1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4   *   {mikejc|engebret}@us.ibm.com
5   *
6   *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7   *
8   * SMP scalability work:
9   *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10   *
11   *    Module name: htab.c
12   *
13   *    Description:
14   *      PowerPC Hashed Page Table functions
15   */
16  
17  #undef DEBUG
18  #undef DEBUG_LOW
19  
20  #define pr_fmt(fmt) "hash-mmu: " fmt
21  #include <linux/spinlock.h>
22  #include <linux/errno.h>
23  #include <linux/sched/mm.h>
24  #include <linux/proc_fs.h>
25  #include <linux/stat.h>
26  #include <linux/sysctl.h>
27  #include <linux/export.h>
28  #include <linux/ctype.h>
29  #include <linux/cache.h>
30  #include <linux/init.h>
31  #include <linux/signal.h>
32  #include <linux/memblock.h>
33  #include <linux/context_tracking.h>
34  #include <linux/libfdt.h>
35  #include <linux/pkeys.h>
36  #include <linux/hugetlb.h>
37  #include <linux/cpu.h>
38  #include <linux/pgtable.h>
39  #include <linux/debugfs.h>
40  #include <linux/random.h>
41  #include <linux/elf-randomize.h>
42  #include <linux/of_fdt.h>
43  
44  #include <asm/interrupt.h>
45  #include <asm/processor.h>
46  #include <asm/mmu.h>
47  #include <asm/mmu_context.h>
48  #include <asm/page.h>
49  #include <asm/types.h>
50  #include <linux/uaccess.h>
51  #include <asm/machdep.h>
52  #include <asm/io.h>
53  #include <asm/eeh.h>
54  #include <asm/tlb.h>
55  #include <asm/cacheflush.h>
56  #include <asm/cputable.h>
57  #include <asm/sections.h>
58  #include <asm/copro.h>
59  #include <asm/udbg.h>
60  #include <asm/code-patching.h>
61  #include <asm/fadump.h>
62  #include <asm/firmware.h>
63  #include <asm/tm.h>
64  #include <asm/trace.h>
65  #include <asm/ps3.h>
66  #include <asm/pte-walk.h>
67  #include <asm/asm-prototypes.h>
68  #include <asm/ultravisor.h>
69  
70  #include <mm/mmu_decl.h>
71  
72  #include "internal.h"
73  
74  
75  #ifdef DEBUG
76  #define DBG(fmt...) udbg_printf(fmt)
77  #else
78  #define DBG(fmt...)
79  #endif
80  
81  #ifdef DEBUG_LOW
82  #define DBG_LOW(fmt...) udbg_printf(fmt)
83  #else
84  #define DBG_LOW(fmt...)
85  #endif
86  
87  #define KB (1024)
88  #define MB (1024*KB)
89  #define GB (1024L*MB)
90  
91  /*
92   * Note:  pte   --> Linux PTE
93   *        HPTE  --> PowerPC Hashed Page Table Entry
94   *
95   * Execution context:
96   *   htab_initialize is called with the MMU off (of course), but
97   *   the kernel has been copied down to zero so it can directly
98   *   reference global data.  At this point it is very difficult
99   *   to print debug info.
100   *
101   */
102  
103  static unsigned long _SDR1;
104  
105  u8 hpte_page_sizes[1 << LP_BITS];
106  EXPORT_SYMBOL_GPL(hpte_page_sizes);
107  
108  struct hash_pte *htab_address;
109  unsigned long htab_size_bytes;
110  unsigned long htab_hash_mask;
111  EXPORT_SYMBOL_GPL(htab_hash_mask);
112  int mmu_linear_psize = MMU_PAGE_4K;
113  EXPORT_SYMBOL_GPL(mmu_linear_psize);
114  int mmu_virtual_psize = MMU_PAGE_4K;
115  int mmu_vmalloc_psize = MMU_PAGE_4K;
116  EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117  int mmu_io_psize = MMU_PAGE_4K;
118  int mmu_kernel_ssize = MMU_SEGSIZE_256M;
119  EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
120  int mmu_highuser_ssize = MMU_SEGSIZE_256M;
121  u16 mmu_slb_size = 64;
122  EXPORT_SYMBOL_GPL(mmu_slb_size);
123  #ifdef CONFIG_PPC_64K_PAGES
124  int mmu_ci_restrictions;
125  #endif
126  static u8 *linear_map_hash_slots;
127  static unsigned long linear_map_hash_count;
128  struct mmu_hash_ops mmu_hash_ops __ro_after_init;
129  EXPORT_SYMBOL(mmu_hash_ops);
130  
131  /*
132   * These are definitions of page sizes arrays to be used when none
133   * is provided by the firmware.
134   */
135  
136  /*
137   * Fallback (4k pages only)
138   */
139  static struct mmu_psize_def mmu_psize_defaults[] = {
140  	[MMU_PAGE_4K] = {
141  		.shift	= 12,
142  		.sllp	= 0,
143  		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144  		.avpnm	= 0,
145  		.tlbiel = 0,
146  	},
147  };
148  
149  /*
150   * POWER4, GPUL, POWER5
151   *
152   * Support for 16Mb large pages
153   */
154  static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155  	[MMU_PAGE_4K] = {
156  		.shift	= 12,
157  		.sllp	= 0,
158  		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159  		.avpnm	= 0,
160  		.tlbiel = 1,
161  	},
162  	[MMU_PAGE_16M] = {
163  		.shift	= 24,
164  		.sllp	= SLB_VSID_L,
165  		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166  			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167  		.avpnm	= 0x1UL,
168  		.tlbiel = 0,
169  	},
170  };
171  
tlbiel_hash_set_isa206(unsigned int set,unsigned int is)172  static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173  {
174  	unsigned long rb;
175  
176  	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177  
178  	asm volatile("tlbiel %0" : : "r" (rb));
179  }
180  
181  /*
182   * tlbiel instruction for hash, set invalidation
183   * i.e., r=1 and is=01 or is=10 or is=11
184   */
tlbiel_hash_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)185  static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186  					unsigned int pid,
187  					unsigned int ric, unsigned int prs)
188  {
189  	unsigned long rb;
190  	unsigned long rs;
191  	unsigned int r = 0; /* hash format */
192  
193  	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194  	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195  
196  	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197  		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198  		     : "memory");
199  }
200  
201  
tlbiel_all_isa206(unsigned int num_sets,unsigned int is)202  static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203  {
204  	unsigned int set;
205  
206  	asm volatile("ptesync": : :"memory");
207  
208  	for (set = 0; set < num_sets; set++)
209  		tlbiel_hash_set_isa206(set, is);
210  
211  	ppc_after_tlbiel_barrier();
212  }
213  
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)214  static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215  {
216  	unsigned int set;
217  
218  	asm volatile("ptesync": : :"memory");
219  
220  	/*
221  	 * Flush the partition table cache if this is HV mode.
222  	 */
223  	if (early_cpu_has_feature(CPU_FTR_HVMODE))
224  		tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225  
226  	/*
227  	 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228  	 * current hardware implements) do not use the process table, but
229  	 * add the flushes anyway.
230  	 *
231  	 * From ISA v3.0B p. 1078:
232  	 *     The following forms are invalid.
233  	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
234  	 *        HPT caching is of the Process Table.)
235  	 */
236  	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237  
238  	/*
239  	 * Then flush the sets of the TLB proper. Hash mode uses
240  	 * partition scoped TLB translations, which may be flushed
241  	 * in !HV mode.
242  	 */
243  	for (set = 0; set < num_sets; set++)
244  		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245  
246  	ppc_after_tlbiel_barrier();
247  
248  	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249  }
250  
hash__tlbiel_all(unsigned int action)251  void hash__tlbiel_all(unsigned int action)
252  {
253  	unsigned int is;
254  
255  	switch (action) {
256  	case TLB_INVAL_SCOPE_GLOBAL:
257  		is = 3;
258  		break;
259  	case TLB_INVAL_SCOPE_LPID:
260  		is = 2;
261  		break;
262  	default:
263  		BUG();
264  	}
265  
266  	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267  		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268  	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269  		tlbiel_all_isa206(POWER8_TLB_SETS, is);
270  	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271  		tlbiel_all_isa206(POWER7_TLB_SETS, is);
272  	else
273  		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274  }
275  
276  /*
277   * 'R' and 'C' update notes:
278   *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
279   *     create writeable HPTEs without C set, because the hcall H_PROTECT
280   *     that we use in that case will not update C
281   *  - The above is however not a problem, because we also don't do that
282   *     fancy "no flush" variant of eviction and we use H_REMOVE which will
283   *     do the right thing and thus we don't have the race I described earlier
284   *
285   *    - Under bare metal,  we do have the race, so we need R and C set
286   *    - We make sure R is always set and never lost
287   *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
288   */
htab_convert_pte_flags(unsigned long pteflags,unsigned long flags)289  unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
290  {
291  	unsigned long rflags = 0;
292  
293  	/* _PAGE_EXEC -> NOEXEC */
294  	if ((pteflags & _PAGE_EXEC) == 0)
295  		rflags |= HPTE_R_N;
296  	/*
297  	 * PPP bits:
298  	 * Linux uses slb key 0 for kernel and 1 for user.
299  	 * kernel RW areas are mapped with PPP=0b000
300  	 * User area is mapped with PPP=0b010 for read/write
301  	 * or PPP=0b011 for read-only (including writeable but clean pages).
302  	 */
303  	if (pteflags & _PAGE_PRIVILEGED) {
304  		/*
305  		 * Kernel read only mapped with ppp bits 0b110
306  		 */
307  		if (!(pteflags & _PAGE_WRITE)) {
308  			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
309  				rflags |= (HPTE_R_PP0 | 0x2);
310  			else
311  				rflags |= 0x3;
312  		}
313  		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
314  	} else {
315  		if (pteflags & _PAGE_RWX)
316  			rflags |= 0x2;
317  		/*
318  		 * We should never hit this in normal fault handling because
319  		 * a permission check (check_pte_access()) will bubble this
320  		 * to higher level linux handler even for PAGE_NONE.
321  		 */
322  		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
323  		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
324  			rflags |= 0x1;
325  	}
326  	/*
327  	 * We can't allow hardware to update hpte bits. Hence always
328  	 * set 'R' bit and set 'C' if it is a write fault
329  	 */
330  	rflags |=  HPTE_R_R;
331  
332  	if (pteflags & _PAGE_DIRTY)
333  		rflags |= HPTE_R_C;
334  	/*
335  	 * Add in WIG bits
336  	 */
337  
338  	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
339  		rflags |= HPTE_R_I;
340  	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
341  		rflags |= (HPTE_R_I | HPTE_R_G);
342  	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
343  		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
344  	else
345  		/*
346  		 * Add memory coherence if cache inhibited is not set
347  		 */
348  		rflags |= HPTE_R_M;
349  
350  	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
351  	return rflags;
352  }
353  
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)354  int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
355  		      unsigned long pstart, unsigned long prot,
356  		      int psize, int ssize)
357  {
358  	unsigned long vaddr, paddr;
359  	unsigned int step, shift;
360  	int ret = 0;
361  
362  	shift = mmu_psize_defs[psize].shift;
363  	step = 1 << shift;
364  
365  	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
366  
367  	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
368  	    vstart, vend, pstart, prot, psize, ssize);
369  
370  	/* Carefully map only the possible range */
371  	vaddr = ALIGN(vstart, step);
372  	paddr = ALIGN(pstart, step);
373  	vend  = ALIGN_DOWN(vend, step);
374  
375  	for (; vaddr < vend; vaddr += step, paddr += step) {
376  		unsigned long hash, hpteg;
377  		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
378  		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
379  		unsigned long tprot = prot;
380  		bool secondary_hash = false;
381  
382  		/*
383  		 * If we hit a bad address return error.
384  		 */
385  		if (!vsid)
386  			return -1;
387  		/* Make kernel text executable */
388  		if (overlaps_kernel_text(vaddr, vaddr + step))
389  			tprot &= ~HPTE_R_N;
390  
391  		/*
392  		 * If relocatable, check if it overlaps interrupt vectors that
393  		 * are copied down to real 0. For relocatable kernel
394  		 * (e.g. kdump case) we copy interrupt vectors down to real
395  		 * address 0. Mark that region as executable. This is
396  		 * because on p8 system with relocation on exception feature
397  		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
398  		 * in order to execute the interrupt handlers in virtual
399  		 * mode the vector region need to be marked as executable.
400  		 */
401  		if ((PHYSICAL_START > MEMORY_START) &&
402  			overlaps_interrupt_vector_text(vaddr, vaddr + step))
403  				tprot &= ~HPTE_R_N;
404  
405  		hash = hpt_hash(vpn, shift, ssize);
406  		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
407  
408  		BUG_ON(!mmu_hash_ops.hpte_insert);
409  repeat:
410  		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
411  					       HPTE_V_BOLTED, psize, psize,
412  					       ssize);
413  		if (ret == -1) {
414  			/*
415  			 * Try to keep bolted entries in primary.
416  			 * Remove non bolted entries and try insert again
417  			 */
418  			ret = mmu_hash_ops.hpte_remove(hpteg);
419  			if (ret != -1)
420  				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
421  							       HPTE_V_BOLTED, psize, psize,
422  							       ssize);
423  			if (ret == -1 && !secondary_hash) {
424  				secondary_hash = true;
425  				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
426  				goto repeat;
427  			}
428  		}
429  
430  		if (ret < 0)
431  			break;
432  
433  		cond_resched();
434  		if (debug_pagealloc_enabled_or_kfence() &&
435  			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
436  			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
437  	}
438  	return ret < 0 ? ret : 0;
439  }
440  
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)441  int htab_remove_mapping(unsigned long vstart, unsigned long vend,
442  		      int psize, int ssize)
443  {
444  	unsigned long vaddr, time_limit;
445  	unsigned int step, shift;
446  	int rc;
447  	int ret = 0;
448  
449  	shift = mmu_psize_defs[psize].shift;
450  	step = 1 << shift;
451  
452  	if (!mmu_hash_ops.hpte_removebolted)
453  		return -ENODEV;
454  
455  	/* Unmap the full range specificied */
456  	vaddr = ALIGN_DOWN(vstart, step);
457  	time_limit = jiffies + HZ;
458  
459  	for (;vaddr < vend; vaddr += step) {
460  		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
461  
462  		/*
463  		 * For large number of mappings introduce a cond_resched()
464  		 * to prevent softlockup warnings.
465  		 */
466  		if (time_after(jiffies, time_limit)) {
467  			cond_resched();
468  			time_limit = jiffies + HZ;
469  		}
470  		if (rc == -ENOENT) {
471  			ret = -ENOENT;
472  			continue;
473  		}
474  		if (rc < 0)
475  			return rc;
476  	}
477  
478  	return ret;
479  }
480  
481  static bool disable_1tb_segments __ro_after_init;
482  
parse_disable_1tb_segments(char * p)483  static int __init parse_disable_1tb_segments(char *p)
484  {
485  	disable_1tb_segments = true;
486  	return 0;
487  }
488  early_param("disable_1tb_segments", parse_disable_1tb_segments);
489  
490  bool stress_hpt_enabled __initdata;
491  
parse_stress_hpt(char * p)492  static int __init parse_stress_hpt(char *p)
493  {
494  	stress_hpt_enabled = true;
495  	return 0;
496  }
497  early_param("stress_hpt", parse_stress_hpt);
498  
499  __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
500  
501  /*
502   * per-CPU array allocated if we enable stress_hpt.
503   */
504  #define STRESS_MAX_GROUPS 16
505  struct stress_hpt_struct {
506  	unsigned long last_group[STRESS_MAX_GROUPS];
507  };
508  
stress_nr_groups(void)509  static inline int stress_nr_groups(void)
510  {
511  	/*
512  	 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
513  	 * to allow practical forward progress. Bare metal returns 1, which
514  	 * seems to help uncover more bugs.
515  	 */
516  	if (firmware_has_feature(FW_FEATURE_LPAR))
517  		return STRESS_MAX_GROUPS;
518  	else
519  		return 1;
520  }
521  
522  static struct stress_hpt_struct *stress_hpt_struct;
523  
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)524  static int __init htab_dt_scan_seg_sizes(unsigned long node,
525  					 const char *uname, int depth,
526  					 void *data)
527  {
528  	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
529  	const __be32 *prop;
530  	int size = 0;
531  
532  	/* We are scanning "cpu" nodes only */
533  	if (type == NULL || strcmp(type, "cpu") != 0)
534  		return 0;
535  
536  	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
537  	if (prop == NULL)
538  		return 0;
539  	for (; size >= 4; size -= 4, ++prop) {
540  		if (be32_to_cpu(prop[0]) == 40) {
541  			DBG("1T segment support detected\n");
542  
543  			if (disable_1tb_segments) {
544  				DBG("1T segments disabled by command line\n");
545  				break;
546  			}
547  
548  			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
549  			return 1;
550  		}
551  	}
552  	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
553  	return 0;
554  }
555  
get_idx_from_shift(unsigned int shift)556  static int __init get_idx_from_shift(unsigned int shift)
557  {
558  	int idx = -1;
559  
560  	switch (shift) {
561  	case 0xc:
562  		idx = MMU_PAGE_4K;
563  		break;
564  	case 0x10:
565  		idx = MMU_PAGE_64K;
566  		break;
567  	case 0x14:
568  		idx = MMU_PAGE_1M;
569  		break;
570  	case 0x18:
571  		idx = MMU_PAGE_16M;
572  		break;
573  	case 0x22:
574  		idx = MMU_PAGE_16G;
575  		break;
576  	}
577  	return idx;
578  }
579  
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)580  static int __init htab_dt_scan_page_sizes(unsigned long node,
581  					  const char *uname, int depth,
582  					  void *data)
583  {
584  	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
585  	const __be32 *prop;
586  	int size = 0;
587  
588  	/* We are scanning "cpu" nodes only */
589  	if (type == NULL || strcmp(type, "cpu") != 0)
590  		return 0;
591  
592  	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
593  	if (!prop)
594  		return 0;
595  
596  	pr_info("Page sizes from device-tree:\n");
597  	size /= 4;
598  	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
599  	while(size > 0) {
600  		unsigned int base_shift = be32_to_cpu(prop[0]);
601  		unsigned int slbenc = be32_to_cpu(prop[1]);
602  		unsigned int lpnum = be32_to_cpu(prop[2]);
603  		struct mmu_psize_def *def;
604  		int idx, base_idx;
605  
606  		size -= 3; prop += 3;
607  		base_idx = get_idx_from_shift(base_shift);
608  		if (base_idx < 0) {
609  			/* skip the pte encoding also */
610  			prop += lpnum * 2; size -= lpnum * 2;
611  			continue;
612  		}
613  		def = &mmu_psize_defs[base_idx];
614  		if (base_idx == MMU_PAGE_16M)
615  			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
616  
617  		def->shift = base_shift;
618  		if (base_shift <= 23)
619  			def->avpnm = 0;
620  		else
621  			def->avpnm = (1 << (base_shift - 23)) - 1;
622  		def->sllp = slbenc;
623  		/*
624  		 * We don't know for sure what's up with tlbiel, so
625  		 * for now we only set it for 4K and 64K pages
626  		 */
627  		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
628  			def->tlbiel = 1;
629  		else
630  			def->tlbiel = 0;
631  
632  		while (size > 0 && lpnum) {
633  			unsigned int shift = be32_to_cpu(prop[0]);
634  			int penc  = be32_to_cpu(prop[1]);
635  
636  			prop += 2; size -= 2;
637  			lpnum--;
638  
639  			idx = get_idx_from_shift(shift);
640  			if (idx < 0)
641  				continue;
642  
643  			if (penc == -1)
644  				pr_err("Invalid penc for base_shift=%d "
645  				       "shift=%d\n", base_shift, shift);
646  
647  			def->penc[idx] = penc;
648  			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
649  				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
650  				base_shift, shift, def->sllp,
651  				def->avpnm, def->tlbiel, def->penc[idx]);
652  		}
653  	}
654  
655  	return 1;
656  }
657  
658  #ifdef CONFIG_HUGETLB_PAGE
659  /*
660   * Scan for 16G memory blocks that have been set aside for huge pages
661   * and reserve those blocks for 16G huge pages.
662   */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)663  static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
664  					const char *uname, int depth,
665  					void *data) {
666  	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
667  	const __be64 *addr_prop;
668  	const __be32 *page_count_prop;
669  	unsigned int expected_pages;
670  	long unsigned int phys_addr;
671  	long unsigned int block_size;
672  
673  	/* We are scanning "memory" nodes only */
674  	if (type == NULL || strcmp(type, "memory") != 0)
675  		return 0;
676  
677  	/*
678  	 * This property is the log base 2 of the number of virtual pages that
679  	 * will represent this memory block.
680  	 */
681  	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
682  	if (page_count_prop == NULL)
683  		return 0;
684  	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
685  	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
686  	if (addr_prop == NULL)
687  		return 0;
688  	phys_addr = be64_to_cpu(addr_prop[0]);
689  	block_size = be64_to_cpu(addr_prop[1]);
690  	if (block_size != (16 * GB))
691  		return 0;
692  	printk(KERN_INFO "Huge page(16GB) memory: "
693  			"addr = 0x%lX size = 0x%lX pages = %d\n",
694  			phys_addr, block_size, expected_pages);
695  	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
696  		memblock_reserve(phys_addr, block_size * expected_pages);
697  		pseries_add_gpage(phys_addr, block_size, expected_pages);
698  	}
699  	return 0;
700  }
701  #endif /* CONFIG_HUGETLB_PAGE */
702  
mmu_psize_set_default_penc(void)703  static void __init mmu_psize_set_default_penc(void)
704  {
705  	int bpsize, apsize;
706  	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
707  		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
708  			mmu_psize_defs[bpsize].penc[apsize] = -1;
709  }
710  
711  #ifdef CONFIG_PPC_64K_PAGES
712  
might_have_hea(void)713  static bool __init might_have_hea(void)
714  {
715  	/*
716  	 * The HEA ethernet adapter requires awareness of the
717  	 * GX bus. Without that awareness we can easily assume
718  	 * we will never see an HEA ethernet device.
719  	 */
720  #ifdef CONFIG_IBMEBUS
721  	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
722  		firmware_has_feature(FW_FEATURE_SPLPAR);
723  #else
724  	return false;
725  #endif
726  }
727  
728  #endif /* #ifdef CONFIG_PPC_64K_PAGES */
729  
htab_scan_page_sizes(void)730  static void __init htab_scan_page_sizes(void)
731  {
732  	int rc;
733  
734  	/* se the invalid penc to -1 */
735  	mmu_psize_set_default_penc();
736  
737  	/* Default to 4K pages only */
738  	memcpy(mmu_psize_defs, mmu_psize_defaults,
739  	       sizeof(mmu_psize_defaults));
740  
741  	/*
742  	 * Try to find the available page sizes in the device-tree
743  	 */
744  	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
745  	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
746  		/*
747  		 * Nothing in the device-tree, but the CPU supports 16M pages,
748  		 * so let's fallback on a known size list for 16M capable CPUs.
749  		 */
750  		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
751  		       sizeof(mmu_psize_defaults_gp));
752  	}
753  
754  #ifdef CONFIG_HUGETLB_PAGE
755  	if (!hugetlb_disabled && !early_radix_enabled() ) {
756  		/* Reserve 16G huge page memory sections for huge pages */
757  		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
758  	}
759  #endif /* CONFIG_HUGETLB_PAGE */
760  }
761  
762  /*
763   * Fill in the hpte_page_sizes[] array.
764   * We go through the mmu_psize_defs[] array looking for all the
765   * supported base/actual page size combinations.  Each combination
766   * has a unique pagesize encoding (penc) value in the low bits of
767   * the LP field of the HPTE.  For actual page sizes less than 1MB,
768   * some of the upper LP bits are used for RPN bits, meaning that
769   * we need to fill in several entries in hpte_page_sizes[].
770   *
771   * In diagrammatic form, with r = RPN bits and z = page size bits:
772   *        PTE LP     actual page size
773   *    rrrr rrrz		>=8KB
774   *    rrrr rrzz		>=16KB
775   *    rrrr rzzz		>=32KB
776   *    rrrr zzzz		>=64KB
777   *    ...
778   *
779   * The zzzz bits are implementation-specific but are chosen so that
780   * no encoding for a larger page size uses the same value in its
781   * low-order N bits as the encoding for the 2^(12+N) byte page size
782   * (if it exists).
783   */
init_hpte_page_sizes(void)784  static void __init init_hpte_page_sizes(void)
785  {
786  	long int ap, bp;
787  	long int shift, penc;
788  
789  	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
790  		if (!mmu_psize_defs[bp].shift)
791  			continue;	/* not a supported page size */
792  		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
793  			penc = mmu_psize_defs[bp].penc[ap];
794  			if (penc == -1 || !mmu_psize_defs[ap].shift)
795  				continue;
796  			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
797  			if (shift <= 0)
798  				continue;	/* should never happen */
799  			/*
800  			 * For page sizes less than 1MB, this loop
801  			 * replicates the entry for all possible values
802  			 * of the rrrr bits.
803  			 */
804  			while (penc < (1 << LP_BITS)) {
805  				hpte_page_sizes[penc] = (ap << 4) | bp;
806  				penc += 1 << shift;
807  			}
808  		}
809  	}
810  }
811  
htab_init_page_sizes(void)812  static void __init htab_init_page_sizes(void)
813  {
814  	bool aligned = true;
815  	init_hpte_page_sizes();
816  
817  	if (!debug_pagealloc_enabled_or_kfence()) {
818  		/*
819  		 * Pick a size for the linear mapping. Currently, we only
820  		 * support 16M, 1M and 4K which is the default
821  		 */
822  		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
823  		    (unsigned long)_stext % 0x1000000) {
824  			if (mmu_psize_defs[MMU_PAGE_16M].shift)
825  				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
826  			aligned = false;
827  		}
828  
829  		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
830  			mmu_linear_psize = MMU_PAGE_16M;
831  		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
832  			mmu_linear_psize = MMU_PAGE_1M;
833  	}
834  
835  #ifdef CONFIG_PPC_64K_PAGES
836  	/*
837  	 * Pick a size for the ordinary pages. Default is 4K, we support
838  	 * 64K for user mappings and vmalloc if supported by the processor.
839  	 * We only use 64k for ioremap if the processor
840  	 * (and firmware) support cache-inhibited large pages.
841  	 * If not, we use 4k and set mmu_ci_restrictions so that
842  	 * hash_page knows to switch processes that use cache-inhibited
843  	 * mappings to 4k pages.
844  	 */
845  	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
846  		mmu_virtual_psize = MMU_PAGE_64K;
847  		mmu_vmalloc_psize = MMU_PAGE_64K;
848  		if (mmu_linear_psize == MMU_PAGE_4K)
849  			mmu_linear_psize = MMU_PAGE_64K;
850  		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
851  			/*
852  			 * When running on pSeries using 64k pages for ioremap
853  			 * would stop us accessing the HEA ethernet. So if we
854  			 * have the chance of ever seeing one, stay at 4k.
855  			 */
856  			if (!might_have_hea())
857  				mmu_io_psize = MMU_PAGE_64K;
858  		} else
859  			mmu_ci_restrictions = 1;
860  	}
861  #endif /* CONFIG_PPC_64K_PAGES */
862  
863  #ifdef CONFIG_SPARSEMEM_VMEMMAP
864  	/*
865  	 * We try to use 16M pages for vmemmap if that is supported
866  	 * and we have at least 1G of RAM at boot
867  	 */
868  	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
869  	    memblock_phys_mem_size() >= 0x40000000)
870  		mmu_vmemmap_psize = MMU_PAGE_16M;
871  	else
872  		mmu_vmemmap_psize = mmu_virtual_psize;
873  #endif /* CONFIG_SPARSEMEM_VMEMMAP */
874  
875  	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
876  	       "virtual = %d, io = %d"
877  #ifdef CONFIG_SPARSEMEM_VMEMMAP
878  	       ", vmemmap = %d"
879  #endif
880  	       "\n",
881  	       mmu_psize_defs[mmu_linear_psize].shift,
882  	       mmu_psize_defs[mmu_virtual_psize].shift,
883  	       mmu_psize_defs[mmu_io_psize].shift
884  #ifdef CONFIG_SPARSEMEM_VMEMMAP
885  	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
886  #endif
887  	       );
888  }
889  
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)890  static int __init htab_dt_scan_pftsize(unsigned long node,
891  				       const char *uname, int depth,
892  				       void *data)
893  {
894  	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
895  	const __be32 *prop;
896  
897  	/* We are scanning "cpu" nodes only */
898  	if (type == NULL || strcmp(type, "cpu") != 0)
899  		return 0;
900  
901  	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
902  	if (prop != NULL) {
903  		/* pft_size[0] is the NUMA CEC cookie */
904  		ppc64_pft_size = be32_to_cpu(prop[1]);
905  		return 1;
906  	}
907  	return 0;
908  }
909  
htab_shift_for_mem_size(unsigned long mem_size)910  unsigned htab_shift_for_mem_size(unsigned long mem_size)
911  {
912  	unsigned memshift = __ilog2(mem_size);
913  	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
914  	unsigned pteg_shift;
915  
916  	/* round mem_size up to next power of 2 */
917  	if ((1UL << memshift) < mem_size)
918  		memshift += 1;
919  
920  	/* aim for 2 pages / pteg */
921  	pteg_shift = memshift - (pshift + 1);
922  
923  	/*
924  	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
925  	 * size permitted by the architecture.
926  	 */
927  	return max(pteg_shift + 7, 18U);
928  }
929  
htab_get_table_size(void)930  static unsigned long __init htab_get_table_size(void)
931  {
932  	/*
933  	 * If hash size isn't already provided by the platform, we try to
934  	 * retrieve it from the device-tree. If it's not there neither, we
935  	 * calculate it now based on the total RAM size
936  	 */
937  	if (ppc64_pft_size == 0)
938  		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
939  	if (ppc64_pft_size)
940  		return 1UL << ppc64_pft_size;
941  
942  	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
943  }
944  
945  #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)946  static int resize_hpt_for_hotplug(unsigned long new_mem_size)
947  {
948  	unsigned target_hpt_shift;
949  
950  	if (!mmu_hash_ops.resize_hpt)
951  		return 0;
952  
953  	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
954  
955  	/*
956  	 * To avoid lots of HPT resizes if memory size is fluctuating
957  	 * across a boundary, we deliberately have some hysterisis
958  	 * here: we immediately increase the HPT size if the target
959  	 * shift exceeds the current shift, but we won't attempt to
960  	 * reduce unless the target shift is at least 2 below the
961  	 * current shift
962  	 */
963  	if (target_hpt_shift > ppc64_pft_size ||
964  	    target_hpt_shift < ppc64_pft_size - 1)
965  		return mmu_hash_ops.resize_hpt(target_hpt_shift);
966  
967  	return 0;
968  }
969  
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)970  int hash__create_section_mapping(unsigned long start, unsigned long end,
971  				 int nid, pgprot_t prot)
972  {
973  	int rc;
974  
975  	if (end >= H_VMALLOC_START) {
976  		pr_warn("Outside the supported range\n");
977  		return -1;
978  	}
979  
980  	resize_hpt_for_hotplug(memblock_phys_mem_size());
981  
982  	rc = htab_bolt_mapping(start, end, __pa(start),
983  			       pgprot_val(prot), mmu_linear_psize,
984  			       mmu_kernel_ssize);
985  
986  	if (rc < 0) {
987  		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
988  					      mmu_kernel_ssize);
989  		BUG_ON(rc2 && (rc2 != -ENOENT));
990  	}
991  	return rc;
992  }
993  
hash__remove_section_mapping(unsigned long start,unsigned long end)994  int hash__remove_section_mapping(unsigned long start, unsigned long end)
995  {
996  	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
997  				     mmu_kernel_ssize);
998  
999  	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1000  		pr_warn("Hash collision while resizing HPT\n");
1001  
1002  	return rc;
1003  }
1004  #endif /* CONFIG_MEMORY_HOTPLUG */
1005  
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)1006  static void __init hash_init_partition_table(phys_addr_t hash_table,
1007  					     unsigned long htab_size)
1008  {
1009  	mmu_partition_table_init();
1010  
1011  	/*
1012  	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1013  	 * For now, UPRT is 0 and we have no segment table.
1014  	 */
1015  	htab_size =  __ilog2(htab_size) - 18;
1016  	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1017  	pr_info("Partition table %p\n", partition_tb);
1018  }
1019  
1020  void hpt_clear_stress(void);
1021  static struct timer_list stress_hpt_timer;
stress_hpt_timer_fn(struct timer_list * timer)1022  static void stress_hpt_timer_fn(struct timer_list *timer)
1023  {
1024  	int next_cpu;
1025  
1026  	hpt_clear_stress();
1027  	if (!firmware_has_feature(FW_FEATURE_LPAR))
1028  		tlbiel_all();
1029  
1030  	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1031  	if (next_cpu >= nr_cpu_ids)
1032  		next_cpu = cpumask_first(cpu_online_mask);
1033  	stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1034  	add_timer_on(&stress_hpt_timer, next_cpu);
1035  }
1036  
htab_initialize(void)1037  static void __init htab_initialize(void)
1038  {
1039  	unsigned long table;
1040  	unsigned long pteg_count;
1041  	unsigned long prot;
1042  	phys_addr_t base = 0, size = 0, end;
1043  	u64 i;
1044  
1045  	DBG(" -> htab_initialize()\n");
1046  
1047  	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1048  		mmu_kernel_ssize = MMU_SEGSIZE_1T;
1049  		mmu_highuser_ssize = MMU_SEGSIZE_1T;
1050  		printk(KERN_INFO "Using 1TB segments\n");
1051  	}
1052  
1053  	if (stress_slb_enabled)
1054  		static_branch_enable(&stress_slb_key);
1055  
1056  	if (stress_hpt_enabled) {
1057  		unsigned long tmp;
1058  		static_branch_enable(&stress_hpt_key);
1059  		// Too early to use nr_cpu_ids, so use NR_CPUS
1060  		tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1061  						__alignof__(struct stress_hpt_struct),
1062  						0, MEMBLOCK_ALLOC_ANYWHERE);
1063  		memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1064  		stress_hpt_struct = __va(tmp);
1065  
1066  		timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1067  		stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1068  		add_timer(&stress_hpt_timer);
1069  	}
1070  
1071  	/*
1072  	 * Calculate the required size of the htab.  We want the number of
1073  	 * PTEGs to equal one half the number of real pages.
1074  	 */
1075  	htab_size_bytes = htab_get_table_size();
1076  	pteg_count = htab_size_bytes >> 7;
1077  
1078  	htab_hash_mask = pteg_count - 1;
1079  
1080  	if (firmware_has_feature(FW_FEATURE_LPAR) ||
1081  	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1082  		/* Using a hypervisor which owns the htab */
1083  		htab_address = NULL;
1084  		_SDR1 = 0;
1085  #ifdef CONFIG_FA_DUMP
1086  		/*
1087  		 * If firmware assisted dump is active firmware preserves
1088  		 * the contents of htab along with entire partition memory.
1089  		 * Clear the htab if firmware assisted dump is active so
1090  		 * that we dont end up using old mappings.
1091  		 */
1092  		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1093  			mmu_hash_ops.hpte_clear_all();
1094  #endif
1095  	} else {
1096  		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1097  
1098  #ifdef CONFIG_PPC_CELL
1099  		/*
1100  		 * Cell may require the hash table down low when using the
1101  		 * Axon IOMMU in order to fit the dynamic region over it, see
1102  		 * comments in cell/iommu.c
1103  		 */
1104  		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1105  			limit = 0x80000000;
1106  			pr_info("Hash table forced below 2G for Axon IOMMU\n");
1107  		}
1108  #endif /* CONFIG_PPC_CELL */
1109  
1110  		table = memblock_phys_alloc_range(htab_size_bytes,
1111  						  htab_size_bytes,
1112  						  0, limit);
1113  		if (!table)
1114  			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1115  			      &htab_size_bytes, &limit);
1116  
1117  		DBG("Hash table allocated at %lx, size: %lx\n", table,
1118  		    htab_size_bytes);
1119  
1120  		htab_address = __va(table);
1121  
1122  		/* htab absolute addr + encoded htabsize */
1123  		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1124  
1125  		/* Initialize the HPT with no entries */
1126  		memset((void *)table, 0, htab_size_bytes);
1127  
1128  		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1129  			/* Set SDR1 */
1130  			mtspr(SPRN_SDR1, _SDR1);
1131  		else
1132  			hash_init_partition_table(table, htab_size_bytes);
1133  	}
1134  
1135  	prot = pgprot_val(PAGE_KERNEL);
1136  
1137  	if (debug_pagealloc_enabled_or_kfence()) {
1138  		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1139  		linear_map_hash_slots = memblock_alloc_try_nid(
1140  				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1141  				ppc64_rma_size,	NUMA_NO_NODE);
1142  		if (!linear_map_hash_slots)
1143  			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1144  			      __func__, linear_map_hash_count, &ppc64_rma_size);
1145  	}
1146  
1147  	/* create bolted the linear mapping in the hash table */
1148  	for_each_mem_range(i, &base, &end) {
1149  		size = end - base;
1150  		base = (unsigned long)__va(base);
1151  
1152  		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1153  		    base, size, prot);
1154  
1155  		if ((base + size) >= H_VMALLOC_START) {
1156  			pr_warn("Outside the supported range\n");
1157  			continue;
1158  		}
1159  
1160  		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1161  				prot, mmu_linear_psize, mmu_kernel_ssize));
1162  	}
1163  	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1164  
1165  	/*
1166  	 * If we have a memory_limit and we've allocated TCEs then we need to
1167  	 * explicitly map the TCE area at the top of RAM. We also cope with the
1168  	 * case that the TCEs start below memory_limit.
1169  	 * tce_alloc_start/end are 16MB aligned so the mapping should work
1170  	 * for either 4K or 16MB pages.
1171  	 */
1172  	if (tce_alloc_start) {
1173  		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1174  		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1175  
1176  		if (base + size >= tce_alloc_start)
1177  			tce_alloc_start = base + size + 1;
1178  
1179  		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1180  					 __pa(tce_alloc_start), prot,
1181  					 mmu_linear_psize, mmu_kernel_ssize));
1182  	}
1183  
1184  
1185  	DBG(" <- htab_initialize()\n");
1186  }
1187  #undef KB
1188  #undef MB
1189  
hash__early_init_devtree(void)1190  void __init hash__early_init_devtree(void)
1191  {
1192  	/* Initialize segment sizes */
1193  	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1194  
1195  	/* Initialize page sizes */
1196  	htab_scan_page_sizes();
1197  }
1198  
1199  static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1200  void __init hash__early_init_mmu(void)
1201  {
1202  #ifndef CONFIG_PPC_64K_PAGES
1203  	/*
1204  	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1205  	 * do the following:
1206  	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1207  	 *
1208  	 * Where the slot number is between 0-15, and values of 8-15 indicate
1209  	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1210  	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1211  	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1212  	 * with a BUILD_BUG_ON().
1213  	 */
1214  	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1215  #endif /* CONFIG_PPC_64K_PAGES */
1216  
1217  	htab_init_page_sizes();
1218  
1219  	/*
1220  	 * initialize page table size
1221  	 */
1222  	__pte_frag_nr = H_PTE_FRAG_NR;
1223  	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1224  	__pmd_frag_nr = H_PMD_FRAG_NR;
1225  	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1226  
1227  	__pte_index_size = H_PTE_INDEX_SIZE;
1228  	__pmd_index_size = H_PMD_INDEX_SIZE;
1229  	__pud_index_size = H_PUD_INDEX_SIZE;
1230  	__pgd_index_size = H_PGD_INDEX_SIZE;
1231  	__pud_cache_index = H_PUD_CACHE_INDEX;
1232  	__pte_table_size = H_PTE_TABLE_SIZE;
1233  	__pmd_table_size = H_PMD_TABLE_SIZE;
1234  	__pud_table_size = H_PUD_TABLE_SIZE;
1235  	__pgd_table_size = H_PGD_TABLE_SIZE;
1236  	__pmd_val_bits = HASH_PMD_VAL_BITS;
1237  	__pud_val_bits = HASH_PUD_VAL_BITS;
1238  	__pgd_val_bits = HASH_PGD_VAL_BITS;
1239  
1240  	__kernel_virt_start = H_KERN_VIRT_START;
1241  	__vmalloc_start = H_VMALLOC_START;
1242  	__vmalloc_end = H_VMALLOC_END;
1243  	__kernel_io_start = H_KERN_IO_START;
1244  	__kernel_io_end = H_KERN_IO_END;
1245  	vmemmap = (struct page *)H_VMEMMAP_START;
1246  	ioremap_bot = IOREMAP_BASE;
1247  
1248  #ifdef CONFIG_PCI
1249  	pci_io_base = ISA_IO_BASE;
1250  #endif
1251  
1252  	/* Select appropriate backend */
1253  	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1254  		ps3_early_mm_init();
1255  	else if (firmware_has_feature(FW_FEATURE_LPAR))
1256  		hpte_init_pseries();
1257  	else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1258  		hpte_init_native();
1259  
1260  	if (!mmu_hash_ops.hpte_insert)
1261  		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1262  
1263  	/*
1264  	 * Initialize the MMU Hash table and create the linear mapping
1265  	 * of memory. Has to be done before SLB initialization as this is
1266  	 * currently where the page size encoding is obtained.
1267  	 */
1268  	htab_initialize();
1269  
1270  	init_mm.context.hash_context = &init_hash_mm_context;
1271  	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1272  
1273  	pr_info("Initializing hash mmu with SLB\n");
1274  	/* Initialize SLB management */
1275  	slb_initialize();
1276  
1277  	if (cpu_has_feature(CPU_FTR_ARCH_206)
1278  			&& cpu_has_feature(CPU_FTR_HVMODE))
1279  		tlbiel_all();
1280  }
1281  
1282  #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1283  void hash__early_init_mmu_secondary(void)
1284  {
1285  	/* Initialize hash table for that CPU */
1286  	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1287  
1288  		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1289  			mtspr(SPRN_SDR1, _SDR1);
1290  		else
1291  			set_ptcr_when_no_uv(__pa(partition_tb) |
1292  					    (PATB_SIZE_SHIFT - 12));
1293  	}
1294  	/* Initialize SLB */
1295  	slb_initialize();
1296  
1297  	if (cpu_has_feature(CPU_FTR_ARCH_206)
1298  			&& cpu_has_feature(CPU_FTR_HVMODE))
1299  		tlbiel_all();
1300  
1301  #ifdef CONFIG_PPC_MEM_KEYS
1302  	if (mmu_has_feature(MMU_FTR_PKEY))
1303  		mtspr(SPRN_UAMOR, default_uamor);
1304  #endif
1305  }
1306  #endif /* CONFIG_SMP */
1307  
1308  /*
1309   * Called by asm hashtable.S for doing lazy icache flush
1310   */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1311  unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1312  {
1313  	struct folio *folio;
1314  
1315  	if (!pfn_valid(pte_pfn(pte)))
1316  		return pp;
1317  
1318  	folio = page_folio(pte_page(pte));
1319  
1320  	/* page is dirty */
1321  	if (!test_bit(PG_dcache_clean, &folio->flags) &&
1322  	    !folio_test_reserved(folio)) {
1323  		if (trap == INTERRUPT_INST_STORAGE) {
1324  			flush_dcache_icache_folio(folio);
1325  			set_bit(PG_dcache_clean, &folio->flags);
1326  		} else
1327  			pp |= HPTE_R_N;
1328  	}
1329  	return pp;
1330  }
1331  
get_paca_psize(unsigned long addr)1332  static unsigned int get_paca_psize(unsigned long addr)
1333  {
1334  	unsigned char *psizes;
1335  	unsigned long index, mask_index;
1336  
1337  	if (addr < SLICE_LOW_TOP) {
1338  		psizes = get_paca()->mm_ctx_low_slices_psize;
1339  		index = GET_LOW_SLICE_INDEX(addr);
1340  	} else {
1341  		psizes = get_paca()->mm_ctx_high_slices_psize;
1342  		index = GET_HIGH_SLICE_INDEX(addr);
1343  	}
1344  	mask_index = index & 0x1;
1345  	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1346  }
1347  
1348  
1349  /*
1350   * Demote a segment to using 4k pages.
1351   * For now this makes the whole process use 4k pages.
1352   */
1353  #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1354  void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1355  {
1356  	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1357  		return;
1358  	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1359  	copro_flush_all_slbs(mm);
1360  	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1361  
1362  		copy_mm_to_paca(mm);
1363  		slb_flush_and_restore_bolted();
1364  	}
1365  }
1366  #endif /* CONFIG_PPC_64K_PAGES */
1367  
1368  #ifdef CONFIG_PPC_SUBPAGE_PROT
1369  /*
1370   * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1371   * Userspace sets the subpage permissions using the subpage_prot system call.
1372   *
1373   * Result is 0: full permissions, _PAGE_RW: read-only,
1374   * _PAGE_RWX: no access.
1375   */
subpage_protection(struct mm_struct * mm,unsigned long ea)1376  static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1377  {
1378  	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1379  	u32 spp = 0;
1380  	u32 **sbpm, *sbpp;
1381  
1382  	if (!spt)
1383  		return 0;
1384  
1385  	if (ea >= spt->maxaddr)
1386  		return 0;
1387  	if (ea < 0x100000000UL) {
1388  		/* addresses below 4GB use spt->low_prot */
1389  		sbpm = spt->low_prot;
1390  	} else {
1391  		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1392  		if (!sbpm)
1393  			return 0;
1394  	}
1395  	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1396  	if (!sbpp)
1397  		return 0;
1398  	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1399  
1400  	/* extract 2-bit bitfield for this 4k subpage */
1401  	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1402  
1403  	/*
1404  	 * 0 -> full permission
1405  	 * 1 -> Read only
1406  	 * 2 -> no access.
1407  	 * We return the flag that need to be cleared.
1408  	 */
1409  	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1410  	return spp;
1411  }
1412  
1413  #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1414  static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1415  {
1416  	return 0;
1417  }
1418  #endif
1419  
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1420  void hash_failure_debug(unsigned long ea, unsigned long access,
1421  			unsigned long vsid, unsigned long trap,
1422  			int ssize, int psize, int lpsize, unsigned long pte)
1423  {
1424  	if (!printk_ratelimit())
1425  		return;
1426  	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1427  		ea, access, current->comm);
1428  	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1429  		trap, vsid, ssize, psize, lpsize, pte);
1430  }
1431  
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1432  static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1433  			     int psize, bool user_region)
1434  {
1435  	if (user_region) {
1436  		if (psize != get_paca_psize(ea)) {
1437  			copy_mm_to_paca(mm);
1438  			slb_flush_and_restore_bolted();
1439  		}
1440  	} else if (get_paca()->vmalloc_sllp !=
1441  		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1442  		get_paca()->vmalloc_sllp =
1443  			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1444  		slb_vmalloc_update();
1445  	}
1446  }
1447  
1448  /*
1449   * Result code is:
1450   *  0 - handled
1451   *  1 - normal page fault
1452   * -1 - critical hash insertion error
1453   * -2 - access not permitted by subpage protection mechanism
1454   */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1455  int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1456  		 unsigned long access, unsigned long trap,
1457  		 unsigned long flags)
1458  {
1459  	bool is_thp;
1460  	pgd_t *pgdir;
1461  	unsigned long vsid;
1462  	pte_t *ptep;
1463  	unsigned hugeshift;
1464  	int rc, user_region = 0;
1465  	int psize, ssize;
1466  
1467  	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1468  		ea, access, trap);
1469  	trace_hash_fault(ea, access, trap);
1470  
1471  	/* Get region & vsid */
1472  	switch (get_region_id(ea)) {
1473  	case USER_REGION_ID:
1474  		user_region = 1;
1475  		if (! mm) {
1476  			DBG_LOW(" user region with no mm !\n");
1477  			rc = 1;
1478  			goto bail;
1479  		}
1480  		psize = get_slice_psize(mm, ea);
1481  		ssize = user_segment_size(ea);
1482  		vsid = get_user_vsid(&mm->context, ea, ssize);
1483  		break;
1484  	case VMALLOC_REGION_ID:
1485  		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1486  		psize = mmu_vmalloc_psize;
1487  		ssize = mmu_kernel_ssize;
1488  		flags |= HPTE_USE_KERNEL_KEY;
1489  		break;
1490  
1491  	case IO_REGION_ID:
1492  		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1493  		psize = mmu_io_psize;
1494  		ssize = mmu_kernel_ssize;
1495  		flags |= HPTE_USE_KERNEL_KEY;
1496  		break;
1497  	default:
1498  		/*
1499  		 * Not a valid range
1500  		 * Send the problem up to do_page_fault()
1501  		 */
1502  		rc = 1;
1503  		goto bail;
1504  	}
1505  	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1506  
1507  	/* Bad address. */
1508  	if (!vsid) {
1509  		DBG_LOW("Bad address!\n");
1510  		rc = 1;
1511  		goto bail;
1512  	}
1513  	/* Get pgdir */
1514  	pgdir = mm->pgd;
1515  	if (pgdir == NULL) {
1516  		rc = 1;
1517  		goto bail;
1518  	}
1519  
1520  	/* Check CPU locality */
1521  	if (user_region && mm_is_thread_local(mm))
1522  		flags |= HPTE_LOCAL_UPDATE;
1523  
1524  #ifndef CONFIG_PPC_64K_PAGES
1525  	/*
1526  	 * If we use 4K pages and our psize is not 4K, then we might
1527  	 * be hitting a special driver mapping, and need to align the
1528  	 * address before we fetch the PTE.
1529  	 *
1530  	 * It could also be a hugepage mapping, in which case this is
1531  	 * not necessary, but it's not harmful, either.
1532  	 */
1533  	if (psize != MMU_PAGE_4K)
1534  		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1535  #endif /* CONFIG_PPC_64K_PAGES */
1536  
1537  	/* Get PTE and page size from page tables */
1538  	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1539  	if (ptep == NULL || !pte_present(*ptep)) {
1540  		DBG_LOW(" no PTE !\n");
1541  		rc = 1;
1542  		goto bail;
1543  	}
1544  
1545  	if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) {
1546  		if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M)
1547  			hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift;
1548  		if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G)
1549  			hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift;
1550  	}
1551  
1552  	/*
1553  	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1554  	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1555  	 *
1556  	 * We can safely use the return pte address in rest of the function
1557  	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1558  	 * from generic code.
1559  	 */
1560  	access |= _PAGE_PRESENT | _PAGE_PTE;
1561  
1562  	/*
1563  	 * Pre-check access permissions (will be re-checked atomically
1564  	 * in __hash_page_XX but this pre-check is a fast path
1565  	 */
1566  	if (!check_pte_access(access, pte_val(*ptep))) {
1567  		DBG_LOW(" no access !\n");
1568  		rc = 1;
1569  		goto bail;
1570  	}
1571  
1572  	if (hugeshift) {
1573  		if (is_thp)
1574  			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1575  					     trap, flags, ssize, psize);
1576  #ifdef CONFIG_HUGETLB_PAGE
1577  		else
1578  			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1579  					      flags, ssize, hugeshift, psize);
1580  #else
1581  		else {
1582  			/*
1583  			 * if we have hugeshift, and is not transhuge with
1584  			 * hugetlb disabled, something is really wrong.
1585  			 */
1586  			rc = 1;
1587  			WARN_ON(1);
1588  		}
1589  #endif
1590  		if (current->mm == mm)
1591  			check_paca_psize(ea, mm, psize, user_region);
1592  
1593  		goto bail;
1594  	}
1595  
1596  #ifndef CONFIG_PPC_64K_PAGES
1597  	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1598  #else
1599  	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1600  		pte_val(*(ptep + PTRS_PER_PTE)));
1601  #endif
1602  	/* Do actual hashing */
1603  #ifdef CONFIG_PPC_64K_PAGES
1604  	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1605  	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1606  		demote_segment_4k(mm, ea);
1607  		psize = MMU_PAGE_4K;
1608  	}
1609  
1610  	/*
1611  	 * If this PTE is non-cacheable and we have restrictions on
1612  	 * using non cacheable large pages, then we switch to 4k
1613  	 */
1614  	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1615  		if (user_region) {
1616  			demote_segment_4k(mm, ea);
1617  			psize = MMU_PAGE_4K;
1618  		} else if (ea < VMALLOC_END) {
1619  			/*
1620  			 * some driver did a non-cacheable mapping
1621  			 * in vmalloc space, so switch vmalloc
1622  			 * to 4k pages
1623  			 */
1624  			printk(KERN_ALERT "Reducing vmalloc segment "
1625  			       "to 4kB pages because of "
1626  			       "non-cacheable mapping\n");
1627  			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1628  			copro_flush_all_slbs(mm);
1629  		}
1630  	}
1631  
1632  #endif /* CONFIG_PPC_64K_PAGES */
1633  
1634  	if (current->mm == mm)
1635  		check_paca_psize(ea, mm, psize, user_region);
1636  
1637  #ifdef CONFIG_PPC_64K_PAGES
1638  	if (psize == MMU_PAGE_64K)
1639  		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1640  				     flags, ssize);
1641  	else
1642  #endif /* CONFIG_PPC_64K_PAGES */
1643  	{
1644  		int spp = subpage_protection(mm, ea);
1645  		if (access & spp)
1646  			rc = -2;
1647  		else
1648  			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1649  					    flags, ssize, spp);
1650  	}
1651  
1652  	/*
1653  	 * Dump some info in case of hash insertion failure, they should
1654  	 * never happen so it is really useful to know if/when they do
1655  	 */
1656  	if (rc == -1)
1657  		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1658  				   psize, pte_val(*ptep));
1659  #ifndef CONFIG_PPC_64K_PAGES
1660  	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1661  #else
1662  	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1663  		pte_val(*(ptep + PTRS_PER_PTE)));
1664  #endif
1665  	DBG_LOW(" -> rc=%d\n", rc);
1666  
1667  bail:
1668  	return rc;
1669  }
1670  EXPORT_SYMBOL_GPL(hash_page_mm);
1671  
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1672  int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1673  	      unsigned long dsisr)
1674  {
1675  	unsigned long flags = 0;
1676  	struct mm_struct *mm = current->mm;
1677  
1678  	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1679  	    (get_region_id(ea) == IO_REGION_ID))
1680  		mm = &init_mm;
1681  
1682  	if (dsisr & DSISR_NOHPTE)
1683  		flags |= HPTE_NOHPTE_UPDATE;
1684  
1685  	return hash_page_mm(mm, ea, access, trap, flags);
1686  }
1687  EXPORT_SYMBOL_GPL(hash_page);
1688  
DEFINE_INTERRUPT_HANDLER(do_hash_fault)1689  DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1690  {
1691  	unsigned long ea = regs->dar;
1692  	unsigned long dsisr = regs->dsisr;
1693  	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1694  	unsigned long flags = 0;
1695  	struct mm_struct *mm;
1696  	unsigned int region_id;
1697  	long err;
1698  
1699  	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1700  		hash__do_page_fault(regs);
1701  		return;
1702  	}
1703  
1704  	region_id = get_region_id(ea);
1705  	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1706  		mm = &init_mm;
1707  	else
1708  		mm = current->mm;
1709  
1710  	if (dsisr & DSISR_NOHPTE)
1711  		flags |= HPTE_NOHPTE_UPDATE;
1712  
1713  	if (dsisr & DSISR_ISSTORE)
1714  		access |= _PAGE_WRITE;
1715  	/*
1716  	 * We set _PAGE_PRIVILEGED only when
1717  	 * kernel mode access kernel space.
1718  	 *
1719  	 * _PAGE_PRIVILEGED is NOT set
1720  	 * 1) when kernel mode access user space
1721  	 * 2) user space access kernel space.
1722  	 */
1723  	access |= _PAGE_PRIVILEGED;
1724  	if (user_mode(regs) || (region_id == USER_REGION_ID))
1725  		access &= ~_PAGE_PRIVILEGED;
1726  
1727  	if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1728  		access |= _PAGE_EXEC;
1729  
1730  	err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1731  	if (unlikely(err < 0)) {
1732  		// failed to insert a hash PTE due to an hypervisor error
1733  		if (user_mode(regs)) {
1734  			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1735  				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1736  			else
1737  				_exception(SIGBUS, regs, BUS_ADRERR, ea);
1738  		} else {
1739  			bad_page_fault(regs, SIGBUS);
1740  		}
1741  		err = 0;
1742  
1743  	} else if (err) {
1744  		hash__do_page_fault(regs);
1745  	}
1746  }
1747  
should_hash_preload(struct mm_struct * mm,unsigned long ea)1748  static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1749  {
1750  	int psize = get_slice_psize(mm, ea);
1751  
1752  	/* We only prefault standard pages for now */
1753  	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1754  		return false;
1755  
1756  	/*
1757  	 * Don't prefault if subpage protection is enabled for the EA.
1758  	 */
1759  	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1760  		return false;
1761  
1762  	return true;
1763  }
1764  
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)1765  static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1766  			 bool is_exec, unsigned long trap)
1767  {
1768  	unsigned long vsid;
1769  	pgd_t *pgdir;
1770  	int rc, ssize, update_flags = 0;
1771  	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1772  	unsigned long flags;
1773  
1774  	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1775  
1776  	if (!should_hash_preload(mm, ea))
1777  		return;
1778  
1779  	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1780  		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1781  
1782  	/* Get Linux PTE if available */
1783  	pgdir = mm->pgd;
1784  	if (pgdir == NULL)
1785  		return;
1786  
1787  	/* Get VSID */
1788  	ssize = user_segment_size(ea);
1789  	vsid = get_user_vsid(&mm->context, ea, ssize);
1790  	if (!vsid)
1791  		return;
1792  
1793  #ifdef CONFIG_PPC_64K_PAGES
1794  	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1795  	 * a 64K kernel), then we don't preload, hash_page() will take
1796  	 * care of it once we actually try to access the page.
1797  	 * That way we don't have to duplicate all of the logic for segment
1798  	 * page size demotion here
1799  	 * Called with  PTL held, hence can be sure the value won't change in
1800  	 * between.
1801  	 */
1802  	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1803  		return;
1804  #endif /* CONFIG_PPC_64K_PAGES */
1805  
1806  	/*
1807  	 * __hash_page_* must run with interrupts off, including PMI interrupts
1808  	 * off, as it sets the H_PAGE_BUSY bit.
1809  	 *
1810  	 * It's otherwise possible for perf interrupts to hit at any time and
1811  	 * may take a hash fault reading the user stack, which could take a
1812  	 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1813  	 *
1814  	 * Interrupts must also be off for the duration of the
1815  	 * mm_is_thread_local test and update, to prevent preempt running the
1816  	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1817  	 */
1818  	powerpc_local_irq_pmu_save(flags);
1819  
1820  	/* Is that local to this CPU ? */
1821  	if (mm_is_thread_local(mm))
1822  		update_flags |= HPTE_LOCAL_UPDATE;
1823  
1824  	/* Hash it in */
1825  #ifdef CONFIG_PPC_64K_PAGES
1826  	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1827  		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1828  				     update_flags, ssize);
1829  	else
1830  #endif /* CONFIG_PPC_64K_PAGES */
1831  		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1832  				    ssize, subpage_protection(mm, ea));
1833  
1834  	/* Dump some info in case of hash insertion failure, they should
1835  	 * never happen so it is really useful to know if/when they do
1836  	 */
1837  	if (rc == -1)
1838  		hash_failure_debug(ea, access, vsid, trap, ssize,
1839  				   mm_ctx_user_psize(&mm->context),
1840  				   mm_ctx_user_psize(&mm->context),
1841  				   pte_val(*ptep));
1842  
1843  	powerpc_local_irq_pmu_restore(flags);
1844  }
1845  
1846  /*
1847   * This is called at the end of handling a user page fault, when the
1848   * fault has been handled by updating a PTE in the linux page tables.
1849   * We use it to preload an HPTE into the hash table corresponding to
1850   * the updated linux PTE.
1851   *
1852   * This must always be called with the pte lock held.
1853   */
__update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1854  void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1855  		      pte_t *ptep)
1856  {
1857  	/*
1858  	 * We don't need to worry about _PAGE_PRESENT here because we are
1859  	 * called with either mm->page_table_lock held or ptl lock held
1860  	 */
1861  	unsigned long trap;
1862  	bool is_exec;
1863  
1864  	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1865  	if (!pte_young(*ptep) || address >= TASK_SIZE)
1866  		return;
1867  
1868  	/*
1869  	 * We try to figure out if we are coming from an instruction
1870  	 * access fault and pass that down to __hash_page so we avoid
1871  	 * double-faulting on execution of fresh text. We have to test
1872  	 * for regs NULL since init will get here first thing at boot.
1873  	 *
1874  	 * We also avoid filling the hash if not coming from a fault.
1875  	 */
1876  
1877  	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1878  	switch (trap) {
1879  	case 0x300:
1880  		is_exec = false;
1881  		break;
1882  	case 0x400:
1883  		is_exec = true;
1884  		break;
1885  	default:
1886  		return;
1887  	}
1888  
1889  	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1890  }
1891  
1892  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1893  static inline void tm_flush_hash_page(int local)
1894  {
1895  	/*
1896  	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1897  	 * page back to a block device w/PIO could pick up transactional data
1898  	 * (bad!) so we force an abort here. Before the sync the page will be
1899  	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1900  	 * kernel uses a page from userspace without unmapping it first, it may
1901  	 * see the speculated version.
1902  	 */
1903  	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1904  	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1905  		tm_enable();
1906  		tm_abort(TM_CAUSE_TLBI);
1907  	}
1908  }
1909  #else
tm_flush_hash_page(int local)1910  static inline void tm_flush_hash_page(int local)
1911  {
1912  }
1913  #endif
1914  
1915  /*
1916   * Return the global hash slot, corresponding to the given PTE, which contains
1917   * the HPTE.
1918   */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1919  unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1920  		int ssize, real_pte_t rpte, unsigned int subpg_index)
1921  {
1922  	unsigned long hash, gslot, hidx;
1923  
1924  	hash = hpt_hash(vpn, shift, ssize);
1925  	hidx = __rpte_to_hidx(rpte, subpg_index);
1926  	if (hidx & _PTEIDX_SECONDARY)
1927  		hash = ~hash;
1928  	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1929  	gslot += hidx & _PTEIDX_GROUP_IX;
1930  	return gslot;
1931  }
1932  
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1933  void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1934  		     unsigned long flags)
1935  {
1936  	unsigned long index, shift, gslot;
1937  	int local = flags & HPTE_LOCAL_UPDATE;
1938  
1939  	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1940  	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1941  		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1942  		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1943  		/*
1944  		 * We use same base page size and actual psize, because we don't
1945  		 * use these functions for hugepage
1946  		 */
1947  		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1948  					     ssize, local);
1949  	} pte_iterate_hashed_end();
1950  
1951  	tm_flush_hash_page(local);
1952  }
1953  
1954  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1955  void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1956  			 pmd_t *pmdp, unsigned int psize, int ssize,
1957  			 unsigned long flags)
1958  {
1959  	int i, max_hpte_count, valid;
1960  	unsigned long s_addr;
1961  	unsigned char *hpte_slot_array;
1962  	unsigned long hidx, shift, vpn, hash, slot;
1963  	int local = flags & HPTE_LOCAL_UPDATE;
1964  
1965  	s_addr = addr & HPAGE_PMD_MASK;
1966  	hpte_slot_array = get_hpte_slot_array(pmdp);
1967  	/*
1968  	 * IF we try to do a HUGE PTE update after a withdraw is done.
1969  	 * we will find the below NULL. This happens when we do
1970  	 * split_huge_pmd
1971  	 */
1972  	if (!hpte_slot_array)
1973  		return;
1974  
1975  	if (mmu_hash_ops.hugepage_invalidate) {
1976  		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1977  						 psize, ssize, local);
1978  		goto tm_abort;
1979  	}
1980  	/*
1981  	 * No bluk hpte removal support, invalidate each entry
1982  	 */
1983  	shift = mmu_psize_defs[psize].shift;
1984  	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1985  	for (i = 0; i < max_hpte_count; i++) {
1986  		/*
1987  		 * 8 bits per each hpte entries
1988  		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1989  		 */
1990  		valid = hpte_valid(hpte_slot_array, i);
1991  		if (!valid)
1992  			continue;
1993  		hidx =  hpte_hash_index(hpte_slot_array, i);
1994  
1995  		/* get the vpn */
1996  		addr = s_addr + (i * (1ul << shift));
1997  		vpn = hpt_vpn(addr, vsid, ssize);
1998  		hash = hpt_hash(vpn, shift, ssize);
1999  		if (hidx & _PTEIDX_SECONDARY)
2000  			hash = ~hash;
2001  
2002  		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2003  		slot += hidx & _PTEIDX_GROUP_IX;
2004  		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2005  					     MMU_PAGE_16M, ssize, local);
2006  	}
2007  tm_abort:
2008  	tm_flush_hash_page(local);
2009  }
2010  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2011  
flush_hash_range(unsigned long number,int local)2012  void flush_hash_range(unsigned long number, int local)
2013  {
2014  	if (mmu_hash_ops.flush_hash_range)
2015  		mmu_hash_ops.flush_hash_range(number, local);
2016  	else {
2017  		int i;
2018  		struct ppc64_tlb_batch *batch =
2019  			this_cpu_ptr(&ppc64_tlb_batch);
2020  
2021  		for (i = 0; i < number; i++)
2022  			flush_hash_page(batch->vpn[i], batch->pte[i],
2023  					batch->psize, batch->ssize, local);
2024  	}
2025  }
2026  
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)2027  long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2028  			   unsigned long pa, unsigned long rflags,
2029  			   unsigned long vflags, int psize, int ssize)
2030  {
2031  	unsigned long hpte_group;
2032  	long slot;
2033  
2034  repeat:
2035  	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2036  
2037  	/* Insert into the hash table, primary slot */
2038  	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2039  					psize, psize, ssize);
2040  
2041  	/* Primary is full, try the secondary */
2042  	if (unlikely(slot == -1)) {
2043  		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2044  		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2045  						vflags | HPTE_V_SECONDARY,
2046  						psize, psize, ssize);
2047  		if (slot == -1) {
2048  			if (mftb() & 0x1)
2049  				hpte_group = (hash & htab_hash_mask) *
2050  						HPTES_PER_GROUP;
2051  
2052  			mmu_hash_ops.hpte_remove(hpte_group);
2053  			goto repeat;
2054  		}
2055  	}
2056  
2057  	return slot;
2058  }
2059  
hpt_clear_stress(void)2060  void hpt_clear_stress(void)
2061  {
2062  	int cpu = raw_smp_processor_id();
2063  	int g;
2064  
2065  	for (g = 0; g < stress_nr_groups(); g++) {
2066  		unsigned long last_group;
2067  		last_group = stress_hpt_struct[cpu].last_group[g];
2068  
2069  		if (last_group != -1UL) {
2070  			int i;
2071  			for (i = 0; i < HPTES_PER_GROUP; i++) {
2072  				if (mmu_hash_ops.hpte_remove(last_group) == -1)
2073  					break;
2074  			}
2075  			stress_hpt_struct[cpu].last_group[g] = -1;
2076  		}
2077  	}
2078  }
2079  
hpt_do_stress(unsigned long ea,unsigned long hpte_group)2080  void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2081  {
2082  	unsigned long last_group;
2083  	int cpu = raw_smp_processor_id();
2084  
2085  	last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2086  	if (hpte_group == last_group)
2087  		return;
2088  
2089  	if (last_group != -1UL) {
2090  		int i;
2091  		/*
2092  		 * Concurrent CPUs might be inserting into this group, so
2093  		 * give up after a number of iterations, to prevent a live
2094  		 * lock.
2095  		 */
2096  		for (i = 0; i < HPTES_PER_GROUP; i++) {
2097  			if (mmu_hash_ops.hpte_remove(last_group) == -1)
2098  				break;
2099  		}
2100  		stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2101  	}
2102  
2103  	if (ea >= PAGE_OFFSET) {
2104  		/*
2105  		 * We would really like to prefetch to get the TLB loaded, then
2106  		 * remove the PTE before returning from fault interrupt, to
2107  		 * increase the hash fault rate.
2108  		 *
2109  		 * Unfortunately QEMU TCG does not model the TLB in a way that
2110  		 * makes this possible, and systemsim (mambo) emulator does not
2111  		 * bring in TLBs with prefetches (although loads/stores do
2112  		 * work for non-CI PTEs).
2113  		 *
2114  		 * So remember this PTE and clear it on the next hash fault.
2115  		 */
2116  		memmove(&stress_hpt_struct[cpu].last_group[1],
2117  			&stress_hpt_struct[cpu].last_group[0],
2118  			(stress_nr_groups() - 1) * sizeof(unsigned long));
2119  		stress_hpt_struct[cpu].last_group[0] = hpte_group;
2120  	}
2121  }
2122  
2123  #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
2124  static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
2125  
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)2126  static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
2127  {
2128  	unsigned long hash;
2129  	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2130  	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2131  	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2132  	long ret;
2133  
2134  	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2135  
2136  	/* Don't create HPTE entries for bad address */
2137  	if (!vsid)
2138  		return;
2139  
2140  	if (linear_map_hash_slots[lmi] & 0x80)
2141  		return;
2142  
2143  	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2144  				    HPTE_V_BOLTED,
2145  				    mmu_linear_psize, mmu_kernel_ssize);
2146  
2147  	BUG_ON (ret < 0);
2148  	raw_spin_lock(&linear_map_hash_lock);
2149  	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2150  	linear_map_hash_slots[lmi] = ret | 0x80;
2151  	raw_spin_unlock(&linear_map_hash_lock);
2152  }
2153  
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)2154  static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2155  {
2156  	unsigned long hash, hidx, slot;
2157  	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2158  	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2159  
2160  	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2161  	raw_spin_lock(&linear_map_hash_lock);
2162  	if (!(linear_map_hash_slots[lmi] & 0x80)) {
2163  		raw_spin_unlock(&linear_map_hash_lock);
2164  		return;
2165  	}
2166  	hidx = linear_map_hash_slots[lmi] & 0x7f;
2167  	linear_map_hash_slots[lmi] = 0;
2168  	raw_spin_unlock(&linear_map_hash_lock);
2169  	if (hidx & _PTEIDX_SECONDARY)
2170  		hash = ~hash;
2171  	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2172  	slot += hidx & _PTEIDX_GROUP_IX;
2173  	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2174  				     mmu_linear_psize,
2175  				     mmu_kernel_ssize, 0);
2176  }
2177  
hash__kernel_map_pages(struct page * page,int numpages,int enable)2178  int hash__kernel_map_pages(struct page *page, int numpages, int enable)
2179  {
2180  	unsigned long flags, vaddr, lmi;
2181  	int i;
2182  
2183  	local_irq_save(flags);
2184  	for (i = 0; i < numpages; i++, page++) {
2185  		vaddr = (unsigned long)page_address(page);
2186  		lmi = __pa(vaddr) >> PAGE_SHIFT;
2187  		if (lmi >= linear_map_hash_count)
2188  			continue;
2189  		if (enable)
2190  			kernel_map_linear_page(vaddr, lmi);
2191  		else
2192  			kernel_unmap_linear_page(vaddr, lmi);
2193  	}
2194  	local_irq_restore(flags);
2195  	return 0;
2196  }
2197  #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */
2198  
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)2199  void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2200  				phys_addr_t first_memblock_size)
2201  {
2202  	/*
2203  	 * We don't currently support the first MEMBLOCK not mapping 0
2204  	 * physical on those processors
2205  	 */
2206  	BUG_ON(first_memblock_base != 0);
2207  
2208  	/*
2209  	 * On virtualized systems the first entry is our RMA region aka VRMA,
2210  	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2211  	 * on real mode access.
2212  	 *
2213  	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2214  	 * to avoid some funky things such as RTAS bugs etc...
2215  	 *
2216  	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2217  	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2218  	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2219  	 * for virtual real mode addressing and so it doesn't make sense to
2220  	 * have an area larger than 1TB as it can't be addressed.
2221  	 */
2222  	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2223  		ppc64_rma_size = first_memblock_size;
2224  		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2225  			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2226  		else
2227  			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2228  					       1UL << SID_SHIFT_1T);
2229  
2230  		/* Finally limit subsequent allocations */
2231  		memblock_set_current_limit(ppc64_rma_size);
2232  	} else {
2233  		ppc64_rma_size = ULONG_MAX;
2234  	}
2235  }
2236  
2237  #ifdef CONFIG_DEBUG_FS
2238  
hpt_order_get(void * data,u64 * val)2239  static int hpt_order_get(void *data, u64 *val)
2240  {
2241  	*val = ppc64_pft_size;
2242  	return 0;
2243  }
2244  
hpt_order_set(void * data,u64 val)2245  static int hpt_order_set(void *data, u64 val)
2246  {
2247  	int ret;
2248  
2249  	if (!mmu_hash_ops.resize_hpt)
2250  		return -ENODEV;
2251  
2252  	cpus_read_lock();
2253  	ret = mmu_hash_ops.resize_hpt(val);
2254  	cpus_read_unlock();
2255  
2256  	return ret;
2257  }
2258  
2259  DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2260  
hash64_debugfs(void)2261  static int __init hash64_debugfs(void)
2262  {
2263  	debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2264  			    &fops_hpt_order);
2265  	return 0;
2266  }
2267  machine_device_initcall(pseries, hash64_debugfs);
2268  #endif /* CONFIG_DEBUG_FS */
2269  
print_system_hash_info(void)2270  void __init print_system_hash_info(void)
2271  {
2272  	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2273  
2274  	if (htab_hash_mask)
2275  		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2276  }
2277  
arch_randomize_brk(struct mm_struct * mm)2278  unsigned long arch_randomize_brk(struct mm_struct *mm)
2279  {
2280  	/*
2281  	 * If we are using 1TB segments and we are allowed to randomise
2282  	 * the heap, we can put it above 1TB so it is backed by a 1TB
2283  	 * segment. Otherwise the heap will be in the bottom 1TB
2284  	 * which always uses 256MB segments and this may result in a
2285  	 * performance penalty.
2286  	 */
2287  	if (is_32bit_task())
2288  		return randomize_page(mm->brk, SZ_32M);
2289  	else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2290  		return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2291  	else
2292  		return randomize_page(mm->brk, SZ_1G);
2293  }
2294