1  // SPDX-License-Identifier: GPL-2.0
2  
3  /*
4   * Copyright 2016-2022 HabanaLabs, Ltd.
5   * All Rights Reserved.
6   */
7  
8  #include "habanalabs.h"
9  
10  #include <linux/slab.h>
11  
12  /**
13   * struct hl_eqe_work - This structure is used to schedule work of EQ
14   *                      entry and cpucp_reset event
15   *
16   * @eq_work:          workqueue object to run when EQ entry is received
17   * @hdev:             pointer to device structure
18   * @eq_entry:         copy of the EQ entry
19   */
20  struct hl_eqe_work {
21  	struct work_struct	eq_work;
22  	struct hl_device	*hdev;
23  	struct hl_eq_entry	eq_entry;
24  };
25  
26  /**
27   * hl_cq_inc_ptr - increment ci or pi of cq
28   *
29   * @ptr: the current ci or pi value of the completion queue
30   *
31   * Increment ptr by 1. If it reaches the number of completion queue
32   * entries, set it to 0
33   */
hl_cq_inc_ptr(u32 ptr)34  inline u32 hl_cq_inc_ptr(u32 ptr)
35  {
36  	ptr++;
37  	if (unlikely(ptr == HL_CQ_LENGTH))
38  		ptr = 0;
39  	return ptr;
40  }
41  
42  /**
43   * hl_eq_inc_ptr - increment ci of eq
44   *
45   * @ptr: the current ci value of the event queue
46   *
47   * Increment ptr by 1. If it reaches the number of event queue
48   * entries, set it to 0
49   */
hl_eq_inc_ptr(u32 ptr)50  static inline u32 hl_eq_inc_ptr(u32 ptr)
51  {
52  	ptr++;
53  	if (unlikely(ptr == HL_EQ_LENGTH))
54  		ptr = 0;
55  	return ptr;
56  }
57  
irq_handle_eqe(struct work_struct * work)58  static void irq_handle_eqe(struct work_struct *work)
59  {
60  	struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61  							eq_work);
62  	struct hl_device *hdev = eqe_work->hdev;
63  
64  	hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65  
66  	kfree(eqe_work);
67  }
68  
69  /**
70   * job_finish - queue job finish work
71   *
72   * @hdev: pointer to device structure
73   * @cs_seq: command submission sequence
74   * @cq: completion queue
75   * @timestamp: interrupt timestamp
76   *
77   */
job_finish(struct hl_device * hdev,u32 cs_seq,struct hl_cq * cq,ktime_t timestamp)78  static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
79  {
80  	struct hl_hw_queue *queue;
81  	struct hl_cs_job *job;
82  
83  	queue = &hdev->kernel_queues[cq->hw_queue_id];
84  	job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
85  	job->timestamp = timestamp;
86  	queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
87  
88  	atomic_inc(&queue->ci);
89  }
90  
91  /**
92   * cs_finish - queue all cs jobs finish work
93   *
94   * @hdev: pointer to device structure
95   * @cs_seq: command submission sequence
96   * @timestamp: interrupt timestamp
97   *
98   */
cs_finish(struct hl_device * hdev,u16 cs_seq,ktime_t timestamp)99  static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
100  {
101  	struct asic_fixed_properties *prop = &hdev->asic_prop;
102  	struct hl_hw_queue *queue;
103  	struct hl_cs *cs;
104  	struct hl_cs_job *job;
105  
106  	cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
107  	if (!cs) {
108  		dev_warn(hdev->dev,
109  			"No pointer to CS in shadow array at index %d\n",
110  			cs_seq);
111  		return;
112  	}
113  
114  	list_for_each_entry(job, &cs->job_list, cs_node) {
115  		queue = &hdev->kernel_queues[job->hw_queue_id];
116  		atomic_inc(&queue->ci);
117  	}
118  
119  	cs->completion_timestamp = timestamp;
120  	queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
121  }
122  
123  /**
124   * hl_irq_handler_cq - irq handler for completion queue
125   *
126   * @irq: irq number
127   * @arg: pointer to completion queue structure
128   *
129   */
hl_irq_handler_cq(int irq,void * arg)130  irqreturn_t hl_irq_handler_cq(int irq, void *arg)
131  {
132  	struct hl_cq *cq = arg;
133  	struct hl_device *hdev = cq->hdev;
134  	bool shadow_index_valid, entry_ready;
135  	u16 shadow_index;
136  	struct hl_cq_entry *cq_entry, *cq_base;
137  	ktime_t timestamp = ktime_get();
138  
139  	if (hdev->disabled) {
140  		dev_dbg(hdev->dev,
141  			"Device disabled but received IRQ %d for CQ %d\n",
142  			irq, cq->hw_queue_id);
143  		return IRQ_HANDLED;
144  	}
145  
146  	cq_base = cq->kernel_address;
147  
148  	while (1) {
149  		cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
150  
151  		entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
152  				le32_to_cpu(cq_entry->data));
153  		if (!entry_ready)
154  			break;
155  
156  		/* Make sure we read CQ entry contents after we've
157  		 * checked the ownership bit.
158  		 */
159  		dma_rmb();
160  
161  		shadow_index_valid =
162  			!!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
163  					le32_to_cpu(cq_entry->data));
164  
165  		shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
166  				le32_to_cpu(cq_entry->data));
167  
168  		/*
169  		 * CQ interrupt handler has 2 modes of operation:
170  		 * 1. Interrupt per CS completion: (Single CQ for all queues)
171  		 *    CQ entry represents a completed CS
172  		 *
173  		 * 2. Interrupt per CS job completion in queue: (CQ per queue)
174  		 *    CQ entry represents a completed job in a certain queue
175  		 */
176  		if (shadow_index_valid && !hdev->disabled) {
177  			if (hdev->asic_prop.completion_mode ==
178  					HL_COMPLETION_MODE_CS)
179  				cs_finish(hdev, shadow_index, timestamp);
180  			else
181  				job_finish(hdev, shadow_index, cq, timestamp);
182  		}
183  
184  		/* Clear CQ entry ready bit */
185  		cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
186  						~CQ_ENTRY_READY_MASK);
187  
188  		cq->ci = hl_cq_inc_ptr(cq->ci);
189  
190  		/* Increment free slots */
191  		atomic_inc(&cq->free_slots_cnt);
192  	}
193  
194  	return IRQ_HANDLED;
195  }
196  
197  /*
198   * hl_ts_free_objects - handler of the free objects workqueue.
199   * This function should put refcount to objects that the registration node
200   * took refcount to them.
201   * @work: workqueue object pointer
202   */
hl_ts_free_objects(struct work_struct * work)203  static void hl_ts_free_objects(struct work_struct *work)
204  {
205  	struct timestamp_reg_work_obj *job =
206  			container_of(work, struct timestamp_reg_work_obj, free_obj);
207  	struct list_head *dynamic_alloc_free_list_head = job->dynamic_alloc_free_obj_head;
208  	struct timestamp_reg_free_node *free_obj, *temp_free_obj;
209  	struct list_head *free_list_head = job->free_obj_head;
210  
211  	struct hl_device *hdev = job->hdev;
212  
213  	list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
214  		dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
215  					free_obj->buf,
216  					free_obj->cq_cb);
217  
218  		hl_mmap_mem_buf_put(free_obj->buf);
219  		hl_cb_put(free_obj->cq_cb);
220  		atomic_set(&free_obj->in_use, 0);
221  	}
222  
223  	kfree(free_list_head);
224  
225  	if (dynamic_alloc_free_list_head) {
226  		list_for_each_entry_safe(free_obj, temp_free_obj, dynamic_alloc_free_list_head,
227  								free_objects_node) {
228  			dev_dbg(hdev->dev,
229  				"Dynamic_Alloc list: About to put refcount to buf (%p) cq_cb(%p)\n",
230  						free_obj->buf,
231  						free_obj->cq_cb);
232  
233  			hl_mmap_mem_buf_put(free_obj->buf);
234  			hl_cb_put(free_obj->cq_cb);
235  			list_del(&free_obj->free_objects_node);
236  			kfree(free_obj);
237  		}
238  
239  		kfree(dynamic_alloc_free_list_head);
240  	}
241  
242  	kfree(job);
243  }
244  
245  /*
246   * This function called with spin_lock of wait_list_lock taken
247   * This function will set timestamp and delete the registration node from the
248   * wait_list_lock.
249   * and since we're protected with spin_lock here, so we cannot just put the refcount
250   * for the objects here, since the release function may be called and it's also a long
251   * logic (which might sleep also) that cannot be handled in irq context.
252   * so here we'll be filling a list with nodes of "put" jobs and then will send this
253   * list to a dedicated workqueue to do the actual put.
254   */
handle_registration_node(struct hl_device * hdev,struct hl_user_pending_interrupt * pend,struct list_head ** free_list,struct list_head ** dynamic_alloc_list,struct hl_user_interrupt * intr)255  static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
256  						struct list_head **free_list,
257  						struct list_head **dynamic_alloc_list,
258  						struct hl_user_interrupt *intr)
259  {
260  	struct hl_ts_free_jobs *ts_free_jobs_data;
261  	struct timestamp_reg_free_node *free_node;
262  	u32 free_node_index;
263  	u64 timestamp;
264  
265  	ts_free_jobs_data = &intr->ts_free_jobs_data;
266  	free_node_index = ts_free_jobs_data->next_avail_free_node_idx;
267  
268  	if (!(*free_list)) {
269  		/* Alloc/Init the timestamp registration free objects list */
270  		*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
271  		if (!(*free_list))
272  			return -ENOMEM;
273  
274  		INIT_LIST_HEAD(*free_list);
275  	}
276  
277  	free_node = &ts_free_jobs_data->free_nodes_pool[free_node_index];
278  	if (atomic_cmpxchg(&free_node->in_use, 0, 1)) {
279  		dev_dbg(hdev->dev,
280  			"Timestamp free node pool is full, buff: %p, record: %p, irq: %u\n",
281  				pend->ts_reg_info.buf,
282  				pend,
283  				intr->interrupt_id);
284  
285  		if (!(*dynamic_alloc_list)) {
286  			*dynamic_alloc_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
287  			if (!(*dynamic_alloc_list))
288  				return -ENOMEM;
289  
290  			INIT_LIST_HEAD(*dynamic_alloc_list);
291  		}
292  
293  		free_node = kmalloc(sizeof(struct timestamp_reg_free_node), GFP_ATOMIC);
294  		if (!free_node)
295  			return -ENOMEM;
296  
297  		free_node->dynamic_alloc = 1;
298  	}
299  
300  	timestamp = ktime_to_ns(intr->timestamp);
301  
302  	*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
303  
304  	dev_dbg(hdev->dev, "Irq handle: Timestamp record (%p) ts cb address (%p), interrupt_id: %u\n",
305  			pend, pend->ts_reg_info.timestamp_kernel_addr, intr->interrupt_id);
306  
307  	list_del(&pend->list_node);
308  
309  	/* Putting the refcount for ts_buff and cq_cb objects will be handled
310  	 * in workqueue context, just add job to free_list.
311  	 */
312  	free_node->buf = pend->ts_reg_info.buf;
313  	free_node->cq_cb = pend->ts_reg_info.cq_cb;
314  
315  	if (free_node->dynamic_alloc) {
316  		list_add(&free_node->free_objects_node, *dynamic_alloc_list);
317  	} else {
318  		ts_free_jobs_data->next_avail_free_node_idx =
319  				(++free_node_index) % ts_free_jobs_data->free_nodes_length;
320  		list_add(&free_node->free_objects_node, *free_list);
321  	}
322  
323  	/* Mark TS record as free */
324  	pend->ts_reg_info.in_use = false;
325  
326  	return 0;
327  }
328  
handle_user_interrupt_ts_list(struct hl_device * hdev,struct hl_user_interrupt * intr)329  static void handle_user_interrupt_ts_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
330  {
331  	struct list_head *ts_reg_free_list_head = NULL, *dynamic_alloc_list_head = NULL;
332  	struct hl_user_pending_interrupt *pend, *temp_pend;
333  	struct timestamp_reg_work_obj *job;
334  	bool reg_node_handle_fail = false;
335  	unsigned long flags;
336  	int rc;
337  
338  	/* For registration nodes:
339  	 * As part of handling the registration nodes, we should put refcount to
340  	 * some objects. the problem is that we cannot do that under spinlock
341  	 * or in irq handler context at all (since release functions are long and
342  	 * might sleep), so we will need to handle that part in workqueue context.
343  	 * To avoid handling kmalloc failure which compels us rolling back actions
344  	 * and move nodes hanged on the free list back to the interrupt ts list
345  	 * we always alloc the job of the WQ at the beginning.
346  	 */
347  	job = kmalloc(sizeof(*job), GFP_ATOMIC);
348  	if (!job)
349  		return;
350  
351  	spin_lock_irqsave(&intr->ts_list_lock, flags);
352  	list_for_each_entry_safe(pend, temp_pend, &intr->ts_list_head, list_node) {
353  		if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
354  				!pend->cq_kernel_addr) {
355  			if (!reg_node_handle_fail) {
356  				rc = handle_registration_node(hdev, pend,
357  						&ts_reg_free_list_head,
358  						&dynamic_alloc_list_head, intr);
359  				if (rc)
360  					reg_node_handle_fail = true;
361  			}
362  		}
363  	}
364  	spin_unlock_irqrestore(&intr->ts_list_lock, flags);
365  
366  	if (ts_reg_free_list_head) {
367  		INIT_WORK(&job->free_obj, hl_ts_free_objects);
368  		job->free_obj_head = ts_reg_free_list_head;
369  		job->dynamic_alloc_free_obj_head = dynamic_alloc_list_head;
370  		job->hdev = hdev;
371  		queue_work(hdev->ts_free_obj_wq, &job->free_obj);
372  	} else {
373  		kfree(job);
374  	}
375  }
376  
handle_user_interrupt_wait_list(struct hl_device * hdev,struct hl_user_interrupt * intr)377  static void handle_user_interrupt_wait_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
378  {
379  	struct hl_user_pending_interrupt *pend, *temp_pend;
380  	unsigned long flags;
381  
382  	spin_lock_irqsave(&intr->wait_list_lock, flags);
383  	list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, list_node) {
384  		if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
385  				!pend->cq_kernel_addr) {
386  			/* Handle wait target value node */
387  			pend->fence.timestamp = intr->timestamp;
388  			complete_all(&pend->fence.completion);
389  		}
390  	}
391  	spin_unlock_irqrestore(&intr->wait_list_lock, flags);
392  }
393  
handle_tpc_interrupt(struct hl_device * hdev)394  static void handle_tpc_interrupt(struct hl_device *hdev)
395  {
396  	u64 event_mask;
397  	u32 flags;
398  
399  	event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT |
400  		HL_NOTIFIER_EVENT_USER_ENGINE_ERR |
401  		HL_NOTIFIER_EVENT_DEVICE_RESET;
402  
403  	flags = HL_DRV_RESET_DELAY;
404  
405  	dev_err_ratelimited(hdev->dev, "Received TPC assert\n");
406  	hl_device_cond_reset(hdev, flags, event_mask);
407  }
408  
handle_unexpected_user_interrupt(struct hl_device * hdev)409  static void handle_unexpected_user_interrupt(struct hl_device *hdev)
410  {
411  	dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n");
412  }
413  
414  /**
415   * hl_irq_user_interrupt_handler - irq handler for user interrupts.
416   *
417   * @irq: irq number
418   * @arg: pointer to user interrupt structure
419   */
hl_irq_user_interrupt_handler(int irq,void * arg)420  irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg)
421  {
422  	struct hl_user_interrupt *user_int = arg;
423  	struct hl_device *hdev = user_int->hdev;
424  
425  	user_int->timestamp = ktime_get();
426  	switch (user_int->type) {
427  	case HL_USR_INTERRUPT_CQ:
428  		/* First handle user waiters threads */
429  		handle_user_interrupt_wait_list(hdev, &hdev->common_user_cq_interrupt);
430  		handle_user_interrupt_wait_list(hdev, user_int);
431  
432  		/* Second handle user timestamp registrations */
433  		handle_user_interrupt_ts_list(hdev,  &hdev->common_user_cq_interrupt);
434  		handle_user_interrupt_ts_list(hdev, user_int);
435  		break;
436  	case HL_USR_INTERRUPT_DECODER:
437  		handle_user_interrupt_wait_list(hdev, &hdev->common_decoder_interrupt);
438  
439  		/* Handle decoder interrupt registered on this specific irq */
440  		handle_user_interrupt_wait_list(hdev, user_int);
441  		break;
442  	default:
443  		break;
444  	}
445  
446  	return IRQ_HANDLED;
447  }
448  
449  /**
450   * hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts.
451   * This function is invoked by threaded irq mechanism
452   *
453   * @irq: irq number
454   * @arg: pointer to user interrupt structure
455   *
456   */
hl_irq_user_interrupt_thread_handler(int irq,void * arg)457  irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg)
458  {
459  	struct hl_user_interrupt *user_int = arg;
460  	struct hl_device *hdev = user_int->hdev;
461  
462  	user_int->timestamp = ktime_get();
463  	switch (user_int->type) {
464  	case HL_USR_INTERRUPT_TPC:
465  		handle_tpc_interrupt(hdev);
466  		break;
467  	case HL_USR_INTERRUPT_UNEXPECTED:
468  		handle_unexpected_user_interrupt(hdev);
469  		break;
470  	default:
471  		break;
472  	}
473  
474  	return IRQ_HANDLED;
475  }
476  
hl_irq_eq_error_interrupt_thread_handler(int irq,void * arg)477  irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg)
478  {
479  	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
480  	struct hl_device *hdev = arg;
481  
482  	dev_err(hdev->dev, "EQ error interrupt received\n");
483  
484  	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD, event_mask);
485  
486  	return IRQ_HANDLED;
487  }
488  
489  /**
490   * hl_irq_handler_eq - irq handler for event queue
491   *
492   * @irq: irq number
493   * @arg: pointer to event queue structure
494   *
495   */
hl_irq_handler_eq(int irq,void * arg)496  irqreturn_t hl_irq_handler_eq(int irq, void *arg)
497  {
498  	struct hl_eq *eq = arg;
499  	struct hl_device *hdev = eq->hdev;
500  	struct hl_eq_entry *eq_entry;
501  	struct hl_eq_entry *eq_base;
502  	struct hl_eqe_work *handle_eqe_work;
503  	bool entry_ready;
504  	u32 cur_eqe, ctl;
505  	u16 cur_eqe_index, event_type;
506  
507  	eq_base = eq->kernel_address;
508  
509  	while (1) {
510  		cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
511  		entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
512  
513  		if (!entry_ready)
514  			break;
515  
516  		cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
517  		if ((hdev->event_queue.check_eqe_index) &&
518  				(((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) {
519  			dev_err(hdev->dev,
520  				"EQE %#x in queue is ready but index does not match %d!=%d",
521  				cur_eqe,
522  				((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
523  				cur_eqe_index);
524  			break;
525  		}
526  
527  		eq->prev_eqe_index++;
528  
529  		eq_entry = &eq_base[eq->ci];
530  
531  		/*
532  		 * Make sure we read EQ entry contents after we've
533  		 * checked the ownership bit.
534  		 */
535  		dma_rmb();
536  
537  		if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
538  			ctl = le32_to_cpu(eq_entry->hdr.ctl);
539  			event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
540  			dev_warn(hdev->dev,
541  				"Device disabled but received an EQ event (%u)\n", event_type);
542  			goto skip_irq;
543  		}
544  
545  		handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
546  		if (handle_eqe_work) {
547  			INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
548  			handle_eqe_work->hdev = hdev;
549  
550  			memcpy(&handle_eqe_work->eq_entry, eq_entry,
551  					sizeof(*eq_entry));
552  
553  			queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
554  		}
555  skip_irq:
556  		/* Clear EQ entry ready bit */
557  		eq_entry->hdr.ctl =
558  			cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
559  							~EQ_CTL_READY_MASK);
560  
561  		eq->ci = hl_eq_inc_ptr(eq->ci);
562  
563  		hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
564  	}
565  
566  	return IRQ_HANDLED;
567  }
568  
569  /**
570   * hl_irq_handler_dec_abnrm - Decoder error interrupt handler
571   * @irq: IRQ number
572   * @arg: pointer to decoder structure.
573   */
hl_irq_handler_dec_abnrm(int irq,void * arg)574  irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
575  {
576  	struct hl_dec *dec = arg;
577  
578  	schedule_work(&dec->abnrm_intr_work);
579  
580  	return IRQ_HANDLED;
581  }
582  
583  /**
584   * hl_cq_init - main initialization function for an cq object
585   *
586   * @hdev: pointer to device structure
587   * @q: pointer to cq structure
588   * @hw_queue_id: The H/W queue ID this completion queue belongs to
589   *               HL_INVALID_QUEUE if cq is not attached to any specific queue
590   *
591   * Allocate dma-able memory for the completion queue and initialize fields
592   * Returns 0 on success
593   */
hl_cq_init(struct hl_device * hdev,struct hl_cq * q,u32 hw_queue_id)594  int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
595  {
596  	void *p;
597  
598  	p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
599  					GFP_KERNEL | __GFP_ZERO);
600  	if (!p)
601  		return -ENOMEM;
602  
603  	q->hdev = hdev;
604  	q->kernel_address = p;
605  	q->hw_queue_id = hw_queue_id;
606  	q->ci = 0;
607  	q->pi = 0;
608  
609  	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
610  
611  	return 0;
612  }
613  
614  /**
615   * hl_cq_fini - destroy completion queue
616   *
617   * @hdev: pointer to device structure
618   * @q: pointer to cq structure
619   *
620   * Free the completion queue memory
621   */
hl_cq_fini(struct hl_device * hdev,struct hl_cq * q)622  void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
623  {
624  	hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
625  }
626  
hl_cq_reset(struct hl_device * hdev,struct hl_cq * q)627  void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
628  {
629  	q->ci = 0;
630  	q->pi = 0;
631  
632  	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
633  
634  	/*
635  	 * It's not enough to just reset the PI/CI because the H/W may have
636  	 * written valid completion entries before it was halted and therefore
637  	 * we need to clean the actual queues so we won't process old entries
638  	 * when the device is operational again
639  	 */
640  
641  	memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
642  }
643  
644  /**
645   * hl_eq_init - main initialization function for an event queue object
646   *
647   * @hdev: pointer to device structure
648   * @q: pointer to eq structure
649   *
650   * Allocate dma-able memory for the event queue and initialize fields
651   * Returns 0 on success
652   */
hl_eq_init(struct hl_device * hdev,struct hl_eq * q)653  int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
654  {
655  	u32 size = hdev->asic_prop.fw_event_queue_size ? : HL_EQ_SIZE_IN_BYTES;
656  	void *p;
657  
658  	p = hl_cpu_accessible_dma_pool_alloc(hdev, size, &q->bus_address);
659  	if (!p)
660  		return -ENOMEM;
661  
662  	q->hdev = hdev;
663  	q->kernel_address = p;
664  	q->size = size;
665  	q->ci = 0;
666  	q->prev_eqe_index = 0;
667  
668  	return 0;
669  }
670  
671  /**
672   * hl_eq_fini - destroy event queue
673   *
674   * @hdev: pointer to device structure
675   * @q: pointer to eq structure
676   *
677   * Free the event queue memory
678   */
hl_eq_fini(struct hl_device * hdev,struct hl_eq * q)679  void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
680  {
681  	flush_workqueue(hdev->eq_wq);
682  
683  	hl_cpu_accessible_dma_pool_free(hdev, q->size, q->kernel_address);
684  }
685  
hl_eq_reset(struct hl_device * hdev,struct hl_eq * q)686  void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
687  {
688  	q->ci = 0;
689  	q->prev_eqe_index = 0;
690  
691  	/*
692  	 * It's not enough to just reset the PI/CI because the H/W may have
693  	 * written valid completion entries before it was halted and therefore
694  	 * we need to clean the actual queues so we won't process old entries
695  	 * when the device is operational again
696  	 */
697  
698  	memset(q->kernel_address, 0, q->size);
699  }
700  
hl_eq_dump(struct hl_device * hdev,struct hl_eq * q)701  void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q)
702  {
703  	u32 eq_length, eqe_size, ctl, ready, mode, type, index;
704  	struct hl_eq_header *hdr;
705  	u8 *ptr;
706  	int i;
707  
708  	eq_length = HL_EQ_LENGTH;
709  	eqe_size = q->size / HL_EQ_LENGTH;
710  
711  	dev_info(hdev->dev, "Contents of EQ entries headers:\n");
712  
713  	for (i = 0, ptr = q->kernel_address ; i < eq_length ; ++i, ptr += eqe_size) {
714  		hdr = (struct hl_eq_header *) ptr;
715  		ctl = le32_to_cpu(hdr->ctl);
716  		ready = FIELD_GET(EQ_CTL_READY_MASK, ctl);
717  		mode = FIELD_GET(EQ_CTL_EVENT_MODE_MASK, ctl);
718  		type = FIELD_GET(EQ_CTL_EVENT_TYPE_MASK, ctl);
719  		index = FIELD_GET(EQ_CTL_INDEX_MASK, ctl);
720  
721  		dev_info(hdev->dev, "%02u: %#010x [ready: %u, mode %u, type %04u, index %05u]\n",
722  				i, ctl, ready, mode, type, index);
723  	}
724  }
725