1  // SPDX-License-Identifier: GPL-2.0
2  
3  /*
4   * Copyright 2016-2022 HabanaLabs, Ltd.
5   * All Rights Reserved.
6   */
7  
8  #include <uapi/drm/habanalabs_accel.h>
9  #include "habanalabs.h"
10  #include "../include/hw_ip/mmu/mmu_general.h"
11  
12  #include <linux/uaccess.h>
13  #include <linux/slab.h>
14  #include <linux/vmalloc.h>
15  #include <linux/pci-p2pdma.h>
16  
17  MODULE_IMPORT_NS(DMA_BUF);
18  
19  #define HL_MMU_DEBUG	0
20  
21  /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22  #define DRAM_POOL_PAGE_SIZE	SZ_8M
23  
24  #define MEM_HANDLE_INVALID	ULONG_MAX
25  
26  static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27  			struct hl_mem_in *args, u64 *handle);
28  
set_alloc_page_size(struct hl_device * hdev,struct hl_mem_in * args,u32 * page_size)29  static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30  {
31  	struct asic_fixed_properties *prop = &hdev->asic_prop;
32  	u64 psize;
33  
34  	/*
35  	 * for ASIC that supports setting the allocation page size by user we will address
36  	 * user's choice only if it is not 0 (as 0 means taking the default page size)
37  	 */
38  	if (prop->supports_user_set_page_size && args->alloc.page_size) {
39  		psize = args->alloc.page_size;
40  
41  		if (!is_power_of_2(psize)) {
42  			dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43  			return -EINVAL;
44  		}
45  	} else {
46  		psize = prop->device_mem_alloc_default_page_size;
47  	}
48  
49  	*page_size = psize;
50  
51  	return 0;
52  }
53  
54  /*
55   * The va ranges in context object contain a list with the available chunks of
56   * device virtual memory.
57   * There is one range for host allocations and one for DRAM allocations.
58   *
59   * On initialization each range contains one chunk of all of its available
60   * virtual range which is a half of the total device virtual range.
61   *
62   * On each mapping of physical pages, a suitable virtual range chunk (with a
63   * minimum size) is selected from the list. If the chunk size equals the
64   * requested size, the chunk is returned. Otherwise, the chunk is split into
65   * two chunks - one to return as result and a remainder to stay in the list.
66   *
67   * On each Unmapping of a virtual address, the relevant virtual chunk is
68   * returned to the list. The chunk is added to the list and if its edges match
69   * the edges of the adjacent chunks (means a contiguous chunk can be created),
70   * the chunks are merged.
71   *
72   * On finish, the list is checked to have only one chunk of all the relevant
73   * virtual range (which is a half of the device total virtual range).
74   * If not (means not all mappings were unmapped), a warning is printed.
75   */
76  
77  /*
78   * alloc_device_memory() - allocate device memory.
79   * @ctx: pointer to the context structure.
80   * @args: host parameters containing the requested size.
81   * @ret_handle: result handle.
82   *
83   * This function does the following:
84   * - Allocate the requested size rounded up to 'dram_page_size' pages.
85   * - Return unique handle for later map/unmap/free.
86   */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)87  static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88  				u32 *ret_handle)
89  {
90  	struct hl_device *hdev = ctx->hdev;
91  	struct hl_vm *vm = &hdev->vm;
92  	struct hl_vm_phys_pg_pack *phys_pg_pack;
93  	u64 paddr = 0, total_size, num_pgs, i;
94  	u32 num_curr_pgs, page_size;
95  	bool contiguous;
96  	int handle, rc;
97  
98  	num_curr_pgs = 0;
99  
100  	rc = set_alloc_page_size(hdev, args, &page_size);
101  	if (rc)
102  		return rc;
103  
104  	num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105  	total_size = num_pgs * page_size;
106  
107  	if (!total_size) {
108  		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109  		return -EINVAL;
110  	}
111  
112  	contiguous = args->flags & HL_MEM_CONTIGUOUS;
113  
114  	if (contiguous) {
115  		if (is_power_of_2(page_size))
116  			paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117  								     total_size, NULL, page_size);
118  		else
119  			paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120  		if (!paddr) {
121  			dev_err(hdev->dev,
122  				"Cannot allocate %llu contiguous pages with total size of %llu\n",
123  				num_pgs, total_size);
124  			return -ENOMEM;
125  		}
126  	}
127  
128  	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129  	if (!phys_pg_pack) {
130  		rc = -ENOMEM;
131  		goto pages_pack_err;
132  	}
133  
134  	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135  	phys_pg_pack->asid = ctx->asid;
136  	phys_pg_pack->npages = num_pgs;
137  	phys_pg_pack->page_size = page_size;
138  	phys_pg_pack->total_size = total_size;
139  	phys_pg_pack->flags = args->flags;
140  	phys_pg_pack->contiguous = contiguous;
141  
142  	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143  	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144  		rc = -ENOMEM;
145  		goto pages_arr_err;
146  	}
147  
148  	if (phys_pg_pack->contiguous) {
149  		for (i = 0 ; i < num_pgs ; i++)
150  			phys_pg_pack->pages[i] = paddr + i * page_size;
151  	} else {
152  		for (i = 0 ; i < num_pgs ; i++) {
153  			if (is_power_of_2(page_size))
154  				phys_pg_pack->pages[i] =
155  					(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156  									    page_size, NULL,
157  									    page_size);
158  			else
159  				phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160  									page_size);
161  
162  			if (!phys_pg_pack->pages[i]) {
163  				dev_err(hdev->dev,
164  					"Cannot allocate device memory (out of memory)\n");
165  				rc = -ENOMEM;
166  				goto page_err;
167  			}
168  
169  			num_curr_pgs++;
170  		}
171  	}
172  
173  	spin_lock(&vm->idr_lock);
174  	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175  				GFP_ATOMIC);
176  	spin_unlock(&vm->idr_lock);
177  
178  	if (handle < 0) {
179  		dev_err(hdev->dev, "Failed to get handle for page\n");
180  		rc = -EFAULT;
181  		goto idr_err;
182  	}
183  
184  	for (i = 0 ; i < num_pgs ; i++)
185  		kref_get(&vm->dram_pg_pool_refcount);
186  
187  	phys_pg_pack->handle = handle;
188  
189  	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190  	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191  
192  	*ret_handle = handle;
193  
194  	return 0;
195  
196  idr_err:
197  page_err:
198  	if (!phys_pg_pack->contiguous)
199  		for (i = 0 ; i < num_curr_pgs ; i++)
200  			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201  					page_size);
202  
203  	kvfree(phys_pg_pack->pages);
204  pages_arr_err:
205  	kfree(phys_pg_pack);
206  pages_pack_err:
207  	if (contiguous)
208  		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209  
210  	return rc;
211  }
212  
213  /**
214   * dma_map_host_va() - DMA mapping of the given host virtual address.
215   * @hdev: habanalabs device structure.
216   * @addr: the host virtual address of the memory area.
217   * @size: the size of the memory area.
218   * @p_userptr: pointer to result userptr structure.
219   *
220   * This function does the following:
221   * - Allocate userptr structure.
222   * - Pin the given host memory using the userptr structure.
223   * - Perform DMA mapping to have the DMA addresses of the pages.
224   */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)225  static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226  				struct hl_userptr **p_userptr)
227  {
228  	struct hl_userptr *userptr;
229  	int rc;
230  
231  	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232  	if (!userptr) {
233  		rc = -ENOMEM;
234  		goto userptr_err;
235  	}
236  
237  	rc = hl_pin_host_memory(hdev, addr, size, userptr);
238  	if (rc)
239  		goto pin_err;
240  
241  	userptr->dma_mapped = true;
242  	userptr->dir = DMA_BIDIRECTIONAL;
243  	userptr->vm_type = VM_TYPE_USERPTR;
244  
245  	*p_userptr = userptr;
246  
247  	rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248  	if (rc) {
249  		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250  		goto dma_map_err;
251  	}
252  
253  	return 0;
254  
255  dma_map_err:
256  	hl_unpin_host_memory(hdev, userptr);
257  pin_err:
258  	kfree(userptr);
259  userptr_err:
260  
261  	return rc;
262  }
263  
264  /**
265   * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266   * @hdev: habanalabs device structure.
267   * @userptr: userptr to free.
268   *
269   * This function does the following:
270   * - Unpins the physical pages.
271   * - Frees the userptr structure.
272   */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)273  static void dma_unmap_host_va(struct hl_device *hdev,
274  				struct hl_userptr *userptr)
275  {
276  	hl_unpin_host_memory(hdev, userptr);
277  	kfree(userptr);
278  }
279  
280  /**
281   * dram_pg_pool_do_release() - free DRAM pages pool
282   * @ref: pointer to reference object.
283   *
284   * This function does the following:
285   * - Frees the idr structure of physical pages handles.
286   * - Frees the generic pool of DRAM physical pages.
287   */
dram_pg_pool_do_release(struct kref * ref)288  static void dram_pg_pool_do_release(struct kref *ref)
289  {
290  	struct hl_vm *vm = container_of(ref, struct hl_vm,
291  			dram_pg_pool_refcount);
292  
293  	/*
294  	 * free the idr here as only here we know for sure that there are no
295  	 * allocated physical pages and hence there are no handles in use
296  	 */
297  	idr_destroy(&vm->phys_pg_pack_handles);
298  	gen_pool_destroy(vm->dram_pg_pool);
299  }
300  
301  /**
302   * free_phys_pg_pack() - free physical page pack.
303   * @hdev: habanalabs device structure.
304   * @phys_pg_pack: physical page pack to free.
305   *
306   * This function does the following:
307   * - For DRAM memory only
308   *   - iterate over the pack, free each physical block structure by
309   *     returning it to the general pool.
310   * - Free the hl_vm_phys_pg_pack structure.
311   */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)312  static void free_phys_pg_pack(struct hl_device *hdev,
313  				struct hl_vm_phys_pg_pack *phys_pg_pack)
314  {
315  	struct hl_vm *vm = &hdev->vm;
316  	u64 i;
317  
318  	if (phys_pg_pack->created_from_userptr)
319  		goto end;
320  
321  	if (phys_pg_pack->contiguous) {
322  		gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323  			phys_pg_pack->total_size);
324  
325  		for (i = 0; i < phys_pg_pack->npages ; i++)
326  			kref_put(&vm->dram_pg_pool_refcount,
327  				dram_pg_pool_do_release);
328  	} else {
329  		for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330  			gen_pool_free(vm->dram_pg_pool,
331  				phys_pg_pack->pages[i],
332  				phys_pg_pack->page_size);
333  			kref_put(&vm->dram_pg_pool_refcount,
334  				dram_pg_pool_do_release);
335  		}
336  	}
337  
338  end:
339  	kvfree(phys_pg_pack->pages);
340  	kfree(phys_pg_pack);
341  
342  	return;
343  }
344  
345  /**
346   * free_device_memory() - free device memory.
347   * @ctx: pointer to the context structure.
348   * @args: host parameters containing the requested size.
349   *
350   * This function does the following:
351   * - Free the device memory related to the given handle.
352   */
free_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args)353  static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354  {
355  	struct hl_device *hdev = ctx->hdev;
356  	struct hl_vm *vm = &hdev->vm;
357  	struct hl_vm_phys_pg_pack *phys_pg_pack;
358  	u32 handle = args->free.handle;
359  
360  	spin_lock(&vm->idr_lock);
361  	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362  	if (!phys_pg_pack) {
363  		spin_unlock(&vm->idr_lock);
364  		dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365  		return -EINVAL;
366  	}
367  
368  	if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369  		spin_unlock(&vm->idr_lock);
370  		dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371  		return -EINVAL;
372  	}
373  
374  	/* must remove from idr before the freeing of the physical pages as the refcount of the pool
375  	 * is also the trigger of the idr destroy
376  	 */
377  	idr_remove(&vm->phys_pg_pack_handles, handle);
378  	spin_unlock(&vm->idr_lock);
379  
380  	atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381  	atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382  
383  	free_phys_pg_pack(hdev, phys_pg_pack);
384  
385  	return 0;
386  }
387  
388  /**
389   * clear_va_list_locked() - free virtual addresses list.
390   * @hdev: habanalabs device structure.
391   * @va_list: list of virtual addresses to free.
392   *
393   * This function does the following:
394   * - Iterate over the list and free each virtual addresses block.
395   *
396   * This function should be called only when va_list lock is taken.
397   */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)398  static void clear_va_list_locked(struct hl_device *hdev,
399  		struct list_head *va_list)
400  {
401  	struct hl_vm_va_block *va_block, *tmp;
402  
403  	list_for_each_entry_safe(va_block, tmp, va_list, node) {
404  		list_del(&va_block->node);
405  		kfree(va_block);
406  	}
407  }
408  
409  /**
410   * print_va_list_locked() - print virtual addresses list.
411   * @hdev: habanalabs device structure.
412   * @va_list: list of virtual addresses to print.
413   *
414   * This function does the following:
415   * - Iterate over the list and print each virtual addresses block.
416   *
417   * This function should be called only when va_list lock is taken.
418   */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)419  static void print_va_list_locked(struct hl_device *hdev,
420  		struct list_head *va_list)
421  {
422  #if HL_MMU_DEBUG
423  	struct hl_vm_va_block *va_block;
424  
425  	dev_dbg(hdev->dev, "print va list:\n");
426  
427  	list_for_each_entry(va_block, va_list, node)
428  		dev_dbg(hdev->dev,
429  			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430  			va_block->start, va_block->end, va_block->size);
431  #endif
432  }
433  
434  /**
435   * merge_va_blocks_locked() - merge a virtual block if possible.
436   * @hdev: pointer to the habanalabs device structure.
437   * @va_list: pointer to the virtual addresses block list.
438   * @va_block: virtual block to merge with adjacent blocks.
439   *
440   * This function does the following:
441   * - Merge the given blocks with the adjacent blocks if their virtual ranges
442   *   create a contiguous virtual range.
443   *
444   * This Function should be called only when va_list lock is taken.
445   */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)446  static void merge_va_blocks_locked(struct hl_device *hdev,
447  		struct list_head *va_list, struct hl_vm_va_block *va_block)
448  {
449  	struct hl_vm_va_block *prev, *next;
450  
451  	prev = list_prev_entry(va_block, node);
452  	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453  		prev->end = va_block->end;
454  		prev->size = prev->end - prev->start + 1;
455  		list_del(&va_block->node);
456  		kfree(va_block);
457  		va_block = prev;
458  	}
459  
460  	next = list_next_entry(va_block, node);
461  	if (&next->node != va_list && va_block->end + 1 == next->start) {
462  		next->start = va_block->start;
463  		next->size = next->end - next->start + 1;
464  		list_del(&va_block->node);
465  		kfree(va_block);
466  	}
467  }
468  
469  /**
470   * add_va_block_locked() - add a virtual block to the virtual addresses list.
471   * @hdev: pointer to the habanalabs device structure.
472   * @va_list: pointer to the virtual addresses block list.
473   * @start: start virtual address.
474   * @end: end virtual address.
475   *
476   * This function does the following:
477   * - Add the given block to the virtual blocks list and merge with other blocks
478   *   if a contiguous virtual block can be created.
479   *
480   * This Function should be called only when va_list lock is taken.
481   */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)482  static int add_va_block_locked(struct hl_device *hdev,
483  		struct list_head *va_list, u64 start, u64 end)
484  {
485  	struct hl_vm_va_block *va_block, *res = NULL;
486  	u64 size = end - start + 1;
487  
488  	print_va_list_locked(hdev, va_list);
489  
490  	list_for_each_entry(va_block, va_list, node) {
491  		/* TODO: remove upon matureness */
492  		if (hl_mem_area_crosses_range(start, size, va_block->start,
493  				va_block->end)) {
494  			dev_err(hdev->dev,
495  				"block crossing ranges at start 0x%llx, end 0x%llx\n",
496  				va_block->start, va_block->end);
497  			return -EINVAL;
498  		}
499  
500  		if (va_block->end < start)
501  			res = va_block;
502  	}
503  
504  	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505  	if (!va_block)
506  		return -ENOMEM;
507  
508  	va_block->start = start;
509  	va_block->end = end;
510  	va_block->size = size;
511  
512  	if (!res)
513  		list_add(&va_block->node, va_list);
514  	else
515  		list_add(&va_block->node, &res->node);
516  
517  	merge_va_blocks_locked(hdev, va_list, va_block);
518  
519  	print_va_list_locked(hdev, va_list);
520  
521  	return 0;
522  }
523  
524  /**
525   * add_va_block() - wrapper for add_va_block_locked.
526   * @hdev: pointer to the habanalabs device structure.
527   * @va_range: pointer to the virtual addresses range object.
528   * @start: start virtual address.
529   * @end: end virtual address.
530   *
531   * This function does the following:
532   * - Takes the list lock and calls add_va_block_locked.
533   */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)534  static inline int add_va_block(struct hl_device *hdev,
535  		struct hl_va_range *va_range, u64 start, u64 end)
536  {
537  	int rc;
538  
539  	mutex_lock(&va_range->lock);
540  	rc = add_va_block_locked(hdev, &va_range->list, start, end);
541  	mutex_unlock(&va_range->lock);
542  
543  	return rc;
544  }
545  
546  /**
547   * is_hint_crossing_range() - check if hint address crossing specified reserved.
548   * @range_type: virtual space range type.
549   * @start_addr: start virtual address.
550   * @size: block size.
551   * @prop: asic properties structure to retrieve reserved ranges from.
552   */
is_hint_crossing_range(enum hl_va_range_type range_type,u64 start_addr,u32 size,struct asic_fixed_properties * prop)553  static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554  		u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555  	bool range_cross;
556  
557  	if (range_type == HL_VA_RANGE_TYPE_DRAM)
558  		range_cross =
559  			hl_mem_area_crosses_range(start_addr, size,
560  			prop->hints_dram_reserved_va_range.start_addr,
561  			prop->hints_dram_reserved_va_range.end_addr);
562  	else if (range_type == HL_VA_RANGE_TYPE_HOST)
563  		range_cross =
564  			hl_mem_area_crosses_range(start_addr,	size,
565  			prop->hints_host_reserved_va_range.start_addr,
566  			prop->hints_host_reserved_va_range.end_addr);
567  	else
568  		range_cross =
569  			hl_mem_area_crosses_range(start_addr, size,
570  			prop->hints_host_hpage_reserved_va_range.start_addr,
571  			prop->hints_host_hpage_reserved_va_range.end_addr);
572  
573  	return range_cross;
574  }
575  
576  /**
577   * get_va_block() - get a virtual block for the given size and alignment.
578   *
579   * @hdev: pointer to the habanalabs device structure.
580   * @va_range: pointer to the virtual addresses range.
581   * @size: requested block size.
582   * @hint_addr: hint for requested address by the user.
583   * @va_block_align: required alignment of the virtual block start address.
584   * @range_type: va range type (host, dram)
585   * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586   *
587   * This function does the following:
588   * - Iterate on the virtual block list to find a suitable virtual block for the
589   *   given size, hint address and alignment.
590   * - Reserve the requested block and update the list.
591   * - Return the start address of the virtual block.
592   */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align,enum hl_va_range_type range_type,u32 flags)593  static u64 get_va_block(struct hl_device *hdev,
594  				struct hl_va_range *va_range,
595  				u64 size, u64 hint_addr, u32 va_block_align,
596  				enum hl_va_range_type range_type,
597  				u32 flags)
598  {
599  	struct hl_vm_va_block *va_block, *new_va_block = NULL;
600  	struct asic_fixed_properties *prop = &hdev->asic_prop;
601  	u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602  		align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603  		dram_hint_mask = prop->dram_hints_align_mask;
604  	bool add_prev = false;
605  	bool is_align_pow_2  = is_power_of_2(va_range->page_size);
606  	bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607  	bool force_hint = flags & HL_MEM_FORCE_HINT;
608  	int rc;
609  
610  	if (is_align_pow_2)
611  		align_mask = ~((u64)va_block_align - 1);
612  	else
613  		/*
614  		 * with non-power-of-2 range we work only with page granularity
615  		 * and the start address is page aligned,
616  		 * so no need for alignment checking.
617  		 */
618  		size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619  							va_range->page_size;
620  
621  	tmp_hint_addr = hint_addr & ~dram_hint_mask;
622  
623  	/* Check if we need to ignore hint address */
624  	if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625  			(!is_align_pow_2 && is_hint_dram_addr &&
626  			do_div(tmp_hint_addr, va_range->page_size))) {
627  
628  		if (force_hint) {
629  			/* Hint must be respected, so here we just fail */
630  			dev_err(hdev->dev,
631  				"Hint address 0x%llx is not page aligned - cannot be respected\n",
632  				hint_addr);
633  			return 0;
634  		}
635  
636  		dev_dbg(hdev->dev,
637  			"Hint address 0x%llx will be ignored because it is not aligned\n",
638  			hint_addr);
639  		hint_addr = 0;
640  	}
641  
642  	mutex_lock(&va_range->lock);
643  
644  	print_va_list_locked(hdev, &va_range->list);
645  
646  	list_for_each_entry(va_block, &va_range->list, node) {
647  		/* Calc the first possible aligned addr */
648  		valid_start = va_block->start;
649  
650  		if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651  			valid_start &= align_mask;
652  			valid_start += va_block_align;
653  			if (valid_start > va_block->end)
654  				continue;
655  		}
656  
657  		valid_size = va_block->end - valid_start + 1;
658  		if (valid_size < size)
659  			continue;
660  
661  		/*
662  		 * In case hint address is 0, and hints_range_reservation
663  		 * property enabled, then avoid allocating va blocks from the
664  		 * range reserved for hint addresses
665  		 */
666  		if (prop->hints_range_reservation && !hint_addr)
667  			if (is_hint_crossing_range(range_type, valid_start,
668  					size, prop))
669  				continue;
670  
671  		/* Pick the minimal length block which has the required size */
672  		if (!new_va_block || (valid_size < reserved_valid_size)) {
673  			new_va_block = va_block;
674  			reserved_valid_start = valid_start;
675  			reserved_valid_size = valid_size;
676  		}
677  
678  		if (hint_addr && hint_addr >= valid_start &&
679  					(hint_addr + size) <= va_block->end) {
680  			new_va_block = va_block;
681  			reserved_valid_start = hint_addr;
682  			reserved_valid_size = valid_size;
683  			break;
684  		}
685  	}
686  
687  	if (!new_va_block) {
688  		dev_err(hdev->dev, "no available va block for size %llu\n",
689  								size);
690  		goto out;
691  	}
692  
693  	if (force_hint && reserved_valid_start != hint_addr) {
694  		/* Hint address must be respected. If we are here - this means
695  		 * we could not respect it.
696  		 */
697  		dev_err(hdev->dev,
698  			"Hint address 0x%llx could not be respected\n",
699  			hint_addr);
700  		reserved_valid_start = 0;
701  		goto out;
702  	}
703  
704  	/*
705  	 * Check if there is some leftover range due to reserving the new
706  	 * va block, then return it to the main virtual addresses list.
707  	 */
708  	if (reserved_valid_start > new_va_block->start) {
709  		prev_start = new_va_block->start;
710  		prev_end = reserved_valid_start - 1;
711  
712  		new_va_block->start = reserved_valid_start;
713  		new_va_block->size = reserved_valid_size;
714  
715  		add_prev = true;
716  	}
717  
718  	if (new_va_block->size > size) {
719  		new_va_block->start += size;
720  		new_va_block->size = new_va_block->end - new_va_block->start + 1;
721  	} else {
722  		list_del(&new_va_block->node);
723  		kfree(new_va_block);
724  	}
725  
726  	if (add_prev) {
727  		rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728  		if (rc) {
729  			reserved_valid_start = 0;
730  			goto out;
731  		}
732  	}
733  
734  	print_va_list_locked(hdev, &va_range->list);
735  out:
736  	mutex_unlock(&va_range->lock);
737  
738  	return reserved_valid_start;
739  }
740  
741  /*
742   * hl_reserve_va_block() - reserve a virtual block of a given size.
743   * @hdev: pointer to the habanalabs device structure.
744   * @ctx: current context
745   * @type: virtual addresses range type.
746   * @size: requested block size.
747   * @alignment: required alignment in bytes of the virtual block start address,
748   *             0 means no alignment.
749   *
750   * This function does the following:
751   * - Iterate on the virtual block list to find a suitable virtual block for the
752   *   given size and alignment.
753   * - Reserve the requested block and update the list.
754   * - Return the start address of the virtual block.
755   */
hl_reserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_va_range_type type,u64 size,u32 alignment)756  u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757  		enum hl_va_range_type type, u64 size, u32 alignment)
758  {
759  	return get_va_block(hdev, ctx->va_range[type], size, 0,
760  			max(alignment, ctx->va_range[type]->page_size),
761  			type, 0);
762  }
763  
764  /**
765   * hl_get_va_range_type() - get va_range type for the given address and size.
766   * @ctx: context to fetch va_range from.
767   * @address: the start address of the area we want to validate.
768   * @size: the size in bytes of the area we want to validate.
769   * @type: returned va_range type.
770   *
771   * Return: true if the area is inside a valid range, false otherwise.
772   */
hl_get_va_range_type(struct hl_ctx * ctx,u64 address,u64 size,enum hl_va_range_type * type)773  static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774  			enum hl_va_range_type *type)
775  {
776  	int i;
777  
778  	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779  		if (hl_mem_area_inside_range(address, size,
780  				ctx->va_range[i]->start_addr,
781  				ctx->va_range[i]->end_addr)) {
782  			*type = i;
783  			return 0;
784  		}
785  	}
786  
787  	return -EINVAL;
788  }
789  
790  /**
791   * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792   * @hdev: pointer to the habanalabs device structure
793   * @ctx: pointer to the context structure.
794   * @start_addr: start virtual address.
795   * @size: number of bytes to unreserve.
796   *
797   * This function does the following:
798   * - Takes the list lock and calls add_va_block_locked.
799   */
hl_unreserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,u64 start_addr,u64 size)800  int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801  		u64 start_addr, u64 size)
802  {
803  	enum hl_va_range_type type;
804  	int rc;
805  
806  	rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807  	if (rc) {
808  		dev_err(hdev->dev,
809  			"cannot find va_range for va %#llx size %llu",
810  			start_addr, size);
811  		return rc;
812  	}
813  
814  	rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815  						start_addr + size - 1);
816  	if (rc)
817  		dev_warn(hdev->dev,
818  			"add va block failed for vaddr: 0x%llx\n", start_addr);
819  
820  	return rc;
821  }
822  
823  /**
824   * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825   *                                    memory
826   * @ctx: pointer to the context structure.
827   * @userptr: userptr to initialize from.
828   * @pphys_pg_pack: result pointer.
829   * @force_regular_page: tell the function to ignore huge page optimization,
830   *                      even if possible. Needed for cases where the device VA
831   *                      is allocated before we know the composition of the
832   *                      physical pages
833   *
834   * This function does the following:
835   * - Create a physical page pack from the physical pages related to the given
836   *   virtual block.
837   */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack,bool force_regular_page)838  static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
839  				struct hl_userptr *userptr,
840  				struct hl_vm_phys_pg_pack **pphys_pg_pack,
841  				bool force_regular_page)
842  {
843  	u32 npages, page_size = PAGE_SIZE,
844  		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
845  	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
846  	struct hl_vm_phys_pg_pack *phys_pg_pack;
847  	bool first = true, is_huge_page_opt;
848  	u64 page_mask, total_npages;
849  	struct scatterlist *sg;
850  	dma_addr_t dma_addr;
851  	int rc, i, j;
852  
853  	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
854  	if (!phys_pg_pack)
855  		return -ENOMEM;
856  
857  	phys_pg_pack->vm_type = userptr->vm_type;
858  	phys_pg_pack->created_from_userptr = true;
859  	phys_pg_pack->asid = ctx->asid;
860  	atomic_set(&phys_pg_pack->mapping_cnt, 1);
861  
862  	is_huge_page_opt = (force_regular_page ? false : true);
863  
864  	/* Only if all dma_addrs are aligned to 2MB and their
865  	 * sizes is at least 2MB, we can use huge page mapping.
866  	 * We limit the 2MB optimization to this condition,
867  	 * since later on we acquire the related VA range as one
868  	 * consecutive block.
869  	 */
870  	total_npages = 0;
871  	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
872  		npages = hl_get_sg_info(sg, &dma_addr);
873  
874  		total_npages += npages;
875  
876  		if ((npages % pgs_in_huge_page) ||
877  					(dma_addr & (huge_page_size - 1)))
878  			is_huge_page_opt = false;
879  	}
880  
881  	if (is_huge_page_opt) {
882  		page_size = huge_page_size;
883  		do_div(total_npages, pgs_in_huge_page);
884  	}
885  
886  	page_mask = ~(((u64) page_size) - 1);
887  
888  	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
889  						GFP_KERNEL);
890  	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
891  		rc = -ENOMEM;
892  		goto page_pack_arr_mem_err;
893  	}
894  
895  	phys_pg_pack->npages = total_npages;
896  	phys_pg_pack->page_size = page_size;
897  	phys_pg_pack->total_size = total_npages * page_size;
898  
899  	j = 0;
900  	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
901  		npages = hl_get_sg_info(sg, &dma_addr);
902  
903  		/* align down to physical page size and save the offset */
904  		if (first) {
905  			first = false;
906  			phys_pg_pack->offset = dma_addr & (page_size - 1);
907  			dma_addr &= page_mask;
908  		}
909  
910  		while (npages) {
911  			phys_pg_pack->pages[j++] = dma_addr;
912  			dma_addr += page_size;
913  
914  			if (is_huge_page_opt)
915  				npages -= pgs_in_huge_page;
916  			else
917  				npages--;
918  		}
919  	}
920  
921  	*pphys_pg_pack = phys_pg_pack;
922  
923  	return 0;
924  
925  page_pack_arr_mem_err:
926  	kfree(phys_pg_pack);
927  
928  	return rc;
929  }
930  
931  /**
932   * map_phys_pg_pack() - maps the physical page pack..
933   * @ctx: pointer to the context structure.
934   * @vaddr: start address of the virtual area to map from.
935   * @phys_pg_pack: the pack of physical pages to map to.
936   *
937   * This function does the following:
938   * - Maps each chunk of virtual memory to matching physical chunk.
939   * - Stores number of successful mappings in the given argument.
940   * - Returns 0 on success, error code otherwise.
941   */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)942  static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
943  				struct hl_vm_phys_pg_pack *phys_pg_pack)
944  {
945  	struct hl_device *hdev = ctx->hdev;
946  	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
947  	u32 page_size = phys_pg_pack->page_size;
948  	int rc = 0;
949  	bool is_host_addr;
950  
951  	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
952  		paddr = phys_pg_pack->pages[i];
953  
954  		rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
955  				(i + 1) == phys_pg_pack->npages);
956  		if (rc) {
957  			dev_err(hdev->dev,
958  				"map failed (%d) for handle %u, npages: %llu, mapped: %llu\n",
959  				rc, phys_pg_pack->handle, phys_pg_pack->npages,
960  				mapped_pg_cnt);
961  			goto err;
962  		}
963  
964  		mapped_pg_cnt++;
965  		next_vaddr += page_size;
966  	}
967  
968  	return 0;
969  
970  err:
971  	is_host_addr = !hl_is_dram_va(hdev, vaddr);
972  
973  	next_vaddr = vaddr;
974  	for (i = 0 ; i < mapped_pg_cnt ; i++) {
975  		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
976  					(i + 1) == mapped_pg_cnt))
977  			dev_warn_ratelimited(hdev->dev,
978  				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
979  					phys_pg_pack->handle, next_vaddr,
980  					phys_pg_pack->pages[i], page_size);
981  
982  		next_vaddr += page_size;
983  
984  		/*
985  		 * unmapping on Palladium can be really long, so avoid a CPU
986  		 * soft lockup bug by sleeping a little between unmapping pages
987  		 *
988  		 * In addition, on host num of pages could be huge,
989  		 * because page size could be 4KB, so when unmapping host
990  		 * pages sleep every 32K pages to avoid soft lockup
991  		 */
992  		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
993  			usleep_range(50, 200);
994  	}
995  
996  	return rc;
997  }
998  
999  /**
1000   * unmap_phys_pg_pack() - unmaps the physical page pack.
1001   * @ctx: pointer to the context structure.
1002   * @vaddr: start address of the virtual area to unmap.
1003   * @phys_pg_pack: the pack of physical pages to unmap.
1004   */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)1005  static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1006  				struct hl_vm_phys_pg_pack *phys_pg_pack)
1007  {
1008  	struct hl_device *hdev = ctx->hdev;
1009  	u64 next_vaddr, i;
1010  	bool is_host_addr;
1011  	u32 page_size;
1012  
1013  	is_host_addr = !hl_is_dram_va(hdev, vaddr);
1014  	page_size = phys_pg_pack->page_size;
1015  	next_vaddr = vaddr;
1016  
1017  	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1018  		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1019  				       (i + 1) == phys_pg_pack->npages))
1020  			dev_warn_ratelimited(hdev->dev,
1021  			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1022  
1023  		/*
1024  		 * unmapping on Palladium can be really long, so avoid a CPU
1025  		 * soft lockup bug by sleeping a little between unmapping pages
1026  		 *
1027  		 * In addition, on host num of pages could be huge,
1028  		 * because page size could be 4KB, so when unmapping host
1029  		 * pages sleep every 32K pages to avoid soft lockup
1030  		 */
1031  		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1032  			usleep_range(50, 200);
1033  	}
1034  }
1035  
1036  /**
1037   * map_device_va() - map the given memory.
1038   * @ctx: pointer to the context structure.
1039   * @args: host parameters with handle/host virtual address.
1040   * @device_addr: pointer to result device virtual address.
1041   *
1042   * This function does the following:
1043   * - If given a physical device memory handle, map to a device virtual block
1044   *   and return the start address of this block.
1045   * - If given a host virtual address and size, find the related physical pages,
1046   *   map a device virtual block to this pages and return the start address of
1047   *   this block.
1048   */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)1049  static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1050  {
1051  	struct hl_vm_phys_pg_pack *phys_pg_pack;
1052  	enum hl_va_range_type va_range_type = 0;
1053  	struct hl_device *hdev = ctx->hdev;
1054  	struct hl_userptr *userptr = NULL;
1055  	u32 handle = 0, va_block_align;
1056  	struct hl_vm_hash_node *hnode;
1057  	struct hl_vm *vm = &hdev->vm;
1058  	struct hl_va_range *va_range;
1059  	bool is_userptr, do_prefetch;
1060  	u64 ret_vaddr, hint_addr;
1061  	enum vm_type *vm_type;
1062  	int rc;
1063  
1064  	/* set map flags */
1065  	is_userptr = args->flags & HL_MEM_USERPTR;
1066  	do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1067  
1068  	/* Assume failure */
1069  	*device_addr = 0;
1070  
1071  	if (is_userptr) {
1072  		u64 addr = args->map_host.host_virt_addr,
1073  			size = args->map_host.mem_size;
1074  		u32 page_size = hdev->asic_prop.pmmu.page_size,
1075  			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1076  
1077  		rc = dma_map_host_va(hdev, addr, size, &userptr);
1078  		if (rc)
1079  			return rc;
1080  
1081  		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082  				&phys_pg_pack, false);
1083  		if (rc) {
1084  			dev_err(hdev->dev,
1085  				"unable to init page pack for vaddr 0x%llx\n",
1086  				addr);
1087  			goto init_page_pack_err;
1088  		}
1089  
1090  		vm_type = (enum vm_type *) userptr;
1091  		hint_addr = args->map_host.hint_addr;
1092  		handle = phys_pg_pack->handle;
1093  
1094  		/* get required alignment */
1095  		if (phys_pg_pack->page_size == page_size) {
1096  			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097  			va_range_type = HL_VA_RANGE_TYPE_HOST;
1098  			/*
1099  			 * huge page alignment may be needed in case of regular
1100  			 * page mapping, depending on the host VA alignment
1101  			 */
1102  			if (addr & (huge_page_size - 1))
1103  				va_block_align = page_size;
1104  			else
1105  				va_block_align = huge_page_size;
1106  		} else {
1107  			/*
1108  			 * huge page alignment is needed in case of huge page
1109  			 * mapping
1110  			 */
1111  			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112  			va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113  			va_block_align = huge_page_size;
1114  		}
1115  	} else {
1116  		handle = lower_32_bits(args->map_device.handle);
1117  
1118  		spin_lock(&vm->idr_lock);
1119  		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1120  		if (!phys_pg_pack) {
1121  			spin_unlock(&vm->idr_lock);
1122  			dev_err(hdev->dev,
1123  				"no match for handle %u\n", handle);
1124  			return -EINVAL;
1125  		}
1126  
1127  		/* increment now to avoid freeing device memory while mapping */
1128  		atomic_inc(&phys_pg_pack->mapping_cnt);
1129  
1130  		spin_unlock(&vm->idr_lock);
1131  
1132  		vm_type = (enum vm_type *) phys_pg_pack;
1133  
1134  		hint_addr = args->map_device.hint_addr;
1135  
1136  		/* DRAM VA alignment is the same as the MMU page size */
1137  		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138  		va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139  		va_block_align = hdev->asic_prop.dmmu.page_size;
1140  	}
1141  
1142  	/*
1143  	 * relevant for mapping device physical memory only, as host memory is
1144  	 * implicitly shared
1145  	 */
1146  	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147  			phys_pg_pack->asid != ctx->asid) {
1148  		dev_err(hdev->dev,
1149  			"Failed to map memory, handle %u is not shared\n",
1150  			handle);
1151  		rc = -EPERM;
1152  		goto shared_err;
1153  	}
1154  
1155  	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1156  	if (!hnode) {
1157  		rc = -ENOMEM;
1158  		goto hnode_err;
1159  	}
1160  
1161  	if (hint_addr && phys_pg_pack->offset) {
1162  		if (args->flags & HL_MEM_FORCE_HINT) {
1163  			/* Fail if hint must be respected but it can't be */
1164  			dev_err(hdev->dev,
1165  				"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166  				hint_addr, phys_pg_pack->offset);
1167  			rc = -EINVAL;
1168  			goto va_block_err;
1169  		}
1170  		dev_dbg(hdev->dev,
1171  			"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172  			hint_addr, phys_pg_pack->offset);
1173  	}
1174  
1175  	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1176  					hint_addr, va_block_align,
1177  					va_range_type, args->flags);
1178  	if (!ret_vaddr) {
1179  		dev_err(hdev->dev, "no available va block for handle %u\n",
1180  				handle);
1181  		rc = -ENOMEM;
1182  		goto va_block_err;
1183  	}
1184  
1185  	mutex_lock(&hdev->mmu_lock);
1186  
1187  	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1188  	if (rc) {
1189  		dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n",
1190  			rc, handle);
1191  		mutex_unlock(&hdev->mmu_lock);
1192  		goto map_err;
1193  	}
1194  
1195  	rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196  				ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197  	mutex_unlock(&hdev->mmu_lock);
1198  	if (rc)
1199  		goto map_err;
1200  
1201  	/*
1202  	 * prefetch is done upon user's request. it is performed in WQ as and so can
1203  	 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1204  	 */
1205  	if (do_prefetch) {
1206  		rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1207  							phys_pg_pack->total_size);
1208  		if (rc)
1209  			goto map_err;
1210  	}
1211  
1212  	ret_vaddr += phys_pg_pack->offset;
1213  
1214  	hnode->ptr = vm_type;
1215  	hnode->vaddr = ret_vaddr;
1216  	hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217  
1218  	mutex_lock(&ctx->mem_hash_lock);
1219  	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220  	mutex_unlock(&ctx->mem_hash_lock);
1221  
1222  	*device_addr = ret_vaddr;
1223  
1224  	if (is_userptr)
1225  		free_phys_pg_pack(hdev, phys_pg_pack);
1226  
1227  	return rc;
1228  
1229  map_err:
1230  	if (add_va_block(hdev, va_range, ret_vaddr,
1231  				ret_vaddr + phys_pg_pack->total_size - 1))
1232  		dev_warn(hdev->dev,
1233  			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234  				handle, ret_vaddr);
1235  
1236  va_block_err:
1237  	kfree(hnode);
1238  hnode_err:
1239  shared_err:
1240  	atomic_dec(&phys_pg_pack->mapping_cnt);
1241  	if (is_userptr)
1242  		free_phys_pg_pack(hdev, phys_pg_pack);
1243  init_page_pack_err:
1244  	if (is_userptr)
1245  		dma_unmap_host_va(hdev, userptr);
1246  
1247  	return rc;
1248  }
1249  
1250  /* Should be called while the context's mem_hash_lock is taken */
get_vm_hash_node_locked(struct hl_ctx * ctx,u64 vaddr)1251  static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252  {
1253  	struct hl_vm_hash_node *hnode;
1254  
1255  	hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256  		if (vaddr == hnode->vaddr)
1257  			return hnode;
1258  
1259  	return NULL;
1260  }
1261  
1262  /**
1263   * unmap_device_va() - unmap the given device virtual address.
1264   * @ctx: pointer to the context structure.
1265   * @args: host parameters with device virtual address to unmap.
1266   * @ctx_free: true if in context free flow, false otherwise.
1267   *
1268   * This function does the following:
1269   * - unmap the physical pages related to the given virtual address.
1270   * - return the device virtual block to the virtual block list.
1271   */
unmap_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,bool ctx_free)1272  static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273  				bool ctx_free)
1274  {
1275  	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276  	u64 vaddr = args->unmap.device_virt_addr;
1277  	struct asic_fixed_properties *prop;
1278  	struct hl_device *hdev = ctx->hdev;
1279  	struct hl_userptr *userptr = NULL;
1280  	struct hl_vm_hash_node *hnode;
1281  	struct hl_va_range *va_range;
1282  	enum vm_type *vm_type;
1283  	bool is_userptr;
1284  	int rc = 0;
1285  
1286  	prop = &hdev->asic_prop;
1287  
1288  	/* protect from double entrance */
1289  	mutex_lock(&ctx->mem_hash_lock);
1290  	hnode = get_vm_hash_node_locked(ctx, vaddr);
1291  	if (!hnode) {
1292  		mutex_unlock(&ctx->mem_hash_lock);
1293  		dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294  		return -EINVAL;
1295  	}
1296  
1297  	if (hnode->export_cnt) {
1298  		mutex_unlock(&ctx->mem_hash_lock);
1299  		dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300  		return -EINVAL;
1301  	}
1302  
1303  	hash_del(&hnode->node);
1304  	mutex_unlock(&ctx->mem_hash_lock);
1305  
1306  	vm_type = hnode->ptr;
1307  
1308  	if (*vm_type == VM_TYPE_USERPTR) {
1309  		is_userptr = true;
1310  		userptr = hnode->ptr;
1311  
1312  		rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1313  							false);
1314  		if (rc) {
1315  			dev_err(hdev->dev,
1316  				"unable to init page pack for vaddr 0x%llx\n",
1317  				vaddr);
1318  			goto vm_type_err;
1319  		}
1320  
1321  		if (phys_pg_pack->page_size ==
1322  					hdev->asic_prop.pmmu.page_size)
1323  			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324  		else
1325  			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326  	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327  		is_userptr = false;
1328  		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329  		phys_pg_pack = hnode->ptr;
1330  	} else {
1331  		dev_warn(hdev->dev,
1332  			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333  				vaddr);
1334  		rc = -EFAULT;
1335  		goto vm_type_err;
1336  	}
1337  
1338  	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1339  		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340  		rc = -EINVAL;
1341  		goto mapping_cnt_err;
1342  	}
1343  
1344  	if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1345  		vaddr = prop->dram_base_address +
1346  			DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347  						phys_pg_pack->page_size) *
1348  							phys_pg_pack->page_size;
1349  	else
1350  		vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351  
1352  	mutex_lock(&hdev->mmu_lock);
1353  
1354  	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355  
1356  	/*
1357  	 * During context free this function is called in a loop to clean all
1358  	 * the context mappings. Hence the cache invalidation can be called once
1359  	 * at the loop end rather than for each iteration
1360  	 */
1361  	if (!ctx_free)
1362  		rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1363  							phys_pg_pack->total_size);
1364  
1365  	mutex_unlock(&hdev->mmu_lock);
1366  
1367  	/*
1368  	 * If the context is closing we don't need to check for the MMU cache
1369  	 * invalidation return code and update the VA free list as in this flow
1370  	 * we invalidate the MMU cache outside of this unmap function and the VA
1371  	 * free list will be freed anyway.
1372  	 */
1373  	if (!ctx_free) {
1374  		int tmp_rc;
1375  
1376  		tmp_rc = add_va_block(hdev, va_range, vaddr,
1377  					vaddr + phys_pg_pack->total_size - 1);
1378  		if (tmp_rc) {
1379  			dev_warn(hdev->dev,
1380  					"add va block failed for vaddr: 0x%llx\n",
1381  					vaddr);
1382  			if (!rc)
1383  				rc = tmp_rc;
1384  		}
1385  	}
1386  
1387  	atomic_dec(&phys_pg_pack->mapping_cnt);
1388  	kfree(hnode);
1389  
1390  	if (is_userptr) {
1391  		free_phys_pg_pack(hdev, phys_pg_pack);
1392  		dma_unmap_host_va(hdev, userptr);
1393  	}
1394  
1395  	return rc;
1396  
1397  mapping_cnt_err:
1398  	if (is_userptr)
1399  		free_phys_pg_pack(hdev, phys_pg_pack);
1400  vm_type_err:
1401  	mutex_lock(&ctx->mem_hash_lock);
1402  	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403  	mutex_unlock(&ctx->mem_hash_lock);
1404  
1405  	return rc;
1406  }
1407  
map_block(struct hl_device * hdev,u64 address,u64 * handle,u32 * size)1408  static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409  {
1410  	u32 block_id;
1411  	int rc;
1412  
1413  	*handle = 0;
1414  	if (size)
1415  		*size = 0;
1416  
1417  	rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418  	if (rc)
1419  		return rc;
1420  
1421  	*handle = block_id | HL_MMAP_TYPE_BLOCK;
1422  	*handle <<= PAGE_SHIFT;
1423  
1424  	return 0;
1425  }
1426  
hw_block_vm_close(struct vm_area_struct * vma)1427  static void hw_block_vm_close(struct vm_area_struct *vma)
1428  {
1429  	struct hl_vm_hw_block_list_node *lnode =
1430  		(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431  	struct hl_ctx *ctx = lnode->ctx;
1432  	long new_mmap_size;
1433  
1434  	new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435  	if (new_mmap_size > 0) {
1436  		lnode->mapped_size = new_mmap_size;
1437  		return;
1438  	}
1439  
1440  	mutex_lock(&ctx->hw_block_list_lock);
1441  	list_del(&lnode->node);
1442  	mutex_unlock(&ctx->hw_block_list_lock);
1443  	hl_ctx_put(ctx);
1444  	kfree(lnode);
1445  	vma->vm_private_data = NULL;
1446  }
1447  
1448  static const struct vm_operations_struct hw_block_vm_ops = {
1449  	.close = hw_block_vm_close
1450  };
1451  
1452  /**
1453   * hl_hw_block_mmap() - mmap a hw block to user.
1454   * @hpriv: pointer to the private data of the fd
1455   * @vma: pointer to vm_area_struct of the process
1456   *
1457   * Driver increments context reference for every HW block mapped in order
1458   * to prevent user from closing FD without unmapping first
1459   */
hl_hw_block_mmap(struct hl_fpriv * hpriv,struct vm_area_struct * vma)1460  int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461  {
1462  	struct hl_vm_hw_block_list_node *lnode;
1463  	struct hl_device *hdev = hpriv->hdev;
1464  	struct hl_ctx *ctx = hpriv->ctx;
1465  	u32 block_id, block_size;
1466  	int rc;
1467  
1468  	/* We use the page offset to hold the block id and thus we need to clear
1469  	 * it before doing the mmap itself
1470  	 */
1471  	block_id = vma->vm_pgoff;
1472  	vma->vm_pgoff = 0;
1473  
1474  	/* Driver only allows mapping of a complete HW block */
1475  	block_size = vma->vm_end - vma->vm_start;
1476  
1477  	if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478  		dev_err(hdev->dev,
1479  			"user pointer is invalid - 0x%lx\n",
1480  			vma->vm_start);
1481  
1482  		return -EINVAL;
1483  	}
1484  
1485  	lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1486  	if (!lnode)
1487  		return -ENOMEM;
1488  
1489  	rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490  	if (rc) {
1491  		kfree(lnode);
1492  		return rc;
1493  	}
1494  
1495  	hl_ctx_get(ctx);
1496  
1497  	lnode->ctx = ctx;
1498  	lnode->vaddr = vma->vm_start;
1499  	lnode->block_size = block_size;
1500  	lnode->mapped_size = lnode->block_size;
1501  	lnode->id = block_id;
1502  
1503  	vma->vm_private_data = lnode;
1504  	vma->vm_ops = &hw_block_vm_ops;
1505  
1506  	mutex_lock(&ctx->hw_block_list_lock);
1507  	list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1508  	mutex_unlock(&ctx->hw_block_list_lock);
1509  
1510  	vma->vm_pgoff = block_id;
1511  
1512  	return 0;
1513  }
1514  
set_dma_sg(struct scatterlist * sg,u64 bar_address,u64 chunk_size,struct device * dev,enum dma_data_direction dir)1515  static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516  			struct device *dev, enum dma_data_direction dir)
1517  {
1518  	dma_addr_t addr;
1519  	int rc;
1520  
1521  	addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1522  				DMA_ATTR_SKIP_CPU_SYNC);
1523  	rc = dma_mapping_error(dev, addr);
1524  	if (rc)
1525  		return rc;
1526  
1527  	sg_set_page(sg, NULL, chunk_size, 0);
1528  	sg_dma_address(sg) = addr;
1529  	sg_dma_len(sg) = chunk_size;
1530  
1531  	return 0;
1532  }
1533  
alloc_sgt_from_device_pages(struct hl_device * hdev,u64 * pages,u64 npages,u64 page_size,u64 exported_size,u64 offset,struct device * dev,enum dma_data_direction dir)1534  static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535  						u64 page_size, u64 exported_size, u64 offset,
1536  						struct device *dev, enum dma_data_direction dir)
1537  {
1538  	u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page,
1539  		left_size_in_dma_seg, device_address, bar_address, start_page;
1540  	struct asic_fixed_properties *prop = &hdev->asic_prop;
1541  	struct scatterlist *sg;
1542  	unsigned int nents, i;
1543  	struct sg_table *sgt;
1544  	bool next_sg_entry;
1545  	int rc;
1546  
1547  	/* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */
1548  	dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE);
1549  	if (dma_max_seg_size < PAGE_SIZE) {
1550  		dev_err_ratelimited(hdev->dev,
1551  				"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1552  				dma_max_seg_size);
1553  		return ERR_PTR(-EINVAL);
1554  	}
1555  
1556  	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1557  	if (!sgt)
1558  		return ERR_PTR(-ENOMEM);
1559  
1560  	/* Use the offset to move to the actual first page that is exported */
1561  	for (start_page = 0 ; start_page < npages ; ++start_page) {
1562  		if (offset < page_size)
1563  			break;
1564  
1565  		/* The offset value was validated so there can't be an underflow */
1566  		offset -= page_size;
1567  	}
1568  
1569  	/* Calculate the required number of entries for the SG table */
1570  	curr_page = start_page;
1571  	nents = 1;
1572  	left_size_to_export = exported_size;
1573  	left_size_in_page = page_size - offset;
1574  	left_size_in_dma_seg = dma_max_seg_size;
1575  	next_sg_entry = false;
1576  
1577  	while (true) {
1578  		size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1579  		left_size_to_export -= size;
1580  		left_size_in_page -= size;
1581  		left_size_in_dma_seg -= size;
1582  
1583  		if (!left_size_to_export)
1584  			break;
1585  
1586  		if (!left_size_in_page) {
1587  			/* left_size_to_export is not zero so there must be another page */
1588  			if (pages[curr_page] + page_size != pages[curr_page + 1])
1589  				next_sg_entry = true;
1590  
1591  			++curr_page;
1592  			left_size_in_page = page_size;
1593  		}
1594  
1595  		if (!left_size_in_dma_seg) {
1596  			next_sg_entry = true;
1597  			left_size_in_dma_seg = dma_max_seg_size;
1598  		}
1599  
1600  		if (next_sg_entry) {
1601  			++nents;
1602  			next_sg_entry = false;
1603  		}
1604  	}
1605  
1606  	rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1607  	if (rc)
1608  		goto err_free_sgt;
1609  
1610  	/* Prepare the SG table entries */
1611  	curr_page = start_page;
1612  	device_address = pages[curr_page] + offset;
1613  	left_size_to_export = exported_size;
1614  	left_size_in_page = page_size - offset;
1615  	left_size_in_dma_seg = dma_max_seg_size;
1616  	next_sg_entry = false;
1617  
1618  	for_each_sgtable_dma_sg(sgt, sg, i) {
1619  		bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address);
1620  		chunk_size = 0;
1621  
1622  		for ( ; curr_page < npages ; ++curr_page) {
1623  			size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1624  			chunk_size += size;
1625  			left_size_to_export -= size;
1626  			left_size_in_page -= size;
1627  			left_size_in_dma_seg -= size;
1628  
1629  			if (!left_size_to_export)
1630  				break;
1631  
1632  			if (!left_size_in_page) {
1633  				/* left_size_to_export is not zero so there must be another page */
1634  				if (pages[curr_page] + page_size != pages[curr_page + 1]) {
1635  					device_address = pages[curr_page + 1];
1636  					next_sg_entry = true;
1637  				}
1638  
1639  				left_size_in_page = page_size;
1640  			}
1641  
1642  			if (!left_size_in_dma_seg) {
1643  				/*
1644  				 * Skip setting a new device address if already moving to a page
1645  				 * which is not contiguous with the current page.
1646  				 */
1647  				if (!next_sg_entry) {
1648  					device_address += chunk_size;
1649  					next_sg_entry = true;
1650  				}
1651  
1652  				left_size_in_dma_seg = dma_max_seg_size;
1653  			}
1654  
1655  			if (next_sg_entry) {
1656  				next_sg_entry = false;
1657  				break;
1658  			}
1659  		}
1660  
1661  		rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1662  		if (rc)
1663  			goto err_unmap;
1664  	}
1665  
1666  	/* There should be nothing left to export exactly after looping over all SG elements */
1667  	if (left_size_to_export) {
1668  		dev_err(hdev->dev,
1669  			"left size to export %#llx after initializing %u SG elements\n",
1670  			left_size_to_export, sgt->nents);
1671  		rc = -ENOMEM;
1672  		goto err_unmap;
1673  	}
1674  
1675  	/*
1676  	 * Because we are not going to include a CPU list, we want to have some chance that other
1677  	 * users will detect this when going over SG table, by setting the orig_nents to 0 and using
1678  	 * only nents (length of DMA list).
1679  	 */
1680  	sgt->orig_nents = 0;
1681  
1682  	dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n",
1683  		nents, dev_name(dev));
1684  	for_each_sgtable_dma_sg(sgt, sg, i)
1685  		dev_dbg(hdev->dev,
1686  			"SG entry %d: address %#llx, length %#x\n",
1687  			i, sg_dma_address(sg), sg_dma_len(sg));
1688  
1689  	return sgt;
1690  
1691  err_unmap:
1692  	for_each_sgtable_dma_sg(sgt, sg, i) {
1693  		if (!sg_dma_len(sg))
1694  			continue;
1695  
1696  		dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir,
1697  					DMA_ATTR_SKIP_CPU_SYNC);
1698  	}
1699  
1700  	sg_free_table(sgt);
1701  
1702  err_free_sgt:
1703  	kfree(sgt);
1704  	return ERR_PTR(rc);
1705  }
1706  
hl_dmabuf_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)1707  static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1708  				struct dma_buf_attachment *attachment)
1709  {
1710  	struct hl_dmabuf_priv *hl_dmabuf;
1711  	struct hl_device *hdev;
1712  	int rc;
1713  
1714  	hl_dmabuf = dmabuf->priv;
1715  	hdev = hl_dmabuf->ctx->hdev;
1716  
1717  	rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1718  
1719  	if (rc < 0)
1720  		attachment->peer2peer = false;
1721  	return 0;
1722  }
1723  
hl_map_dmabuf(struct dma_buf_attachment * attachment,enum dma_data_direction dir)1724  static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1725  					enum dma_data_direction dir)
1726  {
1727  	u64 *pages, npages, page_size, exported_size, offset;
1728  	struct dma_buf *dma_buf = attachment->dmabuf;
1729  	struct hl_vm_phys_pg_pack *phys_pg_pack;
1730  	struct hl_dmabuf_priv *hl_dmabuf;
1731  	struct hl_device *hdev;
1732  	struct sg_table *sgt;
1733  
1734  	hl_dmabuf = dma_buf->priv;
1735  	hdev = hl_dmabuf->ctx->hdev;
1736  
1737  	if (!attachment->peer2peer) {
1738  		dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1739  		return ERR_PTR(-EPERM);
1740  	}
1741  
1742  	exported_size = hl_dmabuf->dmabuf->size;
1743  	offset = hl_dmabuf->offset;
1744  	phys_pg_pack = hl_dmabuf->phys_pg_pack;
1745  
1746  	if (phys_pg_pack) {
1747  		pages = phys_pg_pack->pages;
1748  		npages = phys_pg_pack->npages;
1749  		page_size = phys_pg_pack->page_size;
1750  	} else {
1751  		pages = &hl_dmabuf->device_phys_addr;
1752  		npages = 1;
1753  		page_size = hl_dmabuf->dmabuf->size;
1754  	}
1755  
1756  	sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset,
1757  						attachment->dev, dir);
1758  	if (IS_ERR(sgt))
1759  		dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1760  
1761  	return sgt;
1762  }
1763  
hl_unmap_dmabuf(struct dma_buf_attachment * attachment,struct sg_table * sgt,enum dma_data_direction dir)1764  static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1765  				  struct sg_table *sgt,
1766  				  enum dma_data_direction dir)
1767  {
1768  	struct scatterlist *sg;
1769  	int i;
1770  
1771  	/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1772  	 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1773  	 * device memory).
1774  	 *
1775  	 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1776  	 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1777  	 */
1778  	for_each_sgtable_dma_sg(sgt, sg, i)
1779  		dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1780  					sg_dma_len(sg), dir,
1781  					DMA_ATTR_SKIP_CPU_SYNC);
1782  
1783  	/* Need to restore orig_nents because sg_free_table use that field */
1784  	sgt->orig_nents = sgt->nents;
1785  	sg_free_table(sgt);
1786  	kfree(sgt);
1787  }
1788  
memhash_node_export_get(struct hl_ctx * ctx,u64 addr)1789  static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1790  {
1791  	struct hl_device *hdev = ctx->hdev;
1792  	struct hl_vm_hash_node *hnode;
1793  
1794  	/* get the memory handle */
1795  	mutex_lock(&ctx->mem_hash_lock);
1796  	hnode = get_vm_hash_node_locked(ctx, addr);
1797  	if (!hnode) {
1798  		mutex_unlock(&ctx->mem_hash_lock);
1799  		dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1800  		return ERR_PTR(-EINVAL);
1801  	}
1802  
1803  	if (upper_32_bits(hnode->handle)) {
1804  		mutex_unlock(&ctx->mem_hash_lock);
1805  		dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1806  				hnode->handle, addr);
1807  		return ERR_PTR(-EINVAL);
1808  	}
1809  
1810  	/*
1811  	 * node found, increase export count so this memory cannot be unmapped
1812  	 * and the hash node cannot be deleted.
1813  	 */
1814  	hnode->export_cnt++;
1815  	mutex_unlock(&ctx->mem_hash_lock);
1816  
1817  	return hnode;
1818  }
1819  
memhash_node_export_put(struct hl_ctx * ctx,struct hl_vm_hash_node * hnode)1820  static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1821  {
1822  	mutex_lock(&ctx->mem_hash_lock);
1823  	hnode->export_cnt--;
1824  	mutex_unlock(&ctx->mem_hash_lock);
1825  }
1826  
hl_release_dmabuf(struct dma_buf * dmabuf)1827  static void hl_release_dmabuf(struct dma_buf *dmabuf)
1828  {
1829  	struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1830  	struct hl_ctx *ctx;
1831  
1832  	if (!hl_dmabuf)
1833  		return;
1834  
1835  	ctx = hl_dmabuf->ctx;
1836  
1837  	if (hl_dmabuf->memhash_hnode)
1838  		memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1839  
1840  	atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1841  	hl_ctx_put(ctx);
1842  
1843  	/* Paired with get_file() in export_dmabuf() */
1844  	fput(ctx->hpriv->file_priv->filp);
1845  
1846  	kfree(hl_dmabuf);
1847  }
1848  
1849  static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1850  	.attach = hl_dmabuf_attach,
1851  	.map_dma_buf = hl_map_dmabuf,
1852  	.unmap_dma_buf = hl_unmap_dmabuf,
1853  	.release = hl_release_dmabuf,
1854  };
1855  
export_dmabuf(struct hl_ctx * ctx,struct hl_dmabuf_priv * hl_dmabuf,u64 total_size,int flags,int * dmabuf_fd)1856  static int export_dmabuf(struct hl_ctx *ctx,
1857  				struct hl_dmabuf_priv *hl_dmabuf,
1858  				u64 total_size, int flags, int *dmabuf_fd)
1859  {
1860  	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1861  	struct hl_device *hdev = ctx->hdev;
1862  	int rc, fd;
1863  
1864  	exp_info.ops = &habanalabs_dmabuf_ops;
1865  	exp_info.size = total_size;
1866  	exp_info.flags = flags;
1867  	exp_info.priv = hl_dmabuf;
1868  
1869  	hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1870  	if (IS_ERR(hl_dmabuf->dmabuf)) {
1871  		dev_err(hdev->dev, "failed to export dma-buf\n");
1872  		return PTR_ERR(hl_dmabuf->dmabuf);
1873  	}
1874  
1875  	fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1876  	if (fd < 0) {
1877  		dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1878  		rc = fd;
1879  		goto err_dma_buf_put;
1880  	}
1881  
1882  	hl_dmabuf->ctx = ctx;
1883  	hl_ctx_get(hl_dmabuf->ctx);
1884  	atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1885  
1886  	/* Get compute device file to enforce release order, such that all exported dma-buf will be
1887  	 * released first and only then the compute device.
1888  	 * Paired with fput() in hl_release_dmabuf().
1889  	 */
1890  	get_file(ctx->hpriv->file_priv->filp);
1891  
1892  	*dmabuf_fd = fd;
1893  
1894  	return 0;
1895  
1896  err_dma_buf_put:
1897  	hl_dmabuf->dmabuf->priv = NULL;
1898  	dma_buf_put(hl_dmabuf->dmabuf);
1899  	return rc;
1900  }
1901  
validate_export_params_common(struct hl_device * hdev,u64 addr,u64 size,u64 offset)1902  static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset)
1903  {
1904  	if (!PAGE_ALIGNED(addr)) {
1905  		dev_dbg(hdev->dev,
1906  			"exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n",
1907  			addr, PAGE_SIZE);
1908  		return -EINVAL;
1909  	}
1910  
1911  	if (!size || !PAGE_ALIGNED(size)) {
1912  		dev_dbg(hdev->dev,
1913  			"exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n",
1914  			size, PAGE_SIZE);
1915  		return -EINVAL;
1916  	}
1917  
1918  	if (!PAGE_ALIGNED(offset)) {
1919  		dev_dbg(hdev->dev,
1920  			"exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n",
1921  			offset, PAGE_SIZE);
1922  		return -EINVAL;
1923  	}
1924  
1925  	return 0;
1926  }
1927  
validate_export_params_no_mmu(struct hl_device * hdev,u64 device_addr,u64 size)1928  static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1929  {
1930  	struct asic_fixed_properties *prop = &hdev->asic_prop;
1931  	u64 bar_address;
1932  	int rc;
1933  
1934  	rc = validate_export_params_common(hdev, device_addr, size, 0);
1935  	if (rc)
1936  		return rc;
1937  
1938  	if (device_addr < prop->dram_user_base_address ||
1939  			(device_addr + size) > prop->dram_end_address ||
1940  			(device_addr + size) < device_addr) {
1941  		dev_dbg(hdev->dev,
1942  			"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1943  			device_addr, size);
1944  		return -EINVAL;
1945  	}
1946  
1947  	bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1948  
1949  	if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1950  			(bar_address + size) < bar_address) {
1951  		dev_dbg(hdev->dev,
1952  			"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1953  			device_addr, size);
1954  		return -EINVAL;
1955  	}
1956  
1957  	return 0;
1958  }
1959  
validate_export_params(struct hl_device * hdev,u64 device_addr,u64 size,u64 offset,struct hl_vm_phys_pg_pack * phys_pg_pack)1960  static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1961  					struct hl_vm_phys_pg_pack *phys_pg_pack)
1962  {
1963  	struct asic_fixed_properties *prop = &hdev->asic_prop;
1964  	u64 bar_address;
1965  	int i, rc;
1966  
1967  	rc = validate_export_params_common(hdev, device_addr, size, offset);
1968  	if (rc)
1969  		return rc;
1970  
1971  	if ((offset + size) > phys_pg_pack->total_size) {
1972  		dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1973  			offset, size, phys_pg_pack->total_size);
1974  		return -EINVAL;
1975  	}
1976  
1977  	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1978  		bar_address = hdev->dram_pci_bar_start +
1979  				(phys_pg_pack->pages[i] - prop->dram_base_address);
1980  
1981  		if ((bar_address + phys_pg_pack->page_size) >
1982  				(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1983  				(bar_address + phys_pg_pack->page_size) < bar_address) {
1984  			dev_dbg(hdev->dev,
1985  				"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1986  				phys_pg_pack->pages[i], phys_pg_pack->page_size);
1987  			return -EINVAL;
1988  		}
1989  	}
1990  
1991  	return 0;
1992  }
1993  
get_phys_pg_pack_from_hash_node(struct hl_device * hdev,struct hl_vm_hash_node * hnode)1994  static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1995  							struct hl_vm_hash_node *hnode)
1996  {
1997  	struct hl_vm_phys_pg_pack *phys_pg_pack;
1998  	struct hl_vm *vm = &hdev->vm;
1999  
2000  	spin_lock(&vm->idr_lock);
2001  	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
2002  	if (!phys_pg_pack) {
2003  		spin_unlock(&vm->idr_lock);
2004  		dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
2005  		return ERR_PTR(-EINVAL);
2006  	}
2007  
2008  	spin_unlock(&vm->idr_lock);
2009  
2010  	if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
2011  		dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
2012  		return ERR_PTR(-EINVAL);
2013  	}
2014  
2015  	return phys_pg_pack;
2016  }
2017  
2018  /**
2019   * export_dmabuf_from_addr() - export a dma-buf object for the given memory
2020   *                             address and size.
2021   * @ctx: pointer to the context structure.
2022   * @addr: device address.
2023   * @size: size of device memory to export.
2024   * @offset: the offset into the buffer from which to start exporting
2025   * @flags: DMA-BUF file/FD flags.
2026   * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2027   *
2028   * Create and export a dma-buf object for an existing memory allocation inside
2029   * the device memory, and return a FD which is associated with the dma-buf
2030   * object.
2031   *
2032   * Return: 0 on success, non-zero for failure.
2033   */
export_dmabuf_from_addr(struct hl_ctx * ctx,u64 addr,u64 size,u64 offset,int flags,int * dmabuf_fd)2034  static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2035  					int flags, int *dmabuf_fd)
2036  {
2037  	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2038  	struct hl_vm_hash_node *hnode = NULL;
2039  	struct asic_fixed_properties *prop;
2040  	struct hl_dmabuf_priv *hl_dmabuf;
2041  	struct hl_device *hdev;
2042  	int rc;
2043  
2044  	hdev = ctx->hdev;
2045  	prop = &hdev->asic_prop;
2046  
2047  	/* offset must be 0 in devices without virtual memory support */
2048  	if (!prop->dram_supports_virtual_memory && offset) {
2049  		dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2050  		return -EINVAL;
2051  	}
2052  
2053  	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2054  	if (!hl_dmabuf)
2055  		return -ENOMEM;
2056  
2057  	if (prop->dram_supports_virtual_memory) {
2058  		hnode = memhash_node_export_get(ctx, addr);
2059  		if (IS_ERR(hnode)) {
2060  			rc = PTR_ERR(hnode);
2061  			goto err_free_dmabuf_wrapper;
2062  		}
2063  		phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2064  		if (IS_ERR(phys_pg_pack)) {
2065  			rc = PTR_ERR(phys_pg_pack);
2066  			goto dec_memhash_export_cnt;
2067  		}
2068  		rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack);
2069  		if (rc)
2070  			goto dec_memhash_export_cnt;
2071  
2072  		hl_dmabuf->phys_pg_pack = phys_pg_pack;
2073  		hl_dmabuf->memhash_hnode = hnode;
2074  		hl_dmabuf->offset = offset;
2075  	} else {
2076  		rc = validate_export_params_no_mmu(hdev, addr, size);
2077  		if (rc)
2078  			goto err_free_dmabuf_wrapper;
2079  
2080  		hl_dmabuf->device_phys_addr = addr;
2081  	}
2082  
2083  	rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2084  	if (rc)
2085  		goto dec_memhash_export_cnt;
2086  
2087  	return 0;
2088  
2089  dec_memhash_export_cnt:
2090  	if (prop->dram_supports_virtual_memory)
2091  		memhash_node_export_put(ctx, hnode);
2092  err_free_dmabuf_wrapper:
2093  	kfree(hl_dmabuf);
2094  	return rc;
2095  }
2096  
ts_buff_release(struct hl_mmap_mem_buf * buf)2097  static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2098  {
2099  	struct hl_ts_buff *ts_buff = buf->private;
2100  
2101  	vfree(ts_buff->kernel_buff_address);
2102  	vfree(ts_buff->user_buff_address);
2103  	kfree(ts_buff);
2104  }
2105  
hl_ts_mmap(struct hl_mmap_mem_buf * buf,struct vm_area_struct * vma,void * args)2106  static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2107  {
2108  	struct hl_ts_buff *ts_buff = buf->private;
2109  
2110  	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2111  	return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2112  }
2113  
hl_ts_alloc_buf(struct hl_mmap_mem_buf * buf,gfp_t gfp,void * args)2114  static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2115  {
2116  	struct hl_ts_buff *ts_buff = NULL;
2117  	u32 num_elements;
2118  	size_t size;
2119  	void *p;
2120  
2121  	num_elements = *(u32 *)args;
2122  
2123  	ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2124  	if (!ts_buff)
2125  		return -ENOMEM;
2126  
2127  	/* Allocate the user buffer */
2128  	size = num_elements * sizeof(u64);
2129  	p = vmalloc_user(size);
2130  	if (!p)
2131  		goto free_mem;
2132  
2133  	ts_buff->user_buff_address = p;
2134  	buf->mappable_size = size;
2135  
2136  	/* Allocate the internal kernel buffer */
2137  	size = num_elements * sizeof(struct hl_user_pending_interrupt);
2138  	p = vzalloc(size);
2139  	if (!p)
2140  		goto free_user_buff;
2141  
2142  	ts_buff->kernel_buff_address = p;
2143  	ts_buff->kernel_buff_size = size;
2144  
2145  	buf->private = ts_buff;
2146  
2147  	return 0;
2148  
2149  free_user_buff:
2150  	vfree(ts_buff->user_buff_address);
2151  free_mem:
2152  	kfree(ts_buff);
2153  	return -ENOMEM;
2154  }
2155  
2156  static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2157  	.topic = "TS",
2158  	.mem_id = HL_MMAP_TYPE_TS_BUFF,
2159  	.mmap = hl_ts_mmap,
2160  	.alloc = hl_ts_alloc_buf,
2161  	.release = ts_buff_release,
2162  };
2163  
2164  /**
2165   * allocate_timestamps_buffers() - allocate timestamps buffers
2166   * This function will allocate ts buffer that will later on be mapped to the user
2167   * in order to be able to read the timestamp.
2168   * in addition it'll allocate an extra buffer for registration management.
2169   * since we cannot fail during registration for out-of-memory situation, so
2170   * we'll prepare a pool which will be used as user interrupt nodes and instead
2171   * of dynamically allocating nodes while registration we'll pick the node from
2172   * this pool. in addition it'll add node to the mapping hash which will be used
2173   * to map user ts buffer to the internal kernel ts buffer.
2174   * @hpriv: pointer to the private data of the fd
2175   * @args: ioctl input
2176   * @handle: user timestamp buffer handle as an output
2177   */
allocate_timestamps_buffers(struct hl_fpriv * hpriv,struct hl_mem_in * args,u64 * handle)2178  static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2179  {
2180  	struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2181  	struct hl_mmap_mem_buf *buf;
2182  
2183  	if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2184  		dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2185  				args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2186  		return -EINVAL;
2187  	}
2188  
2189  	buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2190  	if (!buf)
2191  		return -ENOMEM;
2192  
2193  	*handle = buf->handle;
2194  
2195  	return 0;
2196  }
2197  
hl_mem_ioctl(struct drm_device * ddev,void * data,struct drm_file * file_priv)2198  int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2199  {
2200  	struct hl_fpriv *hpriv = file_priv->driver_priv;
2201  	enum hl_device_status status;
2202  	union hl_mem_args *args = data;
2203  	struct hl_device *hdev = hpriv->hdev;
2204  	struct hl_ctx *ctx = hpriv->ctx;
2205  	u64 block_handle, device_addr = 0;
2206  	u32 handle = 0, block_size;
2207  	int rc, dmabuf_fd = -EBADF;
2208  
2209  	if (!hl_device_operational(hdev, &status)) {
2210  		dev_dbg_ratelimited(hdev->dev,
2211  			"Device is %s. Can't execute MEMORY IOCTL\n",
2212  			hdev->status[status]);
2213  		return -EBUSY;
2214  	}
2215  
2216  	switch (args->in.op) {
2217  	case HL_MEM_OP_ALLOC:
2218  		if (args->in.alloc.mem_size == 0) {
2219  			dev_err(hdev->dev,
2220  				"alloc size must be larger than 0\n");
2221  			rc = -EINVAL;
2222  			goto out;
2223  		}
2224  
2225  		/* If DRAM does not support virtual memory the driver won't
2226  		 * handle the allocation/freeing of that memory. However, for
2227  		 * system administration/monitoring purposes, the driver will
2228  		 * keep track of the amount of DRAM memory that is allocated
2229  		 * and freed by the user. Because this code totally relies on
2230  		 * the user's input, the driver can't ensure the validity
2231  		 * of this accounting.
2232  		 */
2233  		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2234  			atomic64_add(args->in.alloc.mem_size,
2235  					&ctx->dram_phys_mem);
2236  			atomic64_add(args->in.alloc.mem_size,
2237  					&hdev->dram_used_mem);
2238  
2239  			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2240  			rc = 0;
2241  
2242  			memset(args, 0, sizeof(*args));
2243  			args->out.handle = 0;
2244  			goto out;
2245  		}
2246  
2247  		rc = alloc_device_memory(ctx, &args->in, &handle);
2248  
2249  		memset(args, 0, sizeof(*args));
2250  		args->out.handle = (__u64) handle;
2251  		break;
2252  
2253  	case HL_MEM_OP_FREE:
2254  		/* If DRAM does not support virtual memory the driver won't
2255  		 * handle the allocation/freeing of that memory. However, for
2256  		 * system administration/monitoring purposes, the driver will
2257  		 * keep track of the amount of DRAM memory that is allocated
2258  		 * and freed by the user. Because this code totally relies on
2259  		 * the user's input, the driver can't ensure the validity
2260  		 * of this accounting.
2261  		 */
2262  		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2263  			atomic64_sub(args->in.alloc.mem_size,
2264  					&ctx->dram_phys_mem);
2265  			atomic64_sub(args->in.alloc.mem_size,
2266  					&hdev->dram_used_mem);
2267  
2268  			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2269  			rc = 0;
2270  
2271  			goto out;
2272  		}
2273  
2274  		rc = free_device_memory(ctx, &args->in);
2275  		break;
2276  
2277  	case HL_MEM_OP_MAP:
2278  		rc = map_device_va(ctx, &args->in, &device_addr);
2279  
2280  		memset(args, 0, sizeof(*args));
2281  		args->out.device_virt_addr = device_addr;
2282  		break;
2283  
2284  	case HL_MEM_OP_UNMAP:
2285  		rc = unmap_device_va(ctx, &args->in, false);
2286  		break;
2287  
2288  	case HL_MEM_OP_MAP_BLOCK:
2289  		rc = map_block(hdev, args->in.map_block.block_addr,
2290  				&block_handle, &block_size);
2291  		args->out.block_handle = block_handle;
2292  		args->out.block_size = block_size;
2293  		break;
2294  
2295  	case HL_MEM_OP_EXPORT_DMABUF_FD:
2296  		rc = export_dmabuf_from_addr(ctx,
2297  				args->in.export_dmabuf_fd.addr,
2298  				args->in.export_dmabuf_fd.mem_size,
2299  				args->in.export_dmabuf_fd.offset,
2300  				args->in.flags,
2301  				&dmabuf_fd);
2302  		memset(args, 0, sizeof(*args));
2303  		args->out.fd = dmabuf_fd;
2304  		break;
2305  
2306  	case HL_MEM_OP_TS_ALLOC:
2307  		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2308  		break;
2309  	default:
2310  		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2311  		rc = -EINVAL;
2312  		break;
2313  	}
2314  
2315  out:
2316  	return rc;
2317  }
2318  
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)2319  static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2320  				u32 npages, u64 start, u32 offset,
2321  				struct hl_userptr *userptr)
2322  {
2323  	int rc;
2324  
2325  	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2326  		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2327  		return -EFAULT;
2328  	}
2329  
2330  	userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2331  	if (!userptr->pages)
2332  		return -ENOMEM;
2333  
2334  	rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2335  				 userptr->pages);
2336  
2337  	if (rc != npages) {
2338  		dev_err(hdev->dev,
2339  			"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2340  			rc, addr, size, npages);
2341  		if (rc < 0)
2342  			goto destroy_pages;
2343  		npages = rc;
2344  		rc = -EFAULT;
2345  		goto put_pages;
2346  	}
2347  	userptr->npages = npages;
2348  
2349  	rc = sg_alloc_table_from_pages(userptr->sgt,
2350  				       userptr->pages,
2351  				       npages, offset, size, GFP_KERNEL);
2352  	if (rc < 0) {
2353  		dev_err(hdev->dev, "failed to create SG table from pages\n");
2354  		goto put_pages;
2355  	}
2356  
2357  	return 0;
2358  
2359  put_pages:
2360  	unpin_user_pages(userptr->pages, npages);
2361  destroy_pages:
2362  	kvfree(userptr->pages);
2363  	return rc;
2364  }
2365  
2366  /**
2367   * hl_pin_host_memory() - pins a chunk of host memory.
2368   * @hdev: pointer to the habanalabs device structure.
2369   * @addr: the host virtual address of the memory area.
2370   * @size: the size of the memory area.
2371   * @userptr: pointer to hl_userptr structure.
2372   *
2373   * This function does the following:
2374   * - Pins the physical pages.
2375   * - Create an SG list from those pages.
2376   */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)2377  int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2378  					struct hl_userptr *userptr)
2379  {
2380  	u64 start, end;
2381  	u32 npages, offset;
2382  	int rc;
2383  
2384  	if (!size) {
2385  		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2386  		return -EINVAL;
2387  	}
2388  
2389  	/*
2390  	 * If the combination of the address and size requested for this memory
2391  	 * region causes an integer overflow, return error.
2392  	 */
2393  	if (((addr + size) < addr) ||
2394  			PAGE_ALIGN(addr + size) < (addr + size)) {
2395  		dev_err(hdev->dev,
2396  			"user pointer 0x%llx + %llu causes integer overflow\n",
2397  			addr, size);
2398  		return -EINVAL;
2399  	}
2400  
2401  	userptr->pid = current->pid;
2402  	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2403  	if (!userptr->sgt)
2404  		return -ENOMEM;
2405  
2406  	start = addr & PAGE_MASK;
2407  	offset = addr & ~PAGE_MASK;
2408  	end = PAGE_ALIGN(addr + size);
2409  	npages = (end - start) >> PAGE_SHIFT;
2410  
2411  	userptr->size = size;
2412  	userptr->addr = addr;
2413  	userptr->dma_mapped = false;
2414  	INIT_LIST_HEAD(&userptr->job_node);
2415  
2416  	rc = get_user_memory(hdev, addr, size, npages, start, offset,
2417  				userptr);
2418  	if (rc) {
2419  		dev_err(hdev->dev,
2420  			"failed to get user memory for address 0x%llx\n",
2421  			addr);
2422  		goto free_sgt;
2423  	}
2424  
2425  	hl_debugfs_add_userptr(hdev, userptr);
2426  
2427  	return 0;
2428  
2429  free_sgt:
2430  	kfree(userptr->sgt);
2431  	return rc;
2432  }
2433  
2434  /*
2435   * hl_unpin_host_memory - unpins a chunk of host memory.
2436   * @hdev: pointer to the habanalabs device structure
2437   * @userptr: pointer to hl_userptr structure
2438   *
2439   * This function does the following:
2440   * - Unpins the physical pages related to the host memory
2441   * - Free the SG list
2442   */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)2443  void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2444  {
2445  	hl_debugfs_remove_userptr(hdev, userptr);
2446  
2447  	if (userptr->dma_mapped)
2448  		hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2449  
2450  	unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2451  	kvfree(userptr->pages);
2452  
2453  	list_del(&userptr->job_node);
2454  
2455  	sg_free_table(userptr->sgt);
2456  	kfree(userptr->sgt);
2457  }
2458  
2459  /**
2460   * hl_userptr_delete_list() - clear userptr list.
2461   * @hdev: pointer to the habanalabs device structure.
2462   * @userptr_list: pointer to the list to clear.
2463   *
2464   * This function does the following:
2465   * - Iterates over the list and unpins the host memory and frees the userptr
2466   *   structure.
2467   */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)2468  void hl_userptr_delete_list(struct hl_device *hdev,
2469  				struct list_head *userptr_list)
2470  {
2471  	struct hl_userptr *userptr, *tmp;
2472  
2473  	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2474  		hl_unpin_host_memory(hdev, userptr);
2475  		kfree(userptr);
2476  	}
2477  
2478  	INIT_LIST_HEAD(userptr_list);
2479  }
2480  
2481  /**
2482   * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2483   * @hdev: pointer to the habanalabs device structure.
2484   * @addr: user address to check.
2485   * @size: user block size to check.
2486   * @userptr_list: pointer to the list to clear.
2487   * @userptr: pointer to userptr to check.
2488   *
2489   * This function does the following:
2490   * - Iterates over the list and checks if the given userptr is in it, means is
2491   *   pinned. If so, returns true, otherwise returns false.
2492   */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)2493  bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2494  				u32 size, struct list_head *userptr_list,
2495  				struct hl_userptr **userptr)
2496  {
2497  	list_for_each_entry((*userptr), userptr_list, job_node) {
2498  		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2499  			return true;
2500  	}
2501  
2502  	return false;
2503  }
2504  
2505  /**
2506   * va_range_init() - initialize virtual addresses range.
2507   * @hdev: pointer to the habanalabs device structure.
2508   * @va_ranges: pointer to va_ranges array.
2509   * @range_type: virtual address range type.
2510   * @start: range start address, inclusive.
2511   * @end: range end address, inclusive.
2512   * @page_size: page size for this va_range.
2513   *
2514   * This function does the following:
2515   * - Initializes the virtual addresses list of the given range with the given
2516   *   addresses.
2517   */
va_range_init(struct hl_device * hdev,struct hl_va_range ** va_ranges,enum hl_va_range_type range_type,u64 start,u64 end,u32 page_size)2518  static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2519  				enum hl_va_range_type range_type, u64 start,
2520  				u64 end, u32 page_size)
2521  {
2522  	struct hl_va_range *va_range = va_ranges[range_type];
2523  	int rc;
2524  
2525  	INIT_LIST_HEAD(&va_range->list);
2526  
2527  	/*
2528  	 * PAGE_SIZE alignment
2529  	 * it is the caller's responsibility to align the addresses if the
2530  	 * page size is not a power of 2
2531  	 */
2532  
2533  	if (is_power_of_2(page_size)) {
2534  		start = round_up(start, page_size);
2535  
2536  		/*
2537  		 * The end of the range is inclusive, hence we need to align it
2538  		 * to the end of the last full page in the range. For example if
2539  		 * end = 0x3ff5 with page size 0x1000, we need to align it to
2540  		 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2541  		 */
2542  		end = round_down(end + 1, page_size) - 1;
2543  	}
2544  
2545  	if (start >= end) {
2546  		dev_err(hdev->dev, "too small vm range for va list\n");
2547  		return -EFAULT;
2548  	}
2549  
2550  	rc = add_va_block(hdev, va_range, start, end);
2551  
2552  	if (rc) {
2553  		dev_err(hdev->dev, "Failed to init host va list\n");
2554  		return rc;
2555  	}
2556  
2557  	va_range->start_addr = start;
2558  	va_range->end_addr = end;
2559  	va_range->page_size = page_size;
2560  
2561  	return 0;
2562  }
2563  
2564  /**
2565   * va_range_fini() - clear a virtual addresses range.
2566   * @hdev: pointer to the habanalabs structure.
2567   * @va_range: pointer to virtual addresses range.
2568   *
2569   * This function does the following:
2570   * - Frees the virtual addresses block list and its lock.
2571   */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)2572  static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2573  {
2574  	mutex_lock(&va_range->lock);
2575  	clear_va_list_locked(hdev, &va_range->list);
2576  	mutex_unlock(&va_range->lock);
2577  
2578  	mutex_destroy(&va_range->lock);
2579  	kfree(va_range);
2580  }
2581  
2582  /**
2583   * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2584   * @ctx: pointer to the habanalabs context structure.
2585   * @host_range_start: host virtual addresses range start.
2586   * @host_range_end: host virtual addresses range end.
2587   * @host_page_size: host page size.
2588   * @host_huge_range_start: host virtual addresses range start for memory
2589   *                         allocated with huge pages.
2590   * @host_huge_range_end: host virtual addresses range end for memory allocated
2591   *                        with huge pages.
2592   * @host_huge_page_size: host huge page size.
2593   * @dram_range_start: dram virtual addresses range start.
2594   * @dram_range_end: dram virtual addresses range end.
2595   * @dram_page_size: dram page size.
2596   *
2597   * This function initializes the following:
2598   * - MMU for context.
2599   * - Virtual address to area descriptor hashtable.
2600   * - Virtual block list of available virtual memory.
2601   */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u32 host_page_size,u64 host_huge_range_start,u64 host_huge_range_end,u32 host_huge_page_size,u64 dram_range_start,u64 dram_range_end,u32 dram_page_size)2602  static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2603  					u64 host_range_start,
2604  					u64 host_range_end,
2605  					u32 host_page_size,
2606  					u64 host_huge_range_start,
2607  					u64 host_huge_range_end,
2608  					u32 host_huge_page_size,
2609  					u64 dram_range_start,
2610  					u64 dram_range_end,
2611  					u32 dram_page_size)
2612  {
2613  	struct hl_device *hdev = ctx->hdev;
2614  	int i, rc;
2615  
2616  	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2617  		ctx->va_range[i] =
2618  			kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2619  		if (!ctx->va_range[i]) {
2620  			rc = -ENOMEM;
2621  			goto free_va_range;
2622  		}
2623  	}
2624  
2625  	rc = hl_mmu_ctx_init(ctx);
2626  	if (rc) {
2627  		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2628  		goto free_va_range;
2629  	}
2630  
2631  	mutex_init(&ctx->mem_hash_lock);
2632  	hash_init(ctx->mem_hash);
2633  
2634  	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2635  
2636  	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2637  			host_range_start, host_range_end, host_page_size);
2638  	if (rc) {
2639  		dev_err(hdev->dev, "failed to init host vm range\n");
2640  		goto mmu_ctx_fini;
2641  	}
2642  
2643  	if (hdev->pmmu_huge_range) {
2644  		mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2645  
2646  		rc = va_range_init(hdev,
2647  			ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2648  			host_huge_range_start, host_huge_range_end,
2649  			host_huge_page_size);
2650  		if (rc) {
2651  			dev_err(hdev->dev,
2652  				"failed to init host huge vm range\n");
2653  			goto clear_host_va_range;
2654  		}
2655  	} else {
2656  		kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2657  		ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2658  				ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2659  	}
2660  
2661  	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2662  
2663  	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2664  			dram_range_start, dram_range_end, dram_page_size);
2665  	if (rc) {
2666  		dev_err(hdev->dev, "failed to init dram vm range\n");
2667  		goto clear_host_huge_va_range;
2668  	}
2669  
2670  	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2671  
2672  	return 0;
2673  
2674  clear_host_huge_va_range:
2675  	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2676  
2677  	if (hdev->pmmu_huge_range) {
2678  		mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2679  		clear_va_list_locked(hdev,
2680  			&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2681  		mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2682  	}
2683  clear_host_va_range:
2684  	if (hdev->pmmu_huge_range)
2685  		mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2686  	mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2687  	clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2688  	mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2689  mmu_ctx_fini:
2690  	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2691  	mutex_destroy(&ctx->mem_hash_lock);
2692  	hl_mmu_ctx_fini(ctx);
2693  free_va_range:
2694  	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2695  		kfree(ctx->va_range[i]);
2696  
2697  	return rc;
2698  }
2699  
hl_vm_ctx_init(struct hl_ctx * ctx)2700  int hl_vm_ctx_init(struct hl_ctx *ctx)
2701  {
2702  	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2703  	u64 host_range_start, host_range_end, host_huge_range_start,
2704  		host_huge_range_end, dram_range_start, dram_range_end;
2705  	u32 host_page_size, host_huge_page_size, dram_page_size;
2706  
2707  	atomic64_set(&ctx->dram_phys_mem, 0);
2708  
2709  	/*
2710  	 *   In case of DRAM mapping, the returned address is the physical
2711  	 *   address of the memory related to the given handle.
2712  	 */
2713  	if (ctx->hdev->mmu_disable)
2714  		return 0;
2715  
2716  	dram_range_start = prop->dmmu.start_addr;
2717  	dram_range_end = prop->dmmu.end_addr - 1;
2718  	dram_page_size = prop->dram_page_size ?
2719  				prop->dram_page_size : prop->dmmu.page_size;
2720  	host_range_start = prop->pmmu.start_addr;
2721  	host_range_end = prop->pmmu.end_addr - 1;
2722  	host_page_size = prop->pmmu.page_size;
2723  	host_huge_range_start = prop->pmmu_huge.start_addr;
2724  	host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2725  	host_huge_page_size = prop->pmmu_huge.page_size;
2726  
2727  	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2728  			host_page_size, host_huge_range_start,
2729  			host_huge_range_end, host_huge_page_size,
2730  			dram_range_start, dram_range_end, dram_page_size);
2731  }
2732  
2733  /**
2734   * hl_vm_ctx_fini() - virtual memory teardown of context.
2735   * @ctx: pointer to the habanalabs context structure.
2736   *
2737   * This function perform teardown the following:
2738   * - Virtual block list of available virtual memory.
2739   * - Virtual address to area descriptor hashtable.
2740   * - MMU for context.
2741   *
2742   * In addition this function does the following:
2743   * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2744   *   hashtable should be empty as no valid mappings should exist at this
2745   *   point.
2746   * - Frees any existing physical page list from the idr which relates to the
2747   *   current context asid.
2748   * - This function checks the virtual block list for correctness. At this point
2749   *   the list should contain one element which describes the whole virtual
2750   *   memory range of the context. Otherwise, a warning is printed.
2751   */
hl_vm_ctx_fini(struct hl_ctx * ctx)2752  void hl_vm_ctx_fini(struct hl_ctx *ctx)
2753  {
2754  	struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2755  	struct hl_device *hdev = ctx->hdev;
2756  	struct hl_vm_hash_node *hnode;
2757  	struct hl_vm *vm = &hdev->vm;
2758  	struct hlist_node *tmp_node;
2759  	struct list_head free_list;
2760  	struct hl_mem_in args;
2761  	int i;
2762  
2763  	if (hdev->mmu_disable)
2764  		return;
2765  
2766  	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2767  
2768  	/*
2769  	 * Clearly something went wrong on hard reset so no point in printing
2770  	 * another side effect error
2771  	 */
2772  	if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2773  		dev_dbg(hdev->dev,
2774  			"user released device without removing its memory mappings\n");
2775  
2776  	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2777  		dev_dbg(hdev->dev,
2778  			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2779  			hnode->vaddr, ctx->asid);
2780  		args.unmap.device_virt_addr = hnode->vaddr;
2781  		unmap_device_va(ctx, &args, true);
2782  	}
2783  
2784  	mutex_lock(&hdev->mmu_lock);
2785  
2786  	/* invalidate the cache once after the unmapping loop */
2787  	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2788  	hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2789  
2790  	mutex_unlock(&hdev->mmu_lock);
2791  
2792  	INIT_LIST_HEAD(&free_list);
2793  
2794  	spin_lock(&vm->idr_lock);
2795  	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2796  		if (phys_pg_list->asid == ctx->asid) {
2797  			dev_dbg(hdev->dev,
2798  				"page list 0x%px of asid %d is still alive\n",
2799  				phys_pg_list, ctx->asid);
2800  
2801  			atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2802  			idr_remove(&vm->phys_pg_pack_handles, i);
2803  			list_add(&phys_pg_list->node, &free_list);
2804  		}
2805  	spin_unlock(&vm->idr_lock);
2806  
2807  	list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2808  		free_phys_pg_pack(hdev, phys_pg_list);
2809  
2810  	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2811  	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2812  
2813  	if (hdev->pmmu_huge_range)
2814  		va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2815  
2816  	mutex_destroy(&ctx->mem_hash_lock);
2817  	hl_mmu_ctx_fini(ctx);
2818  
2819  	/* In this case we need to clear the global accounting of DRAM usage
2820  	 * because the user notifies us on allocations. If the user is no more,
2821  	 * all DRAM is available
2822  	 */
2823  	if (ctx->asid != HL_KERNEL_ASID_ID &&
2824  			!hdev->asic_prop.dram_supports_virtual_memory)
2825  		atomic64_set(&hdev->dram_used_mem, 0);
2826  }
2827  
2828  /**
2829   * hl_vm_init() - initialize virtual memory module.
2830   * @hdev: pointer to the habanalabs device structure.
2831   *
2832   * This function initializes the following:
2833   * - MMU module.
2834   * - DRAM physical pages pool of 2MB.
2835   * - Idr for device memory allocation handles.
2836   */
hl_vm_init(struct hl_device * hdev)2837  int hl_vm_init(struct hl_device *hdev)
2838  {
2839  	struct asic_fixed_properties *prop = &hdev->asic_prop;
2840  	struct hl_vm *vm = &hdev->vm;
2841  	int rc;
2842  
2843  	if (is_power_of_2(prop->dram_page_size))
2844  		vm->dram_pg_pool =
2845  			gen_pool_create(__ffs(prop->dram_page_size), -1);
2846  	else
2847  		vm->dram_pg_pool =
2848  			gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2849  
2850  	if (!vm->dram_pg_pool) {
2851  		dev_err(hdev->dev, "Failed to create dram page pool\n");
2852  		return -ENOMEM;
2853  	}
2854  
2855  	kref_init(&vm->dram_pg_pool_refcount);
2856  
2857  	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2858  			prop->dram_end_address - prop->dram_user_base_address,
2859  			-1);
2860  
2861  	if (rc) {
2862  		dev_err(hdev->dev,
2863  			"Failed to add memory to dram page pool %d\n", rc);
2864  		goto pool_add_err;
2865  	}
2866  
2867  	spin_lock_init(&vm->idr_lock);
2868  	idr_init(&vm->phys_pg_pack_handles);
2869  
2870  	atomic64_set(&hdev->dram_used_mem, 0);
2871  
2872  	vm->init_done = true;
2873  
2874  	return 0;
2875  
2876  pool_add_err:
2877  	gen_pool_destroy(vm->dram_pg_pool);
2878  
2879  	return rc;
2880  }
2881  
2882  /**
2883   * hl_vm_fini() - virtual memory module teardown.
2884   * @hdev: pointer to the habanalabs device structure.
2885   *
2886   * This function perform teardown to the following:
2887   * - Idr for device memory allocation handles.
2888   * - DRAM physical pages pool of 2MB.
2889   * - MMU module.
2890   */
hl_vm_fini(struct hl_device * hdev)2891  void hl_vm_fini(struct hl_device *hdev)
2892  {
2893  	struct hl_vm *vm = &hdev->vm;
2894  
2895  	if (!vm->init_done)
2896  		return;
2897  
2898  	/*
2899  	 * At this point all the contexts should be freed and hence no DRAM
2900  	 * memory should be in use. Hence the DRAM pool should be freed here.
2901  	 */
2902  	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2903  		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2904  				__func__);
2905  
2906  	vm->init_done = false;
2907  }
2908  
2909  /**
2910   * hl_hw_block_mem_init() - HW block memory initialization.
2911   * @ctx: pointer to the habanalabs context structure.
2912   *
2913   * This function initializes the HW block virtual mapped addresses list and
2914   * it's lock.
2915   */
hl_hw_block_mem_init(struct hl_ctx * ctx)2916  void hl_hw_block_mem_init(struct hl_ctx *ctx)
2917  {
2918  	mutex_init(&ctx->hw_block_list_lock);
2919  	INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2920  }
2921  
2922  /**
2923   * hl_hw_block_mem_fini() - HW block memory teardown.
2924   * @ctx: pointer to the habanalabs context structure.
2925   *
2926   * This function clears the HW block virtual mapped addresses list and destroys
2927   * it's lock.
2928   */
hl_hw_block_mem_fini(struct hl_ctx * ctx)2929  void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2930  {
2931  	struct hl_vm_hw_block_list_node *lnode, *tmp;
2932  
2933  	if (!list_empty(&ctx->hw_block_mem_list))
2934  		dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2935  
2936  	list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2937  		list_del(&lnode->node);
2938  		kfree(lnode);
2939  	}
2940  
2941  	mutex_destroy(&ctx->hw_block_list_lock);
2942  }
2943