1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * AMD SVM-SEV support
6   *
7   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8   */
9  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10  
11  #include <linux/kvm_types.h>
12  #include <linux/kvm_host.h>
13  #include <linux/kernel.h>
14  #include <linux/highmem.h>
15  #include <linux/psp.h>
16  #include <linux/psp-sev.h>
17  #include <linux/pagemap.h>
18  #include <linux/swap.h>
19  #include <linux/misc_cgroup.h>
20  #include <linux/processor.h>
21  #include <linux/trace_events.h>
22  #include <uapi/linux/sev-guest.h>
23  
24  #include <asm/pkru.h>
25  #include <asm/trapnr.h>
26  #include <asm/fpu/xcr.h>
27  #include <asm/fpu/xstate.h>
28  #include <asm/debugreg.h>
29  #include <asm/sev.h>
30  
31  #include "mmu.h"
32  #include "x86.h"
33  #include "svm.h"
34  #include "svm_ops.h"
35  #include "cpuid.h"
36  #include "trace.h"
37  
38  #define GHCB_VERSION_MAX	2ULL
39  #define GHCB_VERSION_DEFAULT	2ULL
40  #define GHCB_VERSION_MIN	1ULL
41  
42  #define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43  
44  /* enable/disable SEV support */
45  static bool sev_enabled = true;
46  module_param_named(sev, sev_enabled, bool, 0444);
47  
48  /* enable/disable SEV-ES support */
49  static bool sev_es_enabled = true;
50  module_param_named(sev_es, sev_es_enabled, bool, 0444);
51  
52  /* enable/disable SEV-SNP support */
53  static bool sev_snp_enabled = true;
54  module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55  
56  /* enable/disable SEV-ES DebugSwap support */
57  static bool sev_es_debug_swap_enabled = true;
58  module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59  static u64 sev_supported_vmsa_features;
60  
61  #define AP_RESET_HOLD_NONE		0
62  #define AP_RESET_HOLD_NAE_EVENT		1
63  #define AP_RESET_HOLD_MSR_PROTO		2
64  
65  /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
66  #define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
67  #define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
68  #define SNP_POLICY_MASK_SMT		BIT_ULL(16)
69  #define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
70  #define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
71  #define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)
72  
73  #define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
74  					 SNP_POLICY_MASK_API_MAJOR	| \
75  					 SNP_POLICY_MASK_SMT		| \
76  					 SNP_POLICY_MASK_RSVD_MBO	| \
77  					 SNP_POLICY_MASK_DEBUG		| \
78  					 SNP_POLICY_MASK_SINGLE_SOCKET)
79  
80  #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
81  
82  static u8 sev_enc_bit;
83  static DECLARE_RWSEM(sev_deactivate_lock);
84  static DEFINE_MUTEX(sev_bitmap_lock);
85  unsigned int max_sev_asid;
86  static unsigned int min_sev_asid;
87  static unsigned long sev_me_mask;
88  static unsigned int nr_asids;
89  static unsigned long *sev_asid_bitmap;
90  static unsigned long *sev_reclaim_asid_bitmap;
91  
92  static int snp_decommission_context(struct kvm *kvm);
93  
94  struct enc_region {
95  	struct list_head list;
96  	unsigned long npages;
97  	struct page **pages;
98  	unsigned long uaddr;
99  	unsigned long size;
100  };
101  
102  /* Called with the sev_bitmap_lock held, or on shutdown  */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)103  static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
104  {
105  	int ret, error = 0;
106  	unsigned int asid;
107  
108  	/* Check if there are any ASIDs to reclaim before performing a flush */
109  	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110  	if (asid > max_asid)
111  		return -EBUSY;
112  
113  	/*
114  	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115  	 * so it must be guarded.
116  	 */
117  	down_write(&sev_deactivate_lock);
118  
119  	wbinvd_on_all_cpus();
120  
121  	if (sev_snp_enabled)
122  		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123  	else
124  		ret = sev_guest_df_flush(&error);
125  
126  	up_write(&sev_deactivate_lock);
127  
128  	if (ret)
129  		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130  		       sev_snp_enabled ? "-SNP" : "", ret, error);
131  
132  	return ret;
133  }
134  
is_mirroring_enc_context(struct kvm * kvm)135  static inline bool is_mirroring_enc_context(struct kvm *kvm)
136  {
137  	return !!to_kvm_sev_info(kvm)->enc_context_owner;
138  }
139  
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)140  static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
141  {
142  	struct kvm_vcpu *vcpu = &svm->vcpu;
143  	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
144  
145  	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
146  }
147  
148  /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)149  static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
150  {
151  	if (sev_flush_asids(min_asid, max_asid))
152  		return false;
153  
154  	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155  	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156  		   nr_asids);
157  	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
158  
159  	return true;
160  }
161  
sev_misc_cg_try_charge(struct kvm_sev_info * sev)162  static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
163  {
164  	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165  	return misc_cg_try_charge(type, sev->misc_cg, 1);
166  }
167  
sev_misc_cg_uncharge(struct kvm_sev_info * sev)168  static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
169  {
170  	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171  	misc_cg_uncharge(type, sev->misc_cg, 1);
172  }
173  
sev_asid_new(struct kvm_sev_info * sev)174  static int sev_asid_new(struct kvm_sev_info *sev)
175  {
176  	/*
177  	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178  	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179  	 * Note: min ASID can end up larger than the max if basic SEV support is
180  	 * effectively disabled by disallowing use of ASIDs for SEV guests.
181  	 */
182  	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183  	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184  	unsigned int asid;
185  	bool retry = true;
186  	int ret;
187  
188  	if (min_asid > max_asid)
189  		return -ENOTTY;
190  
191  	WARN_ON(sev->misc_cg);
192  	sev->misc_cg = get_current_misc_cg();
193  	ret = sev_misc_cg_try_charge(sev);
194  	if (ret) {
195  		put_misc_cg(sev->misc_cg);
196  		sev->misc_cg = NULL;
197  		return ret;
198  	}
199  
200  	mutex_lock(&sev_bitmap_lock);
201  
202  again:
203  	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204  	if (asid > max_asid) {
205  		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206  			retry = false;
207  			goto again;
208  		}
209  		mutex_unlock(&sev_bitmap_lock);
210  		ret = -EBUSY;
211  		goto e_uncharge;
212  	}
213  
214  	__set_bit(asid, sev_asid_bitmap);
215  
216  	mutex_unlock(&sev_bitmap_lock);
217  
218  	sev->asid = asid;
219  	return 0;
220  e_uncharge:
221  	sev_misc_cg_uncharge(sev);
222  	put_misc_cg(sev->misc_cg);
223  	sev->misc_cg = NULL;
224  	return ret;
225  }
226  
sev_get_asid(struct kvm * kvm)227  static unsigned int sev_get_asid(struct kvm *kvm)
228  {
229  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
230  
231  	return sev->asid;
232  }
233  
sev_asid_free(struct kvm_sev_info * sev)234  static void sev_asid_free(struct kvm_sev_info *sev)
235  {
236  	struct svm_cpu_data *sd;
237  	int cpu;
238  
239  	mutex_lock(&sev_bitmap_lock);
240  
241  	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
242  
243  	for_each_possible_cpu(cpu) {
244  		sd = per_cpu_ptr(&svm_data, cpu);
245  		sd->sev_vmcbs[sev->asid] = NULL;
246  	}
247  
248  	mutex_unlock(&sev_bitmap_lock);
249  
250  	sev_misc_cg_uncharge(sev);
251  	put_misc_cg(sev->misc_cg);
252  	sev->misc_cg = NULL;
253  }
254  
sev_decommission(unsigned int handle)255  static void sev_decommission(unsigned int handle)
256  {
257  	struct sev_data_decommission decommission;
258  
259  	if (!handle)
260  		return;
261  
262  	decommission.handle = handle;
263  	sev_guest_decommission(&decommission, NULL);
264  }
265  
266  /*
267   * Transition a page to hypervisor-owned/shared state in the RMP table. This
268   * should not fail under normal conditions, but leak the page should that
269   * happen since it will no longer be usable by the host due to RMP protections.
270   */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)271  static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272  {
273  	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274  		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275  		return -EIO;
276  	}
277  
278  	return 0;
279  }
280  
281  /*
282   * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283   * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284   * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285   * unless they are reclaimed first.
286   *
287   * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288   * might not be usable by the host due to being set as immutable or still
289   * being associated with a guest ASID.
290   *
291   * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292   * converted back to shared, as the page is no longer usable due to RMP
293   * protections, and it's infeasible for the guest to continue on.
294   */
snp_page_reclaim(struct kvm * kvm,u64 pfn)295  static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296  {
297  	struct sev_data_snp_page_reclaim data = {0};
298  	int fw_err, rc;
299  
300  	data.paddr = __sme_set(pfn << PAGE_SHIFT);
301  	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302  	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303  		snp_leak_pages(pfn, 1);
304  		return -EIO;
305  	}
306  
307  	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308  		return -EIO;
309  
310  	return rc;
311  }
312  
sev_unbind_asid(struct kvm * kvm,unsigned int handle)313  static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314  {
315  	struct sev_data_deactivate deactivate;
316  
317  	if (!handle)
318  		return;
319  
320  	deactivate.handle = handle;
321  
322  	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323  	down_read(&sev_deactivate_lock);
324  	sev_guest_deactivate(&deactivate, NULL);
325  	up_read(&sev_deactivate_lock);
326  
327  	sev_decommission(handle);
328  }
329  
330  /*
331   * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332   * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333   * 2.0 specification for more details.
334   *
335   * Technically, when an SNP Guest Request is issued, the guest will provide its
336   * own request/response pages, which could in theory be passed along directly
337   * to firmware rather than using bounce pages. However, these pages would need
338   * special care:
339   *
340   *   - Both pages are from shared guest memory, so they need to be protected
341   *     from migration/etc. occurring while firmware reads/writes to them. At a
342   *     minimum, this requires elevating the ref counts and potentially needing
343   *     an explicit pinning of the memory. This places additional restrictions
344   *     on what type of memory backends userspace can use for shared guest
345   *     memory since there is some reliance on using refcounted pages.
346   *
347   *   - The response page needs to be switched to Firmware-owned[1] state
348   *     before the firmware can write to it, which can lead to potential
349   *     host RMP #PFs if the guest is misbehaved and hands the host a
350   *     guest page that KVM might write to for other reasons (e.g. virtio
351   *     buffers/etc.).
352   *
353   * Both of these issues can be avoided completely by using separately-allocated
354   * bounce pages for both the request/response pages and passing those to
355   * firmware instead. So that's what is being set up here.
356   *
357   * Guest requests rely on message sequence numbers to ensure requests are
358   * issued to firmware in the order the guest issues them, so concurrent guest
359   * requests generally shouldn't happen. But a misbehaved guest could issue
360   * concurrent guest requests in theory, so a mutex is used to serialize
361   * access to the bounce buffers.
362   *
363   * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364   *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365   *     in the APM for details on the related RMP restrictions.
366   */
snp_guest_req_init(struct kvm * kvm)367  static int snp_guest_req_init(struct kvm *kvm)
368  {
369  	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370  	struct page *req_page;
371  
372  	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373  	if (!req_page)
374  		return -ENOMEM;
375  
376  	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377  	if (!sev->guest_resp_buf) {
378  		__free_page(req_page);
379  		return -EIO;
380  	}
381  
382  	sev->guest_req_buf = page_address(req_page);
383  	mutex_init(&sev->guest_req_mutex);
384  
385  	return 0;
386  }
387  
snp_guest_req_cleanup(struct kvm * kvm)388  static void snp_guest_req_cleanup(struct kvm *kvm)
389  {
390  	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391  
392  	if (sev->guest_resp_buf)
393  		snp_free_firmware_page(sev->guest_resp_buf);
394  
395  	if (sev->guest_req_buf)
396  		__free_page(virt_to_page(sev->guest_req_buf));
397  
398  	sev->guest_req_buf = NULL;
399  	sev->guest_resp_buf = NULL;
400  }
401  
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)402  static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403  			    struct kvm_sev_init *data,
404  			    unsigned long vm_type)
405  {
406  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407  	struct sev_platform_init_args init_args = {0};
408  	bool es_active = vm_type != KVM_X86_SEV_VM;
409  	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410  	int ret;
411  
412  	if (kvm->created_vcpus)
413  		return -EINVAL;
414  
415  	if (data->flags)
416  		return -EINVAL;
417  
418  	if (data->vmsa_features & ~valid_vmsa_features)
419  		return -EINVAL;
420  
421  	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422  		return -EINVAL;
423  
424  	if (unlikely(sev->active))
425  		return -EINVAL;
426  
427  	sev->active = true;
428  	sev->es_active = es_active;
429  	sev->vmsa_features = data->vmsa_features;
430  	sev->ghcb_version = data->ghcb_version;
431  
432  	/*
433  	 * Currently KVM supports the full range of mandatory features defined
434  	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435  	 * guests created via KVM_SEV_INIT2.
436  	 */
437  	if (sev->es_active && !sev->ghcb_version)
438  		sev->ghcb_version = GHCB_VERSION_DEFAULT;
439  
440  	if (vm_type == KVM_X86_SNP_VM)
441  		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442  
443  	ret = sev_asid_new(sev);
444  	if (ret)
445  		goto e_no_asid;
446  
447  	init_args.probe = false;
448  	ret = sev_platform_init(&init_args);
449  	if (ret)
450  		goto e_free;
451  
452  	/* This needs to happen after SEV/SNP firmware initialization. */
453  	if (vm_type == KVM_X86_SNP_VM) {
454  		ret = snp_guest_req_init(kvm);
455  		if (ret)
456  			goto e_free;
457  	}
458  
459  	INIT_LIST_HEAD(&sev->regions_list);
460  	INIT_LIST_HEAD(&sev->mirror_vms);
461  	sev->need_init = false;
462  
463  	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
464  
465  	return 0;
466  
467  e_free:
468  	argp->error = init_args.error;
469  	sev_asid_free(sev);
470  	sev->asid = 0;
471  e_no_asid:
472  	sev->vmsa_features = 0;
473  	sev->es_active = false;
474  	sev->active = false;
475  	return ret;
476  }
477  
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)478  static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
479  {
480  	struct kvm_sev_init data = {
481  		.vmsa_features = 0,
482  		.ghcb_version = 0,
483  	};
484  	unsigned long vm_type;
485  
486  	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
487  		return -EINVAL;
488  
489  	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
490  
491  	/*
492  	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
493  	 * continue to only ever support the minimal GHCB protocol version.
494  	 */
495  	if (vm_type == KVM_X86_SEV_ES_VM)
496  		data.ghcb_version = GHCB_VERSION_MIN;
497  
498  	return __sev_guest_init(kvm, argp, &data, vm_type);
499  }
500  
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)501  static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
502  {
503  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
504  	struct kvm_sev_init data;
505  
506  	if (!sev->need_init)
507  		return -EINVAL;
508  
509  	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
510  	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
511  	    kvm->arch.vm_type != KVM_X86_SNP_VM)
512  		return -EINVAL;
513  
514  	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
515  		return -EFAULT;
516  
517  	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
518  }
519  
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)520  static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
521  {
522  	unsigned int asid = sev_get_asid(kvm);
523  	struct sev_data_activate activate;
524  	int ret;
525  
526  	/* activate ASID on the given handle */
527  	activate.handle = handle;
528  	activate.asid   = asid;
529  	ret = sev_guest_activate(&activate, error);
530  
531  	return ret;
532  }
533  
__sev_issue_cmd(int fd,int id,void * data,int * error)534  static int __sev_issue_cmd(int fd, int id, void *data, int *error)
535  {
536  	struct fd f;
537  	int ret;
538  
539  	f = fdget(fd);
540  	if (!fd_file(f))
541  		return -EBADF;
542  
543  	ret = sev_issue_cmd_external_user(fd_file(f), id, data, error);
544  
545  	fdput(f);
546  	return ret;
547  }
548  
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)549  static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
550  {
551  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
552  
553  	return __sev_issue_cmd(sev->fd, id, data, error);
554  }
555  
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)556  static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
557  {
558  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
559  	struct sev_data_launch_start start;
560  	struct kvm_sev_launch_start params;
561  	void *dh_blob, *session_blob;
562  	int *error = &argp->error;
563  	int ret;
564  
565  	if (!sev_guest(kvm))
566  		return -ENOTTY;
567  
568  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
569  		return -EFAULT;
570  
571  	memset(&start, 0, sizeof(start));
572  
573  	dh_blob = NULL;
574  	if (params.dh_uaddr) {
575  		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
576  		if (IS_ERR(dh_blob))
577  			return PTR_ERR(dh_blob);
578  
579  		start.dh_cert_address = __sme_set(__pa(dh_blob));
580  		start.dh_cert_len = params.dh_len;
581  	}
582  
583  	session_blob = NULL;
584  	if (params.session_uaddr) {
585  		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
586  		if (IS_ERR(session_blob)) {
587  			ret = PTR_ERR(session_blob);
588  			goto e_free_dh;
589  		}
590  
591  		start.session_address = __sme_set(__pa(session_blob));
592  		start.session_len = params.session_len;
593  	}
594  
595  	start.handle = params.handle;
596  	start.policy = params.policy;
597  
598  	/* create memory encryption context */
599  	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
600  	if (ret)
601  		goto e_free_session;
602  
603  	/* Bind ASID to this guest */
604  	ret = sev_bind_asid(kvm, start.handle, error);
605  	if (ret) {
606  		sev_decommission(start.handle);
607  		goto e_free_session;
608  	}
609  
610  	/* return handle to userspace */
611  	params.handle = start.handle;
612  	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
613  		sev_unbind_asid(kvm, start.handle);
614  		ret = -EFAULT;
615  		goto e_free_session;
616  	}
617  
618  	sev->handle = start.handle;
619  	sev->fd = argp->sev_fd;
620  
621  e_free_session:
622  	kfree(session_blob);
623  e_free_dh:
624  	kfree(dh_blob);
625  	return ret;
626  }
627  
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)628  static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
629  				    unsigned long ulen, unsigned long *n,
630  				    int write)
631  {
632  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
633  	unsigned long npages, size;
634  	int npinned;
635  	unsigned long locked, lock_limit;
636  	struct page **pages;
637  	unsigned long first, last;
638  	int ret;
639  
640  	lockdep_assert_held(&kvm->lock);
641  
642  	if (ulen == 0 || uaddr + ulen < uaddr)
643  		return ERR_PTR(-EINVAL);
644  
645  	/* Calculate number of pages. */
646  	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
647  	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
648  	npages = (last - first + 1);
649  
650  	locked = sev->pages_locked + npages;
651  	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
652  	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
653  		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
654  		return ERR_PTR(-ENOMEM);
655  	}
656  
657  	if (WARN_ON_ONCE(npages > INT_MAX))
658  		return ERR_PTR(-EINVAL);
659  
660  	/* Avoid using vmalloc for smaller buffers. */
661  	size = npages * sizeof(struct page *);
662  	if (size > PAGE_SIZE)
663  		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
664  	else
665  		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
666  
667  	if (!pages)
668  		return ERR_PTR(-ENOMEM);
669  
670  	/* Pin the user virtual address. */
671  	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
672  	if (npinned != npages) {
673  		pr_err("SEV: Failure locking %lu pages.\n", npages);
674  		ret = -ENOMEM;
675  		goto err;
676  	}
677  
678  	*n = npages;
679  	sev->pages_locked = locked;
680  
681  	return pages;
682  
683  err:
684  	if (npinned > 0)
685  		unpin_user_pages(pages, npinned);
686  
687  	kvfree(pages);
688  	return ERR_PTR(ret);
689  }
690  
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)691  static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
692  			     unsigned long npages)
693  {
694  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
695  
696  	unpin_user_pages(pages, npages);
697  	kvfree(pages);
698  	sev->pages_locked -= npages;
699  }
700  
sev_clflush_pages(struct page * pages[],unsigned long npages)701  static void sev_clflush_pages(struct page *pages[], unsigned long npages)
702  {
703  	uint8_t *page_virtual;
704  	unsigned long i;
705  
706  	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
707  	    pages == NULL)
708  		return;
709  
710  	for (i = 0; i < npages; i++) {
711  		page_virtual = kmap_local_page(pages[i]);
712  		clflush_cache_range(page_virtual, PAGE_SIZE);
713  		kunmap_local(page_virtual);
714  		cond_resched();
715  	}
716  }
717  
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)718  static unsigned long get_num_contig_pages(unsigned long idx,
719  				struct page **inpages, unsigned long npages)
720  {
721  	unsigned long paddr, next_paddr;
722  	unsigned long i = idx + 1, pages = 1;
723  
724  	/* find the number of contiguous pages starting from idx */
725  	paddr = __sme_page_pa(inpages[idx]);
726  	while (i < npages) {
727  		next_paddr = __sme_page_pa(inpages[i++]);
728  		if ((paddr + PAGE_SIZE) == next_paddr) {
729  			pages++;
730  			paddr = next_paddr;
731  			continue;
732  		}
733  		break;
734  	}
735  
736  	return pages;
737  }
738  
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)739  static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
740  {
741  	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
742  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
743  	struct kvm_sev_launch_update_data params;
744  	struct sev_data_launch_update_data data;
745  	struct page **inpages;
746  	int ret;
747  
748  	if (!sev_guest(kvm))
749  		return -ENOTTY;
750  
751  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
752  		return -EFAULT;
753  
754  	vaddr = params.uaddr;
755  	size = params.len;
756  	vaddr_end = vaddr + size;
757  
758  	/* Lock the user memory. */
759  	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
760  	if (IS_ERR(inpages))
761  		return PTR_ERR(inpages);
762  
763  	/*
764  	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
765  	 * place; the cache may contain the data that was written unencrypted.
766  	 */
767  	sev_clflush_pages(inpages, npages);
768  
769  	data.reserved = 0;
770  	data.handle = sev->handle;
771  
772  	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
773  		int offset, len;
774  
775  		/*
776  		 * If the user buffer is not page-aligned, calculate the offset
777  		 * within the page.
778  		 */
779  		offset = vaddr & (PAGE_SIZE - 1);
780  
781  		/* Calculate the number of pages that can be encrypted in one go. */
782  		pages = get_num_contig_pages(i, inpages, npages);
783  
784  		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
785  
786  		data.len = len;
787  		data.address = __sme_page_pa(inpages[i]) + offset;
788  		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
789  		if (ret)
790  			goto e_unpin;
791  
792  		size -= len;
793  		next_vaddr = vaddr + len;
794  	}
795  
796  e_unpin:
797  	/* content of memory is updated, mark pages dirty */
798  	for (i = 0; i < npages; i++) {
799  		set_page_dirty_lock(inpages[i]);
800  		mark_page_accessed(inpages[i]);
801  	}
802  	/* unlock the user pages */
803  	sev_unpin_memory(kvm, inpages, npages);
804  	return ret;
805  }
806  
sev_es_sync_vmsa(struct vcpu_svm * svm)807  static int sev_es_sync_vmsa(struct vcpu_svm *svm)
808  {
809  	struct kvm_vcpu *vcpu = &svm->vcpu;
810  	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
811  	struct sev_es_save_area *save = svm->sev_es.vmsa;
812  	struct xregs_state *xsave;
813  	const u8 *s;
814  	u8 *d;
815  	int i;
816  
817  	/* Check some debug related fields before encrypting the VMSA */
818  	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
819  		return -EINVAL;
820  
821  	/*
822  	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
823  	 * the traditional VMSA that is part of the VMCB. Copy the
824  	 * traditional VMSA as it has been built so far (in prep
825  	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
826  	 */
827  	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
828  
829  	/* Sync registgers */
830  	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
831  	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
832  	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
833  	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
834  	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
835  	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
836  	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
837  	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
838  #ifdef CONFIG_X86_64
839  	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
840  	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
841  	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
842  	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
843  	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
844  	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
845  	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
846  	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
847  #endif
848  	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
849  
850  	/* Sync some non-GPR registers before encrypting */
851  	save->xcr0 = svm->vcpu.arch.xcr0;
852  	save->pkru = svm->vcpu.arch.pkru;
853  	save->xss  = svm->vcpu.arch.ia32_xss;
854  	save->dr6  = svm->vcpu.arch.dr6;
855  
856  	save->sev_features = sev->vmsa_features;
857  
858  	/*
859  	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
860  	 * breaking older measurements.
861  	 */
862  	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
863  		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
864  		save->x87_dp = xsave->i387.rdp;
865  		save->mxcsr = xsave->i387.mxcsr;
866  		save->x87_ftw = xsave->i387.twd;
867  		save->x87_fsw = xsave->i387.swd;
868  		save->x87_fcw = xsave->i387.cwd;
869  		save->x87_fop = xsave->i387.fop;
870  		save->x87_ds = 0;
871  		save->x87_cs = 0;
872  		save->x87_rip = xsave->i387.rip;
873  
874  		for (i = 0; i < 8; i++) {
875  			/*
876  			 * The format of the x87 save area is undocumented and
877  			 * definitely not what you would expect.  It consists of
878  			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
879  			 * area with bytes 8-9 of each register.
880  			 */
881  			d = save->fpreg_x87 + i * 8;
882  			s = ((u8 *)xsave->i387.st_space) + i * 16;
883  			memcpy(d, s, 8);
884  			save->fpreg_x87[64 + i * 2] = s[8];
885  			save->fpreg_x87[64 + i * 2 + 1] = s[9];
886  		}
887  		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
888  
889  		s = get_xsave_addr(xsave, XFEATURE_YMM);
890  		if (s)
891  			memcpy(save->fpreg_ymm, s, 256);
892  		else
893  			memset(save->fpreg_ymm, 0, 256);
894  	}
895  
896  	pr_debug("Virtual Machine Save Area (VMSA):\n");
897  	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
898  
899  	return 0;
900  }
901  
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)902  static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
903  				    int *error)
904  {
905  	struct sev_data_launch_update_vmsa vmsa;
906  	struct vcpu_svm *svm = to_svm(vcpu);
907  	int ret;
908  
909  	if (vcpu->guest_debug) {
910  		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
911  		return -EINVAL;
912  	}
913  
914  	/* Perform some pre-encryption checks against the VMSA */
915  	ret = sev_es_sync_vmsa(svm);
916  	if (ret)
917  		return ret;
918  
919  	/*
920  	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
921  	 * the VMSA memory content (i.e it will write the same memory region
922  	 * with the guest's key), so invalidate it first.
923  	 */
924  	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
925  
926  	vmsa.reserved = 0;
927  	vmsa.handle = to_kvm_sev_info(kvm)->handle;
928  	vmsa.address = __sme_pa(svm->sev_es.vmsa);
929  	vmsa.len = PAGE_SIZE;
930  	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
931  	if (ret)
932  	  return ret;
933  
934  	/*
935  	 * SEV-ES guests maintain an encrypted version of their FPU
936  	 * state which is restored and saved on VMRUN and VMEXIT.
937  	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
938  	 * do xsave/xrstor on it.
939  	 */
940  	fpstate_set_confidential(&vcpu->arch.guest_fpu);
941  	vcpu->arch.guest_state_protected = true;
942  
943  	/*
944  	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
945  	 * only after setting guest_state_protected because KVM_SET_MSRS allows
946  	 * dynamic toggling of LBRV (for performance reason) on write access to
947  	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
948  	 */
949  	svm_enable_lbrv(vcpu);
950  	return 0;
951  }
952  
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)953  static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
954  {
955  	struct kvm_vcpu *vcpu;
956  	unsigned long i;
957  	int ret;
958  
959  	if (!sev_es_guest(kvm))
960  		return -ENOTTY;
961  
962  	kvm_for_each_vcpu(i, vcpu, kvm) {
963  		ret = mutex_lock_killable(&vcpu->mutex);
964  		if (ret)
965  			return ret;
966  
967  		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
968  
969  		mutex_unlock(&vcpu->mutex);
970  		if (ret)
971  			return ret;
972  	}
973  
974  	return 0;
975  }
976  
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)977  static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
978  {
979  	void __user *measure = u64_to_user_ptr(argp->data);
980  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
981  	struct sev_data_launch_measure data;
982  	struct kvm_sev_launch_measure params;
983  	void __user *p = NULL;
984  	void *blob = NULL;
985  	int ret;
986  
987  	if (!sev_guest(kvm))
988  		return -ENOTTY;
989  
990  	if (copy_from_user(&params, measure, sizeof(params)))
991  		return -EFAULT;
992  
993  	memset(&data, 0, sizeof(data));
994  
995  	/* User wants to query the blob length */
996  	if (!params.len)
997  		goto cmd;
998  
999  	p = u64_to_user_ptr(params.uaddr);
1000  	if (p) {
1001  		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1002  			return -EINVAL;
1003  
1004  		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1005  		if (!blob)
1006  			return -ENOMEM;
1007  
1008  		data.address = __psp_pa(blob);
1009  		data.len = params.len;
1010  	}
1011  
1012  cmd:
1013  	data.handle = sev->handle;
1014  	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1015  
1016  	/*
1017  	 * If we query the session length, FW responded with expected data.
1018  	 */
1019  	if (!params.len)
1020  		goto done;
1021  
1022  	if (ret)
1023  		goto e_free_blob;
1024  
1025  	if (blob) {
1026  		if (copy_to_user(p, blob, params.len))
1027  			ret = -EFAULT;
1028  	}
1029  
1030  done:
1031  	params.len = data.len;
1032  	if (copy_to_user(measure, &params, sizeof(params)))
1033  		ret = -EFAULT;
1034  e_free_blob:
1035  	kfree(blob);
1036  	return ret;
1037  }
1038  
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1039  static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1040  {
1041  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1042  	struct sev_data_launch_finish data;
1043  
1044  	if (!sev_guest(kvm))
1045  		return -ENOTTY;
1046  
1047  	data.handle = sev->handle;
1048  	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1049  }
1050  
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1051  static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1052  {
1053  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1054  	struct kvm_sev_guest_status params;
1055  	struct sev_data_guest_status data;
1056  	int ret;
1057  
1058  	if (!sev_guest(kvm))
1059  		return -ENOTTY;
1060  
1061  	memset(&data, 0, sizeof(data));
1062  
1063  	data.handle = sev->handle;
1064  	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1065  	if (ret)
1066  		return ret;
1067  
1068  	params.policy = data.policy;
1069  	params.state = data.state;
1070  	params.handle = data.handle;
1071  
1072  	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1073  		ret = -EFAULT;
1074  
1075  	return ret;
1076  }
1077  
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1078  static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1079  			       unsigned long dst, int size,
1080  			       int *error, bool enc)
1081  {
1082  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1083  	struct sev_data_dbg data;
1084  
1085  	data.reserved = 0;
1086  	data.handle = sev->handle;
1087  	data.dst_addr = dst;
1088  	data.src_addr = src;
1089  	data.len = size;
1090  
1091  	return sev_issue_cmd(kvm,
1092  			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1093  			     &data, error);
1094  }
1095  
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1096  static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1097  			     unsigned long dst_paddr, int sz, int *err)
1098  {
1099  	int offset;
1100  
1101  	/*
1102  	 * Its safe to read more than we are asked, caller should ensure that
1103  	 * destination has enough space.
1104  	 */
1105  	offset = src_paddr & 15;
1106  	src_paddr = round_down(src_paddr, 16);
1107  	sz = round_up(sz + offset, 16);
1108  
1109  	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1110  }
1111  
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1112  static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1113  				  void __user *dst_uaddr,
1114  				  unsigned long dst_paddr,
1115  				  int size, int *err)
1116  {
1117  	struct page *tpage = NULL;
1118  	int ret, offset;
1119  
1120  	/* if inputs are not 16-byte then use intermediate buffer */
1121  	if (!IS_ALIGNED(dst_paddr, 16) ||
1122  	    !IS_ALIGNED(paddr,     16) ||
1123  	    !IS_ALIGNED(size,      16)) {
1124  		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1125  		if (!tpage)
1126  			return -ENOMEM;
1127  
1128  		dst_paddr = __sme_page_pa(tpage);
1129  	}
1130  
1131  	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1132  	if (ret)
1133  		goto e_free;
1134  
1135  	if (tpage) {
1136  		offset = paddr & 15;
1137  		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1138  			ret = -EFAULT;
1139  	}
1140  
1141  e_free:
1142  	if (tpage)
1143  		__free_page(tpage);
1144  
1145  	return ret;
1146  }
1147  
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1148  static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1149  				  void __user *vaddr,
1150  				  unsigned long dst_paddr,
1151  				  void __user *dst_vaddr,
1152  				  int size, int *error)
1153  {
1154  	struct page *src_tpage = NULL;
1155  	struct page *dst_tpage = NULL;
1156  	int ret, len = size;
1157  
1158  	/* If source buffer is not aligned then use an intermediate buffer */
1159  	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1160  		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1161  		if (!src_tpage)
1162  			return -ENOMEM;
1163  
1164  		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1165  			__free_page(src_tpage);
1166  			return -EFAULT;
1167  		}
1168  
1169  		paddr = __sme_page_pa(src_tpage);
1170  	}
1171  
1172  	/*
1173  	 *  If destination buffer or length is not aligned then do read-modify-write:
1174  	 *   - decrypt destination in an intermediate buffer
1175  	 *   - copy the source buffer in an intermediate buffer
1176  	 *   - use the intermediate buffer as source buffer
1177  	 */
1178  	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1179  		int dst_offset;
1180  
1181  		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1182  		if (!dst_tpage) {
1183  			ret = -ENOMEM;
1184  			goto e_free;
1185  		}
1186  
1187  		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1188  					__sme_page_pa(dst_tpage), size, error);
1189  		if (ret)
1190  			goto e_free;
1191  
1192  		/*
1193  		 *  If source is kernel buffer then use memcpy() otherwise
1194  		 *  copy_from_user().
1195  		 */
1196  		dst_offset = dst_paddr & 15;
1197  
1198  		if (src_tpage)
1199  			memcpy(page_address(dst_tpage) + dst_offset,
1200  			       page_address(src_tpage), size);
1201  		else {
1202  			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1203  					   vaddr, size)) {
1204  				ret = -EFAULT;
1205  				goto e_free;
1206  			}
1207  		}
1208  
1209  		paddr = __sme_page_pa(dst_tpage);
1210  		dst_paddr = round_down(dst_paddr, 16);
1211  		len = round_up(size, 16);
1212  	}
1213  
1214  	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1215  
1216  e_free:
1217  	if (src_tpage)
1218  		__free_page(src_tpage);
1219  	if (dst_tpage)
1220  		__free_page(dst_tpage);
1221  	return ret;
1222  }
1223  
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1224  static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1225  {
1226  	unsigned long vaddr, vaddr_end, next_vaddr;
1227  	unsigned long dst_vaddr;
1228  	struct page **src_p, **dst_p;
1229  	struct kvm_sev_dbg debug;
1230  	unsigned long n;
1231  	unsigned int size;
1232  	int ret;
1233  
1234  	if (!sev_guest(kvm))
1235  		return -ENOTTY;
1236  
1237  	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1238  		return -EFAULT;
1239  
1240  	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1241  		return -EINVAL;
1242  	if (!debug.dst_uaddr)
1243  		return -EINVAL;
1244  
1245  	vaddr = debug.src_uaddr;
1246  	size = debug.len;
1247  	vaddr_end = vaddr + size;
1248  	dst_vaddr = debug.dst_uaddr;
1249  
1250  	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1251  		int len, s_off, d_off;
1252  
1253  		/* lock userspace source and destination page */
1254  		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1255  		if (IS_ERR(src_p))
1256  			return PTR_ERR(src_p);
1257  
1258  		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1259  		if (IS_ERR(dst_p)) {
1260  			sev_unpin_memory(kvm, src_p, n);
1261  			return PTR_ERR(dst_p);
1262  		}
1263  
1264  		/*
1265  		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1266  		 * the pages; flush the destination too so that future accesses do not
1267  		 * see stale data.
1268  		 */
1269  		sev_clflush_pages(src_p, 1);
1270  		sev_clflush_pages(dst_p, 1);
1271  
1272  		/*
1273  		 * Since user buffer may not be page aligned, calculate the
1274  		 * offset within the page.
1275  		 */
1276  		s_off = vaddr & ~PAGE_MASK;
1277  		d_off = dst_vaddr & ~PAGE_MASK;
1278  		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1279  
1280  		if (dec)
1281  			ret = __sev_dbg_decrypt_user(kvm,
1282  						     __sme_page_pa(src_p[0]) + s_off,
1283  						     (void __user *)dst_vaddr,
1284  						     __sme_page_pa(dst_p[0]) + d_off,
1285  						     len, &argp->error);
1286  		else
1287  			ret = __sev_dbg_encrypt_user(kvm,
1288  						     __sme_page_pa(src_p[0]) + s_off,
1289  						     (void __user *)vaddr,
1290  						     __sme_page_pa(dst_p[0]) + d_off,
1291  						     (void __user *)dst_vaddr,
1292  						     len, &argp->error);
1293  
1294  		sev_unpin_memory(kvm, src_p, n);
1295  		sev_unpin_memory(kvm, dst_p, n);
1296  
1297  		if (ret)
1298  			goto err;
1299  
1300  		next_vaddr = vaddr + len;
1301  		dst_vaddr = dst_vaddr + len;
1302  		size -= len;
1303  	}
1304  err:
1305  	return ret;
1306  }
1307  
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1308  static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1309  {
1310  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1311  	struct sev_data_launch_secret data;
1312  	struct kvm_sev_launch_secret params;
1313  	struct page **pages;
1314  	void *blob, *hdr;
1315  	unsigned long n, i;
1316  	int ret, offset;
1317  
1318  	if (!sev_guest(kvm))
1319  		return -ENOTTY;
1320  
1321  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1322  		return -EFAULT;
1323  
1324  	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1325  	if (IS_ERR(pages))
1326  		return PTR_ERR(pages);
1327  
1328  	/*
1329  	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1330  	 * place; the cache may contain the data that was written unencrypted.
1331  	 */
1332  	sev_clflush_pages(pages, n);
1333  
1334  	/*
1335  	 * The secret must be copied into contiguous memory region, lets verify
1336  	 * that userspace memory pages are contiguous before we issue command.
1337  	 */
1338  	if (get_num_contig_pages(0, pages, n) != n) {
1339  		ret = -EINVAL;
1340  		goto e_unpin_memory;
1341  	}
1342  
1343  	memset(&data, 0, sizeof(data));
1344  
1345  	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1346  	data.guest_address = __sme_page_pa(pages[0]) + offset;
1347  	data.guest_len = params.guest_len;
1348  
1349  	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1350  	if (IS_ERR(blob)) {
1351  		ret = PTR_ERR(blob);
1352  		goto e_unpin_memory;
1353  	}
1354  
1355  	data.trans_address = __psp_pa(blob);
1356  	data.trans_len = params.trans_len;
1357  
1358  	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1359  	if (IS_ERR(hdr)) {
1360  		ret = PTR_ERR(hdr);
1361  		goto e_free_blob;
1362  	}
1363  	data.hdr_address = __psp_pa(hdr);
1364  	data.hdr_len = params.hdr_len;
1365  
1366  	data.handle = sev->handle;
1367  	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1368  
1369  	kfree(hdr);
1370  
1371  e_free_blob:
1372  	kfree(blob);
1373  e_unpin_memory:
1374  	/* content of memory is updated, mark pages dirty */
1375  	for (i = 0; i < n; i++) {
1376  		set_page_dirty_lock(pages[i]);
1377  		mark_page_accessed(pages[i]);
1378  	}
1379  	sev_unpin_memory(kvm, pages, n);
1380  	return ret;
1381  }
1382  
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1383  static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1384  {
1385  	void __user *report = u64_to_user_ptr(argp->data);
1386  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1387  	struct sev_data_attestation_report data;
1388  	struct kvm_sev_attestation_report params;
1389  	void __user *p;
1390  	void *blob = NULL;
1391  	int ret;
1392  
1393  	if (!sev_guest(kvm))
1394  		return -ENOTTY;
1395  
1396  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1397  		return -EFAULT;
1398  
1399  	memset(&data, 0, sizeof(data));
1400  
1401  	/* User wants to query the blob length */
1402  	if (!params.len)
1403  		goto cmd;
1404  
1405  	p = u64_to_user_ptr(params.uaddr);
1406  	if (p) {
1407  		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1408  			return -EINVAL;
1409  
1410  		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1411  		if (!blob)
1412  			return -ENOMEM;
1413  
1414  		data.address = __psp_pa(blob);
1415  		data.len = params.len;
1416  		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1417  	}
1418  cmd:
1419  	data.handle = sev->handle;
1420  	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1421  	/*
1422  	 * If we query the session length, FW responded with expected data.
1423  	 */
1424  	if (!params.len)
1425  		goto done;
1426  
1427  	if (ret)
1428  		goto e_free_blob;
1429  
1430  	if (blob) {
1431  		if (copy_to_user(p, blob, params.len))
1432  			ret = -EFAULT;
1433  	}
1434  
1435  done:
1436  	params.len = data.len;
1437  	if (copy_to_user(report, &params, sizeof(params)))
1438  		ret = -EFAULT;
1439  e_free_blob:
1440  	kfree(blob);
1441  	return ret;
1442  }
1443  
1444  /* Userspace wants to query session length. */
1445  static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1446  __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1447  				      struct kvm_sev_send_start *params)
1448  {
1449  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1450  	struct sev_data_send_start data;
1451  	int ret;
1452  
1453  	memset(&data, 0, sizeof(data));
1454  	data.handle = sev->handle;
1455  	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1456  
1457  	params->session_len = data.session_len;
1458  	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1459  				sizeof(struct kvm_sev_send_start)))
1460  		ret = -EFAULT;
1461  
1462  	return ret;
1463  }
1464  
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1465  static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1466  {
1467  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1468  	struct sev_data_send_start data;
1469  	struct kvm_sev_send_start params;
1470  	void *amd_certs, *session_data;
1471  	void *pdh_cert, *plat_certs;
1472  	int ret;
1473  
1474  	if (!sev_guest(kvm))
1475  		return -ENOTTY;
1476  
1477  	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1478  				sizeof(struct kvm_sev_send_start)))
1479  		return -EFAULT;
1480  
1481  	/* if session_len is zero, userspace wants to query the session length */
1482  	if (!params.session_len)
1483  		return __sev_send_start_query_session_length(kvm, argp,
1484  				&params);
1485  
1486  	/* some sanity checks */
1487  	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1488  	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1489  		return -EINVAL;
1490  
1491  	/* allocate the memory to hold the session data blob */
1492  	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1493  	if (!session_data)
1494  		return -ENOMEM;
1495  
1496  	/* copy the certificate blobs from userspace */
1497  	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1498  				params.pdh_cert_len);
1499  	if (IS_ERR(pdh_cert)) {
1500  		ret = PTR_ERR(pdh_cert);
1501  		goto e_free_session;
1502  	}
1503  
1504  	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1505  				params.plat_certs_len);
1506  	if (IS_ERR(plat_certs)) {
1507  		ret = PTR_ERR(plat_certs);
1508  		goto e_free_pdh;
1509  	}
1510  
1511  	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1512  				params.amd_certs_len);
1513  	if (IS_ERR(amd_certs)) {
1514  		ret = PTR_ERR(amd_certs);
1515  		goto e_free_plat_cert;
1516  	}
1517  
1518  	/* populate the FW SEND_START field with system physical address */
1519  	memset(&data, 0, sizeof(data));
1520  	data.pdh_cert_address = __psp_pa(pdh_cert);
1521  	data.pdh_cert_len = params.pdh_cert_len;
1522  	data.plat_certs_address = __psp_pa(plat_certs);
1523  	data.plat_certs_len = params.plat_certs_len;
1524  	data.amd_certs_address = __psp_pa(amd_certs);
1525  	data.amd_certs_len = params.amd_certs_len;
1526  	data.session_address = __psp_pa(session_data);
1527  	data.session_len = params.session_len;
1528  	data.handle = sev->handle;
1529  
1530  	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1531  
1532  	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1533  			session_data, params.session_len)) {
1534  		ret = -EFAULT;
1535  		goto e_free_amd_cert;
1536  	}
1537  
1538  	params.policy = data.policy;
1539  	params.session_len = data.session_len;
1540  	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1541  				sizeof(struct kvm_sev_send_start)))
1542  		ret = -EFAULT;
1543  
1544  e_free_amd_cert:
1545  	kfree(amd_certs);
1546  e_free_plat_cert:
1547  	kfree(plat_certs);
1548  e_free_pdh:
1549  	kfree(pdh_cert);
1550  e_free_session:
1551  	kfree(session_data);
1552  	return ret;
1553  }
1554  
1555  /* Userspace wants to query either header or trans length. */
1556  static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1557  __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1558  				     struct kvm_sev_send_update_data *params)
1559  {
1560  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1561  	struct sev_data_send_update_data data;
1562  	int ret;
1563  
1564  	memset(&data, 0, sizeof(data));
1565  	data.handle = sev->handle;
1566  	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1567  
1568  	params->hdr_len = data.hdr_len;
1569  	params->trans_len = data.trans_len;
1570  
1571  	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1572  			 sizeof(struct kvm_sev_send_update_data)))
1573  		ret = -EFAULT;
1574  
1575  	return ret;
1576  }
1577  
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1578  static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1579  {
1580  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1581  	struct sev_data_send_update_data data;
1582  	struct kvm_sev_send_update_data params;
1583  	void *hdr, *trans_data;
1584  	struct page **guest_page;
1585  	unsigned long n;
1586  	int ret, offset;
1587  
1588  	if (!sev_guest(kvm))
1589  		return -ENOTTY;
1590  
1591  	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1592  			sizeof(struct kvm_sev_send_update_data)))
1593  		return -EFAULT;
1594  
1595  	/* userspace wants to query either header or trans length */
1596  	if (!params.trans_len || !params.hdr_len)
1597  		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1598  
1599  	if (!params.trans_uaddr || !params.guest_uaddr ||
1600  	    !params.guest_len || !params.hdr_uaddr)
1601  		return -EINVAL;
1602  
1603  	/* Check if we are crossing the page boundary */
1604  	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1605  	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1606  		return -EINVAL;
1607  
1608  	/* Pin guest memory */
1609  	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1610  				    PAGE_SIZE, &n, 0);
1611  	if (IS_ERR(guest_page))
1612  		return PTR_ERR(guest_page);
1613  
1614  	/* allocate memory for header and transport buffer */
1615  	ret = -ENOMEM;
1616  	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1617  	if (!hdr)
1618  		goto e_unpin;
1619  
1620  	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1621  	if (!trans_data)
1622  		goto e_free_hdr;
1623  
1624  	memset(&data, 0, sizeof(data));
1625  	data.hdr_address = __psp_pa(hdr);
1626  	data.hdr_len = params.hdr_len;
1627  	data.trans_address = __psp_pa(trans_data);
1628  	data.trans_len = params.trans_len;
1629  
1630  	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1631  	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1632  	data.guest_address |= sev_me_mask;
1633  	data.guest_len = params.guest_len;
1634  	data.handle = sev->handle;
1635  
1636  	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1637  
1638  	if (ret)
1639  		goto e_free_trans_data;
1640  
1641  	/* copy transport buffer to user space */
1642  	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1643  			 trans_data, params.trans_len)) {
1644  		ret = -EFAULT;
1645  		goto e_free_trans_data;
1646  	}
1647  
1648  	/* Copy packet header to userspace. */
1649  	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1650  			 params.hdr_len))
1651  		ret = -EFAULT;
1652  
1653  e_free_trans_data:
1654  	kfree(trans_data);
1655  e_free_hdr:
1656  	kfree(hdr);
1657  e_unpin:
1658  	sev_unpin_memory(kvm, guest_page, n);
1659  
1660  	return ret;
1661  }
1662  
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1663  static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1664  {
1665  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1666  	struct sev_data_send_finish data;
1667  
1668  	if (!sev_guest(kvm))
1669  		return -ENOTTY;
1670  
1671  	data.handle = sev->handle;
1672  	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1673  }
1674  
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1675  static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1676  {
1677  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1678  	struct sev_data_send_cancel data;
1679  
1680  	if (!sev_guest(kvm))
1681  		return -ENOTTY;
1682  
1683  	data.handle = sev->handle;
1684  	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1685  }
1686  
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1687  static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1688  {
1689  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1690  	struct sev_data_receive_start start;
1691  	struct kvm_sev_receive_start params;
1692  	int *error = &argp->error;
1693  	void *session_data;
1694  	void *pdh_data;
1695  	int ret;
1696  
1697  	if (!sev_guest(kvm))
1698  		return -ENOTTY;
1699  
1700  	/* Get parameter from the userspace */
1701  	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1702  			sizeof(struct kvm_sev_receive_start)))
1703  		return -EFAULT;
1704  
1705  	/* some sanity checks */
1706  	if (!params.pdh_uaddr || !params.pdh_len ||
1707  	    !params.session_uaddr || !params.session_len)
1708  		return -EINVAL;
1709  
1710  	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1711  	if (IS_ERR(pdh_data))
1712  		return PTR_ERR(pdh_data);
1713  
1714  	session_data = psp_copy_user_blob(params.session_uaddr,
1715  			params.session_len);
1716  	if (IS_ERR(session_data)) {
1717  		ret = PTR_ERR(session_data);
1718  		goto e_free_pdh;
1719  	}
1720  
1721  	memset(&start, 0, sizeof(start));
1722  	start.handle = params.handle;
1723  	start.policy = params.policy;
1724  	start.pdh_cert_address = __psp_pa(pdh_data);
1725  	start.pdh_cert_len = params.pdh_len;
1726  	start.session_address = __psp_pa(session_data);
1727  	start.session_len = params.session_len;
1728  
1729  	/* create memory encryption context */
1730  	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1731  				error);
1732  	if (ret)
1733  		goto e_free_session;
1734  
1735  	/* Bind ASID to this guest */
1736  	ret = sev_bind_asid(kvm, start.handle, error);
1737  	if (ret) {
1738  		sev_decommission(start.handle);
1739  		goto e_free_session;
1740  	}
1741  
1742  	params.handle = start.handle;
1743  	if (copy_to_user(u64_to_user_ptr(argp->data),
1744  			 &params, sizeof(struct kvm_sev_receive_start))) {
1745  		ret = -EFAULT;
1746  		sev_unbind_asid(kvm, start.handle);
1747  		goto e_free_session;
1748  	}
1749  
1750      	sev->handle = start.handle;
1751  	sev->fd = argp->sev_fd;
1752  
1753  e_free_session:
1754  	kfree(session_data);
1755  e_free_pdh:
1756  	kfree(pdh_data);
1757  
1758  	return ret;
1759  }
1760  
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1761  static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1762  {
1763  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1764  	struct kvm_sev_receive_update_data params;
1765  	struct sev_data_receive_update_data data;
1766  	void *hdr = NULL, *trans = NULL;
1767  	struct page **guest_page;
1768  	unsigned long n;
1769  	int ret, offset;
1770  
1771  	if (!sev_guest(kvm))
1772  		return -EINVAL;
1773  
1774  	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1775  			sizeof(struct kvm_sev_receive_update_data)))
1776  		return -EFAULT;
1777  
1778  	if (!params.hdr_uaddr || !params.hdr_len ||
1779  	    !params.guest_uaddr || !params.guest_len ||
1780  	    !params.trans_uaddr || !params.trans_len)
1781  		return -EINVAL;
1782  
1783  	/* Check if we are crossing the page boundary */
1784  	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1785  	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1786  		return -EINVAL;
1787  
1788  	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1789  	if (IS_ERR(hdr))
1790  		return PTR_ERR(hdr);
1791  
1792  	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1793  	if (IS_ERR(trans)) {
1794  		ret = PTR_ERR(trans);
1795  		goto e_free_hdr;
1796  	}
1797  
1798  	memset(&data, 0, sizeof(data));
1799  	data.hdr_address = __psp_pa(hdr);
1800  	data.hdr_len = params.hdr_len;
1801  	data.trans_address = __psp_pa(trans);
1802  	data.trans_len = params.trans_len;
1803  
1804  	/* Pin guest memory */
1805  	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1806  				    PAGE_SIZE, &n, 1);
1807  	if (IS_ERR(guest_page)) {
1808  		ret = PTR_ERR(guest_page);
1809  		goto e_free_trans;
1810  	}
1811  
1812  	/*
1813  	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1814  	 * encrypts the written data with the guest's key, and the cache may
1815  	 * contain dirty, unencrypted data.
1816  	 */
1817  	sev_clflush_pages(guest_page, n);
1818  
1819  	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1820  	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1821  	data.guest_address |= sev_me_mask;
1822  	data.guest_len = params.guest_len;
1823  	data.handle = sev->handle;
1824  
1825  	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1826  				&argp->error);
1827  
1828  	sev_unpin_memory(kvm, guest_page, n);
1829  
1830  e_free_trans:
1831  	kfree(trans);
1832  e_free_hdr:
1833  	kfree(hdr);
1834  
1835  	return ret;
1836  }
1837  
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1838  static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1839  {
1840  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1841  	struct sev_data_receive_finish data;
1842  
1843  	if (!sev_guest(kvm))
1844  		return -ENOTTY;
1845  
1846  	data.handle = sev->handle;
1847  	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1848  }
1849  
is_cmd_allowed_from_mirror(u32 cmd_id)1850  static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1851  {
1852  	/*
1853  	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1854  	 * active mirror VMs. Also allow the debugging and status commands.
1855  	 */
1856  	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1857  	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1858  	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1859  		return true;
1860  
1861  	return false;
1862  }
1863  
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1864  static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1865  {
1866  	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1867  	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1868  	int r = -EBUSY;
1869  
1870  	if (dst_kvm == src_kvm)
1871  		return -EINVAL;
1872  
1873  	/*
1874  	 * Bail if these VMs are already involved in a migration to avoid
1875  	 * deadlock between two VMs trying to migrate to/from each other.
1876  	 */
1877  	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1878  		return -EBUSY;
1879  
1880  	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1881  		goto release_dst;
1882  
1883  	r = -EINTR;
1884  	if (mutex_lock_killable(&dst_kvm->lock))
1885  		goto release_src;
1886  	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1887  		goto unlock_dst;
1888  	return 0;
1889  
1890  unlock_dst:
1891  	mutex_unlock(&dst_kvm->lock);
1892  release_src:
1893  	atomic_set_release(&src_sev->migration_in_progress, 0);
1894  release_dst:
1895  	atomic_set_release(&dst_sev->migration_in_progress, 0);
1896  	return r;
1897  }
1898  
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1899  static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1900  {
1901  	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1902  	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1903  
1904  	mutex_unlock(&dst_kvm->lock);
1905  	mutex_unlock(&src_kvm->lock);
1906  	atomic_set_release(&dst_sev->migration_in_progress, 0);
1907  	atomic_set_release(&src_sev->migration_in_progress, 0);
1908  }
1909  
1910  /* vCPU mutex subclasses.  */
1911  enum sev_migration_role {
1912  	SEV_MIGRATION_SOURCE = 0,
1913  	SEV_MIGRATION_TARGET,
1914  	SEV_NR_MIGRATION_ROLES,
1915  };
1916  
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1917  static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1918  					enum sev_migration_role role)
1919  {
1920  	struct kvm_vcpu *vcpu;
1921  	unsigned long i, j;
1922  
1923  	kvm_for_each_vcpu(i, vcpu, kvm) {
1924  		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1925  			goto out_unlock;
1926  
1927  #ifdef CONFIG_PROVE_LOCKING
1928  		if (!i)
1929  			/*
1930  			 * Reset the role to one that avoids colliding with
1931  			 * the role used for the first vcpu mutex.
1932  			 */
1933  			role = SEV_NR_MIGRATION_ROLES;
1934  		else
1935  			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1936  #endif
1937  	}
1938  
1939  	return 0;
1940  
1941  out_unlock:
1942  
1943  	kvm_for_each_vcpu(j, vcpu, kvm) {
1944  		if (i == j)
1945  			break;
1946  
1947  #ifdef CONFIG_PROVE_LOCKING
1948  		if (j)
1949  			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1950  #endif
1951  
1952  		mutex_unlock(&vcpu->mutex);
1953  	}
1954  	return -EINTR;
1955  }
1956  
sev_unlock_vcpus_for_migration(struct kvm * kvm)1957  static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1958  {
1959  	struct kvm_vcpu *vcpu;
1960  	unsigned long i;
1961  	bool first = true;
1962  
1963  	kvm_for_each_vcpu(i, vcpu, kvm) {
1964  		if (first)
1965  			first = false;
1966  		else
1967  			mutex_acquire(&vcpu->mutex.dep_map,
1968  				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1969  
1970  		mutex_unlock(&vcpu->mutex);
1971  	}
1972  }
1973  
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1974  static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1975  {
1976  	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1977  	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1978  	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1979  	struct vcpu_svm *dst_svm, *src_svm;
1980  	struct kvm_sev_info *mirror;
1981  	unsigned long i;
1982  
1983  	dst->active = true;
1984  	dst->asid = src->asid;
1985  	dst->handle = src->handle;
1986  	dst->pages_locked = src->pages_locked;
1987  	dst->enc_context_owner = src->enc_context_owner;
1988  	dst->es_active = src->es_active;
1989  	dst->vmsa_features = src->vmsa_features;
1990  
1991  	src->asid = 0;
1992  	src->active = false;
1993  	src->handle = 0;
1994  	src->pages_locked = 0;
1995  	src->enc_context_owner = NULL;
1996  	src->es_active = false;
1997  
1998  	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1999  
2000  	/*
2001  	 * If this VM has mirrors, "transfer" each mirror's refcount of the
2002  	 * source to the destination (this KVM).  The caller holds a reference
2003  	 * to the source, so there's no danger of use-after-free.
2004  	 */
2005  	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
2006  	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
2007  		kvm_get_kvm(dst_kvm);
2008  		kvm_put_kvm(src_kvm);
2009  		mirror->enc_context_owner = dst_kvm;
2010  	}
2011  
2012  	/*
2013  	 * If this VM is a mirror, remove the old mirror from the owners list
2014  	 * and add the new mirror to the list.
2015  	 */
2016  	if (is_mirroring_enc_context(dst_kvm)) {
2017  		struct kvm_sev_info *owner_sev_info =
2018  			&to_kvm_svm(dst->enc_context_owner)->sev_info;
2019  
2020  		list_del(&src->mirror_entry);
2021  		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2022  	}
2023  
2024  	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2025  		dst_svm = to_svm(dst_vcpu);
2026  
2027  		sev_init_vmcb(dst_svm);
2028  
2029  		if (!dst->es_active)
2030  			continue;
2031  
2032  		/*
2033  		 * Note, the source is not required to have the same number of
2034  		 * vCPUs as the destination when migrating a vanilla SEV VM.
2035  		 */
2036  		src_vcpu = kvm_get_vcpu(src_kvm, i);
2037  		src_svm = to_svm(src_vcpu);
2038  
2039  		/*
2040  		 * Transfer VMSA and GHCB state to the destination.  Nullify and
2041  		 * clear source fields as appropriate, the state now belongs to
2042  		 * the destination.
2043  		 */
2044  		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2045  		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2046  		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2047  		dst_vcpu->arch.guest_state_protected = true;
2048  
2049  		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2050  		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2051  		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2052  		src_vcpu->arch.guest_state_protected = false;
2053  	}
2054  }
2055  
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2056  static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2057  {
2058  	struct kvm_vcpu *src_vcpu;
2059  	unsigned long i;
2060  
2061  	if (!sev_es_guest(src))
2062  		return 0;
2063  
2064  	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2065  		return -EINVAL;
2066  
2067  	kvm_for_each_vcpu(i, src_vcpu, src) {
2068  		if (!src_vcpu->arch.guest_state_protected)
2069  			return -EINVAL;
2070  	}
2071  
2072  	return 0;
2073  }
2074  
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2075  int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2076  {
2077  	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
2078  	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2079  	struct fd f = fdget(source_fd);
2080  	struct kvm *source_kvm;
2081  	bool charged = false;
2082  	int ret;
2083  
2084  	if (!fd_file(f))
2085  		return -EBADF;
2086  
2087  	if (!file_is_kvm(fd_file(f))) {
2088  		ret = -EBADF;
2089  		goto out_fput;
2090  	}
2091  
2092  	source_kvm = fd_file(f)->private_data;
2093  	ret = sev_lock_two_vms(kvm, source_kvm);
2094  	if (ret)
2095  		goto out_fput;
2096  
2097  	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2098  	    sev_guest(kvm) || !sev_guest(source_kvm)) {
2099  		ret = -EINVAL;
2100  		goto out_unlock;
2101  	}
2102  
2103  	src_sev = &to_kvm_svm(source_kvm)->sev_info;
2104  
2105  	dst_sev->misc_cg = get_current_misc_cg();
2106  	cg_cleanup_sev = dst_sev;
2107  	if (dst_sev->misc_cg != src_sev->misc_cg) {
2108  		ret = sev_misc_cg_try_charge(dst_sev);
2109  		if (ret)
2110  			goto out_dst_cgroup;
2111  		charged = true;
2112  	}
2113  
2114  	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2115  	if (ret)
2116  		goto out_dst_cgroup;
2117  	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2118  	if (ret)
2119  		goto out_dst_vcpu;
2120  
2121  	ret = sev_check_source_vcpus(kvm, source_kvm);
2122  	if (ret)
2123  		goto out_source_vcpu;
2124  
2125  	sev_migrate_from(kvm, source_kvm);
2126  	kvm_vm_dead(source_kvm);
2127  	cg_cleanup_sev = src_sev;
2128  	ret = 0;
2129  
2130  out_source_vcpu:
2131  	sev_unlock_vcpus_for_migration(source_kvm);
2132  out_dst_vcpu:
2133  	sev_unlock_vcpus_for_migration(kvm);
2134  out_dst_cgroup:
2135  	/* Operates on the source on success, on the destination on failure.  */
2136  	if (charged)
2137  		sev_misc_cg_uncharge(cg_cleanup_sev);
2138  	put_misc_cg(cg_cleanup_sev->misc_cg);
2139  	cg_cleanup_sev->misc_cg = NULL;
2140  out_unlock:
2141  	sev_unlock_two_vms(kvm, source_kvm);
2142  out_fput:
2143  	fdput(f);
2144  	return ret;
2145  }
2146  
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2147  int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2148  {
2149  	if (group != KVM_X86_GRP_SEV)
2150  		return -ENXIO;
2151  
2152  	switch (attr) {
2153  	case KVM_X86_SEV_VMSA_FEATURES:
2154  		*val = sev_supported_vmsa_features;
2155  		return 0;
2156  
2157  	default:
2158  		return -ENXIO;
2159  	}
2160  }
2161  
2162  /*
2163   * The guest context contains all the information, keys and metadata
2164   * associated with the guest that the firmware tracks to implement SEV
2165   * and SNP features. The firmware stores the guest context in hypervisor
2166   * provide page via the SNP_GCTX_CREATE command.
2167   */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2168  static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2169  {
2170  	struct sev_data_snp_addr data = {};
2171  	void *context;
2172  	int rc;
2173  
2174  	/* Allocate memory for context page */
2175  	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2176  	if (!context)
2177  		return NULL;
2178  
2179  	data.address = __psp_pa(context);
2180  	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2181  	if (rc) {
2182  		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2183  			rc, argp->error);
2184  		snp_free_firmware_page(context);
2185  		return NULL;
2186  	}
2187  
2188  	return context;
2189  }
2190  
snp_bind_asid(struct kvm * kvm,int * error)2191  static int snp_bind_asid(struct kvm *kvm, int *error)
2192  {
2193  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2194  	struct sev_data_snp_activate data = {0};
2195  
2196  	data.gctx_paddr = __psp_pa(sev->snp_context);
2197  	data.asid = sev_get_asid(kvm);
2198  	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2199  }
2200  
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2201  static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2202  {
2203  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2204  	struct sev_data_snp_launch_start start = {0};
2205  	struct kvm_sev_snp_launch_start params;
2206  	int rc;
2207  
2208  	if (!sev_snp_guest(kvm))
2209  		return -ENOTTY;
2210  
2211  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2212  		return -EFAULT;
2213  
2214  	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
2215  	if (sev->snp_context)
2216  		return -EINVAL;
2217  
2218  	if (params.flags)
2219  		return -EINVAL;
2220  
2221  	if (params.policy & ~SNP_POLICY_MASK_VALID)
2222  		return -EINVAL;
2223  
2224  	/* Check for policy bits that must be set */
2225  	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2226  	    !(params.policy & SNP_POLICY_MASK_SMT))
2227  		return -EINVAL;
2228  
2229  	if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2230  		return -EINVAL;
2231  
2232  	sev->snp_context = snp_context_create(kvm, argp);
2233  	if (!sev->snp_context)
2234  		return -ENOTTY;
2235  
2236  	start.gctx_paddr = __psp_pa(sev->snp_context);
2237  	start.policy = params.policy;
2238  	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2239  	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2240  	if (rc) {
2241  		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2242  			 __func__, rc);
2243  		goto e_free_context;
2244  	}
2245  
2246  	sev->fd = argp->sev_fd;
2247  	rc = snp_bind_asid(kvm, &argp->error);
2248  	if (rc) {
2249  		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2250  			 __func__, rc);
2251  		goto e_free_context;
2252  	}
2253  
2254  	return 0;
2255  
2256  e_free_context:
2257  	snp_decommission_context(kvm);
2258  
2259  	return rc;
2260  }
2261  
2262  struct sev_gmem_populate_args {
2263  	__u8 type;
2264  	int sev_fd;
2265  	int fw_error;
2266  };
2267  
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2268  static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2269  				  void __user *src, int order, void *opaque)
2270  {
2271  	struct sev_gmem_populate_args *sev_populate_args = opaque;
2272  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2273  	int n_private = 0, ret, i;
2274  	int npages = (1 << order);
2275  	gfn_t gfn;
2276  
2277  	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2278  		return -EINVAL;
2279  
2280  	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2281  		struct sev_data_snp_launch_update fw_args = {0};
2282  		bool assigned = false;
2283  		int level;
2284  
2285  		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2286  		if (ret || assigned) {
2287  			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2288  				 __func__, gfn, ret, assigned);
2289  			ret = ret ? -EINVAL : -EEXIST;
2290  			goto err;
2291  		}
2292  
2293  		if (src) {
2294  			void *vaddr = kmap_local_pfn(pfn + i);
2295  
2296  			if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2297  				ret = -EFAULT;
2298  				goto err;
2299  			}
2300  			kunmap_local(vaddr);
2301  		}
2302  
2303  		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2304  				       sev_get_asid(kvm), true);
2305  		if (ret)
2306  			goto err;
2307  
2308  		n_private++;
2309  
2310  		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2311  		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2312  		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2313  		fw_args.page_type = sev_populate_args->type;
2314  
2315  		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2316  				      &fw_args, &sev_populate_args->fw_error);
2317  		if (ret)
2318  			goto fw_err;
2319  	}
2320  
2321  	return 0;
2322  
2323  fw_err:
2324  	/*
2325  	 * If the firmware command failed handle the reclaim and cleanup of that
2326  	 * PFN specially vs. prior pages which can be cleaned up below without
2327  	 * needing to reclaim in advance.
2328  	 *
2329  	 * Additionally, when invalid CPUID function entries are detected,
2330  	 * firmware writes the expected values into the page and leaves it
2331  	 * unencrypted so it can be used for debugging and error-reporting.
2332  	 *
2333  	 * Copy this page back into the source buffer so userspace can use this
2334  	 * information to provide information on which CPUID leaves/fields
2335  	 * failed CPUID validation.
2336  	 */
2337  	if (!snp_page_reclaim(kvm, pfn + i) &&
2338  	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2339  	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2340  		void *vaddr = kmap_local_pfn(pfn + i);
2341  
2342  		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2343  			pr_debug("Failed to write CPUID page back to userspace\n");
2344  
2345  		kunmap_local(vaddr);
2346  	}
2347  
2348  	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2349  	n_private--;
2350  
2351  err:
2352  	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2353  		 __func__, ret, sev_populate_args->fw_error, n_private);
2354  	for (i = 0; i < n_private; i++)
2355  		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2356  
2357  	return ret;
2358  }
2359  
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2360  static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2361  {
2362  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2363  	struct sev_gmem_populate_args sev_populate_args = {0};
2364  	struct kvm_sev_snp_launch_update params;
2365  	struct kvm_memory_slot *memslot;
2366  	long npages, count;
2367  	void __user *src;
2368  	int ret = 0;
2369  
2370  	if (!sev_snp_guest(kvm) || !sev->snp_context)
2371  		return -EINVAL;
2372  
2373  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2374  		return -EFAULT;
2375  
2376  	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2377  		 params.gfn_start, params.len, params.type, params.flags);
2378  
2379  	if (!PAGE_ALIGNED(params.len) || params.flags ||
2380  	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2381  	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2382  	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2383  	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2384  	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2385  		return -EINVAL;
2386  
2387  	npages = params.len / PAGE_SIZE;
2388  
2389  	/*
2390  	 * For each GFN that's being prepared as part of the initial guest
2391  	 * state, the following pre-conditions are verified:
2392  	 *
2393  	 *   1) The backing memslot is a valid private memslot.
2394  	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2395  	 *      beforehand.
2396  	 *   3) The PFN of the guest_memfd has not already been set to private
2397  	 *      in the RMP table.
2398  	 *
2399  	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2400  	 * faults if there's a race between a fault and an attribute update via
2401  	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2402  	 * here. However, kvm->slots_lock guards against both this as well as
2403  	 * concurrent memslot updates occurring while these checks are being
2404  	 * performed, so use that here to make it easier to reason about the
2405  	 * initial expected state and better guard against unexpected
2406  	 * situations.
2407  	 */
2408  	mutex_lock(&kvm->slots_lock);
2409  
2410  	memslot = gfn_to_memslot(kvm, params.gfn_start);
2411  	if (!kvm_slot_can_be_private(memslot)) {
2412  		ret = -EINVAL;
2413  		goto out;
2414  	}
2415  
2416  	sev_populate_args.sev_fd = argp->sev_fd;
2417  	sev_populate_args.type = params.type;
2418  	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2419  
2420  	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2421  				  sev_gmem_post_populate, &sev_populate_args);
2422  	if (count < 0) {
2423  		argp->error = sev_populate_args.fw_error;
2424  		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2425  			 __func__, count, argp->error);
2426  		ret = -EIO;
2427  	} else {
2428  		params.gfn_start += count;
2429  		params.len -= count * PAGE_SIZE;
2430  		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2431  			params.uaddr += count * PAGE_SIZE;
2432  
2433  		ret = 0;
2434  		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2435  			ret = -EFAULT;
2436  	}
2437  
2438  out:
2439  	mutex_unlock(&kvm->slots_lock);
2440  
2441  	return ret;
2442  }
2443  
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2444  static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2445  {
2446  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2447  	struct sev_data_snp_launch_update data = {};
2448  	struct kvm_vcpu *vcpu;
2449  	unsigned long i;
2450  	int ret;
2451  
2452  	data.gctx_paddr = __psp_pa(sev->snp_context);
2453  	data.page_type = SNP_PAGE_TYPE_VMSA;
2454  
2455  	kvm_for_each_vcpu(i, vcpu, kvm) {
2456  		struct vcpu_svm *svm = to_svm(vcpu);
2457  		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2458  
2459  		ret = sev_es_sync_vmsa(svm);
2460  		if (ret)
2461  			return ret;
2462  
2463  		/* Transition the VMSA page to a firmware state. */
2464  		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2465  		if (ret)
2466  			return ret;
2467  
2468  		/* Issue the SNP command to encrypt the VMSA */
2469  		data.address = __sme_pa(svm->sev_es.vmsa);
2470  		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2471  				      &data, &argp->error);
2472  		if (ret) {
2473  			snp_page_reclaim(kvm, pfn);
2474  
2475  			return ret;
2476  		}
2477  
2478  		svm->vcpu.arch.guest_state_protected = true;
2479  		/*
2480  		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2481  		 * be _always_ ON. Enable it only after setting
2482  		 * guest_state_protected because KVM_SET_MSRS allows dynamic
2483  		 * toggling of LBRV (for performance reason) on write access to
2484  		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2485  		 */
2486  		svm_enable_lbrv(vcpu);
2487  	}
2488  
2489  	return 0;
2490  }
2491  
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2492  static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2493  {
2494  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2495  	struct kvm_sev_snp_launch_finish params;
2496  	struct sev_data_snp_launch_finish *data;
2497  	void *id_block = NULL, *id_auth = NULL;
2498  	int ret;
2499  
2500  	if (!sev_snp_guest(kvm))
2501  		return -ENOTTY;
2502  
2503  	if (!sev->snp_context)
2504  		return -EINVAL;
2505  
2506  	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2507  		return -EFAULT;
2508  
2509  	if (params.flags)
2510  		return -EINVAL;
2511  
2512  	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2513  	ret = snp_launch_update_vmsa(kvm, argp);
2514  	if (ret)
2515  		return ret;
2516  
2517  	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2518  	if (!data)
2519  		return -ENOMEM;
2520  
2521  	if (params.id_block_en) {
2522  		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2523  		if (IS_ERR(id_block)) {
2524  			ret = PTR_ERR(id_block);
2525  			goto e_free;
2526  		}
2527  
2528  		data->id_block_en = 1;
2529  		data->id_block_paddr = __sme_pa(id_block);
2530  
2531  		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2532  		if (IS_ERR(id_auth)) {
2533  			ret = PTR_ERR(id_auth);
2534  			goto e_free_id_block;
2535  		}
2536  
2537  		data->id_auth_paddr = __sme_pa(id_auth);
2538  
2539  		if (params.auth_key_en)
2540  			data->auth_key_en = 1;
2541  	}
2542  
2543  	data->vcek_disabled = params.vcek_disabled;
2544  
2545  	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2546  	data->gctx_paddr = __psp_pa(sev->snp_context);
2547  	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2548  
2549  	/*
2550  	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2551  	 * can be given to the guest simply by marking the RMP entry as private.
2552  	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2553  	 */
2554  	if (!ret)
2555  		kvm->arch.pre_fault_allowed = true;
2556  
2557  	kfree(id_auth);
2558  
2559  e_free_id_block:
2560  	kfree(id_block);
2561  
2562  e_free:
2563  	kfree(data);
2564  
2565  	return ret;
2566  }
2567  
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2568  int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2569  {
2570  	struct kvm_sev_cmd sev_cmd;
2571  	int r;
2572  
2573  	if (!sev_enabled)
2574  		return -ENOTTY;
2575  
2576  	if (!argp)
2577  		return 0;
2578  
2579  	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2580  		return -EFAULT;
2581  
2582  	mutex_lock(&kvm->lock);
2583  
2584  	/* Only the enc_context_owner handles some memory enc operations. */
2585  	if (is_mirroring_enc_context(kvm) &&
2586  	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2587  		r = -EINVAL;
2588  		goto out;
2589  	}
2590  
2591  	/*
2592  	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2593  	 * allow the use of SNP-specific commands.
2594  	 */
2595  	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2596  		r = -EPERM;
2597  		goto out;
2598  	}
2599  
2600  	switch (sev_cmd.id) {
2601  	case KVM_SEV_ES_INIT:
2602  		if (!sev_es_enabled) {
2603  			r = -ENOTTY;
2604  			goto out;
2605  		}
2606  		fallthrough;
2607  	case KVM_SEV_INIT:
2608  		r = sev_guest_init(kvm, &sev_cmd);
2609  		break;
2610  	case KVM_SEV_INIT2:
2611  		r = sev_guest_init2(kvm, &sev_cmd);
2612  		break;
2613  	case KVM_SEV_LAUNCH_START:
2614  		r = sev_launch_start(kvm, &sev_cmd);
2615  		break;
2616  	case KVM_SEV_LAUNCH_UPDATE_DATA:
2617  		r = sev_launch_update_data(kvm, &sev_cmd);
2618  		break;
2619  	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2620  		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2621  		break;
2622  	case KVM_SEV_LAUNCH_MEASURE:
2623  		r = sev_launch_measure(kvm, &sev_cmd);
2624  		break;
2625  	case KVM_SEV_LAUNCH_FINISH:
2626  		r = sev_launch_finish(kvm, &sev_cmd);
2627  		break;
2628  	case KVM_SEV_GUEST_STATUS:
2629  		r = sev_guest_status(kvm, &sev_cmd);
2630  		break;
2631  	case KVM_SEV_DBG_DECRYPT:
2632  		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2633  		break;
2634  	case KVM_SEV_DBG_ENCRYPT:
2635  		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2636  		break;
2637  	case KVM_SEV_LAUNCH_SECRET:
2638  		r = sev_launch_secret(kvm, &sev_cmd);
2639  		break;
2640  	case KVM_SEV_GET_ATTESTATION_REPORT:
2641  		r = sev_get_attestation_report(kvm, &sev_cmd);
2642  		break;
2643  	case KVM_SEV_SEND_START:
2644  		r = sev_send_start(kvm, &sev_cmd);
2645  		break;
2646  	case KVM_SEV_SEND_UPDATE_DATA:
2647  		r = sev_send_update_data(kvm, &sev_cmd);
2648  		break;
2649  	case KVM_SEV_SEND_FINISH:
2650  		r = sev_send_finish(kvm, &sev_cmd);
2651  		break;
2652  	case KVM_SEV_SEND_CANCEL:
2653  		r = sev_send_cancel(kvm, &sev_cmd);
2654  		break;
2655  	case KVM_SEV_RECEIVE_START:
2656  		r = sev_receive_start(kvm, &sev_cmd);
2657  		break;
2658  	case KVM_SEV_RECEIVE_UPDATE_DATA:
2659  		r = sev_receive_update_data(kvm, &sev_cmd);
2660  		break;
2661  	case KVM_SEV_RECEIVE_FINISH:
2662  		r = sev_receive_finish(kvm, &sev_cmd);
2663  		break;
2664  	case KVM_SEV_SNP_LAUNCH_START:
2665  		r = snp_launch_start(kvm, &sev_cmd);
2666  		break;
2667  	case KVM_SEV_SNP_LAUNCH_UPDATE:
2668  		r = snp_launch_update(kvm, &sev_cmd);
2669  		break;
2670  	case KVM_SEV_SNP_LAUNCH_FINISH:
2671  		r = snp_launch_finish(kvm, &sev_cmd);
2672  		break;
2673  	default:
2674  		r = -EINVAL;
2675  		goto out;
2676  	}
2677  
2678  	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2679  		r = -EFAULT;
2680  
2681  out:
2682  	mutex_unlock(&kvm->lock);
2683  	return r;
2684  }
2685  
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2686  int sev_mem_enc_register_region(struct kvm *kvm,
2687  				struct kvm_enc_region *range)
2688  {
2689  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2690  	struct enc_region *region;
2691  	int ret = 0;
2692  
2693  	if (!sev_guest(kvm))
2694  		return -ENOTTY;
2695  
2696  	/* If kvm is mirroring encryption context it isn't responsible for it */
2697  	if (is_mirroring_enc_context(kvm))
2698  		return -EINVAL;
2699  
2700  	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2701  		return -EINVAL;
2702  
2703  	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2704  	if (!region)
2705  		return -ENOMEM;
2706  
2707  	mutex_lock(&kvm->lock);
2708  	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2709  	if (IS_ERR(region->pages)) {
2710  		ret = PTR_ERR(region->pages);
2711  		mutex_unlock(&kvm->lock);
2712  		goto e_free;
2713  	}
2714  
2715  	/*
2716  	 * The guest may change the memory encryption attribute from C=0 -> C=1
2717  	 * or vice versa for this memory range. Lets make sure caches are
2718  	 * flushed to ensure that guest data gets written into memory with
2719  	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2720  	 * as region and its array of pages can be freed by a different task
2721  	 * once kvm->lock is released.
2722  	 */
2723  	sev_clflush_pages(region->pages, region->npages);
2724  
2725  	region->uaddr = range->addr;
2726  	region->size = range->size;
2727  
2728  	list_add_tail(&region->list, &sev->regions_list);
2729  	mutex_unlock(&kvm->lock);
2730  
2731  	return ret;
2732  
2733  e_free:
2734  	kfree(region);
2735  	return ret;
2736  }
2737  
2738  static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2739  find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2740  {
2741  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2742  	struct list_head *head = &sev->regions_list;
2743  	struct enc_region *i;
2744  
2745  	list_for_each_entry(i, head, list) {
2746  		if (i->uaddr == range->addr &&
2747  		    i->size == range->size)
2748  			return i;
2749  	}
2750  
2751  	return NULL;
2752  }
2753  
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2754  static void __unregister_enc_region_locked(struct kvm *kvm,
2755  					   struct enc_region *region)
2756  {
2757  	sev_unpin_memory(kvm, region->pages, region->npages);
2758  	list_del(&region->list);
2759  	kfree(region);
2760  }
2761  
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2762  int sev_mem_enc_unregister_region(struct kvm *kvm,
2763  				  struct kvm_enc_region *range)
2764  {
2765  	struct enc_region *region;
2766  	int ret;
2767  
2768  	/* If kvm is mirroring encryption context it isn't responsible for it */
2769  	if (is_mirroring_enc_context(kvm))
2770  		return -EINVAL;
2771  
2772  	mutex_lock(&kvm->lock);
2773  
2774  	if (!sev_guest(kvm)) {
2775  		ret = -ENOTTY;
2776  		goto failed;
2777  	}
2778  
2779  	region = find_enc_region(kvm, range);
2780  	if (!region) {
2781  		ret = -EINVAL;
2782  		goto failed;
2783  	}
2784  
2785  	/*
2786  	 * Ensure that all guest tagged cache entries are flushed before
2787  	 * releasing the pages back to the system for use. CLFLUSH will
2788  	 * not do this, so issue a WBINVD.
2789  	 */
2790  	wbinvd_on_all_cpus();
2791  
2792  	__unregister_enc_region_locked(kvm, region);
2793  
2794  	mutex_unlock(&kvm->lock);
2795  	return 0;
2796  
2797  failed:
2798  	mutex_unlock(&kvm->lock);
2799  	return ret;
2800  }
2801  
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2802  int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2803  {
2804  	struct fd f = fdget(source_fd);
2805  	struct kvm *source_kvm;
2806  	struct kvm_sev_info *source_sev, *mirror_sev;
2807  	int ret;
2808  
2809  	if (!fd_file(f))
2810  		return -EBADF;
2811  
2812  	if (!file_is_kvm(fd_file(f))) {
2813  		ret = -EBADF;
2814  		goto e_source_fput;
2815  	}
2816  
2817  	source_kvm = fd_file(f)->private_data;
2818  	ret = sev_lock_two_vms(kvm, source_kvm);
2819  	if (ret)
2820  		goto e_source_fput;
2821  
2822  	/*
2823  	 * Mirrors of mirrors should work, but let's not get silly.  Also
2824  	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2825  	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2826  	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2827  	 */
2828  	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2829  	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2830  		ret = -EINVAL;
2831  		goto e_unlock;
2832  	}
2833  
2834  	/*
2835  	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2836  	 * disappear until we're done with it
2837  	 */
2838  	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2839  	kvm_get_kvm(source_kvm);
2840  	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2841  	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2842  
2843  	/* Set enc_context_owner and copy its encryption context over */
2844  	mirror_sev->enc_context_owner = source_kvm;
2845  	mirror_sev->active = true;
2846  	mirror_sev->asid = source_sev->asid;
2847  	mirror_sev->fd = source_sev->fd;
2848  	mirror_sev->es_active = source_sev->es_active;
2849  	mirror_sev->need_init = false;
2850  	mirror_sev->handle = source_sev->handle;
2851  	INIT_LIST_HEAD(&mirror_sev->regions_list);
2852  	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2853  	ret = 0;
2854  
2855  	/*
2856  	 * Do not copy ap_jump_table. Since the mirror does not share the same
2857  	 * KVM contexts as the original, and they may have different
2858  	 * memory-views.
2859  	 */
2860  
2861  e_unlock:
2862  	sev_unlock_two_vms(kvm, source_kvm);
2863  e_source_fput:
2864  	fdput(f);
2865  	return ret;
2866  }
2867  
snp_decommission_context(struct kvm * kvm)2868  static int snp_decommission_context(struct kvm *kvm)
2869  {
2870  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2871  	struct sev_data_snp_addr data = {};
2872  	int ret;
2873  
2874  	/* If context is not created then do nothing */
2875  	if (!sev->snp_context)
2876  		return 0;
2877  
2878  	/* Do the decommision, which will unbind the ASID from the SNP context */
2879  	data.address = __sme_pa(sev->snp_context);
2880  	down_write(&sev_deactivate_lock);
2881  	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2882  	up_write(&sev_deactivate_lock);
2883  
2884  	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2885  		return ret;
2886  
2887  	snp_free_firmware_page(sev->snp_context);
2888  	sev->snp_context = NULL;
2889  
2890  	return 0;
2891  }
2892  
sev_vm_destroy(struct kvm * kvm)2893  void sev_vm_destroy(struct kvm *kvm)
2894  {
2895  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2896  	struct list_head *head = &sev->regions_list;
2897  	struct list_head *pos, *q;
2898  
2899  	if (!sev_guest(kvm))
2900  		return;
2901  
2902  	WARN_ON(!list_empty(&sev->mirror_vms));
2903  
2904  	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2905  	if (is_mirroring_enc_context(kvm)) {
2906  		struct kvm *owner_kvm = sev->enc_context_owner;
2907  
2908  		mutex_lock(&owner_kvm->lock);
2909  		list_del(&sev->mirror_entry);
2910  		mutex_unlock(&owner_kvm->lock);
2911  		kvm_put_kvm(owner_kvm);
2912  		return;
2913  	}
2914  
2915  	/*
2916  	 * Ensure that all guest tagged cache entries are flushed before
2917  	 * releasing the pages back to the system for use. CLFLUSH will
2918  	 * not do this, so issue a WBINVD.
2919  	 */
2920  	wbinvd_on_all_cpus();
2921  
2922  	/*
2923  	 * if userspace was terminated before unregistering the memory regions
2924  	 * then lets unpin all the registered memory.
2925  	 */
2926  	if (!list_empty(head)) {
2927  		list_for_each_safe(pos, q, head) {
2928  			__unregister_enc_region_locked(kvm,
2929  				list_entry(pos, struct enc_region, list));
2930  			cond_resched();
2931  		}
2932  	}
2933  
2934  	if (sev_snp_guest(kvm)) {
2935  		snp_guest_req_cleanup(kvm);
2936  
2937  		/*
2938  		 * Decomission handles unbinding of the ASID. If it fails for
2939  		 * some unexpected reason, just leak the ASID.
2940  		 */
2941  		if (snp_decommission_context(kvm))
2942  			return;
2943  	} else {
2944  		sev_unbind_asid(kvm, sev->handle);
2945  	}
2946  
2947  	sev_asid_free(sev);
2948  }
2949  
sev_set_cpu_caps(void)2950  void __init sev_set_cpu_caps(void)
2951  {
2952  	if (sev_enabled) {
2953  		kvm_cpu_cap_set(X86_FEATURE_SEV);
2954  		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2955  	}
2956  	if (sev_es_enabled) {
2957  		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2958  		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2959  	}
2960  	if (sev_snp_enabled) {
2961  		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2962  		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2963  	}
2964  }
2965  
sev_hardware_setup(void)2966  void __init sev_hardware_setup(void)
2967  {
2968  	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2969  	bool sev_snp_supported = false;
2970  	bool sev_es_supported = false;
2971  	bool sev_supported = false;
2972  
2973  	if (!sev_enabled || !npt_enabled || !nrips)
2974  		goto out;
2975  
2976  	/*
2977  	 * SEV must obviously be supported in hardware.  Sanity check that the
2978  	 * CPU supports decode assists, which is mandatory for SEV guests to
2979  	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2980  	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2981  	 * ASID to effect a TLB flush.
2982  	 */
2983  	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2984  	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2985  	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2986  		goto out;
2987  
2988  	/* Retrieve SEV CPUID information */
2989  	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2990  
2991  	/* Set encryption bit location for SEV-ES guests */
2992  	sev_enc_bit = ebx & 0x3f;
2993  
2994  	/* Maximum number of encrypted guests supported simultaneously */
2995  	max_sev_asid = ecx;
2996  	if (!max_sev_asid)
2997  		goto out;
2998  
2999  	/* Minimum ASID value that should be used for SEV guest */
3000  	min_sev_asid = edx;
3001  	sev_me_mask = 1UL << (ebx & 0x3f);
3002  
3003  	/*
3004  	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
3005  	 * even though it's never used, so that the bitmap is indexed by the
3006  	 * actual ASID.
3007  	 */
3008  	nr_asids = max_sev_asid + 1;
3009  	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3010  	if (!sev_asid_bitmap)
3011  		goto out;
3012  
3013  	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3014  	if (!sev_reclaim_asid_bitmap) {
3015  		bitmap_free(sev_asid_bitmap);
3016  		sev_asid_bitmap = NULL;
3017  		goto out;
3018  	}
3019  
3020  	if (min_sev_asid <= max_sev_asid) {
3021  		sev_asid_count = max_sev_asid - min_sev_asid + 1;
3022  		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3023  	}
3024  	sev_supported = true;
3025  
3026  	/* SEV-ES support requested? */
3027  	if (!sev_es_enabled)
3028  		goto out;
3029  
3030  	/*
3031  	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3032  	 * instruction stream, i.e. can't emulate in response to a #NPF and
3033  	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3034  	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3035  	 */
3036  	if (!enable_mmio_caching)
3037  		goto out;
3038  
3039  	/* Does the CPU support SEV-ES? */
3040  	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3041  		goto out;
3042  
3043  	if (!lbrv) {
3044  		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3045  			  "LBRV must be present for SEV-ES support");
3046  		goto out;
3047  	}
3048  
3049  	/* Has the system been allocated ASIDs for SEV-ES? */
3050  	if (min_sev_asid == 1)
3051  		goto out;
3052  
3053  	sev_es_asid_count = min_sev_asid - 1;
3054  	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3055  	sev_es_supported = true;
3056  	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3057  
3058  out:
3059  	if (boot_cpu_has(X86_FEATURE_SEV))
3060  		pr_info("SEV %s (ASIDs %u - %u)\n",
3061  			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3062  								       "unusable" :
3063  								       "disabled",
3064  			min_sev_asid, max_sev_asid);
3065  	if (boot_cpu_has(X86_FEATURE_SEV_ES))
3066  		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3067  			sev_es_supported ? "enabled" : "disabled",
3068  			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3069  	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3070  		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3071  			sev_snp_supported ? "enabled" : "disabled",
3072  			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3073  
3074  	sev_enabled = sev_supported;
3075  	sev_es_enabled = sev_es_supported;
3076  	sev_snp_enabled = sev_snp_supported;
3077  
3078  	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3079  	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3080  		sev_es_debug_swap_enabled = false;
3081  
3082  	sev_supported_vmsa_features = 0;
3083  	if (sev_es_debug_swap_enabled)
3084  		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3085  }
3086  
sev_hardware_unsetup(void)3087  void sev_hardware_unsetup(void)
3088  {
3089  	if (!sev_enabled)
3090  		return;
3091  
3092  	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3093  	sev_flush_asids(1, max_sev_asid);
3094  
3095  	bitmap_free(sev_asid_bitmap);
3096  	bitmap_free(sev_reclaim_asid_bitmap);
3097  
3098  	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3099  	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3100  }
3101  
sev_cpu_init(struct svm_cpu_data * sd)3102  int sev_cpu_init(struct svm_cpu_data *sd)
3103  {
3104  	if (!sev_enabled)
3105  		return 0;
3106  
3107  	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3108  	if (!sd->sev_vmcbs)
3109  		return -ENOMEM;
3110  
3111  	return 0;
3112  }
3113  
3114  /*
3115   * Pages used by hardware to hold guest encrypted state must be flushed before
3116   * returning them to the system.
3117   */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3118  static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3119  {
3120  	unsigned int asid = sev_get_asid(vcpu->kvm);
3121  
3122  	/*
3123  	 * Note!  The address must be a kernel address, as regular page walk
3124  	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3125  	 * address is non-deterministic and unsafe.  This function deliberately
3126  	 * takes a pointer to deter passing in a user address.
3127  	 */
3128  	unsigned long addr = (unsigned long)va;
3129  
3130  	/*
3131  	 * If CPU enforced cache coherency for encrypted mappings of the
3132  	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3133  	 * flush is still needed in order to work properly with DMA devices.
3134  	 */
3135  	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3136  		clflush_cache_range(va, PAGE_SIZE);
3137  		return;
3138  	}
3139  
3140  	/*
3141  	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3142  	 * back to WBINVD if this faults so as not to make any problems worse
3143  	 * by leaving stale encrypted data in the cache.
3144  	 */
3145  	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3146  		goto do_wbinvd;
3147  
3148  	return;
3149  
3150  do_wbinvd:
3151  	wbinvd_on_all_cpus();
3152  }
3153  
sev_guest_memory_reclaimed(struct kvm * kvm)3154  void sev_guest_memory_reclaimed(struct kvm *kvm)
3155  {
3156  	/*
3157  	 * With SNP+gmem, private/encrypted memory is unreachable via the
3158  	 * hva-based mmu notifiers, so these events are only actually
3159  	 * pertaining to shared pages where there is no need to perform
3160  	 * the WBINVD to flush associated caches.
3161  	 */
3162  	if (!sev_guest(kvm) || sev_snp_guest(kvm))
3163  		return;
3164  
3165  	wbinvd_on_all_cpus();
3166  }
3167  
sev_free_vcpu(struct kvm_vcpu * vcpu)3168  void sev_free_vcpu(struct kvm_vcpu *vcpu)
3169  {
3170  	struct vcpu_svm *svm;
3171  
3172  	if (!sev_es_guest(vcpu->kvm))
3173  		return;
3174  
3175  	svm = to_svm(vcpu);
3176  
3177  	/*
3178  	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3179  	 * a guest-owned page. Transition the page to hypervisor state before
3180  	 * releasing it back to the system.
3181  	 */
3182  	if (sev_snp_guest(vcpu->kvm)) {
3183  		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3184  
3185  		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3186  			goto skip_vmsa_free;
3187  	}
3188  
3189  	if (vcpu->arch.guest_state_protected)
3190  		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3191  
3192  	__free_page(virt_to_page(svm->sev_es.vmsa));
3193  
3194  skip_vmsa_free:
3195  	if (svm->sev_es.ghcb_sa_free)
3196  		kvfree(svm->sev_es.ghcb_sa);
3197  }
3198  
dump_ghcb(struct vcpu_svm * svm)3199  static void dump_ghcb(struct vcpu_svm *svm)
3200  {
3201  	struct ghcb *ghcb = svm->sev_es.ghcb;
3202  	unsigned int nbits;
3203  
3204  	/* Re-use the dump_invalid_vmcb module parameter */
3205  	if (!dump_invalid_vmcb) {
3206  		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3207  		return;
3208  	}
3209  
3210  	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3211  
3212  	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3213  	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3214  	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3215  	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3216  	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3217  	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3218  	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3219  	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3220  	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3221  	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3222  }
3223  
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3224  static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3225  {
3226  	struct kvm_vcpu *vcpu = &svm->vcpu;
3227  	struct ghcb *ghcb = svm->sev_es.ghcb;
3228  
3229  	/*
3230  	 * The GHCB protocol so far allows for the following data
3231  	 * to be returned:
3232  	 *   GPRs RAX, RBX, RCX, RDX
3233  	 *
3234  	 * Copy their values, even if they may not have been written during the
3235  	 * VM-Exit.  It's the guest's responsibility to not consume random data.
3236  	 */
3237  	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3238  	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3239  	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3240  	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3241  }
3242  
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3243  static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3244  {
3245  	struct vmcb_control_area *control = &svm->vmcb->control;
3246  	struct kvm_vcpu *vcpu = &svm->vcpu;
3247  	struct ghcb *ghcb = svm->sev_es.ghcb;
3248  	u64 exit_code;
3249  
3250  	/*
3251  	 * The GHCB protocol so far allows for the following data
3252  	 * to be supplied:
3253  	 *   GPRs RAX, RBX, RCX, RDX
3254  	 *   XCR0
3255  	 *   CPL
3256  	 *
3257  	 * VMMCALL allows the guest to provide extra registers. KVM also
3258  	 * expects RSI for hypercalls, so include that, too.
3259  	 *
3260  	 * Copy their values to the appropriate location if supplied.
3261  	 */
3262  	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3263  
3264  	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3265  	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3266  
3267  	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3268  	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3269  	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3270  	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3271  	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3272  
3273  	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3274  
3275  	if (kvm_ghcb_xcr0_is_valid(svm)) {
3276  		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3277  		kvm_update_cpuid_runtime(vcpu);
3278  	}
3279  
3280  	/* Copy the GHCB exit information into the VMCB fields */
3281  	exit_code = ghcb_get_sw_exit_code(ghcb);
3282  	control->exit_code = lower_32_bits(exit_code);
3283  	control->exit_code_hi = upper_32_bits(exit_code);
3284  	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3285  	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3286  	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3287  
3288  	/* Clear the valid entries fields */
3289  	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3290  }
3291  
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3292  static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3293  {
3294  	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3295  }
3296  
sev_es_validate_vmgexit(struct vcpu_svm * svm)3297  static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3298  {
3299  	struct vmcb_control_area *control = &svm->vmcb->control;
3300  	struct kvm_vcpu *vcpu = &svm->vcpu;
3301  	u64 exit_code;
3302  	u64 reason;
3303  
3304  	/*
3305  	 * Retrieve the exit code now even though it may not be marked valid
3306  	 * as it could help with debugging.
3307  	 */
3308  	exit_code = kvm_ghcb_get_sw_exit_code(control);
3309  
3310  	/* Only GHCB Usage code 0 is supported */
3311  	if (svm->sev_es.ghcb->ghcb_usage) {
3312  		reason = GHCB_ERR_INVALID_USAGE;
3313  		goto vmgexit_err;
3314  	}
3315  
3316  	reason = GHCB_ERR_MISSING_INPUT;
3317  
3318  	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3319  	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3320  	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3321  		goto vmgexit_err;
3322  
3323  	switch (exit_code) {
3324  	case SVM_EXIT_READ_DR7:
3325  		break;
3326  	case SVM_EXIT_WRITE_DR7:
3327  		if (!kvm_ghcb_rax_is_valid(svm))
3328  			goto vmgexit_err;
3329  		break;
3330  	case SVM_EXIT_RDTSC:
3331  		break;
3332  	case SVM_EXIT_RDPMC:
3333  		if (!kvm_ghcb_rcx_is_valid(svm))
3334  			goto vmgexit_err;
3335  		break;
3336  	case SVM_EXIT_CPUID:
3337  		if (!kvm_ghcb_rax_is_valid(svm) ||
3338  		    !kvm_ghcb_rcx_is_valid(svm))
3339  			goto vmgexit_err;
3340  		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3341  			if (!kvm_ghcb_xcr0_is_valid(svm))
3342  				goto vmgexit_err;
3343  		break;
3344  	case SVM_EXIT_INVD:
3345  		break;
3346  	case SVM_EXIT_IOIO:
3347  		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3348  			if (!kvm_ghcb_sw_scratch_is_valid(svm))
3349  				goto vmgexit_err;
3350  		} else {
3351  			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3352  				if (!kvm_ghcb_rax_is_valid(svm))
3353  					goto vmgexit_err;
3354  		}
3355  		break;
3356  	case SVM_EXIT_MSR:
3357  		if (!kvm_ghcb_rcx_is_valid(svm))
3358  			goto vmgexit_err;
3359  		if (control->exit_info_1) {
3360  			if (!kvm_ghcb_rax_is_valid(svm) ||
3361  			    !kvm_ghcb_rdx_is_valid(svm))
3362  				goto vmgexit_err;
3363  		}
3364  		break;
3365  	case SVM_EXIT_VMMCALL:
3366  		if (!kvm_ghcb_rax_is_valid(svm) ||
3367  		    !kvm_ghcb_cpl_is_valid(svm))
3368  			goto vmgexit_err;
3369  		break;
3370  	case SVM_EXIT_RDTSCP:
3371  		break;
3372  	case SVM_EXIT_WBINVD:
3373  		break;
3374  	case SVM_EXIT_MONITOR:
3375  		if (!kvm_ghcb_rax_is_valid(svm) ||
3376  		    !kvm_ghcb_rcx_is_valid(svm) ||
3377  		    !kvm_ghcb_rdx_is_valid(svm))
3378  			goto vmgexit_err;
3379  		break;
3380  	case SVM_EXIT_MWAIT:
3381  		if (!kvm_ghcb_rax_is_valid(svm) ||
3382  		    !kvm_ghcb_rcx_is_valid(svm))
3383  			goto vmgexit_err;
3384  		break;
3385  	case SVM_VMGEXIT_MMIO_READ:
3386  	case SVM_VMGEXIT_MMIO_WRITE:
3387  		if (!kvm_ghcb_sw_scratch_is_valid(svm))
3388  			goto vmgexit_err;
3389  		break;
3390  	case SVM_VMGEXIT_AP_CREATION:
3391  		if (!sev_snp_guest(vcpu->kvm))
3392  			goto vmgexit_err;
3393  		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3394  			if (!kvm_ghcb_rax_is_valid(svm))
3395  				goto vmgexit_err;
3396  		break;
3397  	case SVM_VMGEXIT_NMI_COMPLETE:
3398  	case SVM_VMGEXIT_AP_HLT_LOOP:
3399  	case SVM_VMGEXIT_AP_JUMP_TABLE:
3400  	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3401  	case SVM_VMGEXIT_HV_FEATURES:
3402  	case SVM_VMGEXIT_TERM_REQUEST:
3403  		break;
3404  	case SVM_VMGEXIT_PSC:
3405  		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3406  			goto vmgexit_err;
3407  		break;
3408  	case SVM_VMGEXIT_GUEST_REQUEST:
3409  	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3410  		if (!sev_snp_guest(vcpu->kvm) ||
3411  		    !PAGE_ALIGNED(control->exit_info_1) ||
3412  		    !PAGE_ALIGNED(control->exit_info_2) ||
3413  		    control->exit_info_1 == control->exit_info_2)
3414  			goto vmgexit_err;
3415  		break;
3416  	default:
3417  		reason = GHCB_ERR_INVALID_EVENT;
3418  		goto vmgexit_err;
3419  	}
3420  
3421  	return 0;
3422  
3423  vmgexit_err:
3424  	if (reason == GHCB_ERR_INVALID_USAGE) {
3425  		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3426  			    svm->sev_es.ghcb->ghcb_usage);
3427  	} else if (reason == GHCB_ERR_INVALID_EVENT) {
3428  		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3429  			    exit_code);
3430  	} else {
3431  		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3432  			    exit_code);
3433  		dump_ghcb(svm);
3434  	}
3435  
3436  	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3437  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
3438  
3439  	/* Resume the guest to "return" the error code. */
3440  	return 1;
3441  }
3442  
sev_es_unmap_ghcb(struct vcpu_svm * svm)3443  void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3444  {
3445  	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
3446  	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3447  
3448  	if (!svm->sev_es.ghcb)
3449  		return;
3450  
3451  	if (svm->sev_es.ghcb_sa_free) {
3452  		/*
3453  		 * The scratch area lives outside the GHCB, so there is a
3454  		 * buffer that, depending on the operation performed, may
3455  		 * need to be synced, then freed.
3456  		 */
3457  		if (svm->sev_es.ghcb_sa_sync) {
3458  			kvm_write_guest(svm->vcpu.kvm,
3459  					svm->sev_es.sw_scratch,
3460  					svm->sev_es.ghcb_sa,
3461  					svm->sev_es.ghcb_sa_len);
3462  			svm->sev_es.ghcb_sa_sync = false;
3463  		}
3464  
3465  		kvfree(svm->sev_es.ghcb_sa);
3466  		svm->sev_es.ghcb_sa = NULL;
3467  		svm->sev_es.ghcb_sa_free = false;
3468  	}
3469  
3470  	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3471  
3472  	sev_es_sync_to_ghcb(svm);
3473  
3474  	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
3475  	svm->sev_es.ghcb = NULL;
3476  }
3477  
pre_sev_run(struct vcpu_svm * svm,int cpu)3478  void pre_sev_run(struct vcpu_svm *svm, int cpu)
3479  {
3480  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3481  	unsigned int asid = sev_get_asid(svm->vcpu.kvm);
3482  
3483  	/* Assign the asid allocated with this SEV guest */
3484  	svm->asid = asid;
3485  
3486  	/*
3487  	 * Flush guest TLB:
3488  	 *
3489  	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3490  	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3491  	 */
3492  	if (sd->sev_vmcbs[asid] == svm->vmcb &&
3493  	    svm->vcpu.arch.last_vmentry_cpu == cpu)
3494  		return;
3495  
3496  	sd->sev_vmcbs[asid] = svm->vmcb;
3497  	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3498  	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3499  }
3500  
3501  #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3502  static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3503  {
3504  	struct vmcb_control_area *control = &svm->vmcb->control;
3505  	u64 ghcb_scratch_beg, ghcb_scratch_end;
3506  	u64 scratch_gpa_beg, scratch_gpa_end;
3507  	void *scratch_va;
3508  
3509  	scratch_gpa_beg = svm->sev_es.sw_scratch;
3510  	if (!scratch_gpa_beg) {
3511  		pr_err("vmgexit: scratch gpa not provided\n");
3512  		goto e_scratch;
3513  	}
3514  
3515  	scratch_gpa_end = scratch_gpa_beg + len;
3516  	if (scratch_gpa_end < scratch_gpa_beg) {
3517  		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3518  		       len, scratch_gpa_beg);
3519  		goto e_scratch;
3520  	}
3521  
3522  	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3523  		/* Scratch area begins within GHCB */
3524  		ghcb_scratch_beg = control->ghcb_gpa +
3525  				   offsetof(struct ghcb, shared_buffer);
3526  		ghcb_scratch_end = control->ghcb_gpa +
3527  				   offsetof(struct ghcb, reserved_0xff0);
3528  
3529  		/*
3530  		 * If the scratch area begins within the GHCB, it must be
3531  		 * completely contained in the GHCB shared buffer area.
3532  		 */
3533  		if (scratch_gpa_beg < ghcb_scratch_beg ||
3534  		    scratch_gpa_end > ghcb_scratch_end) {
3535  			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3536  			       scratch_gpa_beg, scratch_gpa_end);
3537  			goto e_scratch;
3538  		}
3539  
3540  		scratch_va = (void *)svm->sev_es.ghcb;
3541  		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3542  	} else {
3543  		/*
3544  		 * The guest memory must be read into a kernel buffer, so
3545  		 * limit the size
3546  		 */
3547  		if (len > GHCB_SCRATCH_AREA_LIMIT) {
3548  			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3549  			       len, GHCB_SCRATCH_AREA_LIMIT);
3550  			goto e_scratch;
3551  		}
3552  		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3553  		if (!scratch_va)
3554  			return -ENOMEM;
3555  
3556  		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3557  			/* Unable to copy scratch area from guest */
3558  			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3559  
3560  			kvfree(scratch_va);
3561  			return -EFAULT;
3562  		}
3563  
3564  		/*
3565  		 * The scratch area is outside the GHCB. The operation will
3566  		 * dictate whether the buffer needs to be synced before running
3567  		 * the vCPU next time (i.e. a read was requested so the data
3568  		 * must be written back to the guest memory).
3569  		 */
3570  		svm->sev_es.ghcb_sa_sync = sync;
3571  		svm->sev_es.ghcb_sa_free = true;
3572  	}
3573  
3574  	svm->sev_es.ghcb_sa = scratch_va;
3575  	svm->sev_es.ghcb_sa_len = len;
3576  
3577  	return 0;
3578  
3579  e_scratch:
3580  	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3581  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
3582  
3583  	return 1;
3584  }
3585  
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3586  static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3587  			      unsigned int pos)
3588  {
3589  	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3590  	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3591  }
3592  
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3593  static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3594  {
3595  	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3596  }
3597  
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3598  static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3599  {
3600  	svm->vmcb->control.ghcb_gpa = value;
3601  }
3602  
snp_rmptable_psmash(kvm_pfn_t pfn)3603  static int snp_rmptable_psmash(kvm_pfn_t pfn)
3604  {
3605  	int ret;
3606  
3607  	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3608  
3609  	/*
3610  	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3611  	 * entry, so retry until that's no longer the case.
3612  	 */
3613  	do {
3614  		ret = psmash(pfn);
3615  	} while (ret == PSMASH_FAIL_INUSE);
3616  
3617  	return ret;
3618  }
3619  
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3620  static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3621  {
3622  	struct vcpu_svm *svm = to_svm(vcpu);
3623  
3624  	if (vcpu->run->hypercall.ret)
3625  		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3626  	else
3627  		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3628  
3629  	return 1; /* resume guest */
3630  }
3631  
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3632  static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3633  {
3634  	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3635  	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3636  	struct kvm_vcpu *vcpu = &svm->vcpu;
3637  
3638  	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3639  		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3640  		return 1; /* resume guest */
3641  	}
3642  
3643  	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3644  		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3645  		return 1; /* resume guest */
3646  	}
3647  
3648  	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3649  	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3650  	vcpu->run->hypercall.args[0] = gpa;
3651  	vcpu->run->hypercall.args[1] = 1;
3652  	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3653  				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3654  				       : KVM_MAP_GPA_RANGE_DECRYPTED;
3655  	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3656  
3657  	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3658  
3659  	return 0; /* forward request to userspace */
3660  }
3661  
3662  struct psc_buffer {
3663  	struct psc_hdr hdr;
3664  	struct psc_entry entries[];
3665  } __packed;
3666  
3667  static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3668  
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3669  static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3670  {
3671  	svm->sev_es.psc_inflight = 0;
3672  	svm->sev_es.psc_idx = 0;
3673  	svm->sev_es.psc_2m = false;
3674  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
3675  }
3676  
__snp_complete_one_psc(struct vcpu_svm * svm)3677  static void __snp_complete_one_psc(struct vcpu_svm *svm)
3678  {
3679  	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3680  	struct psc_entry *entries = psc->entries;
3681  	struct psc_hdr *hdr = &psc->hdr;
3682  	__u16 idx;
3683  
3684  	/*
3685  	 * Everything in-flight has been processed successfully. Update the
3686  	 * corresponding entries in the guest's PSC buffer and zero out the
3687  	 * count of in-flight PSC entries.
3688  	 */
3689  	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3690  	     svm->sev_es.psc_inflight--, idx++) {
3691  		struct psc_entry *entry = &entries[idx];
3692  
3693  		entry->cur_page = entry->pagesize ? 512 : 1;
3694  	}
3695  
3696  	hdr->cur_entry = idx;
3697  }
3698  
snp_complete_one_psc(struct kvm_vcpu * vcpu)3699  static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3700  {
3701  	struct vcpu_svm *svm = to_svm(vcpu);
3702  	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3703  
3704  	if (vcpu->run->hypercall.ret) {
3705  		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3706  		return 1; /* resume guest */
3707  	}
3708  
3709  	__snp_complete_one_psc(svm);
3710  
3711  	/* Handle the next range (if any). */
3712  	return snp_begin_psc(svm, psc);
3713  }
3714  
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3715  static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3716  {
3717  	struct psc_entry *entries = psc->entries;
3718  	struct kvm_vcpu *vcpu = &svm->vcpu;
3719  	struct psc_hdr *hdr = &psc->hdr;
3720  	struct psc_entry entry_start;
3721  	u16 idx, idx_start, idx_end;
3722  	int npages;
3723  	bool huge;
3724  	u64 gfn;
3725  
3726  	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3727  		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3728  		return 1;
3729  	}
3730  
3731  next_range:
3732  	/* There should be no other PSCs in-flight at this point. */
3733  	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3734  		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3735  		return 1;
3736  	}
3737  
3738  	/*
3739  	 * The PSC descriptor buffer can be modified by a misbehaved guest after
3740  	 * validation, so take care to only use validated copies of values used
3741  	 * for things like array indexing.
3742  	 */
3743  	idx_start = hdr->cur_entry;
3744  	idx_end = hdr->end_entry;
3745  
3746  	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3747  		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3748  		return 1;
3749  	}
3750  
3751  	/* Find the start of the next range which needs processing. */
3752  	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3753  		entry_start = entries[idx];
3754  
3755  		gfn = entry_start.gfn;
3756  		huge = entry_start.pagesize;
3757  		npages = huge ? 512 : 1;
3758  
3759  		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3760  			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3761  			return 1;
3762  		}
3763  
3764  		if (entry_start.cur_page) {
3765  			/*
3766  			 * If this is a partially-completed 2M range, force 4K handling
3767  			 * for the remaining pages since they're effectively split at
3768  			 * this point. Subsequent code should ensure this doesn't get
3769  			 * combined with adjacent PSC entries where 2M handling is still
3770  			 * possible.
3771  			 */
3772  			npages -= entry_start.cur_page;
3773  			gfn += entry_start.cur_page;
3774  			huge = false;
3775  		}
3776  
3777  		if (npages)
3778  			break;
3779  	}
3780  
3781  	if (idx > idx_end) {
3782  		/* Nothing more to process. */
3783  		snp_complete_psc(svm, 0);
3784  		return 1;
3785  	}
3786  
3787  	svm->sev_es.psc_2m = huge;
3788  	svm->sev_es.psc_idx = idx;
3789  	svm->sev_es.psc_inflight = 1;
3790  
3791  	/*
3792  	 * Find all subsequent PSC entries that contain adjacent GPA
3793  	 * ranges/operations and can be combined into a single
3794  	 * KVM_HC_MAP_GPA_RANGE exit.
3795  	 */
3796  	while (++idx <= idx_end) {
3797  		struct psc_entry entry = entries[idx];
3798  
3799  		if (entry.operation != entry_start.operation ||
3800  		    entry.gfn != entry_start.gfn + npages ||
3801  		    entry.cur_page || !!entry.pagesize != huge)
3802  			break;
3803  
3804  		svm->sev_es.psc_inflight++;
3805  		npages += huge ? 512 : 1;
3806  	}
3807  
3808  	switch (entry_start.operation) {
3809  	case VMGEXIT_PSC_OP_PRIVATE:
3810  	case VMGEXIT_PSC_OP_SHARED:
3811  		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3812  		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3813  		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3814  		vcpu->run->hypercall.args[1] = npages;
3815  		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3816  					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3817  					       : KVM_MAP_GPA_RANGE_DECRYPTED;
3818  		vcpu->run->hypercall.args[2] |= entry_start.pagesize
3819  						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3820  						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3821  		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3822  		return 0; /* forward request to userspace */
3823  	default:
3824  		/*
3825  		 * Only shared/private PSC operations are currently supported, so if the
3826  		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3827  		 * then consider the entire range completed and avoid exiting to
3828  		 * userspace. In theory snp_complete_psc() can always be called directly
3829  		 * at this point to complete the current range and start the next one,
3830  		 * but that could lead to unexpected levels of recursion.
3831  		 */
3832  		__snp_complete_one_psc(svm);
3833  		goto next_range;
3834  	}
3835  
3836  	unreachable();
3837  }
3838  
__sev_snp_update_protected_guest_state(struct kvm_vcpu * vcpu)3839  static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
3840  {
3841  	struct vcpu_svm *svm = to_svm(vcpu);
3842  
3843  	WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
3844  
3845  	/* Mark the vCPU as offline and not runnable */
3846  	vcpu->arch.pv.pv_unhalted = false;
3847  	vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3848  
3849  	/* Clear use of the VMSA */
3850  	svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3851  
3852  	if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
3853  		gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3854  		struct kvm_memory_slot *slot;
3855  		kvm_pfn_t pfn;
3856  
3857  		slot = gfn_to_memslot(vcpu->kvm, gfn);
3858  		if (!slot)
3859  			return -EINVAL;
3860  
3861  		/*
3862  		 * The new VMSA will be private memory guest memory, so
3863  		 * retrieve the PFN from the gmem backend.
3864  		 */
3865  		if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL))
3866  			return -EINVAL;
3867  
3868  		/*
3869  		 * From this point forward, the VMSA will always be a
3870  		 * guest-mapped page rather than the initial one allocated
3871  		 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
3872  		 * could be free'd and cleaned up here, but that involves
3873  		 * cleanups like wbinvd_on_all_cpus() which would ideally
3874  		 * be handled during teardown rather than guest boot.
3875  		 * Deferring that also allows the existing logic for SEV-ES
3876  		 * VMSAs to be re-used with minimal SNP-specific changes.
3877  		 */
3878  		svm->sev_es.snp_has_guest_vmsa = true;
3879  
3880  		/* Use the new VMSA */
3881  		svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3882  
3883  		/* Mark the vCPU as runnable */
3884  		vcpu->arch.pv.pv_unhalted = false;
3885  		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3886  
3887  		svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3888  
3889  		/*
3890  		 * gmem pages aren't currently migratable, but if this ever
3891  		 * changes then care should be taken to ensure
3892  		 * svm->sev_es.vmsa is pinned through some other means.
3893  		 */
3894  		kvm_release_pfn_clean(pfn);
3895  	}
3896  
3897  	/*
3898  	 * When replacing the VMSA during SEV-SNP AP creation,
3899  	 * mark the VMCB dirty so that full state is always reloaded.
3900  	 */
3901  	vmcb_mark_all_dirty(svm->vmcb);
3902  
3903  	return 0;
3904  }
3905  
3906  /*
3907   * Invoked as part of svm_vcpu_reset() processing of an init event.
3908   */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3909  void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3910  {
3911  	struct vcpu_svm *svm = to_svm(vcpu);
3912  	int ret;
3913  
3914  	if (!sev_snp_guest(vcpu->kvm))
3915  		return;
3916  
3917  	mutex_lock(&svm->sev_es.snp_vmsa_mutex);
3918  
3919  	if (!svm->sev_es.snp_ap_waiting_for_reset)
3920  		goto unlock;
3921  
3922  	svm->sev_es.snp_ap_waiting_for_reset = false;
3923  
3924  	ret = __sev_snp_update_protected_guest_state(vcpu);
3925  	if (ret)
3926  		vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
3927  
3928  unlock:
3929  	mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
3930  }
3931  
sev_snp_ap_creation(struct vcpu_svm * svm)3932  static int sev_snp_ap_creation(struct vcpu_svm *svm)
3933  {
3934  	struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
3935  	struct kvm_vcpu *vcpu = &svm->vcpu;
3936  	struct kvm_vcpu *target_vcpu;
3937  	struct vcpu_svm *target_svm;
3938  	unsigned int request;
3939  	unsigned int apic_id;
3940  	bool kick;
3941  	int ret;
3942  
3943  	request = lower_32_bits(svm->vmcb->control.exit_info_1);
3944  	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3945  
3946  	/* Validate the APIC ID */
3947  	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3948  	if (!target_vcpu) {
3949  		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3950  			    apic_id);
3951  		return -EINVAL;
3952  	}
3953  
3954  	ret = 0;
3955  
3956  	target_svm = to_svm(target_vcpu);
3957  
3958  	/*
3959  	 * The target vCPU is valid, so the vCPU will be kicked unless the
3960  	 * request is for CREATE_ON_INIT. For any errors at this stage, the
3961  	 * kick will place the vCPU in an non-runnable state.
3962  	 */
3963  	kick = true;
3964  
3965  	mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
3966  
3967  	target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3968  	target_svm->sev_es.snp_ap_waiting_for_reset = true;
3969  
3970  	/* Interrupt injection mode shouldn't change for AP creation */
3971  	if (request < SVM_VMGEXIT_AP_DESTROY) {
3972  		u64 sev_features;
3973  
3974  		sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
3975  		sev_features ^= sev->vmsa_features;
3976  
3977  		if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
3978  			vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
3979  				    vcpu->arch.regs[VCPU_REGS_RAX]);
3980  			ret = -EINVAL;
3981  			goto out;
3982  		}
3983  	}
3984  
3985  	switch (request) {
3986  	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3987  		kick = false;
3988  		fallthrough;
3989  	case SVM_VMGEXIT_AP_CREATE:
3990  		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3991  			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3992  				    svm->vmcb->control.exit_info_2);
3993  			ret = -EINVAL;
3994  			goto out;
3995  		}
3996  
3997  		/*
3998  		 * Malicious guest can RMPADJUST a large page into VMSA which
3999  		 * will hit the SNP erratum where the CPU will incorrectly signal
4000  		 * an RMP violation #PF if a hugepage collides with the RMP entry
4001  		 * of VMSA page, reject the AP CREATE request if VMSA address from
4002  		 * guest is 2M aligned.
4003  		 */
4004  		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4005  			vcpu_unimpl(vcpu,
4006  				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4007  				    svm->vmcb->control.exit_info_2);
4008  			ret = -EINVAL;
4009  			goto out;
4010  		}
4011  
4012  		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4013  		break;
4014  	case SVM_VMGEXIT_AP_DESTROY:
4015  		break;
4016  	default:
4017  		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4018  			    request);
4019  		ret = -EINVAL;
4020  		break;
4021  	}
4022  
4023  out:
4024  	if (kick) {
4025  		kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4026  		kvm_vcpu_kick(target_vcpu);
4027  	}
4028  
4029  	mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
4030  
4031  	return ret;
4032  }
4033  
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4034  static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4035  {
4036  	struct sev_data_snp_guest_request data = {0};
4037  	struct kvm *kvm = svm->vcpu.kvm;
4038  	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4039  	sev_ret_code fw_err = 0;
4040  	int ret;
4041  
4042  	if (!sev_snp_guest(kvm))
4043  		return -EINVAL;
4044  
4045  	mutex_lock(&sev->guest_req_mutex);
4046  
4047  	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4048  		ret = -EIO;
4049  		goto out_unlock;
4050  	}
4051  
4052  	data.gctx_paddr = __psp_pa(sev->snp_context);
4053  	data.req_paddr = __psp_pa(sev->guest_req_buf);
4054  	data.res_paddr = __psp_pa(sev->guest_resp_buf);
4055  
4056  	/*
4057  	 * Firmware failures are propagated on to guest, but any other failure
4058  	 * condition along the way should be reported to userspace. E.g. if
4059  	 * the PSP is dead and commands are timing out.
4060  	 */
4061  	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4062  	if (ret && !fw_err)
4063  		goto out_unlock;
4064  
4065  	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4066  		ret = -EIO;
4067  		goto out_unlock;
4068  	}
4069  
4070  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
4071  
4072  	ret = 1; /* resume guest */
4073  
4074  out_unlock:
4075  	mutex_unlock(&sev->guest_req_mutex);
4076  	return ret;
4077  }
4078  
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4079  static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4080  {
4081  	struct kvm *kvm = svm->vcpu.kvm;
4082  	u8 msg_type;
4083  
4084  	if (!sev_snp_guest(kvm))
4085  		return -EINVAL;
4086  
4087  	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4088  			   &msg_type, 1))
4089  		return -EIO;
4090  
4091  	/*
4092  	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4093  	 * additional certificate data to be provided alongside the attestation
4094  	 * report via the guest-provided data pages indicated by RAX/RBX. The
4095  	 * certificate data is optional and requires additional KVM enablement
4096  	 * to provide an interface for userspace to provide it, but KVM still
4097  	 * needs to be able to handle extended guest requests either way. So
4098  	 * provide a stub implementation that will always return an empty
4099  	 * certificate table in the guest-provided data pages.
4100  	 */
4101  	if (msg_type == SNP_MSG_REPORT_REQ) {
4102  		struct kvm_vcpu *vcpu = &svm->vcpu;
4103  		u64 data_npages;
4104  		gpa_t data_gpa;
4105  
4106  		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4107  			goto request_invalid;
4108  
4109  		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4110  		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4111  
4112  		if (!PAGE_ALIGNED(data_gpa))
4113  			goto request_invalid;
4114  
4115  		/*
4116  		 * As per GHCB spec (see "SNP Extended Guest Request"), the
4117  		 * certificate table is terminated by 24-bytes of zeroes.
4118  		 */
4119  		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4120  			return -EIO;
4121  	}
4122  
4123  	return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4124  
4125  request_invalid:
4126  	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4127  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4128  	return 1; /* resume guest */
4129  }
4130  
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4131  static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4132  {
4133  	struct vmcb_control_area *control = &svm->vmcb->control;
4134  	struct kvm_vcpu *vcpu = &svm->vcpu;
4135  	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4136  	u64 ghcb_info;
4137  	int ret = 1;
4138  
4139  	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4140  
4141  	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4142  					     control->ghcb_gpa);
4143  
4144  	switch (ghcb_info) {
4145  	case GHCB_MSR_SEV_INFO_REQ:
4146  		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4147  						    GHCB_VERSION_MIN,
4148  						    sev_enc_bit));
4149  		break;
4150  	case GHCB_MSR_CPUID_REQ: {
4151  		u64 cpuid_fn, cpuid_reg, cpuid_value;
4152  
4153  		cpuid_fn = get_ghcb_msr_bits(svm,
4154  					     GHCB_MSR_CPUID_FUNC_MASK,
4155  					     GHCB_MSR_CPUID_FUNC_POS);
4156  
4157  		/* Initialize the registers needed by the CPUID intercept */
4158  		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4159  		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4160  
4161  		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4162  		if (!ret) {
4163  			/* Error, keep GHCB MSR value as-is */
4164  			break;
4165  		}
4166  
4167  		cpuid_reg = get_ghcb_msr_bits(svm,
4168  					      GHCB_MSR_CPUID_REG_MASK,
4169  					      GHCB_MSR_CPUID_REG_POS);
4170  		if (cpuid_reg == 0)
4171  			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4172  		else if (cpuid_reg == 1)
4173  			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4174  		else if (cpuid_reg == 2)
4175  			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4176  		else
4177  			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4178  
4179  		set_ghcb_msr_bits(svm, cpuid_value,
4180  				  GHCB_MSR_CPUID_VALUE_MASK,
4181  				  GHCB_MSR_CPUID_VALUE_POS);
4182  
4183  		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4184  				  GHCB_MSR_INFO_MASK,
4185  				  GHCB_MSR_INFO_POS);
4186  		break;
4187  	}
4188  	case GHCB_MSR_AP_RESET_HOLD_REQ:
4189  		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4190  		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4191  
4192  		/*
4193  		 * Preset the result to a non-SIPI return and then only set
4194  		 * the result to non-zero when delivering a SIPI.
4195  		 */
4196  		set_ghcb_msr_bits(svm, 0,
4197  				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4198  				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4199  
4200  		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4201  				  GHCB_MSR_INFO_MASK,
4202  				  GHCB_MSR_INFO_POS);
4203  		break;
4204  	case GHCB_MSR_HV_FT_REQ:
4205  		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4206  				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4207  		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4208  				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4209  		break;
4210  	case GHCB_MSR_PREF_GPA_REQ:
4211  		if (!sev_snp_guest(vcpu->kvm))
4212  			goto out_terminate;
4213  
4214  		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4215  				  GHCB_MSR_GPA_VALUE_POS);
4216  		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4217  				  GHCB_MSR_INFO_POS);
4218  		break;
4219  	case GHCB_MSR_REG_GPA_REQ: {
4220  		u64 gfn;
4221  
4222  		if (!sev_snp_guest(vcpu->kvm))
4223  			goto out_terminate;
4224  
4225  		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4226  					GHCB_MSR_GPA_VALUE_POS);
4227  
4228  		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4229  
4230  		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4231  				  GHCB_MSR_GPA_VALUE_POS);
4232  		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4233  				  GHCB_MSR_INFO_POS);
4234  		break;
4235  	}
4236  	case GHCB_MSR_PSC_REQ:
4237  		if (!sev_snp_guest(vcpu->kvm))
4238  			goto out_terminate;
4239  
4240  		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4241  		break;
4242  	case GHCB_MSR_TERM_REQ: {
4243  		u64 reason_set, reason_code;
4244  
4245  		reason_set = get_ghcb_msr_bits(svm,
4246  					       GHCB_MSR_TERM_REASON_SET_MASK,
4247  					       GHCB_MSR_TERM_REASON_SET_POS);
4248  		reason_code = get_ghcb_msr_bits(svm,
4249  						GHCB_MSR_TERM_REASON_MASK,
4250  						GHCB_MSR_TERM_REASON_POS);
4251  		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4252  			reason_set, reason_code);
4253  
4254  		goto out_terminate;
4255  	}
4256  	default:
4257  		/* Error, keep GHCB MSR value as-is */
4258  		break;
4259  	}
4260  
4261  	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4262  					    control->ghcb_gpa, ret);
4263  
4264  	return ret;
4265  
4266  out_terminate:
4267  	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4268  	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4269  	vcpu->run->system_event.ndata = 1;
4270  	vcpu->run->system_event.data[0] = control->ghcb_gpa;
4271  
4272  	return 0;
4273  }
4274  
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4275  int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4276  {
4277  	struct vcpu_svm *svm = to_svm(vcpu);
4278  	struct vmcb_control_area *control = &svm->vmcb->control;
4279  	u64 ghcb_gpa, exit_code;
4280  	int ret;
4281  
4282  	/* Validate the GHCB */
4283  	ghcb_gpa = control->ghcb_gpa;
4284  	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4285  		return sev_handle_vmgexit_msr_protocol(svm);
4286  
4287  	if (!ghcb_gpa) {
4288  		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4289  
4290  		/* Without a GHCB, just return right back to the guest */
4291  		return 1;
4292  	}
4293  
4294  	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4295  		/* Unable to map GHCB from guest */
4296  		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4297  			    ghcb_gpa);
4298  
4299  		/* Without a GHCB, just return right back to the guest */
4300  		return 1;
4301  	}
4302  
4303  	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4304  
4305  	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4306  
4307  	sev_es_sync_from_ghcb(svm);
4308  
4309  	/* SEV-SNP guest requires that the GHCB GPA must be registered */
4310  	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4311  		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4312  		return -EINVAL;
4313  	}
4314  
4315  	ret = sev_es_validate_vmgexit(svm);
4316  	if (ret)
4317  		return ret;
4318  
4319  	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
4320  	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
4321  
4322  	exit_code = kvm_ghcb_get_sw_exit_code(control);
4323  	switch (exit_code) {
4324  	case SVM_VMGEXIT_MMIO_READ:
4325  		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4326  		if (ret)
4327  			break;
4328  
4329  		ret = kvm_sev_es_mmio_read(vcpu,
4330  					   control->exit_info_1,
4331  					   control->exit_info_2,
4332  					   svm->sev_es.ghcb_sa);
4333  		break;
4334  	case SVM_VMGEXIT_MMIO_WRITE:
4335  		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4336  		if (ret)
4337  			break;
4338  
4339  		ret = kvm_sev_es_mmio_write(vcpu,
4340  					    control->exit_info_1,
4341  					    control->exit_info_2,
4342  					    svm->sev_es.ghcb_sa);
4343  		break;
4344  	case SVM_VMGEXIT_NMI_COMPLETE:
4345  		++vcpu->stat.nmi_window_exits;
4346  		svm->nmi_masked = false;
4347  		kvm_make_request(KVM_REQ_EVENT, vcpu);
4348  		ret = 1;
4349  		break;
4350  	case SVM_VMGEXIT_AP_HLT_LOOP:
4351  		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4352  		ret = kvm_emulate_ap_reset_hold(vcpu);
4353  		break;
4354  	case SVM_VMGEXIT_AP_JUMP_TABLE: {
4355  		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4356  
4357  		switch (control->exit_info_1) {
4358  		case 0:
4359  			/* Set AP jump table address */
4360  			sev->ap_jump_table = control->exit_info_2;
4361  			break;
4362  		case 1:
4363  			/* Get AP jump table address */
4364  			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
4365  			break;
4366  		default:
4367  			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4368  			       control->exit_info_1);
4369  			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4370  			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4371  		}
4372  
4373  		ret = 1;
4374  		break;
4375  	}
4376  	case SVM_VMGEXIT_HV_FEATURES:
4377  		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
4378  
4379  		ret = 1;
4380  		break;
4381  	case SVM_VMGEXIT_TERM_REQUEST:
4382  		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4383  			control->exit_info_1, control->exit_info_2);
4384  		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4385  		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4386  		vcpu->run->system_event.ndata = 1;
4387  		vcpu->run->system_event.data[0] = control->ghcb_gpa;
4388  		break;
4389  	case SVM_VMGEXIT_PSC:
4390  		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4391  		if (ret)
4392  			break;
4393  
4394  		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4395  		break;
4396  	case SVM_VMGEXIT_AP_CREATION:
4397  		ret = sev_snp_ap_creation(svm);
4398  		if (ret) {
4399  			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4400  			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4401  		}
4402  
4403  		ret = 1;
4404  		break;
4405  	case SVM_VMGEXIT_GUEST_REQUEST:
4406  		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4407  		break;
4408  	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4409  		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4410  		break;
4411  	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4412  		vcpu_unimpl(vcpu,
4413  			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4414  			    control->exit_info_1, control->exit_info_2);
4415  		ret = -EINVAL;
4416  		break;
4417  	default:
4418  		ret = svm_invoke_exit_handler(vcpu, exit_code);
4419  	}
4420  
4421  	return ret;
4422  }
4423  
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4424  int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4425  {
4426  	int count;
4427  	int bytes;
4428  	int r;
4429  
4430  	if (svm->vmcb->control.exit_info_2 > INT_MAX)
4431  		return -EINVAL;
4432  
4433  	count = svm->vmcb->control.exit_info_2;
4434  	if (unlikely(check_mul_overflow(count, size, &bytes)))
4435  		return -EINVAL;
4436  
4437  	r = setup_vmgexit_scratch(svm, in, bytes);
4438  	if (r)
4439  		return r;
4440  
4441  	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4442  				    count, in);
4443  }
4444  
sev_es_vcpu_after_set_cpuid(struct vcpu_svm * svm)4445  static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4446  {
4447  	struct kvm_vcpu *vcpu = &svm->vcpu;
4448  
4449  	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4450  		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4451  				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4452  
4453  		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4454  	}
4455  
4456  	/*
4457  	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4458  	 * the host/guest supports its use.
4459  	 *
4460  	 * guest_can_use() checks a number of requirements on the host/guest to
4461  	 * ensure that MSR_IA32_XSS is available, but it might report true even
4462  	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
4463  	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
4464  	 * to further check that the guest CPUID actually supports
4465  	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
4466  	 * guests will still get intercepted and caught in the normal
4467  	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
4468  	 */
4469  	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
4470  	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4471  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4472  	else
4473  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4474  }
4475  
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4476  void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4477  {
4478  	struct kvm_vcpu *vcpu = &svm->vcpu;
4479  	struct kvm_cpuid_entry2 *best;
4480  
4481  	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4482  	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4483  	if (best)
4484  		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4485  
4486  	if (sev_es_guest(svm->vcpu.kvm))
4487  		sev_es_vcpu_after_set_cpuid(svm);
4488  }
4489  
sev_es_init_vmcb(struct vcpu_svm * svm)4490  static void sev_es_init_vmcb(struct vcpu_svm *svm)
4491  {
4492  	struct vmcb *vmcb = svm->vmcb01.ptr;
4493  	struct kvm_vcpu *vcpu = &svm->vcpu;
4494  
4495  	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4496  
4497  	/*
4498  	 * An SEV-ES guest requires a VMSA area that is a separate from the
4499  	 * VMCB page. Do not include the encryption mask on the VMSA physical
4500  	 * address since hardware will access it using the guest key.  Note,
4501  	 * the VMSA will be NULL if this vCPU is the destination for intrahost
4502  	 * migration, and will be copied later.
4503  	 */
4504  	if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4505  		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4506  
4507  	/* Can't intercept CR register access, HV can't modify CR registers */
4508  	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4509  	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4510  	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4511  	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4512  	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4513  	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4514  
4515  	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4516  
4517  	/* Track EFER/CR register changes */
4518  	svm_set_intercept(svm, TRAP_EFER_WRITE);
4519  	svm_set_intercept(svm, TRAP_CR0_WRITE);
4520  	svm_set_intercept(svm, TRAP_CR4_WRITE);
4521  	svm_set_intercept(svm, TRAP_CR8_WRITE);
4522  
4523  	vmcb->control.intercepts[INTERCEPT_DR] = 0;
4524  	if (!sev_vcpu_has_debug_swap(svm)) {
4525  		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4526  		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4527  		recalc_intercepts(svm);
4528  	} else {
4529  		/*
4530  		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4531  		 * allow debugging SEV-ES guests, and enables DebugSwap iff
4532  		 * NO_NESTED_DATA_BP is supported, so there's no reason to
4533  		 * intercept #DB when DebugSwap is enabled.  For simplicity
4534  		 * with respect to guest debug, intercept #DB for other VMs
4535  		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4536  		 * guest can't DoS the CPU with infinite #DB vectoring.
4537  		 */
4538  		clr_exception_intercept(svm, DB_VECTOR);
4539  	}
4540  
4541  	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
4542  	svm_clr_intercept(svm, INTERCEPT_XSETBV);
4543  
4544  	/* Clear intercepts on selected MSRs */
4545  	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4546  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4547  }
4548  
sev_init_vmcb(struct vcpu_svm * svm)4549  void sev_init_vmcb(struct vcpu_svm *svm)
4550  {
4551  	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4552  	clr_exception_intercept(svm, UD_VECTOR);
4553  
4554  	/*
4555  	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4556  	 * KVM can't decrypt guest memory to decode the faulting instruction.
4557  	 */
4558  	clr_exception_intercept(svm, GP_VECTOR);
4559  
4560  	if (sev_es_guest(svm->vcpu.kvm))
4561  		sev_es_init_vmcb(svm);
4562  }
4563  
sev_es_vcpu_reset(struct vcpu_svm * svm)4564  void sev_es_vcpu_reset(struct vcpu_svm *svm)
4565  {
4566  	struct kvm_vcpu *vcpu = &svm->vcpu;
4567  	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4568  
4569  	/*
4570  	 * Set the GHCB MSR value as per the GHCB specification when emulating
4571  	 * vCPU RESET for an SEV-ES guest.
4572  	 */
4573  	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4574  					    GHCB_VERSION_MIN,
4575  					    sev_enc_bit));
4576  
4577  	mutex_init(&svm->sev_es.snp_vmsa_mutex);
4578  }
4579  
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4580  void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4581  {
4582  	/*
4583  	 * All host state for SEV-ES guests is categorized into three swap types
4584  	 * based on how it is handled by hardware during a world switch:
4585  	 *
4586  	 * A: VMRUN:   Host state saved in host save area
4587  	 *    VMEXIT:  Host state loaded from host save area
4588  	 *
4589  	 * B: VMRUN:   Host state _NOT_ saved in host save area
4590  	 *    VMEXIT:  Host state loaded from host save area
4591  	 *
4592  	 * C: VMRUN:   Host state _NOT_ saved in host save area
4593  	 *    VMEXIT:  Host state initialized to default(reset) values
4594  	 *
4595  	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4596  	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4597  	 * by common SVM code).
4598  	 */
4599  	hostsa->xcr0 = kvm_host.xcr0;
4600  	hostsa->pkru = read_pkru();
4601  	hostsa->xss = kvm_host.xss;
4602  
4603  	/*
4604  	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4605  	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
4606  	 * saves and loads debug registers (Type-A).
4607  	 */
4608  	if (sev_vcpu_has_debug_swap(svm)) {
4609  		hostsa->dr0 = native_get_debugreg(0);
4610  		hostsa->dr1 = native_get_debugreg(1);
4611  		hostsa->dr2 = native_get_debugreg(2);
4612  		hostsa->dr3 = native_get_debugreg(3);
4613  		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4614  		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4615  		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4616  		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4617  	}
4618  }
4619  
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4620  void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4621  {
4622  	struct vcpu_svm *svm = to_svm(vcpu);
4623  
4624  	/* First SIPI: Use the values as initially set by the VMM */
4625  	if (!svm->sev_es.received_first_sipi) {
4626  		svm->sev_es.received_first_sipi = true;
4627  		return;
4628  	}
4629  
4630  	/* Subsequent SIPI */
4631  	switch (svm->sev_es.ap_reset_hold_type) {
4632  	case AP_RESET_HOLD_NAE_EVENT:
4633  		/*
4634  		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4635  		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4636  		 */
4637  		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
4638  		break;
4639  	case AP_RESET_HOLD_MSR_PROTO:
4640  		/*
4641  		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4642  		 * set the CS and RIP. Set GHCB data field to a non-zero value.
4643  		 */
4644  		set_ghcb_msr_bits(svm, 1,
4645  				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4646  				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4647  
4648  		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4649  				  GHCB_MSR_INFO_MASK,
4650  				  GHCB_MSR_INFO_POS);
4651  		break;
4652  	default:
4653  		break;
4654  	}
4655  }
4656  
snp_safe_alloc_page_node(int node,gfp_t gfp)4657  struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4658  {
4659  	unsigned long pfn;
4660  	struct page *p;
4661  
4662  	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4663  		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4664  
4665  	/*
4666  	 * Allocate an SNP-safe page to workaround the SNP erratum where
4667  	 * the CPU will incorrectly signal an RMP violation #PF if a
4668  	 * hugepage (2MB or 1GB) collides with the RMP entry of a
4669  	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4670  	 *
4671  	 * Allocate one extra page, choose a page which is not
4672  	 * 2MB-aligned, and free the other.
4673  	 */
4674  	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4675  	if (!p)
4676  		return NULL;
4677  
4678  	split_page(p, 1);
4679  
4680  	pfn = page_to_pfn(p);
4681  	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4682  		__free_page(p++);
4683  	else
4684  		__free_page(p + 1);
4685  
4686  	return p;
4687  }
4688  
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4689  void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4690  {
4691  	struct kvm_memory_slot *slot;
4692  	struct kvm *kvm = vcpu->kvm;
4693  	int order, rmp_level, ret;
4694  	bool assigned;
4695  	kvm_pfn_t pfn;
4696  	gfn_t gfn;
4697  
4698  	gfn = gpa >> PAGE_SHIFT;
4699  
4700  	/*
4701  	 * The only time RMP faults occur for shared pages is when the guest is
4702  	 * triggering an RMP fault for an implicit page-state change from
4703  	 * shared->private. Implicit page-state changes are forwarded to
4704  	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4705  	 * for shared pages should not end up here.
4706  	 */
4707  	if (!kvm_mem_is_private(kvm, gfn)) {
4708  		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4709  				    gpa);
4710  		return;
4711  	}
4712  
4713  	slot = gfn_to_memslot(kvm, gfn);
4714  	if (!kvm_slot_can_be_private(slot)) {
4715  		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4716  				    gpa);
4717  		return;
4718  	}
4719  
4720  	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order);
4721  	if (ret) {
4722  		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4723  				    gpa);
4724  		return;
4725  	}
4726  
4727  	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4728  	if (ret || !assigned) {
4729  		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4730  				    gpa, pfn, ret);
4731  		goto out_no_trace;
4732  	}
4733  
4734  	/*
4735  	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4736  	 * with PFERR_GUEST_RMP_BIT set:
4737  	 *
4738  	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4739  	 *    bit set if the guest issues them with a smaller granularity than
4740  	 *    what is indicated by the page-size bit in the 2MB RMP entry for
4741  	 *    the PFN that backs the GPA.
4742  	 *
4743  	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4744  	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
4745  	 *    that backs the GPA.
4746  	 *
4747  	 * In both these cases, the corresponding 2M RMP entry needs to
4748  	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4749  	 * split into 4K RMP entries, then this is likely a spurious case which
4750  	 * can occur when there are concurrent accesses by the guest to a 2MB
4751  	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4752  	 * the process of being PMASH'd into 4K entries. These cases should
4753  	 * resolve automatically on subsequent accesses, so just ignore them
4754  	 * here.
4755  	 */
4756  	if (rmp_level == PG_LEVEL_4K)
4757  		goto out;
4758  
4759  	ret = snp_rmptable_psmash(pfn);
4760  	if (ret) {
4761  		/*
4762  		 * Look it up again. If it's 4K now then the PSMASH may have
4763  		 * raced with another process and the issue has already resolved
4764  		 * itself.
4765  		 */
4766  		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4767  		    assigned && rmp_level == PG_LEVEL_4K)
4768  			goto out;
4769  
4770  		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4771  				    gpa, pfn, ret);
4772  	}
4773  
4774  	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4775  out:
4776  	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4777  out_no_trace:
4778  	put_page(pfn_to_page(pfn));
4779  }
4780  
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4781  static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4782  {
4783  	kvm_pfn_t pfn = start;
4784  
4785  	while (pfn < end) {
4786  		int ret, rmp_level;
4787  		bool assigned;
4788  
4789  		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4790  		if (ret) {
4791  			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4792  					    pfn, start, end, rmp_level, ret);
4793  			return false;
4794  		}
4795  
4796  		if (assigned) {
4797  			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4798  				 __func__, pfn, start, end, rmp_level);
4799  			return false;
4800  		}
4801  
4802  		pfn++;
4803  	}
4804  
4805  	return true;
4806  }
4807  
max_level_for_order(int order)4808  static u8 max_level_for_order(int order)
4809  {
4810  	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4811  		return PG_LEVEL_2M;
4812  
4813  	return PG_LEVEL_4K;
4814  }
4815  
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4816  static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4817  {
4818  	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4819  
4820  	/*
4821  	 * If this is a large folio, and the entire 2M range containing the
4822  	 * PFN is currently shared, then the entire 2M-aligned range can be
4823  	 * set to private via a single 2M RMP entry.
4824  	 */
4825  	if (max_level_for_order(order) > PG_LEVEL_4K &&
4826  	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4827  		return true;
4828  
4829  	return false;
4830  }
4831  
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4832  int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4833  {
4834  	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
4835  	kvm_pfn_t pfn_aligned;
4836  	gfn_t gfn_aligned;
4837  	int level, rc;
4838  	bool assigned;
4839  
4840  	if (!sev_snp_guest(kvm))
4841  		return 0;
4842  
4843  	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4844  	if (rc) {
4845  		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4846  				   gfn, pfn, rc);
4847  		return -ENOENT;
4848  	}
4849  
4850  	if (assigned) {
4851  		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4852  			 __func__, gfn, pfn, max_order, level);
4853  		return 0;
4854  	}
4855  
4856  	if (is_large_rmp_possible(kvm, pfn, max_order)) {
4857  		level = PG_LEVEL_2M;
4858  		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4859  		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4860  	} else {
4861  		level = PG_LEVEL_4K;
4862  		pfn_aligned = pfn;
4863  		gfn_aligned = gfn;
4864  	}
4865  
4866  	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4867  	if (rc) {
4868  		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4869  				   gfn, pfn, level, rc);
4870  		return -EINVAL;
4871  	}
4872  
4873  	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4874  		 __func__, gfn, pfn, pfn_aligned, max_order, level);
4875  
4876  	return 0;
4877  }
4878  
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4879  void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4880  {
4881  	kvm_pfn_t pfn;
4882  
4883  	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4884  		return;
4885  
4886  	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4887  
4888  	for (pfn = start; pfn < end;) {
4889  		bool use_2m_update = false;
4890  		int rc, rmp_level;
4891  		bool assigned;
4892  
4893  		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4894  		if (rc || !assigned)
4895  			goto next_pfn;
4896  
4897  		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4898  				end >= (pfn + PTRS_PER_PMD) &&
4899  				rmp_level > PG_LEVEL_4K;
4900  
4901  		/*
4902  		 * If an unaligned PFN corresponds to a 2M region assigned as a
4903  		 * large page in the RMP table, PSMASH the region into individual
4904  		 * 4K RMP entries before attempting to convert a 4K sub-page.
4905  		 */
4906  		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4907  			/*
4908  			 * This shouldn't fail, but if it does, report it, but
4909  			 * still try to update RMP entry to shared and pray this
4910  			 * was a spurious error that can be addressed later.
4911  			 */
4912  			rc = snp_rmptable_psmash(pfn);
4913  			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4914  				  pfn, rc);
4915  		}
4916  
4917  		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4918  		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4919  			      pfn, rc))
4920  			goto next_pfn;
4921  
4922  		/*
4923  		 * SEV-ES avoids host/guest cache coherency issues through
4924  		 * WBINVD hooks issued via MMU notifiers during run-time, and
4925  		 * KVM's VM destroy path at shutdown. Those MMU notifier events
4926  		 * don't cover gmem since there is no requirement to map pages
4927  		 * to a HVA in order to use them for a running guest. While the
4928  		 * shutdown path would still likely cover things for SNP guests,
4929  		 * userspace may also free gmem pages during run-time via
4930  		 * hole-punching operations on the guest_memfd, so flush the
4931  		 * cache entries for these pages before free'ing them back to
4932  		 * the host.
4933  		 */
4934  		clflush_cache_range(__va(pfn_to_hpa(pfn)),
4935  				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
4936  next_pfn:
4937  		pfn += use_2m_update ? PTRS_PER_PMD : 1;
4938  		cond_resched();
4939  	}
4940  }
4941  
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4942  int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4943  {
4944  	int level, rc;
4945  	bool assigned;
4946  
4947  	if (!sev_snp_guest(kvm))
4948  		return 0;
4949  
4950  	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4951  	if (rc || !assigned)
4952  		return PG_LEVEL_4K;
4953  
4954  	return level;
4955  }
4956