offset(pud, address);
825 out:
826 	return pmd;
827 }
828 
829 struct folio_referenced_arg {
830 	int mapcount;
831 	int referenced;
832 	unsigned long vm_flags;
833 	struct mem_cgroup *memcg;
834 };
835 
836 /*
837  * arg: folio_referenced_arg will be passed
838  */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)839 static bool folio_referenced_one(struct folio *folio,
840 		struct vm_area_struct *vma, unsigned long address, void *arg)
841 {
842 	struct folio_referenced_arg *pra = arg;
843 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
844 	int referenced = 0;
845 	unsigned long start = address, ptes = 0;
846 
847 	while (page_vma_mapped_walk(&pvmw)) {
848 		address = pvmw.address;
849 
850 		if (vma->vm_flags & VM_LOCKED) {
851 			if (!folio_test_large(folio) || !pvmw.pte) {
852 				/* Restore the mlock which got missed */
853 				mlock_vma_folio(folio, vma);
854 				page_vma_mapped_walk_done(&pvmw);
855 				pra->vm_flags |= VM_LOCKED;
856 				return false; /* To break the loop */
857 			}
858 			/*
859 			 * For large folio fully mapped to VMA, will
860 			 * be handled after the pvmw loop.
861 			 *
862 			 * For large folio cross VMA boundaries, it's
863 			 * expected to be picked  by page reclaim. But
864 			 * should skip reference of pages which are in
865 			 * the range of VM_LOCKED vma. As page reclaim
866 			 * should just count the reference of pages out
867 			 * the range of VM_LOCKED vma.
868 			 */
869 			ptes++;
870 			pra->mapcount--;
871 			continue;
872 		}
873 
874 		/*
875 		 * Skip the non-shared swapbacked folio mapped solely by
876 		 * the exiting or OOM-reaped process. This avoids redundant
877 		 * swap-out followed by an immediate unmap.
878 		 */
879 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
880 		    check_stable_address_space(vma->vm_mm)) &&
881 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
882 		    !folio_likely_mapped_shared(folio)) {
883 			pra->referenced = -1;
884 			page_vma_mapped_walk_done(&pvmw);
885 			return false;
886 		}
887 
888 		if (lru_gen_enabled() && pvmw.pte) {
889 			if (lru_gen_look_around(&pvmw))
890 				referenced++;
891 		} else if (pvmw.pte) {
892 			if (ptep_clear_flush_young_notify(vma, address,
893 						pvmw.pte))
894 				referenced++;
895 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
896 			if (pmdp_clear_flush_young_notify(vma, address,
897 						pvmw.pmd))
898 				referenced++;
899 		} else {
900 			/* unexpected pmd-mapped folio? */
901 			WARN_ON_ONCE(1);
902 		}
903 
904 		pra->mapcount--;
905 	}
906 
907 	if ((vma->vm_flags & VM_LOCKED) &&
908 			folio_test_large(folio) &&
909 			folio_within_vma(folio, vma)) {
910 		unsigned long s_align, e_align;
911 
912 		s_align = ALIGN_DOWN(start, PMD_SIZE);
913 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
914 
915 		/* folio doesn't cross page table boundary and fully mapped */
916 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
917 			/* Restore the mlock which got missed */
918 			mlock_vma_folio(folio, vma);
919 			pra->vm_flags |= VM_LOCKED;
920 			return false; /* To break the loop */
921 		}
922 	}
923 
924 	if (referenced)
925 		folio_clear_idle(folio);
926 	if (folio_test_clear_young(folio))
927 		referenced++;
928 
929 	if (referenced) {
930 		pra->referenced++;
931 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
932 	}
933 
934 	if (!pra->mapcount)
935 		return false; /* To break the loop */
936 
937 	return true;
938 }
939 
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)940 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
941 {
942 	struct folio_referenced_arg *pra = arg;
943 	struct mem_cgroup *memcg = pra->memcg;
944 
945 	/*
946 	 * Ignore references from this mapping if it has no recency. If the
947 	 * folio has been used in another mapping, we will catch it; if this
948 	 * other mapping is already gone, the unmap path will have set the
949 	 * referenced flag or activated the folio in zap_pte_range().
950 	 */
951 	if (!vma_has_recency(vma))
952 		return true;
953 
954 	/*
955 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
956 	 * of references from different cgroups.
957 	 */
958 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
959 		return true;
960 
961 	return false;
962 }
963 
964 /**
965  * folio_referenced() - Test if the folio was referenced.
966  * @folio: The folio to test.
967  * @is_locked: Caller holds lock on the folio.
968  * @memcg: target memory cgroup
969  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
970  *
971  * Quick test_and_clear_referenced for all mappings of a folio,
972  *
973  * Return: The number of mappings which referenced the folio. Return -1 if
974  * the function bailed out due to rmap lock contention.
975  */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)976 int folio_referenced(struct folio *folio, int is_locked,
977 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
978 {
979 	bool we_locked = false;
980 	struct folio_referenced_arg pra = {
981 		.mapcount = folio_mapcount(folio),
982 		.memcg = memcg,
983 	};
984 	struct rmap_walk_control rwc = {
985 		.rmap_one = folio_referenced_one,
986 		.arg = (void *)&pra,
987 		.anon_lock = folio_lock_anon_vma_read,
988 		.try_lock = true,
989 		.invalid_vma = invalid_folio_referenced_vma,
990 	};
991 
992 	*vm_flags = 0;
993 	if (!pra.mapcount)
994 		return 0;
995 
996 	if (!folio_raw_mapping(folio))
997 		return 0;
998 
999 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1000 		we_locked = folio_trylock(folio);
1001 		if (!we_locked)
1002 			return 1;
1003 	}
1004 
1005 	rmap_walk(folio, &rwc);
1006 	*vm_flags = pra.vm_flags;
1007 
1008 	if (we_locked)
1009 		folio_unlock(folio);
1010 
1011 	return rwc.contended ? -1 : pra.referenced;
1012 }
1013 
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1014 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1015 {
1016 	int cleaned = 0;
1017 	struct vm_area_struct *vma = pvmw->vma;
1018 	struct mmu_notifier_range range;
1019 	unsigned long address = pvmw->address;
1020 
1021 	/*
1022 	 * We have to assume the worse case ie pmd for invalidation. Note that
1023 	 * the folio can not be freed from this function.
1024 	 */
1025 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1026 				vma->vm_mm, address, vma_address_end(pvmw));
1027 	mmu_notifier_invalidate_range_start(&range);
1028 
1029 	while (page_vma_mapped_walk(pvmw)) {
1030 		int ret = 0;
1031 
1032 		address = pvmw->address;
1033 		if (pvmw->pte) {
1034 			pte_t *pte = pvmw->pte;
1035 			pte_t entry = ptep_get(pte);
1036 
1037 			if (!pte_dirty(entry) && !pte_write(entry))
1038 				continue;
1039 
1040 			flush_cache_page(vma, address, pte_pfn(entry));
1041 			entry = ptep_clear_flush(vma, address, pte);
1042 			entry = pte_wrprotect(entry);
1043 			entry = pte_mkclean(entry);
1044 			set_pte_at(vma->vm_mm, address, pte, entry);
1045 			ret = 1;
1046 		} else {
1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1048 			pmd_t *pmd = pvmw->pmd;
1049 			pmd_t entry;
1050 
1051 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1052 				continue;
1053 
1054 			flush_cache_range(vma, address,
1055 					  address + HPAGE_PMD_SIZE);
1056 			entry = pmdp_invalidate(vma, address, pmd);
1057 			entry = pmd_wrprotect(entry);
1058 			entry = pmd_mkclean(entry);
1059 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1060 			ret = 1;
1061 #else
1062 			/* unexpected pmd-mapped folio? */
1063 			WARN_ON_ONCE(1);
1064 #endif
1065 		}
1066 
1067 		if (ret)
1068 			cleaned++;
1069 	}
1070 
1071 	mmu_notifier_invalidate_range_end(&range);
1072 
1073 	return cleaned;
1074 }
1075 
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1076 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1077 			     unsigned long address, void *arg)
1078 {
1079 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1080 	int *cleaned = arg;
1081 
1082 	*cleaned += page_vma_mkclean_one(&pvmw);
1083 
1084 	return true;
1085 }
1086 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1087 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1088 {
1089 	if (vma->vm_flags & VM_SHARED)
1090 		return false;
1091 
1092 	return true;
1093 }
1094 
folio_mkclean(struct folio * folio)1095 int folio_mkclean(struct folio *folio)
1096 {
1097 	int cleaned = 0;
1098 	struct address_space *mapping;
1099 	struct rmap_walk_control rwc = {
1100 		.arg = (void *)&cleaned,
1101 		.rmap_one = page_mkclean_one,
1102 		.invalid_vma = invalid_mkclean_vma,
1103 	};
1104 
1105 	BUG_ON(!folio_test_locked(folio));
1106 
1107 	if (!folio_mapped(folio))
1108 		return 0;
1109 
1110 	mapping = folio_mapping(folio);
1111 	if (!mapping)
1112 		return 0;
1113 
1114 	rmap_walk(folio, &rwc);
1115 
1116 	return cleaned;
1117 }
1118 EXPORT_SYMBOL_GPL(folio_mkclean);
1119 
1120 /**
1121  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1122  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1123  *                     within the @vma of shared mappings. And since clean PTEs
1124  *                     should also be readonly, write protects them too.
1125  * @pfn: start pfn.
1126  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1127  * @pgoff: page offset that the @pfn mapped with.
1128  * @vma: vma that @pfn mapped within.
1129  *
1130  * Returns the number of cleaned PTEs (including PMDs).
1131  */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1132 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1133 		      struct vm_area_struct *vma)
1134 {
1135 	struct page_vma_mapped_walk pvmw = {
1136 		.pfn		= pfn,
1137 		.nr_pages	= nr_pages,
1138 		.pgoff		= pgoff,
1139 		.vma		= vma,
1140 		.flags		= PVMW_SYNC,
1141 	};
1142 
1143 	if (invalid_mkclean_vma(vma, NULL))
1144 		return 0;
1145 
1146 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1147 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1148 
1149 	return page_vma_mkclean_one(&pvmw);
1150 }
1151 
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level,int * nr_pmdmapped)1152 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1153 		struct page *page, int nr_pages, enum rmap_level level,
1154 		int *nr_pmdmapped)
1155 {
1156 	atomic_t *mapped = &folio->_nr_pages_mapped;
1157 	const int orig_nr_pages = nr_pages;
1158 	int first = 0, nr = 0;
1159 
1160 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1161 
1162 	switch (level) {
1163 	case RMAP_LEVEL_PTE:
1164 		if (!folio_test_large(folio)) {
1165 			nr = atomic_inc_and_test(&folio->_mapcount);
1166 			break;
1167 		}
1168 
1169 		do {
1170 			first += atomic_inc_and_test(&page->_mapcount);
1171 		} while (page++, --nr_pages > 0);
1172 
1173 		if (first &&
1174 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1175 			nr = first;
1176 
1177 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1178 		break;
1179 	case RMAP_LEVEL_PMD:
1180 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1181 		if (first) {
1182 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1183 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1184 				*nr_pmdmapped = folio_nr_pages(folio);
1185 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1186 				/* Raced ahead of a remove and another add? */
1187 				if (unlikely(nr < 0))
1188 					nr = 0;
1189 			} else {
1190 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1191 				nr = 0;
1192 			}
1193 		}
1194 		atomic_inc(&folio->_large_mapcount);
1195 		break;
1196 	}
1197 	return nr;
1198 }
1199 
1200 /**
1201  * folio_move_anon_rmap - move a folio to our anon_vma
1202  * @folio:	The folio to move to our anon_vma
1203  * @vma:	The vma the folio belongs to
1204  *
1205  * When a folio belongs exclusively to one process after a COW event,
1206  * that folio can be moved into the anon_vma that belongs to just that
1207  * process, so the rmap code will not search the parent or sibling processes.
1208  */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1209 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1210 {
1211 	void *anon_vma = vma->anon_vma;
1212 
1213 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1214 	VM_BUG_ON_VMA(!anon_vma, vma);
1215 
1216 	anon_vma += PAGE_MAPPING_ANON;
1217 	/*
1218 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1219 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1220 	 * folio_test_anon()) will not see one without the other.
1221 	 */
1222 	WRITE_ONCE(folio->mapping, anon_vma);
1223 }
1224 
1225 /**
1226  * __folio_set_anon - set up a new anonymous rmap for a folio
1227  * @folio:	The folio to set up the new anonymous rmap for.
1228  * @vma:	VM area to add the folio to.
1229  * @address:	User virtual address of the mapping
1230  * @exclusive:	Whether the folio is exclusive to the process.
1231  */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1232 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1233 			     unsigned long address, bool exclusive)
1234 {
1235 	struct anon_vma *anon_vma = vma->anon_vma;
1236 
1237 	BUG_ON(!anon_vma);
1238 
1239 	/*
1240 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1241 	 * possible anon_vma for the folio mapping!
1242 	 */
1243 	if (!exclusive)
1244 		anon_vma = anon_vma->root;
1245 
1246 	/*
1247 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1248 	 * Make sure the compiler doesn't split the stores of anon_vma and
1249 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1250 	 * could mistake the mapping for a struct address_space and crash.
1251 	 */
1252 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1253 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1254 	folio->index = linear_page_index(vma, address);
1255 }
1256 
1257 /**
1258  * __page_check_anon_rmap - sanity check anonymous rmap addition
1259  * @folio:	The folio containing @page.
1260  * @page:	the page to check the mapping of
1261  * @vma:	the vm area in which the mapping is added
1262  * @address:	the user virtual address mapped
1263  */
__page_check_anon_rmap(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address)1264 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1265 	struct vm_area_struct *vma, unsigned long address)
1266 {
1267 	/*
1268 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1269 	 * be set up correctly at this point.
1270 	 *
1271 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1272 	 * always holds the page locked.
1273 	 *
1274 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1275 	 * are initially only visible via the pagetables, and the pte is locked
1276 	 * over the call to folio_add_new_anon_rmap.
1277 	 */
1278 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1279 			folio);
1280 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1281 		       page);
1282 }
1283 
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1284 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1285 {
1286 	int idx;
1287 
1288 	if (nr) {
1289 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1290 		__lruvec_stat_mod_folio(folio, idx, nr);
1291 	}
1292 	if (nr_pmdmapped) {
1293 		if (folio_test_anon(folio)) {
1294 			idx = NR_ANON_THPS;
1295 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1296 		} else {
1297 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1298 			idx = folio_test_swapbacked(folio) ?
1299 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1300 			__mod_node_page_state(folio_pgdat(folio), idx,
1301 					      nr_pmdmapped);
1302 		}
1303 	}
1304 }
1305 
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1306 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1307 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1308 		unsigned long address, rmap_t flags, enum rmap_level level)
1309 {
1310 	int i, nr, nr_pmdmapped = 0;
1311 
1312 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1313 
1314 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1315 
1316 	if (likely(!folio_test_ksm(folio)))
1317 		__page_check_anon_rmap(folio, page, vma, address);
1318 
1319 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1320 
1321 	if (flags & RMAP_EXCLUSIVE) {
1322 		switch (level) {
1323 		case RMAP_LEVEL_PTE:
1324 			for (i = 0; i < nr_pages; i++)
1325 				SetPageAnonExclusive(page + i);
1326 			break;
1327 		case RMAP_LEVEL_PMD:
1328 			SetPageAnonExclusive(page);
1329 			break;
1330 		}
1331 	}
1332 	for (i = 0; i < nr_pages; i++) {
1333 		struct page *cur_page = page + i;
1334 
1335 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1336 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1337 				  (folio_test_large(folio) &&
1338 				   folio_entire_mapcount(folio) > 1)) &&
1339 				 PageAnonExclusive(cur_page), folio);
1340 	}
1341 
1342 	/*
1343 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1344 	 * not easy to check whether the large folio is fully mapped to VMA
1345 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1346 	 * large folio.
1347 	 */
1348 	if (!folio_test_large(folio))
1349 		mlock_vma_folio(folio, vma);
1350 }
1351 
1352 /**
1353  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1354  * @folio:	The folio to add the mappings to
1355  * @page:	The first page to add
1356  * @nr_pages:	The number of pages which will be mapped
1357  * @vma:	The vm area in which the mappings are added
1358  * @address:	The user virtual address of the first page to map
1359  * @flags:	The rmap flags
1360  *
1361  * The page range of folio is defined by [first_page, first_page + nr_pages)
1362  *
1363  * The caller needs to hold the page table lock, and the page must be locked in
1364  * the anon_vma case: to serialize mapping,index checking after setting,
1365  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1366  * (but KSM folios are never downgraded).
1367  */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1368 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1369 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1370 		rmap_t flags)
1371 {
1372 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1373 			      RMAP_LEVEL_PTE);
1374 }
1375 
1376 /**
1377  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1378  * @folio:	The folio to add the mapping to
1379  * @page:	The first page to add
1380  * @vma:	The vm area in which the mapping is added
1381  * @address:	The user virtual address of the first page to map
1382  * @flags:	The rmap flags
1383  *
1384  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1385  *
1386  * The caller needs to hold the page table lock, and the page must be locked in
1387  * the anon_vma case: to serialize mapping,index checking after setting.
1388  */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1389 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1390 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1391 {
1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1393 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1394 			      RMAP_LEVEL_PMD);
1395 #else
1396 	WARN_ON_ONCE(true);
1397 #endif
1398 }
1399 
1400 /**
1401  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1402  * @folio:	The folio to add the mapping to.
1403  * @vma:	the vm area in which the mapping is added
1404  * @address:	the user virtual address mapped
1405  * @flags:	The rmap flags
1406  *
1407  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1408  * This means the inc-and-test can be bypassed.
1409  * The folio doesn't necessarily need to be locked while it's exclusive
1410  * unless two threads map it concurrently. However, the folio must be
1411  * locked if it's shared.
1412  *
1413  * If the folio is pmd-mappable, it is accounted as a THP.
1414  */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1415 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1416 		unsigned long address, rmap_t flags)
1417 {
1418 	const int nr = folio_nr_pages(folio);
1419 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1420 	int nr_pmdmapped = 0;
1421 
1422 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1423 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1424 	VM_BUG_ON_VMA(address < vma->vm_start ||
1425 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1426 
1427 	/*
1428 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1429 	 * under memory pressure.
1430 	 */
1431 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1432 		__folio_set_swapbacked(folio);
1433 	__folio_set_anon(folio, vma, address, exclusive);
1434 
1435 	if (likely(!folio_test_large(folio))) {
1436 		/* increment count (starts at -1) */
1437 		atomic_set(&folio->_mapcount, 0);
1438 		if (exclusive)
1439 			SetPageAnonExclusive(&folio->page);
1440 	} else if (!folio_test_pmd_mappable(folio)) {
1441 		int i;
1442 
1443 		for (i = 0; i < nr; i++) {
1444 			struct page *page = folio_page(folio, i);
1445 
1446 			/* increment count (starts at -1) */
1447 			atomic_set(&page->_mapcount, 0);
1448 			if (exclusive)
1449 				SetPageAnonExclusive(page);
1450 		}
1451 
1452 		/* increment count (starts at -1) */
1453 		atomic_set(&folio->_large_mapcount, nr - 1);
1454 		atomic_set(&folio->_nr_pages_mapped, nr);
1455 	} else {
1456 		/* increment count (starts at -1) */
1457 		atomic_set(&folio->_entire_mapcount, 0);
1458 		/* increment count (starts at -1) */
1459 		atomic_set(&folio->_large_mapcount, 0);
1460 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1461 		if (exclusive)
1462 			SetPageAnonExclusive(&folio->page);
1463 		nr_pmdmapped = nr;
1464 	}
1465 
1466 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1467 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1468 }
1469 
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1470 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1471 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1472 		enum rmap_level level)
1473 {
1474 	int nr, nr_pmdmapped = 0;
1475 
1476 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1477 
1478 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1479 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1480 
1481 	/* See comments in folio_add_anon_rmap_*() */
1482 	if (!folio_test_large(folio))
1483 		mlock_vma_folio(folio, vma);
1484 }
1485 
1486 /**
1487  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1488  * @folio:	The folio to add the mappings to
1489  * @page:	The first page to add
1490  * @nr_pages:	The number of pages that will be mapped using PTEs
1491  * @vma:	The vm area in which the mappings are added
1492  *
1493  * The page range of the folio is defined by [page, page + nr_pages)
1494  *
1495  * The caller needs to hold the page table lock.
1496  */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1497 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1498 		int nr_pages, struct vm_area_struct *vma)
1499 {
1500 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1501 }
1502 
1503 /**
1504  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1505  * @folio:	The folio to add the mapping to
1506  * @page:	The first page to add
1507  * @vma:	The vm area in which the mapping is added
1508  *
1509  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1510  *
1511  * The caller needs to hold the page table lock.
1512  */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1513 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1514 		struct vm_area_struct *vma)
1515 {
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1518 #else
1519 	WARN_ON_ONCE(true);
1520 #endif
1521 }
1522 
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1523 static __always_inline void __folio_remove_rmap(struct folio *folio,
1524 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1525 		enum rmap_level level)
1526 {
1527 	atomic_t *mapped = &folio->_nr_pages_mapped;
1528 	int last = 0, nr = 0, nr_pmdmapped = 0;
1529 	bool partially_mapped = false;
1530 
1531 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1532 
1533 	switch (level) {
1534 	case RMAP_LEVEL_PTE:
1535 		if (!folio_test_large(folio)) {
1536 			nr = atomic_add_negative(-1, &folio->_mapcount);
1537 			break;
1538 		}
1539 
1540 		atomic_sub(nr_pages, &folio->_large_mapcount);
1541 		do {
1542 			last += atomic_add_negative(-1, &page->_mapcount);
1543 		} while (page++, --nr_pages > 0);
1544 
1545 		if (last &&
1546 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1547 			nr = last;
1548 
1549 		partially_mapped = nr && atomic_read(mapped);
1550 		break;
1551 	case RMAP_LEVEL_PMD:
1552 		atomic_dec(&folio->_large_mapcount);
1553 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1554 		if (last) {
1555 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1556 			if (likely(nr < ENTIRELY_MAPPED)) {
1557 				nr_pmdmapped = folio_nr_pages(folio);
1558 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1559 				/* Raced ahead of another remove and an add? */
1560 				if (unlikely(nr < 0))
1561 					nr = 0;
1562 			} else {
1563 				/* An add of ENTIRELY_MAPPED raced ahead */
1564 				nr = 0;
1565 			}
1566 		}
1567 
1568 		partially_mapped = nr && nr < nr_pmdmapped;
1569 		break;
1570 	}
1571 
1572 	/*
1573 	 * Queue anon large folio for deferred split if at least one page of
1574 	 * the folio is unmapped and at least one page is still mapped.
1575 	 *
1576 	 * Check partially_mapped first to ensure it is a large folio.
1577 	 */
1578 	if (partially_mapped && folio_test_anon(folio) &&
1579 	    !folio_test_partially_mapped(folio))
1580 		deferred_split_folio(folio, true);
1581 
1582 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1583 
1584 	/*
1585 	 * It would be tidy to reset folio_test_anon mapping when fully
1586 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1587 	 * which increments mapcount after us but sets mapping before us:
1588 	 * so leave the reset to free_pages_prepare, and remember that
1589 	 * it's only reliable while mapped.
1590 	 */
1591 
1592 	munlock_vma_folio(folio, vma);
1593 }
1594 
1595 /**
1596  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1597  * @folio:	The folio to remove the mappings from
1598  * @page:	The first page to remove
1599  * @nr_pages:	The number of pages that will be removed from the mapping
1600  * @vma:	The vm area from which the mappings are removed
1601  *
1602  * The page range of the folio is defined by [page, page + nr_pages)
1603  *
1604  * The caller needs to hold the page table lock.
1605  */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1606 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1607 		int nr_pages, struct vm_area_struct *vma)
1608 {
1609 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1610 }
1611 
1612 /**
1613  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1614  * @folio:	The folio to remove the mapping from
1615  * @page:	The first page to remove
1616  * @vma:	The vm area from which the mapping is removed
1617  *
1618  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1619  *
1620  * The caller needs to hold the page table lock.
1621  */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1622 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1623 		struct vm_area_struct *vma)
1624 {
1625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1626 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1627 #else
1628 	WARN_ON_ONCE(true);
1629 #endif
1630 }
1631 
1632 /*
1633  * @arg: enum ttu_flags will be passed to this argument
1634  */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1635 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1636 		     unsigned long address, void *arg)
1637 {
1638 	struct mm_struct *mm = vma->vm_mm;
1639 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1640 	pte_t pteval;
1641 	struct page *subpage;
1642 	bool anon_exclusive, ret = true;
1643 	struct mmu_notifier_range range;
1644 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1645 	unsigned long pfn;
1646 	unsigned long hsz = 0;
1647 
1648 	/*
1649 	 * When racing against e.g. zap_pte_range() on another cpu,
1650 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1651 	 * try_to_unmap() may return before page_mapped() has become false,
1652 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1653 	 */
1654 	if (flags & TTU_SYNC)
1655 		pvmw.flags = PVMW_SYNC;
1656 
1657 	/*
1658 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1659 	 * For hugetlb, it could be much worse if we need to do pud
1660 	 * invalidation in the case of pmd sharing.
1661 	 *
1662 	 * Note that the folio can not be freed in this function as call of
1663 	 * try_to_unmap() must hold a reference on the folio.
1664 	 */
1665 	range.end = vma_address_end(&pvmw);
1666 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1667 				address, range.end);
1668 	if (folio_test_hugetlb(folio)) {
1669 		/*
1670 		 * If sharing is possible, start and end will be adjusted
1671 		 * accordingly.
1672 		 */
1673 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1674 						     &range.end);
1675 
1676 		/* We need the huge page size for set_huge_pte_at() */
1677 		hsz = huge_page_size(hstate_vma(vma));
1678 	}
1679 	mmu_notifier_invalidate_range_start(&range);
1680 
1681 	while (page_vma_mapped_walk(&pvmw)) {
1682 		/*
1683 		 * If the folio is in an mlock()d vma, we must not swap it out.
1684 		 */
1685 		if (!(flags & TTU_IGNORE_MLOCK) &&
1686 		    (vma->vm_flags & VM_LOCKED)) {
1687 			/* Restore the mlock which got missed */
1688 			if (!folio_test_large(folio))
1689 				mlock_vma_folio(folio, vma);
1690 			goto walk_abort;
1691 		}
1692 
1693 		if (!pvmw.pte) {
1694 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1695 						  folio))
1696 				goto walk_done;
1697 
1698 			if (flags & TTU_SPLIT_HUGE_PMD) {
1699 				/*
1700 				 * We temporarily have to drop the PTL and
1701 				 * restart so we can process the PTE-mapped THP.
1702 				 */
1703 				split_huge_pmd_locked(vma, pvmw.address,
1704 						      pvmw.pmd, false, folio);
1705 				flags &= ~TTU_SPLIT_HUGE_PMD;
1706 				page_vma_mapped_walk_restart(&pvmw);
1707 				continue;
1708 			}
1709 		}
1710 
1711 		/* Unexpected PMD-mapped THP? */
1712 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1713 
1714 		pfn = pte_pfn(ptep_get(pvmw.pte));
1715 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1716 		address = pvmw.address;
1717 		anon_exclusive = folio_test_anon(folio) &&
1718 				 PageAnonExclusive(subpage);
1719 
1720 		if (folio_test_hugetlb(folio)) {
1721 			bool anon = folio_test_anon(folio);
1722 
1723 			/*
1724 			 * The try_to_unmap() is only passed a hugetlb page
1725 			 * in the case where the hugetlb page is poisoned.
1726 			 */
1727 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1728 			/*
1729 			 * huge_pmd_unshare may unmap an entire PMD page.
1730 			 * There is no way of knowing exactly which PMDs may
1731 			 * be cached for this mm, so we must flush them all.
1732 			 * start/end were already adjusted above to cover this
1733 			 * range.
1734 			 */
1735 			flush_cache_range(vma, range.start, range.end);
1736 
1737 			/*
1738 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1739 			 * held in write mode.  Caller needs to explicitly
1740 			 * do this outside rmap routines.
1741 			 *
1742 			 * We also must hold hugetlb vma_lock in write mode.
1743 			 * Lock order dictates acquiring vma_lock BEFORE
1744 			 * i_mmap_rwsem.  We can only try lock here and fail
1745 			 * if unsuccessful.
1746 			 */
1747 			if (!anon) {
1748 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1749 				if (!hugetlb_vma_trylock_write(vma))
1750 					goto walk_abort;
1751 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1752 					hugetlb_vma_unlock_write(vma);
1753 					flush_tlb_range(vma,
1754 						range.start, range.end);
1755 					/*
1756 					 * The ref count of the PMD page was
1757 					 * dropped which is part of the way map
1758 					 * counting is done for shared PMDs.
1759 					 * Return 'true' here.  When there is
1760 					 * no other sharing, huge_pmd_unshare
1761 					 * returns false and we will unmap the
1762 					 * actual page and drop map count
1763 					 * to zero.
1764 					 */
1765 					goto walk_done;
1766 				}
1767 				hugetlb_vma_unlock_write(vma);
1768 			}
1769 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1770 		} else {
1771 			flush_cache_page(vma, address, pfn);
1772 			/* Nuke the page table entry. */
1773 			if (should_defer_flush(mm, flags)) {
1774 				/*
1775 				 * We clear the PTE but do not flush so potentially
1776 				 * a remote CPU could still be writing to the folio.
1777 				 * If the entry was previously clean then the
1778 				 * architecture must guarantee that a clear->dirty
1779 				 * transition on a cached TLB entry is written through
1780 				 * and traps if the PTE is unmapped.
1781 				 */
1782 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1783 
1784 				set_tlb_ubc_flush_pending(mm, pteval, address);
1785 			} else {
1786 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1787 			}
1788 		}
1789 
1790 		/*
1791 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1792 		 * we may want to replace a none pte with a marker pte if
1793 		 * it's file-backed, so we don't lose the tracking info.
1794 		 */
1795 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1796 
1797 		/* Set the dirty flag on the folio now the pte is gone. */
1798 		if (pte_dirty(pteval))
1799 			folio_mark_dirty(folio);
1800 
1801 		/* Update high watermark before we lower rss */
1802 		update_hiwater_rss(mm);
1803 
1804 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1805 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1806 			if (folio_test_hugetlb(folio)) {
1807 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1808 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1809 						hsz);
1810 			} else {
1811 				dec_mm_counter(mm, mm_counter(folio));
1812 				set_pte_at(mm, address, pvmw.pte, pteval);
1813 			}
1814 
1815 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1816 			/*
1817 			 * The guest indicated that the page content is of no
1818 			 * interest anymore. Simply discard the pte, vmscan
1819 			 * will take care of the rest.
1820 			 * A future reference will then fault in a new zero
1821 			 * page. When userfaultfd is active, we must not drop
1822 			 * this page though, as its main user (postcopy
1823 			 * migration) will not expect userfaults on already
1824 			 * copied pages.
1825 			 */
1826 			dec_mm_counter(mm, mm_counter(folio));
1827 		} else if (folio_test_anon(folio)) {
1828 			swp_entry_t entry = page_swap_entry(subpage);
1829 			pte_t swp_pte;
1830 			/*
1831 			 * Store the swap location in the pte.
1832 			 * See handle_pte_fault() ...
1833 			 */
1834 			if (unlikely(folio_test_swapbacked(folio) !=
1835 					folio_test_swapcache(folio))) {
1836 				WARN_ON_ONCE(1);
1837 				goto walk_abort;
1838 			}
1839 
1840 			/* MADV_FREE page check */
1841 			if (!folio_test_swapbacked(folio)) {
1842 				int ref_count, map_count;
1843 
1844 				/*
1845 				 * Synchronize with gup_pte_range():
1846 				 * - clear PTE; barrier; read refcount
1847 				 * - inc refcount; barrier; read PTE
1848 				 */
1849 				smp_mb();
1850 
1851 				ref_count = folio_ref_count(folio);
1852 				map_count = folio_mapcount(folio);
1853 
1854 				/*
1855 				 * Order reads for page refcount and dirty flag
1856 				 * (see comments in __remove_mapping()).
1857 				 */
1858 				smp_rmb();
1859 
1860 				/*
1861 				 * The only page refs must be one from isolation
1862 				 * plus the rmap(s) (dropped by discard:).
1863 				 */
1864 				if (ref_count == 1 + map_count &&
1865 				    (!folio_test_dirty(folio) ||
1866 				     /*
1867 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1868 				      * ones can be dropped even if they've
1869 				      * been dirtied.
1870 				      */
1871 				     (vma->vm_flags & VM_DROPPABLE))) {
1872 					dec_mm_counter(mm, MM_ANONPAGES);
1873 					goto discard;
1874 				}
1875 
1876 				/*
1877 				 * If the folio was redirtied, it cannot be
1878 				 * discarded. Remap the page to page table.
1879 				 */
1880 				set_pte_at(mm, address, pvmw.pte, pteval);
1881 				/*
1882 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1883 				 * never get swap backed on failure to drop.
1884 				 */
1885 				if (!(vma->vm_flags & VM_DROPPABLE))
1886 					folio_set_swapbacked(folio);
1887 				goto walk_abort;
1888 			}
1889 
1890 			if (swap_duplicate(entry) < 0) {
1891 				set_pte_at(mm, address, pvmw.pte, pteval);
1892 				goto walk_abort;
1893 			}
1894 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1895 				swap_free(entry);
1896 				set_pte_at(mm, address, pvmw.pte, pteval);
1897 				goto walk_abort;
1898 			}
1899 
1900 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1901 			if (anon_exclusive &&
1902 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1903 				swap_free(entry);
1904 				set_pte_at(mm, address, pvmw.pte, pteval);
1905 				goto walk_abort;
1906 			}
1907 			if (list_empty(&mm->mmlist)) {
1908 				spin_lock(&mmlist_lock);
1909 				if (list_empty(&mm->mmlist))
1910 					list_add(&mm->mmlist, &init_mm.mmlist);
1911 				spin_unlock(&mmlist_lock);
1912 			}
1913 			dec_mm_counter(mm, MM_ANONPAGES);
1914 			inc_mm_counter(mm, MM_SWAPENTS);
1915 			swp_pte = swp_entry_to_pte(entry);
1916 			if (anon_exclusive)
1917 				swp_pte = pte_swp_mkexclusive(swp_pte);
1918 			if (pte_soft_dirty(pteval))
1919 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1920 			if (pte_uffd_wp(pteval))
1921 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1922 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1923 		} else {
1924 			/*
1925 			 * This is a locked file-backed folio,
1926 			 * so it cannot be removed from the page
1927 			 * cache and replaced by a new folio before
1928 			 * mmu_notifier_invalidate_range_end, so no
1929 			 * concurrent thread might update its page table
1930 			 * to point at a new folio while a device is
1931 			 * still using this folio.
1932 			 *
1933 			 * See Documentation/mm/mmu_notifier.rst
1934 			 */
1935 			dec_mm_counter(mm, mm_counter_file(folio));
1936 		}
1937 discard:
1938 		if (unlikely(folio_test_hugetlb(folio)))
1939 			hugetlb_remove_rmap(folio);
1940 		else
1941 			folio_remove_rmap_pte(folio, subpage, vma);
1942 		if (vma->vm_flags & VM_LOCKED)
1943 			mlock_drain_local();
1944 		folio_put(folio);
1945 		continue;
1946 walk_abort:
1947 		ret = false;
1948 walk_done:
1949 		page_vma_mapped_walk_done(&pvmw);
1950 		break;
1951 	}
1952 
1953 	mmu_notifier_invalidate_range_end(&range);
1954 
1955 	return ret;
1956 }
1957 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1958 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1959 {
1960 	return vma_is_temporary_stack(vma);
1961 }
1962 
folio_not_mapped(struct folio * folio)1963 static int folio_not_mapped(struct folio *folio)
1964 {
1965 	return !folio_mapped(folio);
1966 }
1967 
1968 /**
1969  * try_to_unmap - Try to remove all page table mappings to a folio.
1970  * @folio: The folio to unmap.
1971  * @flags: action and flags
1972  *
1973  * Tries to remove all the page table entries which are mapping this
1974  * folio.  It is the caller's responsibility to check if the folio is
1975  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1976  *
1977  * Context: Caller must hold the folio lock.
1978  */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1979 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1980 {
1981 	struct rmap_walk_control rwc = {
1982 		.rmap_one = try_to_unmap_one,
1983 		.arg = (void *)flags,
1984 		.done = folio_not_mapped,
1985 		.anon_lock = folio_lock_anon_vma_read,
1986 	};
1987 
1988 	if (flags & TTU_RMAP_LOCKED)
1989 		rmap_walk_locked(folio, &rwc);
1990 	else
1991 		rmap_walk(folio, &rwc);
1992 }
1993 
1994 /*
1995  * @arg: enum ttu_flags will be passed to this argument.
1996  *
1997  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1998  * containing migration entries.
1999  */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2000 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2001 		     unsigned long address, void *arg)
2002 {
2003 	struct mm_struct *mm = vma->vm_mm;
2004 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2005 	pte_t pteval;
2006 	struct page *subpage;
2007 	bool anon_exclusive, ret = true;
2008 	struct mmu_notifier_range range;
2009 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2010 	unsigned long pfn;
2011 	unsigned long hsz = 0;
2012 
2013 	/*
2014 	 * When racing against e.g. zap_pte_range() on another cpu,
2015 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2016 	 * try_to_migrate() may return before page_mapped() has become false,
2017 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2018 	 */
2019 	if (flags & TTU_SYNC)
2020 		pvmw.flags = PVMW_SYNC;
2021 
2022 	/*
2023 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2024 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2025 	 */
2026 	if (flags & TTU_SPLIT_HUGE_PMD)
2027 		split_huge_pmd_address(vma, address, true, folio);
2028 
2029 	/*
2030 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2031 	 * For hugetlb, it could be much worse if we need to do pud
2032 	 * invalidation in the case of pmd sharing.
2033 	 *
2034 	 * Note that the page can not be free in this function as call of
2035 	 * try_to_unmap() must hold a reference on the page.
2036 	 */
2037 	range.end = vma_address_end(&pvmw);
2038 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2039 				address, range.end);
2040 	if (folio_test_hugetlb(folio)) {
2041 		/*
2042 		 * If sharing is possible, start and end will be adjusted
2043 		 * accordingly.
2044 		 */
2045 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2046 						     &range.end);
2047 
2048 		/* We need the huge page size for set_huge_pte_at() */
2049 		hsz = huge_page_size(hstate_vma(vma));
2050 	}
2051 	mmu_notifier_invalidate_range_start(&range);
2052 
2053 	while (page_vma_mapped_walk(&pvmw)) {
2054 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2055 		/* PMD-mapped THP migration entry */
2056 		if (!pvmw.pte) {
2057 			subpage = folio_page(folio,
2058 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2059 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2060 					!folio_test_pmd_mappable(folio), folio);
2061 
2062 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2063 				ret = false;
2064 				page_vma_mapped_walk_done(&pvmw);
2065 				break;
2066 			}
2067 			continue;
2068 		}
2069 #endif
2070 
2071 		/* Unexpected PMD-mapped THP? */
2072 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2073 
2074 		pfn = pte_pfn(ptep_get(pvmw.pte));
2075 
2076 		if (folio_is_zone_device(folio)) {
2077 			/*
2078 			 * Our PTE is a non-present device exclusive entry and
2079 			 * calculating the subpage as for the common case would
2080 			 * result in an invalid pointer.
2081 			 *
2082 			 * Since only PAGE_SIZE pages can currently be
2083 			 * migrated, just set it to page. This will need to be
2084 			 * changed when hugepage migrations to device private
2085 			 * memory are supported.
2086 			 */
2087 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2088 			subpage = &folio->page;
2089 		} else {
2090 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2091 		}
2092 		address = pvmw.address;
2093 		anon_exclusive = folio_test_anon(folio) &&
2094 				 PageAnonExclusive(subpage);
2095 
2096 		if (folio_test_hugetlb(folio)) {
2097 			bool anon = folio_test_anon(folio);
2098 
2099 			/*
2100 			 * huge_pmd_unshare may unmap an entire PMD page.
2101 			 * There is no way of knowing exactly which PMDs may
2102 			 * be cached for this mm, so we must flush them all.
2103 			 * start/end were already adjusted above to cover this
2104 			 * range.
2105 			 */
2106 			flush_cache_range(vma, range.start, range.end);
2107 
2108 			/*
2109 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2110 			 * held in write mode.  Caller needs to explicitly
2111 			 * do this outside rmap routines.
2112 			 *
2113 			 * We also must hold hugetlb vma_lock in write mode.
2114 			 * Lock order dictates acquiring vma_lock BEFORE
2115 			 * i_mmap_rwsem.  We can only try lock here and
2116 			 * fail if unsuccessful.
2117 			 */
2118 			if (!anon) {
2119 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2120 				if (!hugetlb_vma_trylock_write(vma)) {
2121 					page_vma_mapped_walk_done(&pvmw);
2122 					ret = false;
2123 					break;
2124 				}
2125 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2126 					hugetlb_vma_unlock_write(vma);
2127 					flush_tlb_range(vma,
2128 						range.start, range.end);
2129 
2130 					/*
2131 					 * The ref count of the PMD page was
2132 					 * dropped which is part of the way map
2133 					 * counting is done for shared PMDs.
2134 					 * Return 'true' here.  When there is
2135 					 * no other sharing, huge_pmd_unshare
2136 					 * returns false and we will unmap the
2137 					 * actual page and drop map count
2138 					 * to zero.
2139 					 */
2140 					page_vma_mapped_walk_done(&pvmw);
2141 					break;
2142 				}
2143 				hugetlb_vma_unlock_write(vma);
2144 			}
2145 			/* Nuke the hugetlb page table entry */
2146 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2147 		} else {
2148 			flush_cache_page(vma, address, pfn);
2149 			/* Nuke the page table entry. */
2150 			if (should_defer_flush(mm, flags)) {
2151 				/*
2152 				 * We clear the PTE but do not flush so potentially
2153 				 * a remote CPU could still be writing to the folio.
2154 				 * If the entry was previously clean then the
2155 				 * architecture must guarantee that a clear->dirty
2156 				 * transition on a cached TLB entry is written through
2157 				 * and traps if the PTE is unmapped.
2158 				 */
2159 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2160 
2161 				set_tlb_ubc_flush_pending(mm, pteval, address);
2162 			} else {
2163 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2164 			}
2165 		}
2166 
2167 		/* Set the dirty flag on the folio now the pte is gone. */
2168 		if (pte_dirty(pteval))
2169 			folio_mark_dirty(folio);
2170 
2171 		/* Update high watermark before we lower rss */
2172 		update_hiwater_rss(mm);
2173 
2174 		if (folio_is_device_private(folio)) {
2175 			unsigned long pfn = folio_pfn(folio);
2176 			swp_entry_t entry;
2177 			pte_t swp_pte;
2178 
2179 			if (anon_exclusive)
2180 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2181 									   subpage));
2182 
2183 			/*
2184 			 * Store the pfn of the page in a special migration
2185 			 * pte. do_swap_page() will wait until the migration
2186 			 * pte is removed and then restart fault handling.
2187 			 */
2188 			entry = pte_to_swp_entry(pteval);
2189 			if (is_writable_device_private_entry(entry))
2190 				entry = make_writable_migration_entry(pfn);
2191 			else if (anon_exclusive)
2192 				entry = make_readable_exclusive_migration_entry(pfn);
2193 			else
2194 				entry = make_readable_migration_entry(pfn);
2195 			swp_pte = swp_entry_to_pte(entry);
2196 
2197 			/*
2198 			 * pteval maps a zone device page and is therefore
2199 			 * a swap pte.
2200 			 */
2201 			if (pte_swp_soft_dirty(pteval))
2202 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2203 			if (pte_swp_uffd_wp(pteval))
2204 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2205 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2206 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2207 						folio_order(folio));
2208 			/*
2209 			 * No need to invalidate here it will synchronize on
2210 			 * against the special swap migration pte.
2211 			 */
2212 		} else if (PageHWPoison(subpage)) {
2213 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2214 			if (folio_test_hugetlb(folio)) {
2215 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2216 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2217 						hsz);
2218 			} else {
2219 				dec_mm_counter(mm, mm_counter(folio));
2220 				set_pte_at(mm, address, pvmw.pte, pteval);
2221 			}
2222 
2223 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2224 			/*
2225 			 * The guest indicated that the page content is of no
2226 			 * interest anymore. Simply discard the pte, vmscan
2227 			 * will take care of the rest.
2228 			 * A future reference will then fault in a new zero
2229 			 * page. When userfaultfd is active, we must not drop
2230 			 * this page though, as its main user (postcopy
2231 			 * migration) will not expect userfaults on already
2232 			 * copied pages.
2233 			 */
2234 			dec_mm_counter(mm, mm_counter(folio));
2235 		} else {
2236 			swp_entry_t entry;
2237 			pte_t swp_pte;
2238 
2239 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2240 				if (folio_test_hugetlb(folio))
2241 					set_huge_pte_at(mm, address, pvmw.pte,
2242 							pteval, hsz);
2243 				else
2244 					set_pte_at(mm, address, pvmw.pte, pteval);
2245 				ret = false;
2246 				page_vma_mapped_walk_done(&pvmw);
2247 				break;
2248 			}
2249 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2250 				       !anon_exclusive, subpage);
2251 
2252 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2253 			if (folio_test_hugetlb(folio)) {
2254 				if (anon_exclusive &&
2255 				    hugetlb_try_share_anon_rmap(folio)) {
2256 					set_huge_pte_at(mm, address, pvmw.pte,
2257 							pteval, hsz);
2258 					ret = false;
2259 					page_vma_mapped_walk_done(&pvmw);
2260 					break;
2261 				}
2262 			} else if (anon_exclusive &&
2263 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2264 				set_pte_at(mm, address, pvmw.pte, pteval);
2265 				ret = false;
2266 				page_vma_mapped_walk_done(&pvmw);
2267 				break;
2268 			}
2269 
2270 			/*
2271 			 * Store the pfn of the page in a special migration
2272 			 * pte. do_swap_page() will wait until the migration
2273 			 * pte is removed and then restart fault handling.
2274 			 */
2275 			if (pte_write(pteval))
2276 				entry = make_writable_migration_entry(
2277 							page_to_pfn(subpage));
2278 			else if (anon_exclusive)
2279 				entry = make_readable_exclusive_migration_entry(
2280 							page_to_pfn(subpage));
2281 			else
2282 				entry = make_readable_migration_entry(
2283 							page_to_pfn(subpage));
2284 			if (pte_young(pteval))
2285 				entry = make_migration_entry_young(entry);
2286 			if (pte_dirty(pteval))
2287 				entry = make_migration_entry_dirty(entry);
2288 			swp_pte = swp_entry_to_pte(entry);
2289 			if (pte_soft_dirty(pteval))
2290 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2291 			if (pte_uffd_wp(pteval))
2292 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2293 			if (folio_test_hugetlb(folio))
2294 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2295 						hsz);
2296 			else
2297 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2298 			trace_set_migration_pte(address, pte_val(swp_pte),
2299 						folio_order(folio));
2300 			/*
2301 			 * No need to invalidate here it will synchronize on
2302 			 * against the special swap migration pte.
2303 			 */
2304 		}
2305 
2306 		if (unlikely(folio_test_hugetlb(folio)))
2307 			hugetlb_remove_rmap(folio);
2308 		else
2309 			folio_remove_rmap_pte(folio, subpage, vma);
2310 		if (vma->vm_flags & VM_LOCKED)
2311 			mlock_drain_local();
2312 		folio_put(folio);
2313 	}
2314 
2315 	mmu_notifier_invalidate_range_end(&range);
2316 
2317 	return ret;
2318 }
2319 
2320 /**
2321  * try_to_migrate - try to replace all page table mappings with swap entries
2322  * @folio: the folio to replace page table entries for
2323  * @flags: action and flags
2324  *
2325  * Tries to remove all the page table entries which are mapping this folio and
2326  * replace them with special swap entries. Caller must hold the folio lock.
2327  */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2328 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2329 {
2330 	struct rmap_walk_control rwc = {
2331 		.rmap_one = try_to_migrate_one,
2332 		.arg = (void *)flags,
2333 		.done = folio_not_mapped,
2334 		.anon_lock = folio_lock_anon_vma_read,
2335 	};
2336 
2337 	/*
2338 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2339 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2340 	 */
2341 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2342 					TTU_SYNC | TTU_BATCH_FLUSH)))
2343 		return;
2344 
2345 	if (folio_is_zone_device(folio) &&
2346 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2347 		return;
2348 
2349 	/*
2350 	 * During exec, a temporary VMA is setup and later moved.
2351 	 * The VMA is moved under the anon_vma lock but not the
2352 	 * page tables leading to a race where migration cannot
2353 	 * find the migration ptes. Rather than increasing the
2354 	 * locking requirements of exec(), migration skips
2355 	 * temporary VMAs until after exec() completes.
2356 	 */
2357 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2358 		rwc.invalid_vma = invalid_migration_vma;
2359 
2360 	if (flags & TTU_RMAP_LOCKED)
2361 		rmap_walk_locked(folio, &rwc);
2362 	else
2363 		rmap_walk(folio, &rwc);
2364 }
2365 
2366 #ifdef CONFIG_DEVICE_PRIVATE
2367 struct make_exclusive_args {
2368 	struct mm_struct *mm;
2369 	unsigned long address;
2370 	void *owner;
2371 	bool valid;
2372 };
2373 
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2374 static bool page_make_device_exclusive_one(struct folio *folio,
2375 		struct vm_area_struct *vma, unsigned long address, void *priv)
2376 {
2377 	struct mm_struct *mm = vma->vm_mm;
2378 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2379 	struct make_exclusive_args *args = priv;
2380 	pte_t pteval;
2381 	struct page *subpage;
2382 	bool ret = true;
2383 	struct mmu_notifier_range range;
2384 	swp_entry_t entry;
2385 	pte_t swp_pte;
2386 	pte_t ptent;
2387 
2388 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2389 				      vma->vm_mm, address, min(vma->vm_end,
2390 				      address + folio_size(folio)),
2391 				      args->owner);
2392 	mmu_notifier_invalidate_range_start(&range);
2393 
2394 	while (page_vma_mapped_walk(&pvmw)) {
2395 		/* Unexpected PMD-mapped THP? */
2396 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2397 
2398 		ptent = ptep_get(pvmw.pte);
2399 		if (!pte_present(ptent)) {
2400 			ret = false;
2401 			page_vma_mapped_walk_done(&pvmw);
2402 			break;
2403 		}
2404 
2405 		subpage = folio_page(folio,
2406 				pte_pfn(ptent) - folio_pfn(folio));
2407 		address = pvmw.address;
2408 
2409 		/* Nuke the page table entry. */
2410 		flush_cache_page(vma, address, pte_pfn(ptent));
2411 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2412 
2413 		/* Set the dirty flag on the folio now the pte is gone. */
2414 		if (pte_dirty(pteval))
2415 			folio_mark_dirty(folio);
2416 
2417 		/*
2418 		 * Check that our target page is still mapped at the expected
2419 		 * address.
2420 		 */
2421 		if (args->mm == mm && args->address == address &&
2422 		    pte_write(pteval))
2423 			args->valid = true;
2424 
2425 		/*
2426 		 * Store the pfn of the page in a special migration
2427 		 * pte. do_swap_page() will wait until the migration
2428 		 * pte is removed and then restart fault handling.
2429 		 */
2430 		if (pte_write(pteval))
2431 			entry = make_writable_device_exclusive_entry(
2432 							page_to_pfn(subpage));
2433 		else
2434 			entry = make_readable_device_exclusive_entry(
2435 							page_to_pfn(subpage));
2436 		swp_pte = swp_entry_to_pte(entry);
2437 		if (pte_soft_dirty(pteval))
2438 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2439 		if (pte_uffd_wp(pteval))
2440 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2441 
2442 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2443 
2444 		/*
2445 		 * There is a reference on the page for the swap entry which has
2446 		 * been removed, so shouldn't take another.
2447 		 */
2448 		folio_remove_rmap_pte(folio, subpage, vma);
2449 	}
2450 
2451 	mmu_notifier_invalidate_range_end(&range);
2452 
2453 	return ret;
2454 }
2455 
2456 /**
2457  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2458  * @folio: The folio to replace page table entries for.
2459  * @mm: The mm_struct where the folio is expected to be mapped.
2460  * @address: Address where the folio is expected to be mapped.
2461  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2462  *
2463  * Tries to remove all the page table entries which are mapping this
2464  * folio and replace them with special device exclusive swap entries to
2465  * grant a device exclusive access to the folio.
2466  *
2467  * Context: Caller must hold the folio lock.
2468  * Return: false if the page is still mapped, or if it could not be unmapped
2469  * from the expected address. Otherwise returns true (success).
2470  */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2471 static bool folio_make_device_exclusive(struct folio *folio,
2472 		struct mm_struct *mm, unsigned long address, void *owner)
2473 {
2474 	struct make_exclusive_args args = {
2475 		.mm = mm,
2476 		.address = address,
2477 		.owner = owner,
2478 		.valid = false,
2479 	};
2480 	struct rmap_walk_control rwc = {
2481 		.rmap_one = page_make_device_exclusive_one,
2482 		.done = folio_not_mapped,
2483 		.anon_lock = folio_lock_anon_vma_read,
2484 		.arg = &args,
2485 	};
2486 
2487 	/*
2488 	 * Restrict to anonymous folios for now to avoid potential writeback
2489 	 * issues.
2490 	 */
2491 	if (!folio_test_anon(folio))
2492 		return false;
2493 
2494 	rmap_walk(folio, &rwc);
2495 
2496 	return args.valid && !folio_mapcount(folio);
2497 }
2498 
2499 /**
2500  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2501  * @mm: mm_struct of associated target process
2502  * @start: start of the region to mark for exclusive device access
2503  * @end: end address of region
2504  * @pages: returns the pages which were successfully marked for exclusive access
2505  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2506  *
2507  * Returns: number of pages found in the range by GUP. A page is marked for
2508  * exclusive access only if the page pointer is non-NULL.
2509  *
2510  * This function finds ptes mapping page(s) to the given address range, locks
2511  * them and replaces mappings with special swap entries preventing userspace CPU
2512  * access. On fault these entries are replaced with the original mapping after
2513  * calling MMU notifiers.
2514  *
2515  * A driver using this to program access from a device must use a mmu notifier
2516  * critical section to hold a device specific lock during programming. Once
2517  * programming is complete it should drop the page lock and reference after
2518  * which point CPU access to the page will revoke the exclusive access.
2519  */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2520 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2521 				unsigned long end, struct page **pages,
2522 				void *owner)
2523 {
2524 	long npages = (end - start) >> PAGE_SHIFT;
2525 	long i;
2526 
2527 	npages = get_user_pages_remote(mm, start, npages,
2528 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2529 				       pages, NULL);
2530 	if (npages < 0)
2531 		return npages;
2532 
2533 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2534 		struct folio *folio = page_folio(pages[i]);
2535 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2536 			folio_put(folio);
2537 			pages[i] = NULL;
2538 			continue;
2539 		}
2540 
2541 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2542 			folio_unlock(folio);
2543 			folio_put(folio);
2544 			pages[i] = NULL;
2545 		}
2546 	}
2547 
2548 	return npages;
2549 }
2550 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2551 #endif
2552 
__put_anon_vma(struct anon_vma * anon_vma)2553 void __put_anon_vma(struct anon_vma *anon_vma)
2554 {
2555 	struct anon_vma *root = anon_vma->root;
2556 
2557 	anon_vma_free(anon_vma);
2558 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2559 		anon_vma_free(root);
2560 }
2561 
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2562 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2563 					    struct rmap_walk_control *rwc)
2564 {
2565 	struct anon_vma *anon_vma;
2566 
2567 	if (rwc->anon_lock)
2568 		return rwc->anon_lock(folio, rwc);
2569 
2570 	/*
2571 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2572 	 * because that depends on page_mapped(); but not all its usages
2573 	 * are holding mmap_lock. Users without mmap_lock are required to
2574 	 * take a reference count to prevent the anon_vma disappearing
2575 	 */
2576 	anon_vma = folio_anon_vma(folio);
2577 	if (!anon_vma)
2578 		return NULL;
2579 
2580 	if (anon_vma_trylock_read(anon_vma))
2581 		goto out;
2582 
2583 	if (rwc->try_lock) {
2584 		anon_vma = NULL;
2585 		rwc->contended = true;
2586 		goto out;
2587 	}
2588 
2589 	anon_vma_lock_read(anon_vma);
2590 out:
2591 	return anon_vma;
2592 }
2593 
2594 /*
2595  * rmap_walk_anon - do something to anonymous page using the object-based
2596  * rmap method
2597  * @folio: the folio to be handled
2598  * @rwc: control variable according to each walk type
2599  * @locked: caller holds relevant rmap lock
2600  *
2601  * Find all the mappings of a folio using the mapping pointer and the vma
2602  * chains contained in the anon_vma struct it points to.
2603  */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2604 static void rmap_walk_anon(struct folio *folio,
2605 		struct rmap_walk_control *rwc, bool locked)
2606 {
2607 	struct anon_vma *anon_vma;
2608 	pgoff_t pgoff_start, pgoff_end;
2609 	struct anon_vma_chain *avc;
2610 
2611 	if (locked) {
2612 		anon_vma = folio_anon_vma(folio);
2613 		/* anon_vma disappear under us? */
2614 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2615 	} else {
2616 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2617 	}
2618 	if (!anon_vma)
2619 		return;
2620 
2621 	pgoff_start = folio_pgoff(folio);
2622 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2623 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2624 			pgoff_start, pgoff_end) {
2625 		struct vm_area_struct *vma = avc->vma;
2626 		unsigned long address = vma_address(vma, pgoff_start,
2627 				folio_nr_pages(folio));
2628 
2629 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2630 		cond_resched();
2631 
2632 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2633 			continue;
2634 
2635 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2636 			break;
2637 		if (rwc->done && rwc->done(folio))
2638 			break;
2639 	}
2640 
2641 	if (!locked)
2642 		anon_vma_unlock_read(anon_vma);
2643 }
2644 
2645 /*
2646  * rmap_walk_file - do something to file page using the object-based rmap method
2647  * @folio: the folio to be handled
2648  * @rwc: control variable according to each walk type
2649  * @locked: caller holds relevant rmap lock
2650  *
2651  * Find all the mappings of a folio using the mapping pointer and the vma chains
2652  * contained in the address_space struct it points to.
2653  */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2654 static void rmap_walk_file(struct folio *folio,
2655 		struct rmap_walk_control *rwc, bool locked)
2656 {
2657 	struct address_space *mapping = folio_mapping(folio);
2658 	pgoff_t pgoff_start, pgoff_end;
2659 	struct vm_area_struct *vma;
2660 
2661 	/*
2662 	 * The page lock not only makes sure that page->mapping cannot
2663 	 * suddenly be NULLified by truncation, it makes sure that the
2664 	 * structure at mapping cannot be freed and reused yet,
2665 	 * so we can safely take mapping->i_mmap_rwsem.
2666 	 */
2667 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2668 
2669 	if (!mapping)
2670 		return;
2671 
2672 	pgoff_start = folio_pgoff(folio);
2673 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2674 	if (!locked) {
2675 		if (i_mmap_trylock_read(mapping))
2676 			goto lookup;
2677 
2678 		if (rwc->try_lock) {
2679 			rwc->contended = true;
2680 			return;
2681 		}
2682 
2683 		i_mmap_lock_read(mapping);
2684 	}
2685 lookup:
2686 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2687 			pgoff_start, pgoff_end) {
2688 		unsigned long address = vma_address(vma, pgoff_start,
2689 			       folio_nr_pages(folio));
2690 
2691 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2692 		cond_resched();
2693 
2694 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2695 			continue;
2696 
2697 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2698 			goto done;
2699 		if (rwc->done && rwc->done(folio))
2700 			goto done;
2701 	}
2702 
2703 done:
2704 	if (!locked)
2705 		i_mmap_unlock_read(mapping);
2706 }
2707 
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2708 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2709 {
2710 	if (unlikely(folio_test_ksm(folio)))
2711 		rmap_walk_ksm(folio, rwc);
2712 	else if (folio_test_anon(folio))
2713 		rmap_walk_anon(folio, rwc, false);
2714 	else
2715 		rmap_walk_file(folio, rwc, false);
2716 }
2717 
2718 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2719 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2720 {
2721 	/* no ksm support for now */
2722 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2723 	if (folio_test_anon(folio))
2724 		rmap_walk_anon(folio, rwc, true);
2725 	else
2726 		rmap_walk_file(folio, rwc, true);
2727 }
2728 
2729 #ifdef CONFIG_HUGETLB_PAGE
2730 /*
2731  * The following two functions are for anonymous (private mapped) hugepages.
2732  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2733  * and no lru code, because we handle hugepages differently from common pages.
2734  */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2735 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2736 		unsigned long address, rmap_t flags)
2737 {
2738 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2739 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2740 
2741 	atomic_inc(&folio->_entire_mapcount);
2742 	atomic_inc(&folio->_large_mapcount);
2743 	if (flags & RMAP_EXCLUSIVE)
2744 		SetPageAnonExclusive(&folio->page);
2745 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2746 			 PageAnonExclusive(&folio->page), folio);
2747 }
2748 
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2749 void hugetlb_add_new_anon_rmap(struct folio *folio,
2750 		struct vm_area_struct *vma, unsigned long address)
2751 {
2752 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2753 
2754 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2755 	/* increment count (starts at -1) */
2756 	atomic_set(&folio->_entire_mapcount, 0);
2757 	atomic_set(&folio->_large_mapcount, 0);
2758 	folio_clear_hugetlb_restore_reserve(folio);
2759 	__folio_set_anon(folio, vma, address, true);
2760 	SetPageAnonExclusive(&folio->page);
2761 }
2762 #endif /* CONFIG_HUGETLB_PAGE */
2763