xref: /wlan-dirver/qca-wifi-host-cmn/hif/src/ce/ce_main.c (revision 332fc3b9ebc8904452cc5549ba2e3fbdd76a8472)
1 /*
2  * Copyright (c) 2013-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "targcfg.h"
21 #include "qdf_lock.h"
22 #include "qdf_status.h"
23 #include "qdf_status.h"
24 #include <qdf_atomic.h>         /* qdf_atomic_read */
25 #include <targaddrs.h>
26 #include "hif_io32.h"
27 #include <hif.h>
28 #include <target_type.h>
29 #include "regtable.h"
30 #define ATH_MODULE_NAME hif
31 #include <a_debug.h>
32 #include "hif_main.h"
33 #include "ce_api.h"
34 #include "qdf_trace.h"
35 #include "pld_common.h"
36 #include "hif_debug.h"
37 #include "ce_internal.h"
38 #include "ce_reg.h"
39 #include "ce_assignment.h"
40 #include "ce_tasklet.h"
41 #include "qdf_module.h"
42 #include "qdf_ssr_driver_dump.h"
43 #include <wbuff.h>
44 
45 #define CE_POLL_TIMEOUT 10      /* ms */
46 
47 #define AGC_DUMP         1
48 #define CHANINFO_DUMP    2
49 #define BB_WATCHDOG_DUMP 3
50 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
51 #define PCIE_ACCESS_DUMP 4
52 #endif
53 #include "mp_dev.h"
54 #ifdef HIF_CE_LOG_INFO
55 #include "qdf_hang_event_notifier.h"
56 #endif
57 
58 #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6290) || \
59 	defined(QCA_WIFI_QCA6018) || defined(QCA_WIFI_QCA5018) || \
60 	defined(QCA_WIFI_KIWI) || defined(QCA_WIFI_QCA5332) || \
61 	defined(QCA_WIFI_QCA9574)) && !defined(QCA_WIFI_SUPPORT_SRNG) && \
62 	!defined(QCA_WIFI_WCN6450)
63 #define QCA_WIFI_SUPPORT_SRNG
64 #endif
65 
66 #ifdef QCA_WIFI_SUPPORT_SRNG
67 #include <hal_api.h>
68 #endif
69 #include "qdf_ssr_driver_dump.h"
70 
71 /* Forward references */
72 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
73 
74 /*
75  * Fix EV118783, poll to check whether a BMI response comes
76  * other than waiting for the interruption which may be lost.
77  */
78 /* #define BMI_RSP_POLLING */
79 #define BMI_RSP_TO_MILLISEC  1000
80 
81 #ifdef CONFIG_BYPASS_QMI
82 #define BYPASS_QMI 1
83 #else
84 #define BYPASS_QMI 0
85 #endif
86 
87 static void hif_config_rri_on_ddr(struct hif_softc *scn);
88 
89 /**
90  * hif_target_access_log_dump() - dump access log
91  *
92  * dump access log
93  *
94  * Return: n/a
95  */
96 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
97 static void hif_target_access_log_dump(void)
98 {
99 	hif_target_dump_access_log();
100 }
101 #endif
102 
103 /*
104  * This structure contains the interrupt index for each Copy engine
105  * for various number of MSIs available in the system.
106  */
107 static struct ce_int_assignment ce_int_context[NUM_CE_CONTEXT] = {
108 	/* Default configuration */
109 	{{ CE_INTERRUPT_IDX(0),
110 	  CE_INTERRUPT_IDX(1),
111 	  CE_INTERRUPT_IDX(2),
112 	  CE_INTERRUPT_IDX(3),
113 	  CE_INTERRUPT_IDX(4),
114 	  CE_INTERRUPT_IDX(5),
115 	  CE_INTERRUPT_IDX(6),
116 	  CE_INTERRUPT_IDX(7),
117 	  CE_INTERRUPT_IDX(8),
118 	  CE_INTERRUPT_IDX(9),
119 	  CE_INTERRUPT_IDX(10),
120 	  CE_INTERRUPT_IDX(11),
121 #ifdef QCA_WIFI_QCN9224
122 	  CE_INTERRUPT_IDX(12),
123 	  CE_INTERRUPT_IDX(13),
124 	  CE_INTERRUPT_IDX(14),
125 	  CE_INTERRUPT_IDX(15),
126 #endif
127 	} },
128 	/* Interrupt assignment for 1 MSI combination */
129 	{{ CE_INTERRUPT_IDX(0),
130 	  CE_INTERRUPT_IDX(0),
131 	  CE_INTERRUPT_IDX(0),
132 	  CE_INTERRUPT_IDX(0),
133 	  CE_INTERRUPT_IDX(0),
134 	  CE_INTERRUPT_IDX(0),
135 	  CE_INTERRUPT_IDX(0),
136 	  CE_INTERRUPT_IDX(0),
137 	  CE_INTERRUPT_IDX(0),
138 	  CE_INTERRUPT_IDX(0),
139 	  CE_INTERRUPT_IDX(0),
140 	  CE_INTERRUPT_IDX(0),
141 #ifdef QCA_WIFI_QCN9224
142 	  CE_INTERRUPT_IDX(0),
143 	  CE_INTERRUPT_IDX(0),
144 	  CE_INTERRUPT_IDX(0),
145 	  CE_INTERRUPT_IDX(0),
146 #endif
147 	} },
148 	/* Interrupt assignment for 2 MSI combination */
149 	{{ CE_INTERRUPT_IDX(0),
150 	  CE_INTERRUPT_IDX(1),
151 	  CE_INTERRUPT_IDX(0),
152 	  CE_INTERRUPT_IDX(1),
153 	  CE_INTERRUPT_IDX(0),
154 	  CE_INTERRUPT_IDX(1),
155 	  CE_INTERRUPT_IDX(0),
156 	  CE_INTERRUPT_IDX(0),
157 	  CE_INTERRUPT_IDX(0),
158 	  CE_INTERRUPT_IDX(0),
159 	  CE_INTERRUPT_IDX(0),
160 	  CE_INTERRUPT_IDX(0),
161 #ifdef QCA_WIFI_QCN9224
162 	  CE_INTERRUPT_IDX(0),
163 	  CE_INTERRUPT_IDX(0),
164 	  CE_INTERRUPT_IDX(0),
165 	  CE_INTERRUPT_IDX(0),
166 #endif
167 	} },
168 	/* Interrupt assignment for 3 MSI combination */
169 	{{ CE_INTERRUPT_IDX(0),
170 	  CE_INTERRUPT_IDX(1),
171 	  CE_INTERRUPT_IDX(2),
172 	  CE_INTERRUPT_IDX(1),
173 	  CE_INTERRUPT_IDX(0),
174 	  CE_INTERRUPT_IDX(1),
175 	  CE_INTERRUPT_IDX(0),
176 	  CE_INTERRUPT_IDX(0),
177 	  CE_INTERRUPT_IDX(0),
178 	  CE_INTERRUPT_IDX(0),
179 	  CE_INTERRUPT_IDX(0),
180 	  CE_INTERRUPT_IDX(0),
181 #ifdef QCA_WIFI_QCN9224
182 	  CE_INTERRUPT_IDX(0),
183 	  CE_INTERRUPT_IDX(0),
184 	  CE_INTERRUPT_IDX(0),
185 	  CE_INTERRUPT_IDX(0),
186 #endif
187 	} },
188 	/* Interrupt assignment for 4 MSI combination */
189 	{{ CE_INTERRUPT_IDX(0),
190 	  CE_INTERRUPT_IDX(1),
191 	  CE_INTERRUPT_IDX(2),
192 	  CE_INTERRUPT_IDX(3),
193 	  CE_INTERRUPT_IDX(0),
194 	  CE_INTERRUPT_IDX(1),
195 	  CE_INTERRUPT_IDX(0),
196 	  CE_INTERRUPT_IDX(0),
197 	  CE_INTERRUPT_IDX(0),
198 	  CE_INTERRUPT_IDX(0),
199 	  CE_INTERRUPT_IDX(0),
200 	  CE_INTERRUPT_IDX(0),
201 #ifdef QCA_WIFI_QCN9224
202 	  CE_INTERRUPT_IDX(0),
203 	  CE_INTERRUPT_IDX(0),
204 	  CE_INTERRUPT_IDX(0),
205 	  CE_INTERRUPT_IDX(0),
206 #endif
207 	} },
208 	/* Interrupt assignment for 5 MSI combination */
209 	{{ CE_INTERRUPT_IDX(0),
210 	  CE_INTERRUPT_IDX(1),
211 	  CE_INTERRUPT_IDX(2),
212 	  CE_INTERRUPT_IDX(3),
213 	  CE_INTERRUPT_IDX(0),
214 	  CE_INTERRUPT_IDX(4),
215 	  CE_INTERRUPT_IDX(0),
216 	  CE_INTERRUPT_IDX(0),
217 	  CE_INTERRUPT_IDX(0),
218 	  CE_INTERRUPT_IDX(0),
219 	  CE_INTERRUPT_IDX(0),
220 	  CE_INTERRUPT_IDX(0),
221 #ifdef QCA_WIFI_QCN9224
222 	  CE_INTERRUPT_IDX(0),
223 	  CE_INTERRUPT_IDX(0),
224 	  CE_INTERRUPT_IDX(0),
225 	  CE_INTERRUPT_IDX(0),
226 #endif
227 	} },
228 	/* Interrupt assignment for 6 MSI combination */
229 	{{ CE_INTERRUPT_IDX(0),
230 	  CE_INTERRUPT_IDX(1),
231 	  CE_INTERRUPT_IDX(2),
232 	  CE_INTERRUPT_IDX(3),
233 	  CE_INTERRUPT_IDX(4),
234 	  CE_INTERRUPT_IDX(5),
235 	  CE_INTERRUPT_IDX(0),
236 	  CE_INTERRUPT_IDX(0),
237 	  CE_INTERRUPT_IDX(0),
238 	  CE_INTERRUPT_IDX(0),
239 	  CE_INTERRUPT_IDX(0),
240 	  CE_INTERRUPT_IDX(0),
241 #ifdef QCA_WIFI_QCN9224
242 	  CE_INTERRUPT_IDX(0),
243 	  CE_INTERRUPT_IDX(0),
244 	  CE_INTERRUPT_IDX(0),
245 	  CE_INTERRUPT_IDX(0),
246 #endif
247 	} },
248 	/* Interrupt assignment for 7 MSI combination */
249 	{{ CE_INTERRUPT_IDX(0),
250 	  CE_INTERRUPT_IDX(1),
251 	  CE_INTERRUPT_IDX(2),
252 	  CE_INTERRUPT_IDX(3),
253 	  CE_INTERRUPT_IDX(4),
254 	  CE_INTERRUPT_IDX(5),
255 	  CE_INTERRUPT_IDX(6),
256 	  CE_INTERRUPT_IDX(0),
257 	  CE_INTERRUPT_IDX(0),
258 	  CE_INTERRUPT_IDX(0),
259 	  CE_INTERRUPT_IDX(0),
260 	  CE_INTERRUPT_IDX(0),
261 #ifdef QCA_WIFI_QCN9224
262 	  CE_INTERRUPT_IDX(0),
263 	  CE_INTERRUPT_IDX(0),
264 	  CE_INTERRUPT_IDX(0),
265 	  CE_INTERRUPT_IDX(0),
266 #endif
267 	} },
268 	/* Interrupt assignment for 8 MSI combination */
269 	{{ CE_INTERRUPT_IDX(0),
270 	  CE_INTERRUPT_IDX(1),
271 	  CE_INTERRUPT_IDX(2),
272 	  CE_INTERRUPT_IDX(3),
273 	  CE_INTERRUPT_IDX(4),
274 	  CE_INTERRUPT_IDX(5),
275 	  CE_INTERRUPT_IDX(6),
276 	  CE_INTERRUPT_IDX(7),
277 	  CE_INTERRUPT_IDX(0),
278 	  CE_INTERRUPT_IDX(0),
279 	  CE_INTERRUPT_IDX(0),
280 	  CE_INTERRUPT_IDX(0),
281 #ifdef QCA_WIFI_QCN9224
282 	  CE_INTERRUPT_IDX(0),
283 	  CE_INTERRUPT_IDX(0),
284 	  CE_INTERRUPT_IDX(0),
285 	  CE_INTERRUPT_IDX(0),
286 #endif
287 	} },
288 	/* Interrupt assignment for 9 MSI combination */
289 	{{ CE_INTERRUPT_IDX(0),
290 	  CE_INTERRUPT_IDX(1),
291 	  CE_INTERRUPT_IDX(2),
292 	  CE_INTERRUPT_IDX(3),
293 	  CE_INTERRUPT_IDX(4),
294 	  CE_INTERRUPT_IDX(5),
295 	  CE_INTERRUPT_IDX(6),
296 	  CE_INTERRUPT_IDX(7),
297 	  CE_INTERRUPT_IDX(8),
298 	  CE_INTERRUPT_IDX(0),
299 	  CE_INTERRUPT_IDX(0),
300 	  CE_INTERRUPT_IDX(0),
301 #ifdef QCA_WIFI_QCN9224
302 	  CE_INTERRUPT_IDX(0),
303 	  CE_INTERRUPT_IDX(0),
304 	  CE_INTERRUPT_IDX(0),
305 	  CE_INTERRUPT_IDX(0),
306 #endif
307 	} },
308 	/* Interrupt assignment for 10 MSI combination */
309 	{{ CE_INTERRUPT_IDX(0),
310 	  CE_INTERRUPT_IDX(1),
311 	  CE_INTERRUPT_IDX(2),
312 	  CE_INTERRUPT_IDX(3),
313 	  CE_INTERRUPT_IDX(4),
314 	  CE_INTERRUPT_IDX(5),
315 	  CE_INTERRUPT_IDX(6),
316 	  CE_INTERRUPT_IDX(7),
317 	  CE_INTERRUPT_IDX(8),
318 	  CE_INTERRUPT_IDX(9),
319 	  CE_INTERRUPT_IDX(0),
320 	  CE_INTERRUPT_IDX(0),
321 #ifdef QCA_WIFI_QCN9224
322 	  CE_INTERRUPT_IDX(0),
323 	  CE_INTERRUPT_IDX(0),
324 	  CE_INTERRUPT_IDX(0),
325 	  CE_INTERRUPT_IDX(0),
326 #endif
327 	} },
328 	/* Interrupt assignment for 11 MSI combination */
329 	{{ CE_INTERRUPT_IDX(0),
330 	  CE_INTERRUPT_IDX(1),
331 	  CE_INTERRUPT_IDX(2),
332 	  CE_INTERRUPT_IDX(3),
333 	  CE_INTERRUPT_IDX(4),
334 	  CE_INTERRUPT_IDX(5),
335 	  CE_INTERRUPT_IDX(6),
336 	  CE_INTERRUPT_IDX(7),
337 	  CE_INTERRUPT_IDX(8),
338 	  CE_INTERRUPT_IDX(9),
339 	  CE_INTERRUPT_IDX(10),
340 	  CE_INTERRUPT_IDX(0),
341 #ifdef QCA_WIFI_QCN9224
342 	  CE_INTERRUPT_IDX(0),
343 	  CE_INTERRUPT_IDX(0),
344 	  CE_INTERRUPT_IDX(0),
345 	  CE_INTERRUPT_IDX(0),
346 #endif
347 	} },
348 	/* Interrupt assignment for 12 MSI combination */
349 	{{ CE_INTERRUPT_IDX(0),
350 	  CE_INTERRUPT_IDX(1),
351 	  CE_INTERRUPT_IDX(2),
352 	  CE_INTERRUPT_IDX(3),
353 	  CE_INTERRUPT_IDX(4),
354 	  CE_INTERRUPT_IDX(5),
355 	  CE_INTERRUPT_IDX(6),
356 	  CE_INTERRUPT_IDX(7),
357 	  CE_INTERRUPT_IDX(8),
358 	  CE_INTERRUPT_IDX(9),
359 	  CE_INTERRUPT_IDX(10),
360 	  CE_INTERRUPT_IDX(11),
361 #ifdef QCA_WIFI_QCN9224
362 	  CE_INTERRUPT_IDX(0),
363 	  CE_INTERRUPT_IDX(0),
364 	  CE_INTERRUPT_IDX(0),
365 	  CE_INTERRUPT_IDX(0),
366 #endif
367 	} },
368 #ifdef QCA_WIFI_QCN9224
369 	/* Interrupt assignment for 13 MSI combination */
370 	{{ CE_INTERRUPT_IDX(0),
371 	  CE_INTERRUPT_IDX(1),
372 	  CE_INTERRUPT_IDX(2),
373 	  CE_INTERRUPT_IDX(3),
374 	  CE_INTERRUPT_IDX(4),
375 	  CE_INTERRUPT_IDX(5),
376 	  CE_INTERRUPT_IDX(6),
377 	  CE_INTERRUPT_IDX(7),
378 	  CE_INTERRUPT_IDX(8),
379 	  CE_INTERRUPT_IDX(9),
380 	  CE_INTERRUPT_IDX(10),
381 	  CE_INTERRUPT_IDX(11),
382 	  CE_INTERRUPT_IDX(12),
383 	  CE_INTERRUPT_IDX(0),
384 	  CE_INTERRUPT_IDX(0),
385 	  CE_INTERRUPT_IDX(0),
386 	} },
387 	/* Interrupt assignment for 14 MSI combination */
388 	{{ CE_INTERRUPT_IDX(0),
389 	  CE_INTERRUPT_IDX(1),
390 	  CE_INTERRUPT_IDX(2),
391 	  CE_INTERRUPT_IDX(3),
392 	  CE_INTERRUPT_IDX(4),
393 	  CE_INTERRUPT_IDX(5),
394 	  CE_INTERRUPT_IDX(6),
395 	  CE_INTERRUPT_IDX(7),
396 	  CE_INTERRUPT_IDX(8),
397 	  CE_INTERRUPT_IDX(9),
398 	  CE_INTERRUPT_IDX(10),
399 	  CE_INTERRUPT_IDX(11),
400 	  CE_INTERRUPT_IDX(12),
401 	  CE_INTERRUPT_IDX(13),
402 	  CE_INTERRUPT_IDX(0),
403 	  CE_INTERRUPT_IDX(0),
404 	} },
405 	/* Interrupt assignment for 15 MSI combination */
406 	{{ CE_INTERRUPT_IDX(0),
407 	  CE_INTERRUPT_IDX(1),
408 	  CE_INTERRUPT_IDX(2),
409 	  CE_INTERRUPT_IDX(3),
410 	  CE_INTERRUPT_IDX(4),
411 	  CE_INTERRUPT_IDX(5),
412 	  CE_INTERRUPT_IDX(6),
413 	  CE_INTERRUPT_IDX(7),
414 	  CE_INTERRUPT_IDX(8),
415 	  CE_INTERRUPT_IDX(9),
416 	  CE_INTERRUPT_IDX(10),
417 	  CE_INTERRUPT_IDX(11),
418 	  CE_INTERRUPT_IDX(12),
419 	  CE_INTERRUPT_IDX(13),
420 	  CE_INTERRUPT_IDX(14),
421 	  CE_INTERRUPT_IDX(0),
422 	} },
423 	/* Interrupt assignment for 16 MSI combination */
424 	{{ CE_INTERRUPT_IDX(0),
425 	  CE_INTERRUPT_IDX(1),
426 	  CE_INTERRUPT_IDX(2),
427 	  CE_INTERRUPT_IDX(3),
428 	  CE_INTERRUPT_IDX(4),
429 	  CE_INTERRUPT_IDX(5),
430 	  CE_INTERRUPT_IDX(6),
431 	  CE_INTERRUPT_IDX(7),
432 	  CE_INTERRUPT_IDX(8),
433 	  CE_INTERRUPT_IDX(9),
434 	  CE_INTERRUPT_IDX(10),
435 	  CE_INTERRUPT_IDX(11),
436 	  CE_INTERRUPT_IDX(12),
437 	  CE_INTERRUPT_IDX(13),
438 	  CE_INTERRUPT_IDX(14),
439 	  CE_INTERRUPT_IDX(15),
440 	} },
441 #endif
442 };
443 
444 
445 void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
446 		      uint8_t cmd_id, bool start)
447 {
448 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
449 
450 	switch (cmd_id) {
451 	case AGC_DUMP:
452 		if (start)
453 			priv_start_agc(scn);
454 		else
455 			priv_dump_agc(scn);
456 		break;
457 	case CHANINFO_DUMP:
458 		if (start)
459 			priv_start_cap_chaninfo(scn);
460 		else
461 			priv_dump_chaninfo(scn);
462 		break;
463 	case BB_WATCHDOG_DUMP:
464 		priv_dump_bbwatchdog(scn);
465 		break;
466 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
467 	case PCIE_ACCESS_DUMP:
468 		hif_target_access_log_dump();
469 		break;
470 #endif
471 	default:
472 		hif_err("Invalid htc dump command: %d", cmd_id);
473 		break;
474 	}
475 }
476 
477 static void ce_poll_timeout(void *arg)
478 {
479 	struct CE_state *CE_state = (struct CE_state *)arg;
480 
481 	if (CE_state->timer_inited) {
482 		ce_per_engine_service(CE_state->scn, CE_state->id);
483 		qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
484 	}
485 }
486 
487 static unsigned int roundup_pwr2(unsigned int n)
488 {
489 	int i;
490 	unsigned int test_pwr2;
491 
492 	if (!(n & (n - 1)))
493 		return n; /* already a power of 2 */
494 
495 	test_pwr2 = 4;
496 	for (i = 0; i < 29; i++) {
497 		if (test_pwr2 > n)
498 			return test_pwr2;
499 		test_pwr2 = test_pwr2 << 1;
500 	}
501 
502 	QDF_ASSERT(0); /* n too large */
503 	return 0;
504 }
505 
506 #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
507 #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
508 
509 static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
510 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
511 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
512 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
513 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
514 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
515 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
516 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
517 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
518 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
519 #ifdef QCA_WIFI_3_0_ADRASTEA
520 	{ 9, ADRASTEA_DST_WR_INDEX_OFFSET},
521 	{ 10, ADRASTEA_DST_WR_INDEX_OFFSET},
522 	{ 11, ADRASTEA_DST_WR_INDEX_OFFSET},
523 #endif
524 };
525 
526 #ifdef QCN7605_SUPPORT
527 static struct shadow_reg_cfg target_shadow_reg_cfg_map_qcn7605[] = {
528 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
529 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
530 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
531 	{ 3, ADRASTEA_DST_WR_INDEX_OFFSET},
532 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
533 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
534 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
535 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
536 };
537 #endif
538 
539 #ifdef WLAN_FEATURE_EPPING
540 static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
541 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
542 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
543 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
544 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
545 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
546 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
547 	{ 5, ADRASTEA_DST_WR_INDEX_OFFSET},
548 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
549 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
550 };
551 #endif
552 
553 /* CE_PCI TABLE */
554 /*
555  * NOTE: the table below is out of date, though still a useful reference.
556  * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
557  * mapping of HTC services to HIF pipes.
558  */
559 /*
560  * This authoritative table defines Copy Engine configuration and the mapping
561  * of services/endpoints to CEs.  A subset of this information is passed to
562  * the Target during startup as a prerequisite to entering BMI phase.
563  * See:
564  *    target_service_to_ce_map - Target-side mapping
565  *    hif_map_service_to_pipe      - Host-side mapping
566  *    target_ce_config         - Target-side configuration
567  *    host_ce_config           - Host-side configuration
568    ============================================================================
569    Purpose    | Service / Endpoint   | CE   | Dire | Xfer     | Xfer
570  |                      |      | ctio | Size     | Frequency
571  |                      |      | n    |          |
572    ============================================================================
573    tx         | HTT_DATA (downlink)  | CE 0 | h->t | medium - | very frequent
574    descriptor |                      |      |      | O(100B)  | and regular
575    download   |                      |      |      |          |
576    ----------------------------------------------------------------------------
577    rx         | HTT_DATA (uplink)    | CE 1 | t->h | small -  | frequent and
578    indication |                      |      |      | O(10B)   | regular
579    upload     |                      |      |      |          |
580    ----------------------------------------------------------------------------
581    MSDU       | DATA_BK (uplink)     | CE 2 | t->h | large -  | rare
582    upload     |                      |      |      | O(1000B) | (frequent
583    e.g. noise |                      |      |      |          | during IP1.0
584    packets    |                      |      |      |          | testing)
585    ----------------------------------------------------------------------------
586    MSDU       | DATA_BK (downlink)   | CE 3 | h->t | large -  | very rare
587    download   |                      |      |      | O(1000B) | (frequent
588    e.g.       |                      |      |      |          | during IP1.0
589    misdirecte |                      |      |      |          | testing)
590    d EAPOL    |                      |      |      |          |
591    packets    |                      |      |      |          |
592    ----------------------------------------------------------------------------
593    n/a        | DATA_BE, DATA_VI     | CE 2 | t->h |          | never(?)
594  | DATA_VO (uplink)     |      |      |          |
595    ----------------------------------------------------------------------------
596    n/a        | DATA_BE, DATA_VI     | CE 3 | h->t |          | never(?)
597  | DATA_VO (downlink)   |      |      |          |
598    ----------------------------------------------------------------------------
599    WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
600  |                      |      |      | O(100B)  |
601    ----------------------------------------------------------------------------
602    WMI        | WMI_CONTROL          | CE 5 | h->t | medium - | infrequent
603    messages   | (downlink)           |      |      | O(100B)  |
604  |                      |      |      |          |
605    ----------------------------------------------------------------------------
606    n/a        | HTC_CTRL_RSVD,       | CE 1 | t->h |          | never(?)
607  | HTC_RAW_STREAMS      |      |      |          |
608  | (uplink)             |      |      |          |
609    ----------------------------------------------------------------------------
610    n/a        | HTC_CTRL_RSVD,       | CE 0 | h->t |          | never(?)
611  | HTC_RAW_STREAMS      |      |      |          |
612  | (downlink)           |      |      |          |
613    ----------------------------------------------------------------------------
614    diag       | none (raw CE)        | CE 7 | t<>h |    4     | Diag Window
615  |                      |      |      |          | infrequent
616    ============================================================================
617  */
618 
619 /*
620  * Map from service/endpoint to Copy Engine.
621  * This table is derived from the CE_PCI TABLE, above.
622  * It is passed to the Target at startup for use by firmware.
623  */
624 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
625 	{
626 		WMI_DATA_VO_SVC,
627 		PIPEDIR_OUT,    /* out = UL = host -> target */
628 		3,
629 	},
630 	{
631 		WMI_DATA_VO_SVC,
632 		PIPEDIR_IN,     /* in = DL = target -> host */
633 		2,
634 	},
635 	{
636 		WMI_DATA_BK_SVC,
637 		PIPEDIR_OUT,    /* out = UL = host -> target */
638 		3,
639 	},
640 	{
641 		WMI_DATA_BK_SVC,
642 		PIPEDIR_IN,     /* in = DL = target -> host */
643 		2,
644 	},
645 	{
646 		WMI_DATA_BE_SVC,
647 		PIPEDIR_OUT,    /* out = UL = host -> target */
648 		3,
649 	},
650 	{
651 		WMI_DATA_BE_SVC,
652 		PIPEDIR_IN,     /* in = DL = target -> host */
653 		2,
654 	},
655 	{
656 		WMI_DATA_VI_SVC,
657 		PIPEDIR_OUT,    /* out = UL = host -> target */
658 		3,
659 	},
660 	{
661 		WMI_DATA_VI_SVC,
662 		PIPEDIR_IN,     /* in = DL = target -> host */
663 		2,
664 	},
665 	{
666 		WMI_CONTROL_SVC,
667 		PIPEDIR_OUT,    /* out = UL = host -> target */
668 		3,
669 	},
670 	{
671 		WMI_CONTROL_SVC,
672 		PIPEDIR_IN,     /* in = DL = target -> host */
673 		2,
674 	},
675 	{
676 		HTC_CTRL_RSVD_SVC,
677 		PIPEDIR_OUT,    /* out = UL = host -> target */
678 		0,              /* could be moved to 3 (share with WMI) */
679 	},
680 	{
681 		HTC_CTRL_RSVD_SVC,
682 		PIPEDIR_IN,     /* in = DL = target -> host */
683 		2,
684 	},
685 	{
686 		HTC_RAW_STREAMS_SVC, /* not currently used */
687 		PIPEDIR_OUT,    /* out = UL = host -> target */
688 		0,
689 	},
690 	{
691 		HTC_RAW_STREAMS_SVC, /* not currently used */
692 		PIPEDIR_IN,     /* in = DL = target -> host */
693 		2,
694 	},
695 	{
696 		HTT_DATA_MSG_SVC,
697 		PIPEDIR_OUT,    /* out = UL = host -> target */
698 		4,
699 	},
700 	{
701 		HTT_DATA_MSG_SVC,
702 		PIPEDIR_IN,     /* in = DL = target -> host */
703 		1,
704 	},
705 	{
706 		WDI_IPA_TX_SVC,
707 		PIPEDIR_OUT,    /* in = DL = target -> host */
708 		5,
709 	},
710 #if defined(QCA_WIFI_3_0_ADRASTEA)
711 	{
712 		HTT_DATA2_MSG_SVC,
713 		PIPEDIR_IN,    /* in = DL = target -> host */
714 		9,
715 	},
716 	{
717 		HTT_DATA3_MSG_SVC,
718 		PIPEDIR_IN,    /* in = DL = target -> host */
719 		10,
720 	},
721 	{
722 		PACKET_LOG_SVC,
723 		PIPEDIR_IN,    /* in = DL = target -> host */
724 		11,
725 	},
726 #endif
727 	/* (Additions here) */
728 
729 	{                       /* Must be last */
730 		0,
731 		0,
732 		0,
733 	},
734 };
735 
736 /* PIPEDIR_OUT = HOST to Target */
737 /* PIPEDIR_IN  = TARGET to HOST */
738 #if (defined(QCA_WIFI_QCA8074))
739 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
740 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
741 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
742 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
743 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
744 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
745 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
746 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
747 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
748 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
749 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
750 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
751 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
752 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
753 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
754 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
755 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
756 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
757 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
758 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
759 	/* (Additions here) */
760 	{ 0, 0, 0, },
761 };
762 #else
763 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
764 };
765 #endif
766 
767 #if (defined(QCA_WIFI_QCA9574))
768 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
769 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
770 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
771 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
772 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
773 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
774 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
775 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
776 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
777 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
778 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
779 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
780 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
781 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
782 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
783 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
784 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
785 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
786 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
787 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
788 	/* (Additions here) */
789 	{ 0, 0, 0, },
790 };
791 #else
792 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
793 };
794 #endif
795 
796 #if (defined(QCA_WIFI_QCA8074V2))
797 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
798 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
799 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
800 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
801 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
802 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
803 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
804 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
805 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
806 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
807 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
808 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
809 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
810 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_OUT, 9},
811 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_IN, 2},
812 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
813 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
814 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
815 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
816 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
817 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
818 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
819 	/* (Additions here) */
820 	{ 0, 0, 0, },
821 };
822 #else
823 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
824 };
825 #endif
826 
827 #if (defined(QCA_WIFI_QCA6018))
828 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
829 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
830 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
831 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
832 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
833 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
834 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
835 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
836 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
837 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
838 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
839 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
840 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
841 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
842 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
843 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
844 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
845 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
846 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
847 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
848 	/* (Additions here) */
849 	{ 0, 0, 0, },
850 };
851 #else
852 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
853 };
854 #endif
855 
856 #if (defined(QCA_WIFI_QCN9000))
857 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
858 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
859 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
860 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
861 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
862 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
863 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
864 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
865 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
866 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
867 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
868 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
869 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
870 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
871 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
872 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
873 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
874 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
875 	/* (Additions here) */
876 	{ 0, 0, 0, },
877 };
878 #else
879 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
880 };
881 #endif
882 
883 #if (defined(QCA_WIFI_QCA5332) || defined(QCA_WIFI_QCN6432))
884 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
885 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
886 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
887 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
888 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
889 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
890 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
891 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
892 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
893 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
894 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
895 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
896 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
897 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
898 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
899 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
900 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
901 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
902 #ifdef WLAN_DIAG_AND_DBR_OVER_SEPARATE_CE
903 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 9, },
904 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 9, },
905 #else
906 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 2, },
907 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 2, },
908 #endif
909 	/* (Additions here) */
910 	{ 0, 0, 0, },
911 };
912 #else
913 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
914 };
915 #endif
916 
917 #if (defined(QCA_WIFI_QCN9224))
918 static struct service_to_pipe target_service_to_ce_map_qcn9224[] = {
919 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
920 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
921 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
922 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
923 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
924 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
925 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
926 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
927 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
928 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
929 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
930 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
931 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
932 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
933 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
934 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
935 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7, },
936 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2, },
937 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
938 #ifdef WLAN_DIAG_AND_DBR_OVER_SEPARATE_CE
939 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 14, },
940 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 14, },
941 #else
942 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 2, },
943 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 2, },
944 #endif
945 	/* (Additions here) */
946 	{ 0, 0, 0, },
947 };
948 #endif
949 
950 #if defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCN9160)
951 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
952 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
953 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
954 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
955 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
956 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
957 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
958 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
959 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
960 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
961 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
962 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
963 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
964 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
965 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
966 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
967 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
968 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
969 	/* (Additions here) */
970 	{ 0, 0, 0, },
971 };
972 #else
973 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
974 };
975 #endif
976 
977 /* PIPEDIR_OUT = HOST to Target */
978 /* PIPEDIR_IN  = TARGET to HOST */
979 #ifdef QCN7605_SUPPORT
980 static struct service_to_pipe target_service_to_ce_map_qcn7605[] = {
981 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 0, },
982 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
983 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 0, },
984 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
985 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 0, },
986 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
987 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 0, },
988 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
989 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 0, },
990 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
991 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
992 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
993 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0, },
994 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2, },
995 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
996 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
997 	{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 3, },
998 #ifdef IPA_OFFLOAD
999 	{ WDI_IPA_TX_SVC, PIPEDIR_OUT, 5, },
1000 #else
1001 	{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 8, },
1002 #endif
1003 	{ PACKET_LOG_SVC, PIPEDIR_IN, 7, },
1004 	/* (Additions here) */
1005 	{ 0, 0, 0, },
1006 };
1007 #endif
1008 
1009 #if (defined(QCA_WIFI_QCA6290))
1010 #ifdef QCA_6290_AP_MODE
1011 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1012 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1013 	{ WMI_DATA_VO_SVC, PIPEDIR_IN , 2, },
1014 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1015 	{ WMI_DATA_BK_SVC, PIPEDIR_IN , 2, },
1016 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1017 	{ WMI_DATA_BE_SVC, PIPEDIR_IN , 2, },
1018 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1019 	{ WMI_DATA_VI_SVC, PIPEDIR_IN , 2, },
1020 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1021 	{ WMI_CONTROL_SVC, PIPEDIR_IN , 2, },
1022 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1023 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN , 2, },
1024 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1025 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN , 1, },
1026 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
1027 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
1028 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1029 	/* (Additions here) */
1030 	{ 0, 0, 0, },
1031 };
1032 #else
1033 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1034 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1035 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1036 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1037 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1038 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1039 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1040 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1041 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1042 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1043 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1044 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1045 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1046 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1047 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1048 	/* (Additions here) */
1049 	{ 0, 0, 0, },
1050 };
1051 #endif
1052 #else
1053 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1054 };
1055 #endif
1056 
1057 #if (defined(QCA_WIFI_QCA6390))
1058 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1059 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1060 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1061 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1062 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1063 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1064 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1065 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1066 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1067 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1068 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1069 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1070 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1071 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1072 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1073 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1074 	/* (Additions here) */
1075 	{ 0, 0, 0, },
1076 };
1077 #else
1078 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1079 };
1080 #endif
1081 
1082 static struct service_to_pipe target_service_to_ce_map_qca6490[] = {
1083 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1084 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1085 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1086 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1087 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1088 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1089 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1090 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1091 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1092 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1093 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1094 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1095 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1096 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1097 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1098 	/* (Additions here) */
1099 	{ 0, 0, 0, },
1100 };
1101 
1102 #if (defined(QCA_WIFI_QCA6750))
1103 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1104 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1105 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1106 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1107 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1108 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1109 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1110 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1111 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1112 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1113 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1114 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1115 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1116 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1117 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1118 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1119 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1120 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1121 #endif
1122 	/* (Additions here) */
1123 	{ 0, 0, 0, },
1124 };
1125 #else
1126 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1127 };
1128 #endif
1129 
1130 #if (defined(QCA_WIFI_KIWI))
1131 #ifdef FEATURE_DIRECT_LINK
1132 static struct service_to_pipe target_service_to_ce_map_kiwi_direct_link[] = {
1133 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1134 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1135 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1136 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1137 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1138 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1139 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1140 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1141 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1142 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1143 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 4, },
1144 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1145 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1146 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1147 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1148 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1149 #endif
1150 	{ LPASS_DATA_MSG_SVC, PIPEDIR_OUT, 0, },
1151 	{ LPASS_DATA_MSG_SVC, PIPEDIR_IN, 5, },
1152 	/* (Additions here) */
1153 	{ 0, 0, 0, },
1154 };
1155 #endif
1156 
1157 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1158 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1159 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1160 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1161 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1162 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1163 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1164 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1165 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1166 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1167 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1168 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1169 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1170 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1171 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1172 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1173 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1174 #endif
1175 	/* (Additions here) */
1176 	{ 0, 0, 0, },
1177 };
1178 #else
1179 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1180 };
1181 #endif
1182 
1183 #ifdef QCA_WIFI_WCN6450
1184 static struct service_to_pipe target_service_to_ce_map_wcn6450[] = {
1185 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1186 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1187 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1188 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1189 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1190 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1191 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1192 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1193 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1194 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1195 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1196 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1197 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1198 	{ HTT_DATA2_MSG_SVC, PIPEDIR_OUT, 5, },
1199 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1200 	{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 10, },
1201 	{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 11, },
1202 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1203 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1204 #endif
1205 	/* (Additions here) */
1206 	{ 0, 0, 0, },
1207 };
1208 #else
1209 static struct service_to_pipe target_service_to_ce_map_wcn6450[] = {
1210 };
1211 #endif
1212 
1213 static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
1214 	{
1215 		WMI_DATA_VO_SVC,
1216 		PIPEDIR_OUT,    /* out = UL = host -> target */
1217 		3,
1218 	},
1219 	{
1220 		WMI_DATA_VO_SVC,
1221 		PIPEDIR_IN,     /* in = DL = target -> host */
1222 		2,
1223 	},
1224 	{
1225 		WMI_DATA_BK_SVC,
1226 		PIPEDIR_OUT,    /* out = UL = host -> target */
1227 		3,
1228 	},
1229 	{
1230 		WMI_DATA_BK_SVC,
1231 		PIPEDIR_IN,     /* in = DL = target -> host */
1232 		2,
1233 	},
1234 	{
1235 		WMI_DATA_BE_SVC,
1236 		PIPEDIR_OUT,    /* out = UL = host -> target */
1237 		3,
1238 	},
1239 	{
1240 		WMI_DATA_BE_SVC,
1241 		PIPEDIR_IN,     /* in = DL = target -> host */
1242 		2,
1243 	},
1244 	{
1245 		WMI_DATA_VI_SVC,
1246 		PIPEDIR_OUT,    /* out = UL = host -> target */
1247 		3,
1248 	},
1249 	{
1250 		WMI_DATA_VI_SVC,
1251 		PIPEDIR_IN,     /* in = DL = target -> host */
1252 		2,
1253 	},
1254 	{
1255 		WMI_CONTROL_SVC,
1256 		PIPEDIR_OUT,    /* out = UL = host -> target */
1257 		3,
1258 	},
1259 	{
1260 		WMI_CONTROL_SVC,
1261 		PIPEDIR_IN,     /* in = DL = target -> host */
1262 		2,
1263 	},
1264 	{
1265 		HTC_CTRL_RSVD_SVC,
1266 		PIPEDIR_OUT,    /* out = UL = host -> target */
1267 		0,              /* could be moved to 3 (share with WMI) */
1268 	},
1269 	{
1270 		HTC_CTRL_RSVD_SVC,
1271 		PIPEDIR_IN,     /* in = DL = target -> host */
1272 		1,
1273 	},
1274 	{
1275 		HTC_RAW_STREAMS_SVC, /* not currently used */
1276 		PIPEDIR_OUT,    /* out = UL = host -> target */
1277 		0,
1278 	},
1279 	{
1280 		HTC_RAW_STREAMS_SVC, /* not currently used */
1281 		PIPEDIR_IN,     /* in = DL = target -> host */
1282 		1,
1283 	},
1284 	{
1285 		HTT_DATA_MSG_SVC,
1286 		PIPEDIR_OUT,    /* out = UL = host -> target */
1287 		4,
1288 	},
1289 #ifdef WLAN_FEATURE_FASTPATH
1290 	{
1291 		HTT_DATA_MSG_SVC,
1292 		PIPEDIR_IN,     /* in = DL = target -> host */
1293 		5,
1294 	},
1295 #else /* WLAN_FEATURE_FASTPATH */
1296 	{
1297 		HTT_DATA_MSG_SVC,
1298 		PIPEDIR_IN,  /* in = DL = target -> host */
1299 		1,
1300 	},
1301 #endif /* WLAN_FEATURE_FASTPATH */
1302 
1303 	/* (Additions here) */
1304 
1305 	{                       /* Must be last */
1306 		0,
1307 		0,
1308 		0,
1309 	},
1310 };
1311 
1312 static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
1313 static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
1314 
1315 #ifdef WLAN_FEATURE_EPPING
1316 static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
1317 	{WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1318 	{WMI_DATA_VO_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1319 	{WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,},     /* out = UL = host -> target */
1320 	{WMI_DATA_BK_SVC, PIPEDIR_IN, 1,},      /* in = DL = target -> host */
1321 	{WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1322 	{WMI_DATA_BE_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1323 	{WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1324 	{WMI_DATA_VI_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1325 	{WMI_CONTROL_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1326 	{WMI_CONTROL_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1327 	{HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,},   /* out = UL = host -> target */
1328 	{HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,},    /* in = DL = target -> host */
1329 	{HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
1330 	{HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,},  /* in = DL = target -> host */
1331 	{HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,},    /* out = UL = host -> target */
1332 	{HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,},     /* in = DL = target -> host */
1333 	{0, 0, 0,},             /* Must be last */
1334 };
1335 
1336 void hif_select_epping_service_to_pipe_map(struct service_to_pipe
1337 					   **tgt_svc_map_to_use,
1338 					   uint32_t *sz_tgt_svc_map_to_use)
1339 {
1340 	*tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
1341 	*sz_tgt_svc_map_to_use =
1342 			sizeof(target_service_to_ce_map_wlan_epping);
1343 }
1344 #endif
1345 
1346 #ifdef QCN7605_SUPPORT
1347 static inline
1348 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1349 			       uint32_t *sz_tgt_svc_map_to_use)
1350 {
1351 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn7605;
1352 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn7605);
1353 }
1354 #else
1355 static inline
1356 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1357 			       uint32_t *sz_tgt_svc_map_to_use)
1358 {
1359 	hif_err("QCN7605 not supported");
1360 }
1361 #endif
1362 
1363 #ifdef QCA_WIFI_QCN9224
1364 static
1365 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1366 			       struct HIF_CE_state *hif_state)
1367 {
1368 	hif_state->host_ce_config = host_ce_config_wlan_qcn9224;
1369 	hif_state->target_ce_config = target_ce_config_wlan_qcn9224;
1370 	hif_state->target_ce_config_sz =
1371 				 sizeof(target_ce_config_wlan_qcn9224);
1372 	scn->ce_count = QCN_9224_CE_COUNT;
1373 	scn->ini_cfg.disable_wake_irq = 1;
1374 }
1375 
1376 static
1377 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1378 			       uint32_t *sz_tgt_svc_map_to_use)
1379 {
1380 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn9224;
1381 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn9224);
1382 }
1383 #else
1384 static inline
1385 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1386 			       struct HIF_CE_state *hif_state)
1387 {
1388 	hif_err("QCN9224 not supported");
1389 }
1390 
1391 static inline
1392 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1393 			       uint32_t *sz_tgt_svc_map_to_use)
1394 {
1395 	hif_err("QCN9224 not supported");
1396 }
1397 #endif
1398 
1399 #ifdef FEATURE_DIRECT_LINK
1400 /**
1401  * hif_select_service_to_pipe_map_kiwi() - Select service to CE map
1402  *  configuration for Kiwi
1403  * @scn: HIF context
1404  * @tgt_svc_map_to_use: returned service map
1405  * @sz_tgt_svc_map_to_use: returned length of the service map
1406  *
1407  * Return: None
1408  */
1409 static inline void
1410 hif_select_service_to_pipe_map_kiwi(struct hif_softc *scn,
1411 				    struct service_to_pipe **tgt_svc_map_to_use,
1412 				    uint32_t *sz_tgt_svc_map_to_use)
1413 {
1414 	if (pld_is_direct_link_supported(scn->qdf_dev->dev)) {
1415 		*tgt_svc_map_to_use = target_service_to_ce_map_kiwi_direct_link;
1416 		*sz_tgt_svc_map_to_use =
1417 			sizeof(target_service_to_ce_map_kiwi_direct_link);
1418 	} else {
1419 		*tgt_svc_map_to_use = target_service_to_ce_map_kiwi;
1420 		*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_kiwi);
1421 	}
1422 }
1423 #else
1424 static inline void
1425 hif_select_service_to_pipe_map_kiwi(struct hif_softc *scn,
1426 				    struct service_to_pipe **tgt_svc_map_to_use,
1427 				    uint32_t *sz_tgt_svc_map_to_use)
1428 {
1429 	*tgt_svc_map_to_use = target_service_to_ce_map_kiwi;
1430 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_kiwi);
1431 }
1432 #endif
1433 
1434 static void hif_select_service_to_pipe_map(struct hif_softc *scn,
1435 				    struct service_to_pipe **tgt_svc_map_to_use,
1436 				    uint32_t *sz_tgt_svc_map_to_use)
1437 {
1438 	uint32_t mode = hif_get_conparam(scn);
1439 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1440 	struct hif_target_info *tgt_info = &scn->target_info;
1441 
1442 	if (QDF_IS_EPPING_ENABLED(mode)) {
1443 		hif_select_epping_service_to_pipe_map(tgt_svc_map_to_use,
1444 						      sz_tgt_svc_map_to_use);
1445 	} else {
1446 		switch (tgt_info->target_type) {
1447 		default:
1448 			*tgt_svc_map_to_use = target_service_to_ce_map_wlan;
1449 			*sz_tgt_svc_map_to_use =
1450 				sizeof(target_service_to_ce_map_wlan);
1451 			break;
1452 		case TARGET_TYPE_QCN7605:
1453 			hif_select_ce_map_qcn7605(tgt_svc_map_to_use,
1454 						  sz_tgt_svc_map_to_use);
1455 			break;
1456 		case TARGET_TYPE_AR900B:
1457 		case TARGET_TYPE_QCA9984:
1458 		case TARGET_TYPE_QCA9888:
1459 		case TARGET_TYPE_AR9888:
1460 		case TARGET_TYPE_AR9888V2:
1461 			*tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
1462 			*sz_tgt_svc_map_to_use =
1463 				sizeof(target_service_to_ce_map_ar900b);
1464 			break;
1465 		case TARGET_TYPE_QCA6290:
1466 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6290;
1467 			*sz_tgt_svc_map_to_use =
1468 				sizeof(target_service_to_ce_map_qca6290);
1469 			break;
1470 		case TARGET_TYPE_QCA6390:
1471 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6390;
1472 			*sz_tgt_svc_map_to_use =
1473 				sizeof(target_service_to_ce_map_qca6390);
1474 			break;
1475 		case TARGET_TYPE_QCA6490:
1476 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6490;
1477 			*sz_tgt_svc_map_to_use =
1478 				sizeof(target_service_to_ce_map_qca6490);
1479 			break;
1480 		case TARGET_TYPE_QCA6750:
1481 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6750;
1482 			*sz_tgt_svc_map_to_use =
1483 				sizeof(target_service_to_ce_map_qca6750);
1484 			break;
1485 		case TARGET_TYPE_KIWI:
1486 		case TARGET_TYPE_MANGO:
1487 		case TARGET_TYPE_PEACH:
1488 			hif_select_service_to_pipe_map_kiwi(scn,
1489 							 tgt_svc_map_to_use,
1490 							 sz_tgt_svc_map_to_use);
1491 			break;
1492 		case TARGET_TYPE_WCN6450:
1493 			*tgt_svc_map_to_use = target_service_to_ce_map_wcn6450;
1494 			*sz_tgt_svc_map_to_use =
1495 				 sizeof(target_service_to_ce_map_wcn6450);
1496 			break;
1497 		case TARGET_TYPE_QCA8074:
1498 			*tgt_svc_map_to_use = target_service_to_ce_map_qca8074;
1499 			*sz_tgt_svc_map_to_use =
1500 				sizeof(target_service_to_ce_map_qca8074);
1501 			break;
1502 		case TARGET_TYPE_QCA8074V2:
1503 			*tgt_svc_map_to_use =
1504 				target_service_to_ce_map_qca8074_v2;
1505 			*sz_tgt_svc_map_to_use =
1506 				sizeof(target_service_to_ce_map_qca8074_v2);
1507 			break;
1508 		case TARGET_TYPE_QCA9574:
1509 			*tgt_svc_map_to_use =
1510 				target_service_to_ce_map_qca9574;
1511 			*sz_tgt_svc_map_to_use =
1512 				sizeof(target_service_to_ce_map_qca9574);
1513 			break;
1514 		case TARGET_TYPE_QCA6018:
1515 			*tgt_svc_map_to_use =
1516 				target_service_to_ce_map_qca6018;
1517 			*sz_tgt_svc_map_to_use =
1518 				sizeof(target_service_to_ce_map_qca6018);
1519 			break;
1520 		case TARGET_TYPE_QCN9000:
1521 			*tgt_svc_map_to_use =
1522 				target_service_to_ce_map_qcn9000;
1523 			*sz_tgt_svc_map_to_use =
1524 				sizeof(target_service_to_ce_map_qcn9000);
1525 			break;
1526 		case TARGET_TYPE_QCN9224:
1527 			hif_select_ce_map_qcn9224(tgt_svc_map_to_use,
1528 						  sz_tgt_svc_map_to_use);
1529 			break;
1530 		case TARGET_TYPE_QCA5332:
1531 		case TARGET_TYPE_QCN6432:
1532 			*tgt_svc_map_to_use = target_service_to_ce_map_qca5332;
1533 			*sz_tgt_svc_map_to_use =
1534 				sizeof(target_service_to_ce_map_qca5332);
1535 			break;
1536 		case TARGET_TYPE_QCA5018:
1537 		case TARGET_TYPE_QCN6122:
1538 		case TARGET_TYPE_QCN9160:
1539 			*tgt_svc_map_to_use =
1540 				target_service_to_ce_map_qca5018;
1541 			*sz_tgt_svc_map_to_use =
1542 				sizeof(target_service_to_ce_map_qca5018);
1543 			break;
1544 		}
1545 	}
1546 	hif_state->tgt_svc_map = *tgt_svc_map_to_use;
1547 	hif_state->sz_tgt_svc_map = *sz_tgt_svc_map_to_use /
1548 					sizeof(struct service_to_pipe);
1549 }
1550 
1551 #ifndef QCA_WIFI_WCN6450
1552 /**
1553  * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
1554  * @ce_state : pointer to the state context of the CE
1555  *
1556  * Description:
1557  *   Sets htt_rx_data attribute of the state structure if the
1558  *   CE serves one of the HTT DATA services.
1559  *
1560  * Return:
1561  *  false (attribute set to false)
1562  *  true  (attribute set to true);
1563  */
1564 static bool ce_mark_datapath(struct CE_state *ce_state)
1565 {
1566 	struct service_to_pipe *svc_map;
1567 	uint32_t map_sz, map_len;
1568 	int    i;
1569 	bool   rc = false;
1570 
1571 	if (ce_state) {
1572 		hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
1573 					       &map_sz);
1574 
1575 		map_len = map_sz / sizeof(struct service_to_pipe);
1576 		for (i = 0; i < map_len; i++) {
1577 			if ((svc_map[i].pipenum == ce_state->id) &&
1578 			    ((svc_map[i].service_id == HTT_DATA_MSG_SVC)  ||
1579 			     (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
1580 			     (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
1581 				/* HTT CEs are unidirectional */
1582 				if (svc_map[i].pipedir == PIPEDIR_IN)
1583 					ce_state->htt_rx_data = true;
1584 				else
1585 					ce_state->htt_tx_data = true;
1586 				rc = true;
1587 			}
1588 		}
1589 	}
1590 	return rc;
1591 }
1592 
1593 static void ce_update_msi_batch_intr_flags(struct CE_state *ce_state)
1594 {
1595 }
1596 
1597 static inline void ce_update_wrt_idx_offset(struct hif_softc *scn,
1598 					    struct CE_state *ce_state,
1599 					    struct CE_attr *attr)
1600 {
1601 }
1602 #else
1603 static bool ce_mark_datapath(struct CE_state *ce_state)
1604 {
1605 	struct service_to_pipe *svc_map;
1606 	uint32_t map_sz, map_len;
1607 	int i;
1608 
1609 	if (ce_state) {
1610 		hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
1611 					       &map_sz);
1612 
1613 		map_len = map_sz / sizeof(struct service_to_pipe);
1614 		for (i = 0; i < map_len; i++) {
1615 			if ((svc_map[i].pipenum == ce_state->id) &&
1616 			    ((svc_map[i].service_id == HTT_DATA_MSG_SVC)  ||
1617 			     (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
1618 			     (svc_map[i].service_id == HTT_DATA3_MSG_SVC)) &&
1619 			    (svc_map[i].pipedir == PIPEDIR_IN))
1620 				ce_state->htt_rx_data = true;
1621 			else if ((svc_map[i].pipenum == ce_state->id) &&
1622 				 (svc_map[i].service_id == HTT_DATA2_MSG_SVC) &&
1623 				 (svc_map[i].pipedir == PIPEDIR_OUT))
1624 				ce_state->htt_tx_data = true;
1625 		}
1626 	}
1627 
1628 	return (ce_state->htt_rx_data || ce_state->htt_tx_data);
1629 }
1630 
1631 static void ce_update_msi_batch_intr_flags(struct CE_state *ce_state)
1632 {
1633 	ce_state->msi_supported = true;
1634 	ce_state->batch_intr_supported = true;
1635 }
1636 
1637 static inline void ce_update_wrt_idx_offset(struct hif_softc *scn,
1638 					    struct CE_state *ce_state,
1639 					    struct CE_attr *attr)
1640 {
1641 	/* Do not setup CE write index offset for FW only CE rings */
1642 	if (!attr->src_nentries && !attr->dest_nentries)
1643 		return;
1644 
1645 	if (attr->src_nentries)
1646 		ce_state->ce_wrt_idx_offset =
1647 			CE_SRC_WR_IDX_OFFSET_GET(scn, ce_state->ctrl_addr);
1648 	else if (attr->dest_nentries)
1649 		ce_state->ce_wrt_idx_offset =
1650 			CE_DST_WR_IDX_OFFSET_GET(scn, ce_state->ctrl_addr);
1651 	else
1652 		QDF_BUG(0);
1653 }
1654 
1655 /*
1656  * hif_ce_print_ring_stats() - Print ce ring statistics
1657  *
1658  * @hif_ctx: hif context
1659  *
1660  * Returns: None
1661  */
1662 void hif_ce_print_ring_stats(struct hif_opaque_softc *hif_ctx)
1663 {
1664 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1665 	struct CE_state *ce_state;
1666 	int i;
1667 
1668 	for (i = 0; i < scn->ce_count; i++) {
1669 		ce_state = scn->ce_id_to_state[i];
1670 		if (!ce_state)
1671 			continue;
1672 
1673 		if (ce_state->src_ring) {
1674 			QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_FATAL,
1675 				  "ce%d:SW: sw_index %u write_index %u",
1676 				  ce_state->src_ring->sw_index,
1677 				  ce_state->src_ring->write_index);
1678 
1679 			QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_FATAL,
1680 				  "ce%d:HW: read_index %u write_index %u",
1681 				  CE_SRC_RING_READ_IDX_GET_FROM_REGISTER(scn, ce_state->ctrl_addr),
1682 				  CE_SRC_RING_WRITE_IDX_GET_FROM_REGISTER(scn, ce_state->ctrl_addr));
1683 		}
1684 
1685 		if (ce_state->dest_ring) {
1686 			QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_FATAL,
1687 				  "ce%d:SW: sw_index %u write_index %u",
1688 				  ce_state->dest_ring->sw_index,
1689 				  ce_state->dest_ring->write_index);
1690 
1691 			QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_FATAL,
1692 				  "ce%d:HW: read_index %u write_index %u",
1693 				  CE_DEST_RING_READ_IDX_GET_FROM_REGISTER(scn, ce_state->ctrl_addr),
1694 				  CE_DEST_RING_WRITE_IDX_GET_FROM_REGISTER(scn, ce_state->ctrl_addr));
1695 		}
1696 	}
1697 }
1698 #endif
1699 
1700 /**
1701  * hif_get_max_wmi_ep() - Get max WMI EPs configured in target svc map
1702  * @hif_ctx: hif opaque handle
1703  *
1704  * Description:
1705  *   Gets number of WMI EPs configured in target svc map. Since EP map
1706  *   include IN and OUT direction pipes, count only OUT pipes to get EPs
1707  *   configured for WMI service.
1708  *
1709  * Return:
1710  *  uint8_t: count for WMI eps in target svc map
1711  */
1712 uint8_t hif_get_max_wmi_ep(struct hif_opaque_softc *hif_ctx)
1713 {
1714 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1715 	struct service_to_pipe *svc_map;
1716 	uint32_t map_sz, map_len;
1717 	int    i;
1718 	uint8_t   wmi_ep_count = 0;
1719 
1720 	hif_select_service_to_pipe_map(scn, &svc_map,
1721 				       &map_sz);
1722 	map_len = map_sz / sizeof(struct service_to_pipe);
1723 
1724 	for (i = 0; i < map_len; i++) {
1725 		/* Count number of WMI EPs based on out direction */
1726 		if ((svc_map[i].pipedir == PIPEDIR_OUT) &&
1727 		    ((svc_map[i].service_id == WMI_CONTROL_SVC)  ||
1728 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC1) ||
1729 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC2))) {
1730 			wmi_ep_count++;
1731 		}
1732 	}
1733 
1734 	return wmi_ep_count;
1735 }
1736 
1737 /**
1738  * ce_ring_test_initial_indexes() - tests the initial ce ring indexes
1739  * @ce_id: ce in question
1740  * @ring: ring state being examined
1741  * @type: "src_ring" or "dest_ring" string for identifying the ring
1742  *
1743  * Warns on non-zero index values.
1744  * Causes a kernel panic if the ring is not empty during initialization.
1745  */
1746 static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
1747 					 char *type)
1748 {
1749 	if (ring->write_index != 0 || ring->sw_index != 0)
1750 		hif_err("ce %d, %s, initial sw_index = %d, initial write_index =%d",
1751 			  ce_id, type, ring->sw_index, ring->write_index);
1752 	if (ring->write_index != ring->sw_index)
1753 		QDF_BUG(0);
1754 }
1755 
1756 #ifdef IPA_OFFLOAD
1757 /**
1758  * ce_alloc_desc_ring() - Allocate copyengine descriptor ring
1759  * @scn: softc instance
1760  * @CE_id: ce in question
1761  * @base_addr: pointer to copyengine ring base address
1762  * @ce_ring: copyengine instance
1763  * @nentries: number of entries should be allocated
1764  * @desc_size: ce desc size
1765  *
1766  * Return: QDF_STATUS_SUCCESS - for success
1767  */
1768 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1769 				     qdf_dma_addr_t *base_addr,
1770 				     struct CE_ring_state *ce_ring,
1771 				     unsigned int nentries, uint32_t desc_size)
1772 {
1773 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1774 	    !ce_srng_based(scn)) {
1775 		if (!scn->ipa_ce_ring) {
1776 			scn->ipa_ce_ring = qdf_mem_shared_mem_alloc(
1777 				scn->qdf_dev,
1778 				nentries * desc_size + CE_DESC_RING_ALIGN);
1779 			if (!scn->ipa_ce_ring) {
1780 				hif_err(
1781 				"Failed to allocate memory for IPA ce ring");
1782 				return QDF_STATUS_E_NOMEM;
1783 			}
1784 		}
1785 		*base_addr = qdf_mem_get_dma_addr(scn->qdf_dev,
1786 						&scn->ipa_ce_ring->mem_info);
1787 		ce_ring->base_addr_owner_space_unaligned =
1788 						scn->ipa_ce_ring->vaddr;
1789 	} else {
1790 		ce_ring->base_addr_owner_space_unaligned =
1791 			hif_mem_alloc_consistent_unaligned
1792 					(scn,
1793 					 (nentries * desc_size +
1794 					  CE_DESC_RING_ALIGN),
1795 					 base_addr,
1796 					 ce_ring->hal_ring_type,
1797 					 &ce_ring->is_ring_prealloc);
1798 
1799 		if (!ce_ring->base_addr_owner_space_unaligned) {
1800 			hif_err("Failed to allocate DMA memory for ce ring id: %u",
1801 			       CE_id);
1802 			return QDF_STATUS_E_NOMEM;
1803 		}
1804 	}
1805 	return QDF_STATUS_SUCCESS;
1806 }
1807 
1808 /**
1809  * ce_free_desc_ring() - Frees copyengine descriptor ring
1810  * @scn: softc instance
1811  * @CE_id: ce in question
1812  * @ce_ring: copyengine instance
1813  * @desc_size: ce desc size
1814  *
1815  * Return: None
1816  */
1817 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1818 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1819 {
1820 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1821 	    !ce_srng_based(scn)) {
1822 		if (scn->ipa_ce_ring) {
1823 			qdf_mem_shared_mem_free(scn->qdf_dev,
1824 						scn->ipa_ce_ring);
1825 			scn->ipa_ce_ring = NULL;
1826 		}
1827 		ce_ring->base_addr_owner_space_unaligned = NULL;
1828 	} else {
1829 		hif_mem_free_consistent_unaligned
1830 			(scn,
1831 			 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1832 			 ce_ring->base_addr_owner_space_unaligned,
1833 			 ce_ring->base_addr_CE_space, 0,
1834 			 ce_ring->is_ring_prealloc);
1835 		ce_ring->base_addr_owner_space_unaligned = NULL;
1836 	}
1837 }
1838 #else
1839 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1840 				     qdf_dma_addr_t *base_addr,
1841 				     struct CE_ring_state *ce_ring,
1842 				     unsigned int nentries, uint32_t desc_size)
1843 {
1844 	ce_ring->base_addr_owner_space_unaligned =
1845 			hif_mem_alloc_consistent_unaligned
1846 					(scn,
1847 					 (nentries * desc_size +
1848 					  CE_DESC_RING_ALIGN),
1849 					 base_addr,
1850 					 ce_ring->hal_ring_type,
1851 					 &ce_ring->is_ring_prealloc);
1852 
1853 	if (!ce_ring->base_addr_owner_space_unaligned) {
1854 		hif_err("Failed to allocate DMA memory for ce ring id: %u",
1855 		       CE_id);
1856 		return QDF_STATUS_E_NOMEM;
1857 	}
1858 	return QDF_STATUS_SUCCESS;
1859 }
1860 
1861 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1862 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1863 {
1864 	hif_mem_free_consistent_unaligned
1865 		(scn,
1866 		 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1867 		 ce_ring->base_addr_owner_space_unaligned,
1868 		 ce_ring->base_addr_CE_space, 0,
1869 		 ce_ring->is_ring_prealloc);
1870 	ce_ring->base_addr_owner_space_unaligned = NULL;
1871 }
1872 #endif /* IPA_OFFLOAD */
1873 
1874 /*
1875  * TODO: Need to explore the possibility of having this as part of a
1876  * target context instead of a global array.
1877  */
1878 static struct ce_ops* (*ce_attach_register[CE_MAX_TARGET_TYPE])(void);
1879 
1880 void ce_service_register_module(enum ce_target_type target_type,
1881 				struct ce_ops* (*ce_attach)(void))
1882 {
1883 	if (target_type < CE_MAX_TARGET_TYPE)
1884 		ce_attach_register[target_type] = ce_attach;
1885 }
1886 
1887 qdf_export_symbol(ce_service_register_module);
1888 
1889 /**
1890  * ce_srng_based() - Does this target use srng
1891  * @scn: pointer to the state context of the CE
1892  *
1893  * Description:
1894  *   returns true if the target is SRNG based
1895  *
1896  * Return:
1897  *  false (attribute set to false)
1898  *  true  (attribute set to true);
1899  */
1900 bool ce_srng_based(struct hif_softc *scn)
1901 {
1902 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1903 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
1904 
1905 	switch (tgt_info->target_type) {
1906 	case TARGET_TYPE_QCA8074:
1907 	case TARGET_TYPE_QCA8074V2:
1908 	case TARGET_TYPE_QCA6290:
1909 	case TARGET_TYPE_QCA6390:
1910 	case TARGET_TYPE_QCA6490:
1911 	case TARGET_TYPE_QCA6750:
1912 	case TARGET_TYPE_QCA6018:
1913 	case TARGET_TYPE_QCN9000:
1914 	case TARGET_TYPE_QCN6122:
1915 	case TARGET_TYPE_QCN9160:
1916 	case TARGET_TYPE_QCA5018:
1917 	case TARGET_TYPE_KIWI:
1918 	case TARGET_TYPE_MANGO:
1919 	case TARGET_TYPE_PEACH:
1920 	case TARGET_TYPE_QCN9224:
1921 	case TARGET_TYPE_QCA9574:
1922 	case TARGET_TYPE_QCA5332:
1923 	case TARGET_TYPE_QCN6432:
1924 		return true;
1925 	default:
1926 		return false;
1927 	}
1928 	return false;
1929 }
1930 qdf_export_symbol(ce_srng_based);
1931 
1932 #ifdef QCA_WIFI_SUPPORT_SRNG
1933 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1934 {
1935 	struct ce_ops *ops = NULL;
1936 
1937 	if (ce_srng_based(scn)) {
1938 		if (ce_attach_register[CE_SVC_SRNG])
1939 			ops = ce_attach_register[CE_SVC_SRNG]();
1940 	} else if (ce_attach_register[CE_SVC_LEGACY]) {
1941 		ops = ce_attach_register[CE_SVC_LEGACY]();
1942 	}
1943 
1944 	return ops;
1945 }
1946 
1947 
1948 #else	/* QCA_LITHIUM */
1949 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1950 {
1951 	if (ce_attach_register[CE_SVC_LEGACY])
1952 		return ce_attach_register[CE_SVC_LEGACY]();
1953 
1954 	return NULL;
1955 }
1956 #endif /* QCA_LITHIUM */
1957 
1958 static void hif_prepare_hal_shadow_register_cfg(struct hif_softc *scn,
1959 		struct pld_shadow_reg_v2_cfg **shadow_config,
1960 		int *num_shadow_registers_configured) {
1961 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1962 
1963 	hif_state->ce_services->ce_prepare_shadow_register_v2_cfg(
1964 			scn, shadow_config, num_shadow_registers_configured);
1965 
1966 	return;
1967 }
1968 
1969 #ifdef CONFIG_SHADOW_V3
1970 static inline void
1971 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1972 				  struct pld_wlan_enable_cfg *cfg)
1973 {
1974 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1975 
1976 	if (!hif_state->ce_services->ce_prepare_shadow_register_v3_cfg)
1977 		return;
1978 
1979 	hif_state->ce_services->ce_prepare_shadow_register_v3_cfg(
1980 			scn, &cfg->shadow_reg_v3_cfg,
1981 			&cfg->num_shadow_reg_v3_cfg);
1982 }
1983 #else
1984 static inline void
1985 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1986 				  struct pld_wlan_enable_cfg *cfg)
1987 {
1988 }
1989 #endif
1990 
1991 static inline uint32_t ce_get_desc_size(struct hif_softc *scn,
1992 						uint8_t ring_type)
1993 {
1994 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1995 
1996 	return hif_state->ce_services->ce_get_desc_size(ring_type);
1997 }
1998 
1999 #ifdef QCA_WIFI_SUPPORT_SRNG
2000 static inline int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
2001 {
2002 	switch (ce_ring_type) {
2003 	case CE_RING_SRC:
2004 		return CE_SRC;
2005 	case CE_RING_DEST:
2006 		return CE_DST;
2007 	case CE_RING_STATUS:
2008 		return CE_DST_STATUS;
2009 	default:
2010 		return -EINVAL;
2011 	}
2012 }
2013 #else
2014 static int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
2015 {
2016 	return 0;
2017 }
2018 #endif
2019 static struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state,
2020 		uint8_t ring_type, uint32_t nentries)
2021 {
2022 	uint32_t ce_nbytes;
2023 	char *ptr;
2024 	qdf_dma_addr_t base_addr;
2025 	struct CE_ring_state *ce_ring;
2026 	uint32_t desc_size;
2027 	struct hif_softc *scn = CE_state->scn;
2028 
2029 	ce_nbytes = sizeof(struct CE_ring_state)
2030 		+ (nentries * sizeof(void *));
2031 	ptr = qdf_mem_malloc(ce_nbytes);
2032 	if (!ptr)
2033 		return NULL;
2034 
2035 	ce_ring = (struct CE_ring_state *)ptr;
2036 	ptr += sizeof(struct CE_ring_state);
2037 	ce_ring->nentries = nentries;
2038 	ce_ring->nentries_mask = nentries - 1;
2039 
2040 	ce_ring->low_water_mark_nentries = 0;
2041 	ce_ring->high_water_mark_nentries = nentries;
2042 	ce_ring->per_transfer_context = (void **)ptr;
2043 	ce_ring->hal_ring_type = ce_ring_type_to_hal_ring_type(ring_type);
2044 
2045 	desc_size = ce_get_desc_size(scn, ring_type);
2046 
2047 	/* Legacy platforms that do not support cache
2048 	 * coherent DMA are unsupported
2049 	 */
2050 	if (ce_alloc_desc_ring(scn, CE_state->id, &base_addr,
2051 			       ce_ring, nentries,
2052 			       desc_size) !=
2053 	    QDF_STATUS_SUCCESS) {
2054 		hif_err("ring has no DMA mem");
2055 		qdf_mem_free(ce_ring);
2056 		return NULL;
2057 	}
2058 	ce_ring->base_addr_CE_space_unaligned = base_addr;
2059 
2060 	/* Correctly initialize memory to 0 to
2061 	 * prevent garbage data crashing system
2062 	 * when download firmware
2063 	 */
2064 	qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned,
2065 			nentries * desc_size +
2066 			CE_DESC_RING_ALIGN);
2067 
2068 	if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) {
2069 
2070 		ce_ring->base_addr_CE_space =
2071 			(ce_ring->base_addr_CE_space_unaligned +
2072 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1);
2073 
2074 		ce_ring->base_addr_owner_space = (void *)
2075 			(((size_t) ce_ring->base_addr_owner_space_unaligned +
2076 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1));
2077 	} else {
2078 		ce_ring->base_addr_CE_space =
2079 				ce_ring->base_addr_CE_space_unaligned;
2080 		ce_ring->base_addr_owner_space =
2081 				ce_ring->base_addr_owner_space_unaligned;
2082 	}
2083 
2084 	return ce_ring;
2085 }
2086 
2087 static int ce_ring_setup(struct hif_softc *scn, uint8_t ring_type,
2088 			uint32_t ce_id, struct CE_ring_state *ring,
2089 			struct CE_attr *attr)
2090 {
2091 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2092 
2093 	return hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id,
2094 					      ring, attr);
2095 }
2096 
2097 static void ce_srng_cleanup(struct hif_softc *scn, struct CE_state *CE_state,
2098 			    uint8_t ring_type)
2099 {
2100 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2101 
2102 	if (hif_state->ce_services->ce_srng_cleanup)
2103 		hif_state->ce_services->ce_srng_cleanup(scn,
2104 					CE_state, ring_type);
2105 }
2106 
2107 int hif_ce_bus_early_suspend(struct hif_softc *scn)
2108 {
2109 	uint8_t ul_pipe, dl_pipe;
2110 	int ce_id, status, ul_is_polled, dl_is_polled;
2111 	struct CE_state *ce_state;
2112 
2113 	status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
2114 					 &ul_pipe, &dl_pipe,
2115 					 &ul_is_polled, &dl_is_polled);
2116 	if (status) {
2117 		hif_err("pipe_mapping failure");
2118 		return status;
2119 	}
2120 
2121 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
2122 		if (ce_id == ul_pipe)
2123 			continue;
2124 		if (ce_id == dl_pipe)
2125 			continue;
2126 
2127 		ce_state = scn->ce_id_to_state[ce_id];
2128 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
2129 		if (ce_state->state == CE_RUNNING)
2130 			ce_state->state = CE_PAUSED;
2131 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
2132 	}
2133 
2134 	return status;
2135 }
2136 
2137 int hif_ce_bus_late_resume(struct hif_softc *scn)
2138 {
2139 	int ce_id;
2140 	struct CE_state *ce_state;
2141 	int write_index = 0;
2142 	bool index_updated;
2143 
2144 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
2145 		ce_state = scn->ce_id_to_state[ce_id];
2146 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
2147 		if (ce_state->state == CE_PENDING) {
2148 			write_index = ce_state->src_ring->write_index;
2149 			CE_SRC_RING_WRITE_IDX_SET(scn, ce_state->ctrl_addr,
2150 					write_index);
2151 			ce_state->state = CE_RUNNING;
2152 			index_updated = true;
2153 		} else {
2154 			index_updated = false;
2155 		}
2156 
2157 		if (ce_state->state == CE_PAUSED)
2158 			ce_state->state = CE_RUNNING;
2159 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
2160 
2161 		if (index_updated)
2162 			hif_record_ce_desc_event(scn, ce_id,
2163 				RESUME_WRITE_INDEX_UPDATE,
2164 				NULL, NULL, write_index, 0);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 /**
2171  * ce_oom_recovery() - try to recover rx ce from oom condition
2172  * @context: CE_state of the CE with oom rx ring
2173  *
2174  * the executing work Will continue to be rescheduled until
2175  * at least 1 descriptor is successfully posted to the rx ring.
2176  *
2177  * return: none
2178  */
2179 static void ce_oom_recovery(void *context)
2180 {
2181 	struct CE_state *ce_state = context;
2182 	struct hif_softc *scn = ce_state->scn;
2183 	struct HIF_CE_state *ce_softc = HIF_GET_CE_STATE(scn);
2184 	struct HIF_CE_pipe_info *pipe_info =
2185 		&ce_softc->pipe_info[ce_state->id];
2186 
2187 	hif_post_recv_buffers_for_pipe(pipe_info);
2188 
2189 	qdf_atomic_dec(&scn->active_oom_work_cnt);
2190 }
2191 
2192 #ifdef HIF_CE_DEBUG_DATA_BUF
2193 /**
2194  * alloc_mem_ce_debug_hist_data() - Allocate mem for the data pointed by
2195  * the CE descriptors.
2196  * Allocate HIF_CE_HISTORY_MAX records by CE_DEBUG_MAX_DATA_BUF_SIZE
2197  * @scn: hif scn handle
2198  * @ce_id: Copy Engine Id
2199  *
2200  * Return: QDF_STATUS
2201  */
2202 QDF_STATUS alloc_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
2203 {
2204 	struct hif_ce_desc_event *event = NULL;
2205 	struct hif_ce_desc_event *hist_ev = NULL;
2206 	uint32_t index = 0;
2207 
2208 	hist_ev =
2209 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2210 
2211 	if (!hist_ev)
2212 		return QDF_STATUS_E_NOMEM;
2213 
2214 	scn->hif_ce_desc_hist.data_enable[ce_id] = true;
2215 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2216 		event = &hist_ev[index];
2217 		event->data =
2218 			(uint8_t *)qdf_mem_malloc(CE_DEBUG_MAX_DATA_BUF_SIZE);
2219 		if (!event->data) {
2220 			hif_err_rl("ce debug data alloc failed");
2221 			scn->hif_ce_desc_hist.data_enable[ce_id] = false;
2222 			return QDF_STATUS_E_NOMEM;
2223 		}
2224 	}
2225 	return QDF_STATUS_SUCCESS;
2226 }
2227 
2228 /**
2229  * free_mem_ce_debug_hist_data() - Free mem of the data pointed by
2230  * the CE descriptors.
2231  * @scn: hif scn handle
2232  * @ce_id: Copy Engine Id
2233  *
2234  * Return:
2235  */
2236 void free_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
2237 {
2238 	struct hif_ce_desc_event *event = NULL;
2239 	struct hif_ce_desc_event *hist_ev = NULL;
2240 	uint32_t index = 0;
2241 
2242 	hist_ev =
2243 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2244 
2245 	if (!hist_ev)
2246 		return;
2247 
2248 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2249 		event = &hist_ev[index];
2250 		if (event->data)
2251 			qdf_mem_free(event->data);
2252 		event->data = NULL;
2253 		event = NULL;
2254 	}
2255 
2256 }
2257 #endif /* HIF_CE_DEBUG_DATA_BUF */
2258 
2259 #ifndef HIF_CE_DEBUG_DATA_DYNAMIC_BUF
2260 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2261 
2262 /* define below variables for crashscope parse */
2263 struct hif_ce_desc_event *hif_ce_desc_history[CE_COUNT_MAX];
2264 uint32_t hif_ce_history_max = HIF_CE_HISTORY_MAX;
2265 uint32_t hif_ce_count_max = CE_COUNT_MAX;
2266 
2267 /*
2268  * for debug build, it will enable ce history for all ce, but for
2269  * perf build(if CONFIG_SLUB_DEBUG_ON is N), it only enable for
2270  * ce2(wmi event) & ce3(wmi cmd) history.
2271  */
2272 #if defined(CONFIG_SLUB_DEBUG_ON)
2273 #define CE_DESC_HISTORY_BUFF_CNT  CE_COUNT_MAX
2274 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE  0
2275 #else
2276 
2277 #ifdef QCA_WIFI_SUPPORT_SRNG
2278 /* Enable CE-1 history only on targets not using CE-1 for datapath */
2279 #define CE_DESC_HISTORY_BUFF_CNT  4
2280 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE (BIT(1) | BIT(2) | BIT(3) | BIT(7))
2281 #else
2282 /* CE2, CE3, CE7 */
2283 #define CE_DESC_HISTORY_BUFF_CNT  3
2284 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE (BIT(2) | BIT(3) | BIT(7))
2285 #endif /* QCA_WIFI_SUPPORT_SRNG */
2286 #endif
2287 bool hif_ce_only_for_crit = IS_CE_DEBUG_ONLY_FOR_CRIT_CE;
2288 struct hif_ce_desc_event
2289 	hif_ce_desc_history_buff[CE_DESC_HISTORY_BUFF_CNT][HIF_CE_HISTORY_MAX];
2290 
2291 static void
2292 __hif_ce_desc_history_log_register(struct hif_softc *scn)
2293 {
2294 	qdf_ssr_driver_dump_register_region("hif_ce_desc_history_buff",
2295 					    hif_ce_desc_history_buff,
2296 					    sizeof(hif_ce_desc_history_buff));
2297 	qdf_ssr_driver_dump_register_region("hif_ce_desc_hist",
2298 					    &scn->hif_ce_desc_hist,
2299 					    sizeof(scn->hif_ce_desc_hist));
2300 	qdf_ssr_driver_dump_register_region("hif_ce_count_max",
2301 					    &hif_ce_count_max,
2302 					    sizeof(hif_ce_count_max));
2303 	qdf_ssr_driver_dump_register_region("hif_ce_history_max",
2304 					    &hif_ce_history_max,
2305 					    sizeof(hif_ce_history_max));
2306 	qdf_ssr_driver_dump_register_region("hif_ce_only_for_crit",
2307 					    &hif_ce_only_for_crit,
2308 					    sizeof(hif_ce_only_for_crit));
2309 }
2310 
2311 static void __hif_ce_desc_history_log_unregister(void)
2312 {
2313 	qdf_ssr_driver_dump_unregister_region("hif_ce_only_for_crit");
2314 	qdf_ssr_driver_dump_unregister_region("hif_ce_history_max");
2315 	qdf_ssr_driver_dump_unregister_region("hif_ce_count_max");
2316 	qdf_ssr_driver_dump_unregister_region("hif_ce_desc_hist");
2317 	qdf_ssr_driver_dump_unregister_region("hif_ce_desc_history_buff");
2318 }
2319 
2320 static struct hif_ce_desc_event *
2321 	hif_ce_debug_history_buf_get(struct hif_softc *scn, unsigned int ce_id)
2322 {
2323 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2324 
2325 	hif_debug("get ce debug buffer ce_id %u, only_ce2/ce3=0x%lx, idx=%u",
2326 		  ce_id, IS_CE_DEBUG_ONLY_FOR_CRIT_CE,
2327 		  ce_hist->ce_id_hist_map[ce_id]);
2328 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2329 	    (IS_CE_DEBUG_ONLY_FOR_CRIT_CE & BIT(ce_id))) {
2330 		uint8_t idx = ce_hist->ce_id_hist_map[ce_id];
2331 
2332 		hif_ce_desc_history[ce_id] = hif_ce_desc_history_buff[idx];
2333 	} else {
2334 		hif_ce_desc_history[ce_id] =
2335 			hif_ce_desc_history_buff[ce_id];
2336 	}
2337 
2338 	return hif_ce_desc_history[ce_id];
2339 }
2340 
2341 /**
2342  * alloc_mem_ce_debug_history() - Allocate CE descriptor history
2343  * @scn: hif scn handle
2344  * @ce_id: Copy Engine Id
2345  * @src_nentries: source ce ring entries
2346  * Return: QDF_STATUS
2347  */
2348 static QDF_STATUS
2349 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id,
2350 			   uint32_t src_nentries)
2351 {
2352 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2353 	QDF_STATUS status = QDF_STATUS_SUCCESS;
2354 
2355 	/* For perf build, return directly for non ce2/ce3 */
2356 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2357 	    !(IS_CE_DEBUG_ONLY_FOR_CRIT_CE & BIT(ce_id))) {
2358 		ce_hist->enable[ce_id] = false;
2359 		ce_hist->data_enable[ce_id] = false;
2360 		return QDF_STATUS_SUCCESS;
2361 	}
2362 
2363 	ce_hist->hist_ev[ce_id] = hif_ce_debug_history_buf_get(scn, ce_id);
2364 	ce_hist->enable[ce_id] = true;
2365 
2366 	if (src_nentries) {
2367 		status = alloc_mem_ce_debug_hist_data(scn, ce_id);
2368 		if (status != QDF_STATUS_SUCCESS) {
2369 			ce_hist->enable[ce_id] = false;
2370 			ce_hist->hist_ev[ce_id] = NULL;
2371 			return status;
2372 		}
2373 	} else {
2374 		ce_hist->data_enable[ce_id] = false;
2375 	}
2376 
2377 	return QDF_STATUS_SUCCESS;
2378 }
2379 
2380 /**
2381  * free_mem_ce_debug_history() - Free CE descriptor history
2382  * @scn: hif scn handle
2383  * @ce_id: Copy Engine Id
2384  *
2385  * Return: None
2386  */
2387 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
2388 {
2389 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2390 
2391 	if (!ce_hist->enable[ce_id])
2392 		return;
2393 
2394 	ce_hist->enable[ce_id] = false;
2395 	if (ce_hist->data_enable[ce_id]) {
2396 		ce_hist->data_enable[ce_id] = false;
2397 		free_mem_ce_debug_hist_data(scn, ce_id);
2398 	}
2399 	ce_hist->hist_ev[ce_id] = NULL;
2400 }
2401 #else
2402 
2403 static void
2404 __hif_ce_desc_history_log_register(struct hif_softc *scn)
2405 {
2406 }
2407 
2408 static void __hif_ce_desc_history_log_unregister(void) { }
2409 
2410 static inline QDF_STATUS
2411 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2412 			   uint32_t src_nentries)
2413 {
2414 	return QDF_STATUS_SUCCESS;
2415 }
2416 
2417 static inline void
2418 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2419 #endif /* (HIF_CONFIG_SLUB_DEBUG_ON) || (HIF_CE_DEBUG_DATA_BUF) */
2420 #else
2421 #if defined(HIF_CE_DEBUG_DATA_BUF)
2422 
2423 static void
2424 __hif_ce_desc_history_log_register(struct hif_softc *scn)
2425 {
2426 }
2427 
2428 static void __hif_ce_desc_history_log_unregister(void) { }
2429 
2430 static QDF_STATUS
2431 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2432 			   uint32_t src_nentries)
2433 {
2434 	scn->hif_ce_desc_hist.hist_ev[CE_id] = (struct hif_ce_desc_event *)
2435 	qdf_mem_malloc(HIF_CE_HISTORY_MAX * sizeof(struct hif_ce_desc_event));
2436 
2437 	if (!scn->hif_ce_desc_hist.hist_ev[CE_id]) {
2438 		scn->hif_ce_desc_hist.enable[CE_id] = 0;
2439 		return QDF_STATUS_E_NOMEM;
2440 	} else {
2441 		scn->hif_ce_desc_hist.enable[CE_id] = 1;
2442 		return QDF_STATUS_SUCCESS;
2443 	}
2444 }
2445 
2446 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
2447 {
2448 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2449 	struct hif_ce_desc_event *hist_ev = ce_hist->hist_ev[CE_id];
2450 
2451 	if (!hist_ev)
2452 		return;
2453 
2454 	if (ce_hist->data_enable[CE_id]) {
2455 		ce_hist->data_enable[CE_id] = false;
2456 		free_mem_ce_debug_hist_data(scn, CE_id);
2457 	}
2458 
2459 	ce_hist->enable[CE_id] = false;
2460 	qdf_mem_free(ce_hist->hist_ev[CE_id]);
2461 	ce_hist->hist_ev[CE_id] = NULL;
2462 }
2463 
2464 #else
2465 
2466 static void
2467 __hif_ce_desc_history_log_register(struct hif_softc *scn)
2468 {
2469 }
2470 
2471 static void __hif_ce_desc_history_log_unregister(void) { }
2472 
2473 static inline QDF_STATUS
2474 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2475 			   uint32_t src_nentries)
2476 {
2477 	return QDF_STATUS_SUCCESS;
2478 }
2479 
2480 static inline void
2481 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2482 #endif /* HIF_CE_DEBUG_DATA_BUF */
2483 #endif /* HIF_CE_DEBUG_DATA_DYNAMIC_BUF */
2484 
2485 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2486 /**
2487  * reset_ce_debug_history() - reset the index and ce id used for dumping the
2488  * CE records on the console using sysfs.
2489  * @scn: hif scn handle
2490  *
2491  * Return:
2492  */
2493 static inline void reset_ce_debug_history(struct hif_softc *scn)
2494 {
2495 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2496 	/* Initialise the CE debug history sysfs interface inputs ce_id and
2497 	 * index. Disable data storing
2498 	 */
2499 	ce_hist->hist_index = 0;
2500 	ce_hist->hist_id = 0;
2501 }
2502 #else /* defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2503 static inline void reset_ce_debug_history(struct hif_softc *scn) { }
2504 #endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2505 
2506 void ce_enable_polling(void *cestate)
2507 {
2508 	struct CE_state *CE_state = (struct CE_state *)cestate;
2509 
2510 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2511 		CE_state->timer_inited = true;
2512 }
2513 
2514 void ce_disable_polling(void *cestate)
2515 {
2516 	struct CE_state *CE_state = (struct CE_state *)cestate;
2517 
2518 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2519 		CE_state->timer_inited = false;
2520 }
2521 
2522 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
2523 #define MAX_CE_STR_LEN 50
2524 /**
2525  * ce_ring_dump_register_region() - Register CE ring with SSR dump
2526  * @CE_state: CE_state pointer
2527  * @CE_id: CE id
2528  *
2529  * Return: None
2530  */
2531 static inline
2532 void ce_ring_dump_register_region(struct CE_state *CE_state, unsigned int CE_id)
2533 {
2534 	struct CE_ring_state *ce_ring;
2535 	char ce[MAX_CE_STR_LEN];
2536 	char CE_ring_state[MAX_CE_STR_LEN];
2537 	char srng[MAX_CE_STR_LEN];
2538 
2539 	qdf_snprint(ce, MAX_CE_STR_LEN, "%s%d", "ce_", CE_id);
2540 	qdf_ssr_driver_dump_register_region(ce, CE_state, sizeof(*CE_state));
2541 
2542 	if (CE_state->status_ring) {
2543 		ce_ring = CE_state->status_ring;
2544 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2545 			    "%s%s", ce, "_status_ring");
2546 		qdf_ssr_driver_dump_register_region(CE_ring_state, ce_ring,
2547 						    sizeof(struct CE_ring_state)
2548 						   );
2549 		qdf_snprint(srng, MAX_CE_STR_LEN,
2550 			    "%s%s", CE_ring_state, "_ctx");
2551 		qdf_ssr_driver_dump_register_region(srng, ce_ring->srng_ctx,
2552 						    sizeof(struct hal_srng));
2553 	}
2554 	if (CE_state->dest_ring) {
2555 		ce_ring = CE_state->dest_ring;
2556 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2557 			    "%s%s", ce, "_dest_ring");
2558 		qdf_ssr_driver_dump_register_region(CE_ring_state, ce_ring,
2559 						    sizeof(struct CE_ring_state)
2560 						   );
2561 		qdf_snprint(srng, MAX_CE_STR_LEN,
2562 			    "%s%s", CE_ring_state, "_ctx");
2563 		qdf_ssr_driver_dump_register_region(srng, ce_ring->srng_ctx,
2564 						    sizeof(struct hal_srng));
2565 	}
2566 	if (CE_state->src_ring) {
2567 		ce_ring = CE_state->src_ring;
2568 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2569 			    "%s%s", ce, "_src_ring");
2570 		qdf_ssr_driver_dump_register_region(CE_ring_state, ce_ring,
2571 						    sizeof(struct CE_ring_state)
2572 						   );
2573 		qdf_snprint(srng, MAX_CE_STR_LEN,
2574 			    "%s%s", CE_ring_state, "_ctx");
2575 		qdf_ssr_driver_dump_register_region(srng, ce_ring->srng_ctx,
2576 						    sizeof(struct hal_srng));
2577 	}
2578 }
2579 
2580 /**
2581  * ce_ring_dump_unregister_region() - Unregister CE ring with SSR dump
2582  * @CE_state: CE_state pointer
2583  * @CE_id: CE id
2584  *
2585  * Return: None
2586  */
2587 static inline void
2588 ce_ring_dump_unregister_region(struct CE_state *CE_state, unsigned int CE_id)
2589 {
2590 	char ce[MAX_CE_STR_LEN];
2591 	char CE_ring_state[MAX_CE_STR_LEN];
2592 	char srng[MAX_CE_STR_LEN];
2593 
2594 	qdf_snprint(ce, MAX_CE_STR_LEN, "%s%d", "ce_", CE_id);
2595 	qdf_ssr_driver_dump_unregister_region(ce);
2596 	if (CE_state->status_ring) {
2597 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2598 			    "%s%s", ce, "_status_ring");
2599 		qdf_snprint(srng, MAX_CE_STR_LEN,
2600 			    "%s%s", CE_ring_state, "_ctx");
2601 		qdf_ssr_driver_dump_unregister_region(CE_ring_state);
2602 		qdf_ssr_driver_dump_unregister_region(srng);
2603 	}
2604 	if (CE_state->dest_ring) {
2605 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2606 			    "%s%s", ce, "_dest_ring");
2607 		qdf_snprint(srng, MAX_CE_STR_LEN,
2608 			    "%s%s", CE_ring_state, "_ctx");
2609 		qdf_ssr_driver_dump_unregister_region(CE_ring_state);
2610 		qdf_ssr_driver_dump_unregister_region(srng);
2611 	}
2612 	if (CE_state->src_ring) {
2613 		qdf_snprint(CE_ring_state, MAX_CE_STR_LEN,
2614 			    "%s%s", ce, "_src_ring");
2615 		qdf_snprint(srng, MAX_CE_STR_LEN,
2616 			    "%s%s", CE_ring_state, "_ctx");
2617 		qdf_ssr_driver_dump_unregister_region(CE_ring_state);
2618 		qdf_ssr_driver_dump_unregister_region(srng);
2619 	}
2620 }
2621 #else
2622 static inline
2623 void ce_ring_dump_register_region(struct CE_state *CE_state, unsigned int CE_id)
2624 {
2625 }
2626 
2627 static inline void
2628 ce_ring_dump_unregister_region(struct CE_state *CE_state, unsigned int CE_id)
2629 {
2630 }
2631 #endif
2632 /*
2633  * Initialize a Copy Engine based on caller-supplied attributes.
2634  * This may be called once to initialize both source and destination
2635  * rings or it may be called twice for separate source and destination
2636  * initialization. It may be that only one side or the other is
2637  * initialized by software/firmware.
2638  *
2639  * This should be called during the initialization sequence before
2640  * interrupts are enabled, so we don't have to worry about thread safety.
2641  */
2642 struct CE_handle *ce_init(struct hif_softc *scn,
2643 			  unsigned int CE_id, struct CE_attr *attr)
2644 {
2645 	struct CE_state *CE_state;
2646 	uint32_t ctrl_addr;
2647 	unsigned int nentries;
2648 	bool malloc_CE_state = false;
2649 	bool malloc_src_ring = false;
2650 	int status;
2651 	QDF_STATUS mem_status = QDF_STATUS_SUCCESS;
2652 
2653 	QDF_ASSERT(CE_id < scn->ce_count);
2654 	ctrl_addr = CE_BASE_ADDRESS(CE_id);
2655 	CE_state = scn->ce_id_to_state[CE_id];
2656 
2657 	if (!CE_state) {
2658 		CE_state =
2659 		    (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
2660 		if (!CE_state)
2661 			return NULL;
2662 
2663 		malloc_CE_state = true;
2664 		qdf_spinlock_create(&CE_state->ce_index_lock);
2665 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
2666 		qdf_spinlock_create(&CE_state->ce_interrupt_lock);
2667 #endif
2668 
2669 		CE_state->id = CE_id;
2670 		CE_state->ctrl_addr = ctrl_addr;
2671 		CE_state->state = CE_RUNNING;
2672 		CE_state->attr_flags = attr->flags;
2673 	}
2674 	CE_state->scn = scn;
2675 	CE_state->service = ce_engine_service_reg;
2676 
2677 	qdf_atomic_init(&CE_state->rx_pending);
2678 	if (!attr) {
2679 		/* Already initialized; caller wants the handle */
2680 		return (struct CE_handle *)CE_state;
2681 	}
2682 
2683 	if (CE_state->src_sz_max)
2684 		QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
2685 	else
2686 		CE_state->src_sz_max = attr->src_sz_max;
2687 
2688 	ce_init_ce_desc_event_log(scn, CE_id,
2689 				  attr->src_nentries + attr->dest_nentries);
2690 
2691 	/* source ring setup */
2692 	nentries = attr->src_nentries;
2693 	if (nentries) {
2694 		struct CE_ring_state *src_ring;
2695 
2696 		nentries = roundup_pwr2(nentries);
2697 		if (CE_state->src_ring) {
2698 			QDF_ASSERT(CE_state->src_ring->nentries == nentries);
2699 		} else {
2700 			src_ring = CE_state->src_ring =
2701 				ce_alloc_ring_state(CE_state,
2702 						CE_RING_SRC,
2703 						nentries);
2704 			if (!src_ring) {
2705 				/* cannot allocate src ring. If the
2706 				 * CE_state is allocated locally free
2707 				 * CE_State and return error.
2708 				 */
2709 				hif_err("src ring has no mem");
2710 				if (malloc_CE_state) {
2711 					/* allocated CE_state locally */
2712 					qdf_mem_free(CE_state);
2713 					malloc_CE_state = false;
2714 				}
2715 				return NULL;
2716 			}
2717 			/* we can allocate src ring. Mark that the src ring is
2718 			 * allocated locally
2719 			 */
2720 			malloc_src_ring = true;
2721 
2722 			/*
2723 			 * Also allocate a shadow src ring in
2724 			 * regular mem to use for faster access.
2725 			 */
2726 			src_ring->shadow_base_unaligned =
2727 				qdf_mem_malloc(nentries *
2728 					       sizeof(struct CE_src_desc) +
2729 					       CE_DESC_RING_ALIGN);
2730 			if (!src_ring->shadow_base_unaligned)
2731 				goto error_no_dma_mem;
2732 
2733 			src_ring->shadow_base = (struct CE_src_desc *)
2734 				(((size_t) src_ring->shadow_base_unaligned +
2735 				CE_DESC_RING_ALIGN - 1) &
2736 				 ~(CE_DESC_RING_ALIGN - 1));
2737 
2738 			status = ce_ring_setup(scn, CE_RING_SRC, CE_id,
2739 					       src_ring, attr);
2740 			if (status < 0)
2741 				goto error_target_access;
2742 			ce_ring_test_initial_indexes(CE_id, src_ring,
2743 						     "src_ring");
2744 			if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
2745 				qdf_timer_init(scn->qdf_dev,
2746 					       &CE_state->poll_timer,
2747 					       ce_poll_timeout,
2748 					       CE_state,
2749 					       QDF_TIMER_TYPE_WAKE_APPS);
2750 				ce_enable_polling(CE_state);
2751 				qdf_timer_mod(&CE_state->poll_timer,
2752 					      CE_POLL_TIMEOUT);
2753 			}
2754 		}
2755 	}
2756 
2757 	/* destination ring setup */
2758 	nentries = attr->dest_nentries;
2759 	if (nentries) {
2760 		struct CE_ring_state *dest_ring;
2761 
2762 		nentries = roundup_pwr2(nentries);
2763 		if (CE_state->dest_ring) {
2764 			QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
2765 		} else {
2766 			dest_ring = CE_state->dest_ring =
2767 				ce_alloc_ring_state(CE_state,
2768 						CE_RING_DEST,
2769 						nentries);
2770 			if (!dest_ring) {
2771 				/* cannot allocate dst ring. If the CE_state
2772 				 * or src ring is allocated locally free
2773 				 * CE_State and src ring and return error.
2774 				 */
2775 				hif_err("dest ring has no mem");
2776 				goto error_no_dma_mem;
2777 			}
2778 
2779 			status = ce_ring_setup(scn, CE_RING_DEST, CE_id,
2780 				      dest_ring, attr);
2781 			if (status < 0)
2782 				goto error_target_access;
2783 
2784 			ce_ring_test_initial_indexes(CE_id, dest_ring,
2785 						     "dest_ring");
2786 
2787 			/* For srng based target, init status ring here */
2788 			if (ce_srng_based(CE_state->scn)) {
2789 				CE_state->status_ring =
2790 					ce_alloc_ring_state(CE_state,
2791 							CE_RING_STATUS,
2792 							nentries);
2793 				if (!CE_state->status_ring) {
2794 					/*Allocation failed. Cleanup*/
2795 					qdf_mem_free(CE_state->dest_ring);
2796 					if (malloc_src_ring) {
2797 						qdf_mem_free
2798 							(CE_state->src_ring);
2799 						CE_state->src_ring = NULL;
2800 						malloc_src_ring = false;
2801 					}
2802 					if (malloc_CE_state) {
2803 						/* allocated CE_state locally */
2804 						scn->ce_id_to_state[CE_id] =
2805 							NULL;
2806 						qdf_mem_free(CE_state);
2807 						malloc_CE_state = false;
2808 					}
2809 
2810 					return NULL;
2811 				}
2812 
2813 				status = ce_ring_setup(scn, CE_RING_STATUS,
2814 					       CE_id, CE_state->status_ring,
2815 					       attr);
2816 				if (status < 0)
2817 					goto error_target_access;
2818 
2819 			}
2820 
2821 			/* epping */
2822 			/* poll timer */
2823 			if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
2824 				qdf_timer_init(scn->qdf_dev,
2825 						&CE_state->poll_timer,
2826 						ce_poll_timeout,
2827 						CE_state,
2828 						QDF_TIMER_TYPE_WAKE_APPS);
2829 				ce_enable_polling(CE_state);
2830 				qdf_timer_mod(&CE_state->poll_timer,
2831 						      CE_POLL_TIMEOUT);
2832 			}
2833 		}
2834 	}
2835 
2836 	if (!ce_srng_based(scn)) {
2837 		/* Enable CE error interrupts */
2838 		if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
2839 			goto error_target_access;
2840 		CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
2841 		if (Q_TARGET_ACCESS_END(scn) < 0)
2842 			goto error_target_access;
2843 	}
2844 
2845 	qdf_create_work(scn->qdf_dev, &CE_state->oom_allocation_work,
2846 			ce_oom_recovery, CE_state);
2847 
2848 	/* update the htt_data attribute */
2849 	ce_mark_datapath(CE_state);
2850 	scn->ce_id_to_state[CE_id] = CE_state;
2851 
2852 	ce_ring_dump_register_region(CE_state, CE_id);
2853 
2854 	mem_status = alloc_mem_ce_debug_history(scn, CE_id, attr->src_nentries);
2855 	if (mem_status != QDF_STATUS_SUCCESS)
2856 		goto error_target_access;
2857 
2858 	ce_update_msi_batch_intr_flags(CE_state);
2859 	ce_update_wrt_idx_offset(scn, CE_state, attr);
2860 
2861 	return (struct CE_handle *)CE_state;
2862 
2863 error_target_access:
2864 error_no_dma_mem:
2865 	ce_fini((struct CE_handle *)CE_state);
2866 	return NULL;
2867 }
2868 
2869 void hif_ce_desc_history_log_register(struct hif_softc *scn)
2870 {
2871 	__hif_ce_desc_history_log_register(scn);
2872 }
2873 
2874 /**
2875  * hif_is_polled_mode_enabled - API to query if polling is enabled on all CEs
2876  * @hif_ctx: HIF Context
2877  *
2878  * API to check if polling is enabled on all CEs. Returns true when polling
2879  * is enabled on all CEs.
2880  *
2881  * Return: bool
2882  */
2883 bool hif_is_polled_mode_enabled(struct hif_opaque_softc *hif_ctx)
2884 {
2885 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2886 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2887 	struct CE_attr *attr;
2888 	int id;
2889 
2890 	for (id = 0; id < scn->ce_count; id++) {
2891 		attr = &hif_state->host_ce_config[id];
2892 		if (attr && (attr->dest_nentries) &&
2893 		    !(attr->flags & CE_ATTR_ENABLE_POLL))
2894 			return false;
2895 	}
2896 	return true;
2897 }
2898 qdf_export_symbol(hif_is_polled_mode_enabled);
2899 
2900 static int hif_get_pktlog_ce_num(struct hif_softc *scn)
2901 {
2902 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2903 	int id;
2904 
2905 	for (id = 0; id < hif_state->sz_tgt_svc_map; id++) {
2906 		if (hif_state->tgt_svc_map[id].service_id ==  PACKET_LOG_SVC)
2907 			return hif_state->tgt_svc_map[id].pipenum;
2908 	}
2909 	return -EINVAL;
2910 }
2911 
2912 #ifdef WLAN_FEATURE_CE_RX_BUFFER_REUSE
2913 
2914 #define HIF_CE_RX_NBUF_WMI_POOL_SIZE 32
2915 
2916 static qdf_nbuf_t hif_ce_rx_nbuf_alloc(struct hif_softc *scn, uint8_t ce_id)
2917 {
2918 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2919 	struct HIF_CE_pipe_info *pipe_info = &hif_state->pipe_info[ce_id];
2920 	qdf_nbuf_t nbuf;
2921 
2922 	nbuf = wbuff_buff_get(scn->wbuff_handle, ce_id, 0, __func__,
2923 			      __LINE__);
2924 	if (!nbuf)
2925 		nbuf = qdf_nbuf_alloc(scn->qdf_dev, pipe_info->buf_sz,
2926 				      0, 4, false);
2927 
2928 	if (!nbuf)
2929 		return NULL;
2930 
2931 	return nbuf;
2932 }
2933 
2934 static void hif_ce_rx_nbuf_free(qdf_nbuf_t nbuf)
2935 {
2936 	nbuf = wbuff_buff_put(nbuf);
2937 	if (nbuf)
2938 		qdf_nbuf_free(nbuf);
2939 }
2940 
2941 static int
2942 hif_calc_wbuff_pool_size(struct hif_softc *scn, struct CE_state *ce_state)
2943 {
2944 	int ul_is_polled, dl_is_polled;
2945 	bool is_wmi_svc, wmi_diag_svc;
2946 	uint8_t ul_pipe, dl_pipe;
2947 	int pool_size;
2948 	int status;
2949 	int ce_id;
2950 
2951 	if (!ce_state)
2952 		return 0;
2953 
2954 	ce_id = ce_state->id;
2955 
2956 	status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
2957 					 &ul_pipe, &dl_pipe,
2958 					 &ul_is_polled, &dl_is_polled);
2959 	is_wmi_svc = !status && (dl_pipe == ce_id);
2960 
2961 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
2962 					 WMI_CONTROL_DIAG_SVC,
2963 					 &ul_pipe, &dl_pipe,
2964 					 &ul_is_polled, &dl_is_polled);
2965 	wmi_diag_svc = !status;
2966 
2967 	if (is_wmi_svc && !wmi_diag_svc)
2968 		pool_size = ce_state->dest_ring->nentries +
2969 			HIF_CE_RX_NBUF_WMI_POOL_SIZE;
2970 	else if (is_wmi_svc && wmi_diag_svc)
2971 		pool_size = ce_state->dest_ring->nentries +
2972 			HIF_CE_RX_NBUF_WMI_POOL_SIZE / 2;
2973 	else if (!is_wmi_svc && wmi_diag_svc && ce_id == dl_pipe)
2974 		pool_size = ce_state->dest_ring->nentries +
2975 			HIF_CE_RX_NBUF_WMI_POOL_SIZE / 2;
2976 	else
2977 		pool_size = ce_state->dest_ring->nentries;
2978 
2979 	return pool_size;
2980 }
2981 
2982 static void hif_ce_rx_wbuff_register(struct hif_softc *scn)
2983 {
2984 	struct wbuff_alloc_request wbuff_alloc[CE_COUNT_MAX] = {0};
2985 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2986 	struct HIF_CE_pipe_info *pipe_info;
2987 	struct CE_state *ce_state;
2988 	int ce_id;
2989 
2990 	for (ce_id = 0; ce_id <  scn->ce_count; ce_id++) {
2991 		pipe_info = &hif_state->pipe_info[ce_id];
2992 		ce_state = scn->ce_id_to_state[ce_id];
2993 
2994 		if (!pipe_info->buf_sz)
2995 			continue;
2996 
2997 		/* Only RX CEs need WBUFF registration. recv_bufs_needed
2998 		 * contains valid count for RX CEs during init time.
2999 		 */
3000 		if (!atomic_read(&pipe_info->recv_bufs_needed))
3001 			continue;
3002 
3003 		wbuff_alloc[ce_id].pool_id = ce_id;
3004 		wbuff_alloc[ce_id].buffer_size = pipe_info->buf_sz;
3005 		wbuff_alloc[ce_id].pool_size =
3006 				hif_calc_wbuff_pool_size(scn, ce_state);
3007 	}
3008 
3009 	scn->wbuff_handle =
3010 		wbuff_module_register(wbuff_alloc, CE_COUNT_MAX, 0, 4,
3011 				      WBUFF_MODULE_CE_RX);
3012 }
3013 
3014 static void hif_ce_rx_wbuff_deregister(struct hif_softc *scn)
3015 {
3016 	wbuff_module_deregister(scn->wbuff_handle);
3017 	scn->wbuff_handle = NULL;
3018 }
3019 #else
3020 static inline qdf_nbuf_t
3021 hif_ce_rx_nbuf_alloc(struct hif_softc *scn, uint8_t ce_id)
3022 {
3023 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3024 	struct HIF_CE_pipe_info *pipe_info = &hif_state->pipe_info[ce_id];
3025 
3026 	return qdf_nbuf_alloc(scn->qdf_dev, pipe_info->buf_sz, 0, 4, false);
3027 }
3028 
3029 static inline void hif_ce_rx_nbuf_free(qdf_nbuf_t nbuf)
3030 {
3031 	return qdf_nbuf_free(nbuf);
3032 }
3033 
3034 static inline void hif_ce_rx_wbuff_register(struct hif_softc *scn)
3035 {
3036 }
3037 
3038 static inline void hif_ce_rx_wbuff_deregister(struct hif_softc *scn)
3039 {
3040 }
3041 #endif /* WLAN_FEATURE_CE_RX_BUFFER_REUSE */
3042 
3043 #ifdef WLAN_FEATURE_FASTPATH
3044 /**
3045  * hif_enable_fastpath() - Update that we have enabled fastpath mode
3046  * @hif_ctx: HIF context
3047  *
3048  * For use in data path
3049  *
3050  * Return: void
3051  */
3052 void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
3053 {
3054 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3055 
3056 	if (ce_srng_based(scn)) {
3057 		hif_warn("srng rings do not support fastpath");
3058 		return;
3059 	}
3060 	hif_debug("Enabling fastpath mode");
3061 	scn->fastpath_mode_on = true;
3062 }
3063 
3064 /**
3065  * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
3066  * @hif_ctx: HIF Context
3067  *
3068  * For use in data path to skip HTC
3069  *
3070  * Return: bool
3071  */
3072 bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
3073 {
3074 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3075 
3076 	return scn->fastpath_mode_on;
3077 }
3078 
3079 /**
3080  * hif_get_ce_handle - API to get CE handle for FastPath mode
3081  * @hif_ctx: HIF Context
3082  * @id: CopyEngine Id
3083  *
3084  * API to return CE handle for fastpath mode
3085  *
3086  * Return: void
3087  */
3088 void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
3089 {
3090 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3091 
3092 	return scn->ce_id_to_state[id];
3093 }
3094 qdf_export_symbol(hif_get_ce_handle);
3095 
3096 /**
3097  * ce_h2t_tx_ce_cleanup() - Place holder function for H2T CE cleanup.
3098  * No processing is required inside this function.
3099  * @ce_hdl: Cope engine handle
3100  * Using an assert, this function makes sure that,
3101  * the TX CE has been processed completely.
3102  *
3103  * This is called while dismantling CE structures. No other thread
3104  * should be using these structures while dismantling is occurring
3105  * therefore no locking is needed.
3106  *
3107  * Return: none
3108  */
3109 void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
3110 {
3111 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
3112 	struct CE_ring_state *src_ring = ce_state->src_ring;
3113 	struct hif_softc *sc = ce_state->scn;
3114 	uint32_t sw_index, write_index;
3115 
3116 	if (hif_is_nss_wifi_enabled(sc))
3117 		return;
3118 
3119 	if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
3120 		hif_debug("Fastpath mode ON, Cleaning up HTT Tx CE");
3121 		sw_index = src_ring->sw_index;
3122 		write_index = src_ring->sw_index;
3123 
3124 		/* At this point Tx CE should be clean */
3125 		qdf_assert_always(sw_index == write_index);
3126 	}
3127 }
3128 
3129 /**
3130  * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
3131  * @ce_hdl: Handle to CE
3132  *
3133  * These buffers are never allocated on the fly, but
3134  * are allocated only once during HIF start and freed
3135  * only once during HIF stop.
3136  * NOTE:
3137  * The assumption here is there is no in-flight DMA in progress
3138  * currently, so that buffers can be freed up safely.
3139  *
3140  * Return: NONE
3141  */
3142 void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
3143 {
3144 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
3145 	struct CE_ring_state *dst_ring = ce_state->dest_ring;
3146 	qdf_nbuf_t nbuf;
3147 	int i;
3148 
3149 	if (ce_state->scn->fastpath_mode_on == false)
3150 		return;
3151 
3152 	if (!ce_state->htt_rx_data)
3153 		return;
3154 
3155 	/*
3156 	 * when fastpath_mode is on and for datapath CEs. Unlike other CE's,
3157 	 * this CE is completely full: does not leave one blank space, to
3158 	 * distinguish between empty queue & full queue. So free all the
3159 	 * entries.
3160 	 */
3161 	for (i = 0; i < dst_ring->nentries; i++) {
3162 		nbuf = dst_ring->per_transfer_context[i];
3163 
3164 		/*
3165 		 * The reasons for doing this check are:
3166 		 * 1) Protect against calling cleanup before allocating buffers
3167 		 * 2) In a corner case, FASTPATH_mode_on may be set, but we
3168 		 *    could have a partially filled ring, because of a memory
3169 		 *    allocation failure in the middle of allocating ring.
3170 		 *    This check accounts for that case, checking
3171 		 *    fastpath_mode_on flag or started flag would not have
3172 		 *    covered that case. This is not in performance path,
3173 		 *    so OK to do this.
3174 		 */
3175 		if (nbuf) {
3176 			qdf_nbuf_unmap_single(ce_state->scn->qdf_dev, nbuf,
3177 					      QDF_DMA_FROM_DEVICE);
3178 			hif_ce_rx_nbuf_free(nbuf);
3179 		}
3180 	}
3181 }
3182 
3183 /**
3184  * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
3185  * @scn: HIF handle
3186  *
3187  * Datapath Rx CEs are special case, where we reuse all the message buffers.
3188  * Hence we have to post all the entries in the pipe, even, in the beginning
3189  * unlike for other CE pipes where one less than dest_nentries are filled in
3190  * the beginning.
3191  *
3192  * Return: None
3193  */
3194 static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
3195 {
3196 	int pipe_num;
3197 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3198 
3199 	if (scn->fastpath_mode_on == false)
3200 		return;
3201 
3202 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3203 		struct HIF_CE_pipe_info *pipe_info =
3204 			&hif_state->pipe_info[pipe_num];
3205 		struct CE_state *ce_state =
3206 			scn->ce_id_to_state[pipe_info->pipe_num];
3207 
3208 		if (ce_state->htt_rx_data)
3209 			atomic_inc(&pipe_info->recv_bufs_needed);
3210 	}
3211 }
3212 #else
3213 static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
3214 {
3215 }
3216 
3217 static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
3218 {
3219 	return false;
3220 }
3221 #endif /* WLAN_FEATURE_FASTPATH */
3222 
3223 void ce_fini(struct CE_handle *copyeng)
3224 {
3225 	struct CE_state *CE_state = (struct CE_state *)copyeng;
3226 	unsigned int CE_id = CE_state->id;
3227 	struct hif_softc *scn = CE_state->scn;
3228 	uint32_t desc_size;
3229 
3230 	bool inited = CE_state->timer_inited;
3231 	CE_state->state = CE_UNUSED;
3232 	scn->ce_id_to_state[CE_id] = NULL;
3233 	/* Set the flag to false first to stop processing in ce_poll_timeout */
3234 	ce_disable_polling(CE_state);
3235 
3236 	qdf_lro_deinit(CE_state->lro_data);
3237 
3238 	ce_ring_dump_unregister_region(CE_state, CE_id);
3239 
3240 	if (CE_state->src_ring) {
3241 		/* Cleanup the datapath Tx ring */
3242 		ce_h2t_tx_ce_cleanup(copyeng);
3243 
3244 		desc_size = ce_get_desc_size(scn, CE_RING_SRC);
3245 		if (CE_state->src_ring->shadow_base_unaligned)
3246 			qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
3247 		if (CE_state->src_ring->base_addr_owner_space_unaligned)
3248 			ce_free_desc_ring(scn, CE_state->id,
3249 					  CE_state->src_ring,
3250 					  desc_size);
3251 		ce_srng_cleanup(scn, CE_state, CE_RING_SRC);
3252 		qdf_mem_free(CE_state->src_ring);
3253 	}
3254 	if (CE_state->dest_ring) {
3255 		/* Cleanup the datapath Rx ring */
3256 		ce_t2h_msg_ce_cleanup(copyeng);
3257 
3258 		desc_size = ce_get_desc_size(scn, CE_RING_DEST);
3259 		if (CE_state->dest_ring->base_addr_owner_space_unaligned)
3260 			ce_free_desc_ring(scn, CE_state->id,
3261 					  CE_state->dest_ring,
3262 					  desc_size);
3263 		ce_srng_cleanup(scn, CE_state, CE_RING_DEST);
3264 		qdf_mem_free(CE_state->dest_ring);
3265 
3266 		/* epping */
3267 		if (inited) {
3268 			qdf_timer_free(&CE_state->poll_timer);
3269 		}
3270 	}
3271 	if ((ce_srng_based(CE_state->scn)) && (CE_state->status_ring)) {
3272 		/* Cleanup the datapath Tx ring */
3273 		ce_h2t_tx_ce_cleanup(copyeng);
3274 
3275 		if (CE_state->status_ring->shadow_base_unaligned)
3276 			qdf_mem_free(
3277 				CE_state->status_ring->shadow_base_unaligned);
3278 
3279 		desc_size = ce_get_desc_size(scn, CE_RING_STATUS);
3280 		if (CE_state->status_ring->base_addr_owner_space_unaligned)
3281 			ce_free_desc_ring(scn, CE_state->id,
3282 					  CE_state->status_ring,
3283 					  desc_size);
3284 		ce_srng_cleanup(scn, CE_state, CE_RING_STATUS);
3285 		qdf_mem_free(CE_state->status_ring);
3286 	}
3287 
3288 	free_mem_ce_debug_history(scn, CE_id);
3289 	reset_ce_debug_history(scn);
3290 	ce_deinit_ce_desc_event_log(scn, CE_id);
3291 
3292 	qdf_spinlock_destroy(&CE_state->ce_index_lock);
3293 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
3294 	qdf_spinlock_destroy(&CE_state->ce_interrupt_lock);
3295 #endif
3296 	qdf_mem_free(CE_state);
3297 }
3298 
3299 void hif_ce_desc_history_log_unregister(void)
3300 {
3301 	__hif_ce_desc_history_log_unregister();
3302 }
3303 
3304 void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
3305 {
3306 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3307 
3308 	qdf_mem_zero(&hif_state->msg_callbacks_pending,
3309 		  sizeof(hif_state->msg_callbacks_pending));
3310 	qdf_mem_zero(&hif_state->msg_callbacks_current,
3311 		  sizeof(hif_state->msg_callbacks_current));
3312 }
3313 
3314 /* Send the first nbytes bytes of the buffer */
3315 QDF_STATUS
3316 hif_send_head(struct hif_opaque_softc *hif_ctx,
3317 	      uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
3318 	      qdf_nbuf_t nbuf, unsigned int data_attr)
3319 {
3320 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3321 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3322 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
3323 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
3324 	int bytes = nbytes, nfrags = 0;
3325 	struct ce_sendlist sendlist;
3326 	int i = 0;
3327 	QDF_STATUS status;
3328 	unsigned int mux_id = 0;
3329 
3330 	if (nbytes > qdf_nbuf_len(nbuf)) {
3331 		hif_err("nbytes: %d nbuf_len: %d", nbytes,
3332 		       (uint32_t)qdf_nbuf_len(nbuf));
3333 		QDF_ASSERT(0);
3334 	}
3335 
3336 	transfer_id =
3337 		(mux_id & MUX_ID_MASK) |
3338 		(transfer_id & TRANSACTION_ID_MASK);
3339 	data_attr &= DESC_DATA_FLAG_MASK;
3340 	/*
3341 	 * The common case involves sending multiple fragments within a
3342 	 * single download (the tx descriptor and the tx frame header).
3343 	 * So, optimize for the case of multiple fragments by not even
3344 	 * checking whether it's necessary to use a sendlist.
3345 	 * The overhead of using a sendlist for a single buffer download
3346 	 * is not a big deal, since it happens rarely (for WMI messages).
3347 	 */
3348 	ce_sendlist_init(&sendlist);
3349 	do {
3350 		qdf_dma_addr_t frag_paddr;
3351 		int frag_bytes;
3352 
3353 		frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
3354 		frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
3355 		/*
3356 		 * Clear the packet offset for all but the first CE desc.
3357 		 */
3358 		if (i++ > 0)
3359 			data_attr &= ~CE_DESC_PKT_OFFSET_BIT_M;
3360 
3361 		status = ce_sendlist_buf_add(&sendlist, frag_paddr,
3362 				    frag_bytes >
3363 				    bytes ? bytes : frag_bytes,
3364 				    qdf_nbuf_get_frag_is_wordstream
3365 				    (nbuf,
3366 				    nfrags) ? 0 :
3367 				    CE_SEND_FLAG_SWAP_DISABLE,
3368 				    data_attr);
3369 		if (status != QDF_STATUS_SUCCESS) {
3370 			hif_err("frag_num: %d larger than limit (status=%d)",
3371 			       nfrags, status);
3372 			return status;
3373 		}
3374 		bytes -= frag_bytes;
3375 		nfrags++;
3376 	} while (bytes > 0);
3377 
3378 	/* Make sure we have resources to handle this request */
3379 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
3380 	if (pipe_info->num_sends_allowed < nfrags) {
3381 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
3382 		ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
3383 		return QDF_STATUS_E_RESOURCES;
3384 	}
3385 	pipe_info->num_sends_allowed -= nfrags;
3386 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
3387 
3388 	if (qdf_unlikely(!ce_hdl)) {
3389 		hif_err("CE handle is null");
3390 		return QDF_STATUS_E_INVAL;
3391 	}
3392 
3393 	QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
3394 	DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
3395 		QDF_TRACE_DEFAULT_PDEV_ID, qdf_nbuf_data_addr(nbuf),
3396 		sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
3397 	status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
3398 	QDF_ASSERT(status == QDF_STATUS_SUCCESS);
3399 
3400 	return status;
3401 }
3402 
3403 void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
3404 								int force)
3405 {
3406 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3407 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3408 
3409 	if (!force) {
3410 		int resources;
3411 		/*
3412 		 * Decide whether to actually poll for completions, or just
3413 		 * wait for a later chance. If there seem to be plenty of
3414 		 * resources left, then just wait, since checking involves
3415 		 * reading a CE register, which is a relatively expensive
3416 		 * operation.
3417 		 */
3418 		resources = hif_get_free_queue_number(hif_ctx, pipe);
3419 		/*
3420 		 * If at least 50% of the total resources are still available,
3421 		 * don't bother checking again yet.
3422 		 */
3423 		if (resources > (hif_state->host_ce_config[pipe].src_nentries >>
3424 									 1))
3425 			return;
3426 	}
3427 #ifdef ATH_11AC_TXCOMPACT
3428 	ce_per_engine_servicereap(scn, pipe);
3429 #else
3430 	ce_per_engine_service(scn, pipe);
3431 #endif
3432 }
3433 
3434 #ifdef CUSTOM_CB_SCHEDULER_SUPPORT
3435 QDF_STATUS
3436 hif_register_ce_custom_cb(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
3437 			  void (*custom_cb)(void *), void *custom_cb_context)
3438 {
3439 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3440 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3441 	struct HIF_CE_pipe_info *pipe_info;
3442 
3443 	if (pipe >= CE_COUNT_MAX)
3444 		return QDF_STATUS_E_INVAL;
3445 
3446 	pipe_info = &hif_state->pipe_info[pipe];
3447 	ce_register_custom_cb(pipe_info->ce_hdl, custom_cb, custom_cb_context);
3448 
3449 	return QDF_STATUS_SUCCESS;
3450 }
3451 
3452 QDF_STATUS
3453 hif_unregister_ce_custom_cb(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3454 {
3455 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3456 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3457 	struct HIF_CE_pipe_info *pipe_info;
3458 
3459 	if (pipe >= CE_COUNT_MAX)
3460 		return QDF_STATUS_E_INVAL;
3461 
3462 	pipe_info = &hif_state->pipe_info[pipe];
3463 	ce_unregister_custom_cb(pipe_info->ce_hdl);
3464 
3465 	return QDF_STATUS_SUCCESS;
3466 }
3467 
3468 QDF_STATUS
3469 hif_enable_ce_custom_cb(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3470 {
3471 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3472 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3473 	struct HIF_CE_pipe_info *pipe_info;
3474 
3475 	if (pipe >= CE_COUNT_MAX)
3476 		return QDF_STATUS_E_INVAL;
3477 
3478 	pipe_info = &hif_state->pipe_info[pipe];
3479 	ce_enable_custom_cb(pipe_info->ce_hdl);
3480 	ce_dispatch_interrupt(pipe, &hif_state->tasklets[pipe]);
3481 
3482 	return QDF_STATUS_SUCCESS;
3483 }
3484 
3485 QDF_STATUS
3486 hif_disable_ce_custom_cb(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3487 {
3488 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3489 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3490 	struct HIF_CE_pipe_info *pipe_info;
3491 
3492 	if (pipe >= CE_COUNT_MAX)
3493 		return QDF_STATUS_E_INVAL;
3494 
3495 	pipe_info = &hif_state->pipe_info[pipe];
3496 	ce_disable_custom_cb(pipe_info->ce_hdl);
3497 
3498 	return QDF_STATUS_SUCCESS;
3499 }
3500 #endif /* CUSTOM_CB_SCHEDULER_SUPPORT */
3501 
3502 #if defined(CE_TASKLET_SCHEDULE_ON_FULL) && defined(CE_TASKLET_DEBUG_ENABLE)
3503 #define CE_RING_FULL_THRESHOLD_TIME 3000000
3504 #define CE_RING_FULL_THRESHOLD 1024
3505 /* This function is called from htc_send path. If there is no resourse to send
3506  * packet via HTC, then check if interrupts are not processed from that
3507  * CE for last 3 seconds. If so, schedule a tasklet to reap available entries.
3508  * Also if Queue has reached 1024 entries within 3 seconds, then also schedule
3509  * tasklet.
3510  */
3511 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3512 {
3513 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3514 	int64_t diff_time = qdf_get_log_timestamp_usecs() -
3515 			hif_state->stats.tasklet_sched_entry_ts[pipe];
3516 
3517 	hif_state->stats.ce_ring_full_count[pipe]++;
3518 
3519 	if (diff_time >= CE_RING_FULL_THRESHOLD_TIME ||
3520 	    hif_state->stats.ce_ring_full_count[pipe] >=
3521 	    CE_RING_FULL_THRESHOLD) {
3522 		hif_state->stats.ce_ring_full_count[pipe] = 0;
3523 		hif_state->stats.ce_manual_tasklet_schedule_count[pipe]++;
3524 		hif_state->stats.ce_last_manual_tasklet_schedule_ts[pipe] =
3525 			qdf_get_log_timestamp_usecs();
3526 		ce_dispatch_interrupt(pipe, &hif_state->tasklets[pipe]);
3527 	}
3528 }
3529 #else
3530 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3531 {
3532 }
3533 #endif
3534 
3535 uint16_t
3536 hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
3537 {
3538 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3539 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
3540 	uint16_t rv;
3541 
3542 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
3543 	rv = pipe_info->num_sends_allowed;
3544 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
3545 	return rv;
3546 }
3547 
3548 /* Called by lower (CE) layer when a send to Target completes. */
3549 static void
3550 hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
3551 		     void *transfer_context, qdf_dma_addr_t CE_data,
3552 		     unsigned int nbytes, unsigned int transfer_id,
3553 		     unsigned int sw_index, unsigned int hw_index,
3554 		     unsigned int toeplitz_hash_result)
3555 {
3556 	struct HIF_CE_pipe_info *pipe_info =
3557 		(struct HIF_CE_pipe_info *)ce_context;
3558 	unsigned int sw_idx = sw_index, hw_idx = hw_index;
3559 	struct hif_msg_callbacks *msg_callbacks =
3560 		&pipe_info->pipe_callbacks;
3561 
3562 	do {
3563 		/*
3564 		 * The upper layer callback will be triggered
3565 		 * when last fragment is complteted.
3566 		 */
3567 		if (transfer_context != CE_SENDLIST_ITEM_CTXT)
3568 			msg_callbacks->txCompletionHandler(
3569 				msg_callbacks->Context,
3570 				transfer_context, transfer_id,
3571 				toeplitz_hash_result);
3572 
3573 		qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
3574 		pipe_info->num_sends_allowed++;
3575 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
3576 	} while (ce_completed_send_next(copyeng,
3577 			&ce_context, &transfer_context,
3578 			&CE_data, &nbytes, &transfer_id,
3579 			&sw_idx, &hw_idx,
3580 			&toeplitz_hash_result) == QDF_STATUS_SUCCESS);
3581 }
3582 
3583 /**
3584  * hif_ce_do_recv(): send message from copy engine to upper layers
3585  * @msg_callbacks: structure containing callback and callback context
3586  * @netbuf: skb containing message
3587  * @nbytes: number of bytes in the message
3588  * @pipe_info: used for the pipe_number info
3589  *
3590  * Checks the packet length, configures the length in the netbuff,
3591  * and calls the upper layer callback.
3592  *
3593  * return: None
3594  */
3595 static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
3596 		qdf_nbuf_t netbuf, int nbytes,
3597 		struct HIF_CE_pipe_info *pipe_info) {
3598 	if (nbytes <= pipe_info->buf_sz) {
3599 		qdf_nbuf_set_pktlen(netbuf, nbytes);
3600 		msg_callbacks->
3601 			rxCompletionHandler(msg_callbacks->Context,
3602 					netbuf, pipe_info->pipe_num);
3603 	} else {
3604 		hif_err("Invalid Rx msg buf: %pK nbytes: %d", netbuf, nbytes);
3605 		hif_ce_rx_nbuf_free(netbuf);
3606 	}
3607 }
3608 
3609 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
3610 /**
3611  * hif_ce_rtpm_mark_last_busy() - record and mark last busy for RTPM
3612  * @scn: hif_softc pointer.
3613  * @ce_id: ce ID
3614  *
3615  * Return: None
3616  */
3617 static inline void
3618 hif_ce_rtpm_mark_last_busy(struct hif_softc *scn, uint32_t ce_id)
3619 {
3620 	/* do NOT mark last busy for diag event, to avoid impacting RTPM */
3621 	if (ce_id == CE_ID_7)
3622 		return;
3623 
3624 	hif_rtpm_record_ce_last_busy_evt(scn, ce_id);
3625 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_CE);
3626 }
3627 #else
3628 static inline void
3629 hif_ce_rtpm_mark_last_busy(struct hif_softc *scn, uint32_t ce_id)
3630 {
3631 	hif_rtpm_record_ce_last_busy_evt(scn, ce_id);
3632 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_CE);
3633 }
3634 #endif
3635 
3636 /* Called by lower (CE) layer when data is received from the Target. */
3637 static void
3638 hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
3639 		     void *transfer_context, qdf_dma_addr_t CE_data,
3640 		     unsigned int nbytes, unsigned int transfer_id,
3641 		     unsigned int flags)
3642 {
3643 	struct HIF_CE_pipe_info *pipe_info =
3644 		(struct HIF_CE_pipe_info *)ce_context;
3645 	struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
3646 	struct CE_state *ce_state = (struct CE_state *) copyeng;
3647 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3648 	struct hif_msg_callbacks *msg_callbacks = &pipe_info->pipe_callbacks;
3649 
3650 	do {
3651 		hif_ce_rtpm_mark_last_busy(scn, ce_state->id);
3652 		qdf_nbuf_unmap_single(scn->qdf_dev,
3653 				      (qdf_nbuf_t) transfer_context,
3654 				      QDF_DMA_FROM_DEVICE);
3655 
3656 		atomic_inc(&pipe_info->recv_bufs_needed);
3657 		hif_post_recv_buffers_for_pipe(pipe_info);
3658 		if (scn->target_status == TARGET_STATUS_RESET)
3659 			hif_ce_rx_nbuf_free(transfer_context);
3660 		else
3661 			hif_ce_do_recv(msg_callbacks, transfer_context,
3662 				nbytes, pipe_info);
3663 
3664 		/* Set up force_break flag if num of receices reaches
3665 		 * MAX_NUM_OF_RECEIVES
3666 		 */
3667 		ce_state->receive_count++;
3668 		if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
3669 			ce_state->force_break = 1;
3670 			break;
3671 		}
3672 	} while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
3673 					&CE_data, &nbytes, &transfer_id,
3674 					&flags) == QDF_STATUS_SUCCESS);
3675 
3676 }
3677 
3678 /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
3679 
3680 void
3681 hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
3682 	      struct hif_msg_callbacks *callbacks)
3683 {
3684 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3685 
3686 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
3687 	spin_lock_init(&pcie_access_log_lock);
3688 #endif
3689 	/* Save callbacks for later installation */
3690 	qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
3691 		 sizeof(hif_state->msg_callbacks_pending));
3692 
3693 }
3694 
3695 static int hif_completion_thread_startup_by_ceid(struct HIF_CE_state *hif_state,
3696 						 int pipe_num)
3697 {
3698 	struct CE_attr attr;
3699 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3700 	struct hif_msg_callbacks *hif_msg_callbacks =
3701 		&hif_state->msg_callbacks_current;
3702 	struct HIF_CE_pipe_info *pipe_info;
3703 	struct CE_state *ce_state;
3704 
3705 	if (pipe_num >= CE_COUNT_MAX)
3706 		return -EINVAL;
3707 
3708 	pipe_info = &hif_state->pipe_info[pipe_num];
3709 	ce_state = scn->ce_id_to_state[pipe_num];
3710 
3711 	if (!hif_msg_callbacks ||
3712 	    !hif_msg_callbacks->rxCompletionHandler ||
3713 	    !hif_msg_callbacks->txCompletionHandler) {
3714 		hif_err("no completion handler registered");
3715 		return -EFAULT;
3716 	}
3717 
3718 	attr = hif_state->host_ce_config[pipe_num];
3719 	if (attr.src_nentries) {
3720 		/* pipe used to send to target */
3721 		hif_debug("pipe_num:%d pipe_info:0x%pK\n",
3722 			  pipe_num, pipe_info);
3723 		ce_send_cb_register(pipe_info->ce_hdl,
3724 				    hif_pci_ce_send_done, pipe_info,
3725 				    attr.flags & CE_ATTR_DISABLE_INTR);
3726 		pipe_info->num_sends_allowed = attr.src_nentries - 1;
3727 	}
3728 	if (attr.dest_nentries) {
3729 		hif_debug("pipe_num:%d pipe_info:0x%pK\n",
3730 			  pipe_num, pipe_info);
3731 		/* pipe used to receive from target */
3732 		ce_recv_cb_register(pipe_info->ce_hdl,
3733 				    hif_pci_ce_recv_data, pipe_info,
3734 				    attr.flags & CE_ATTR_DISABLE_INTR);
3735 	}
3736 
3737 	if (attr.src_nentries)
3738 		qdf_spinlock_create(&pipe_info->completion_freeq_lock);
3739 
3740 	if (!(ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND))
3741 		qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks,
3742 			     sizeof(pipe_info->pipe_callbacks));
3743 
3744 	return 0;
3745 }
3746 
3747 static int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
3748 {
3749 	struct CE_handle *ce_diag = hif_state->ce_diag;
3750 	int pipe_num, ret;
3751 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3752 
3753 	/* daemonize("hif_compl_thread"); */
3754 
3755 	if (scn->ce_count == 0) {
3756 		hif_err("ce_count is 0");
3757 		return -EINVAL;
3758 	}
3759 
3760 
3761 	A_TARGET_ACCESS_LIKELY(scn);
3762 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3763 		struct HIF_CE_pipe_info *pipe_info;
3764 
3765 		pipe_info = &hif_state->pipe_info[pipe_num];
3766 		if (pipe_info->ce_hdl == ce_diag)
3767 			continue;       /* Handle Diagnostic CE specially */
3768 
3769 		ret = hif_completion_thread_startup_by_ceid(hif_state,
3770 							    pipe_num);
3771 		if (ret < 0)
3772 			return ret;
3773 
3774 	}
3775 
3776 	A_TARGET_ACCESS_UNLIKELY(scn);
3777 	return 0;
3778 }
3779 
3780 /*
3781  * Install pending msg callbacks.
3782  *
3783  * TBDXXX: This hack is needed because upper layers install msg callbacks
3784  * for use with HTC before BMI is done; yet this HIF implementation
3785  * needs to continue to use BMI msg callbacks. Really, upper layers
3786  * should not register HTC callbacks until AFTER BMI phase.
3787  */
3788 static void hif_msg_callbacks_install(struct hif_softc *scn)
3789 {
3790 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3791 
3792 	qdf_mem_copy(&hif_state->msg_callbacks_current,
3793 		 &hif_state->msg_callbacks_pending,
3794 		 sizeof(hif_state->msg_callbacks_pending));
3795 }
3796 
3797 void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
3798 							uint8_t *DLPipe)
3799 {
3800 	int ul_is_polled, dl_is_polled;
3801 
3802 	(void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
3803 		ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
3804 }
3805 
3806 /**
3807  * hif_dump_pipe_debug_count() - Log error count
3808  * @scn: hif_softc pointer.
3809  *
3810  * Output the pipe error counts of each pipe to log file
3811  *
3812  * Return: N/A
3813  */
3814 void hif_dump_pipe_debug_count(struct hif_softc *scn)
3815 {
3816 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3817 	int pipe_num;
3818 
3819 	if (!hif_state) {
3820 		hif_err("hif_state is NULL");
3821 		return;
3822 	}
3823 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3824 		struct HIF_CE_pipe_info *pipe_info;
3825 
3826 	pipe_info = &hif_state->pipe_info[pipe_num];
3827 
3828 	if (pipe_info->nbuf_alloc_err_count > 0 ||
3829 			pipe_info->nbuf_dma_err_count > 0 ||
3830 			pipe_info->nbuf_ce_enqueue_err_count)
3831 		hif_err(
3832 			"pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
3833 			pipe_info->pipe_num,
3834 			atomic_read(&pipe_info->recv_bufs_needed),
3835 			pipe_info->nbuf_alloc_err_count,
3836 			pipe_info->nbuf_dma_err_count,
3837 			pipe_info->nbuf_ce_enqueue_err_count);
3838 	}
3839 }
3840 
3841 static void hif_post_recv_buffers_failure(struct HIF_CE_pipe_info *pipe_info,
3842 					  void *nbuf, uint32_t *error_cnt,
3843 					  enum hif_ce_event_type failure_type,
3844 					  const char *failure_type_string)
3845 {
3846 	int bufs_needed_tmp = atomic_inc_return(&pipe_info->recv_bufs_needed);
3847 	struct CE_state *CE_state = (struct CE_state *)pipe_info->ce_hdl;
3848 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3849 	int ce_id = CE_state->id;
3850 	uint32_t error_cnt_tmp;
3851 
3852 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3853 	error_cnt_tmp = ++(*error_cnt);
3854 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3855 	hif_debug("pipe_num: %d, needed: %d, err_cnt: %u, fail_type: %s",
3856 		  pipe_info->pipe_num, bufs_needed_tmp, error_cnt_tmp,
3857 		  failure_type_string);
3858 	hif_record_ce_desc_event(scn, ce_id, failure_type,
3859 				 NULL, nbuf, bufs_needed_tmp, 0);
3860 	/* if we fail to allocate the last buffer for an rx pipe,
3861 	 *	there is no trigger to refill the ce and we will
3862 	 *	eventually crash
3863 	 */
3864 	if (bufs_needed_tmp == CE_state->dest_ring->nentries - 1 ||
3865 	    (ce_srng_based(scn) &&
3866 	     bufs_needed_tmp == CE_state->dest_ring->nentries - 2)) {
3867 		qdf_atomic_inc(&scn->active_oom_work_cnt);
3868 		if (!qdf_sched_work(scn->qdf_dev,
3869 				    &CE_state->oom_allocation_work))
3870 			qdf_atomic_dec(&scn->active_oom_work_cnt);
3871 	}
3872 
3873 }
3874 
3875 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
3876 {
3877 	struct CE_handle *ce_hdl;
3878 	qdf_size_t buf_sz;
3879 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3880 	QDF_STATUS status;
3881 	uint32_t bufs_posted = 0;
3882 	unsigned int ce_id;
3883 
3884 	buf_sz = pipe_info->buf_sz;
3885 	if (buf_sz == 0) {
3886 		/* Unused Copy Engine */
3887 		return QDF_STATUS_SUCCESS;
3888 	}
3889 
3890 	ce_hdl = pipe_info->ce_hdl;
3891 	if (!ce_hdl) {
3892 		hif_err("ce_hdl is NULL");
3893 		return QDF_STATUS_E_INVAL;
3894 	}
3895 
3896 	ce_id = ((struct CE_state *)ce_hdl)->id;
3897 
3898 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3899 	while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
3900 		qdf_dma_addr_t CE_data;      /* CE space buffer address */
3901 		qdf_nbuf_t nbuf;
3902 
3903 		atomic_dec(&pipe_info->recv_bufs_needed);
3904 		qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3905 
3906 		hif_record_ce_desc_event(scn, ce_id,
3907 					 HIF_RX_DESC_PRE_NBUF_ALLOC, NULL, NULL,
3908 					 0, 0);
3909 		nbuf = hif_ce_rx_nbuf_alloc(scn, ce_id);
3910 		if (!nbuf) {
3911 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3912 					&pipe_info->nbuf_alloc_err_count,
3913 					 HIF_RX_NBUF_ALLOC_FAILURE,
3914 					"HIF_RX_NBUF_ALLOC_FAILURE");
3915 			return QDF_STATUS_E_NOMEM;
3916 		}
3917 
3918 		hif_record_ce_desc_event(scn, ce_id,
3919 					 HIF_RX_DESC_PRE_NBUF_MAP, NULL, nbuf,
3920 					 0, 0);
3921 		/*
3922 		 * qdf_nbuf_peek_header(nbuf, &data, &unused);
3923 		 * CE_data = dma_map_single(dev, data, buf_sz, );
3924 		 * DMA_FROM_DEVICE);
3925 		 */
3926 		status = qdf_nbuf_map_single(scn->qdf_dev, nbuf,
3927 					    QDF_DMA_FROM_DEVICE);
3928 
3929 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3930 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3931 					&pipe_info->nbuf_dma_err_count,
3932 					 HIF_RX_NBUF_MAP_FAILURE,
3933 					"HIF_RX_NBUF_MAP_FAILURE");
3934 			hif_ce_rx_nbuf_free(nbuf);
3935 			return status;
3936 		}
3937 
3938 		CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
3939 		hif_record_ce_desc_event(scn, ce_id,
3940 					 HIF_RX_DESC_POST_NBUF_MAP, NULL, nbuf,
3941 					 0, 0);
3942 		qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
3943 					       buf_sz, DMA_FROM_DEVICE);
3944 		status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
3945 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3946 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3947 					&pipe_info->nbuf_ce_enqueue_err_count,
3948 					 HIF_RX_NBUF_ENQUEUE_FAILURE,
3949 					"HIF_RX_NBUF_ENQUEUE_FAILURE");
3950 
3951 			qdf_nbuf_unmap_single(scn->qdf_dev, nbuf,
3952 						QDF_DMA_FROM_DEVICE);
3953 			hif_ce_rx_nbuf_free(nbuf);
3954 			return status;
3955 		}
3956 
3957 		qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3958 		bufs_posted++;
3959 	}
3960 	pipe_info->nbuf_alloc_err_count =
3961 		(pipe_info->nbuf_alloc_err_count > bufs_posted) ?
3962 		pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
3963 	pipe_info->nbuf_dma_err_count =
3964 		(pipe_info->nbuf_dma_err_count > bufs_posted) ?
3965 		pipe_info->nbuf_dma_err_count - bufs_posted : 0;
3966 	pipe_info->nbuf_ce_enqueue_err_count =
3967 		(pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
3968 	pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
3969 
3970 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3971 
3972 	return QDF_STATUS_SUCCESS;
3973 }
3974 
3975 #ifdef FEATURE_DIRECT_LINK
3976 static QDF_STATUS
3977 hif_alloc_pages_for_direct_link_recv_pipe(struct HIF_CE_state *hif_ce_state,
3978 					  int pipe_num)
3979 {
3980 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
3981 	struct service_to_pipe *tgt_svc_cfg;
3982 	struct HIF_CE_pipe_info *pipe_info;
3983 	int32_t recv_bufs_needed;
3984 	qdf_dma_addr_t dma_addr;
3985 	uint16_t num_elem_per_page;
3986 	uint16_t i;
3987 	bool is_found = false;
3988 
3989 	tgt_svc_cfg = hif_ce_state->tgt_svc_map;
3990 
3991 	for (i = 0; i < hif_ce_state->sz_tgt_svc_map; i++) {
3992 		if (tgt_svc_cfg[i].service_id != LPASS_DATA_MSG_SVC ||
3993 		    tgt_svc_cfg[i].pipedir != PIPEDIR_IN ||
3994 		    tgt_svc_cfg[i].pipenum != pipe_num)
3995 			continue;
3996 
3997 		pipe_info = &hif_ce_state->pipe_info[pipe_num];
3998 		recv_bufs_needed = atomic_read(&pipe_info->recv_bufs_needed);
3999 
4000 		if (!pipe_info->buf_sz || !recv_bufs_needed)
4001 			continue;
4002 
4003 		is_found = true;
4004 		break;
4005 	}
4006 
4007 	if (!is_found)
4008 		return QDF_STATUS_E_NOSUPPORT;
4009 
4010 	scn->dl_recv_pipe_num = pipe_num;
4011 
4012 	hif_prealloc_get_multi_pages(scn, QDF_DP_RX_DIRECT_LINK_CE_BUF_TYPE,
4013 				     pipe_info->buf_sz, recv_bufs_needed,
4014 				     &scn->dl_recv_pages, false);
4015 	if (!scn->dl_recv_pages.num_pages)
4016 		return QDF_STATUS_E_NOMEM;
4017 
4018 	num_elem_per_page = scn->dl_recv_pages.num_element_per_page;
4019 	for (i = 0; i < recv_bufs_needed; i++) {
4020 		dma_addr = scn->dl_recv_pages.dma_pages[i / num_elem_per_page].page_p_addr;
4021 		dma_addr += (i % num_elem_per_page) * pipe_info->buf_sz;
4022 		ce_recv_buf_enqueue(pipe_info->ce_hdl, NULL, dma_addr);
4023 	}
4024 
4025 	return QDF_STATUS_SUCCESS;
4026 }
4027 
4028 static QDF_STATUS
4029 hif_free_pages_for_direct_link_recv_pipe(struct HIF_CE_state *hif_ce_state,
4030 					 int pipe_num)
4031 {
4032 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
4033 
4034 	if (pipe_num != scn->dl_recv_pipe_num)
4035 		return QDF_STATUS_E_NOSUPPORT;
4036 
4037 	hif_prealloc_put_multi_pages(scn, QDF_DP_RX_DIRECT_LINK_CE_BUF_TYPE,
4038 				     &scn->dl_recv_pages, false);
4039 
4040 	return QDF_STATUS_SUCCESS;
4041 }
4042 #else
4043 static inline QDF_STATUS
4044 hif_alloc_pages_for_direct_link_recv_pipe(struct HIF_CE_state *hif_ce_state,
4045 					  int pipe_num)
4046 {
4047 	return QDF_STATUS_E_NOSUPPORT;
4048 }
4049 
4050 static inline QDF_STATUS
4051 hif_free_pages_for_direct_link_recv_pipe(struct HIF_CE_state *hif_ce_state,
4052 					 int pipe_num)
4053 {
4054 	return QDF_STATUS_E_NOSUPPORT;
4055 }
4056 #endif
4057 
4058 /*
4059  * Try to post all desired receive buffers for all pipes.
4060  * Returns 0 for non fastpath rx copy engine as
4061  * oom_allocation_work will be scheduled to recover any
4062  * failures, non-zero if unable to completely replenish
4063  * receive buffers for fastpath rx Copy engine.
4064  */
4065 static QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn)
4066 {
4067 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4068 	int pipe_num;
4069 	struct CE_state *ce_state = NULL;
4070 	QDF_STATUS qdf_status;
4071 
4072 	A_TARGET_ACCESS_LIKELY(scn);
4073 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
4074 		struct HIF_CE_pipe_info *pipe_info;
4075 
4076 		if (pipe_num >= CE_COUNT_MAX) {
4077 			A_TARGET_ACCESS_UNLIKELY(scn);
4078 			return QDF_STATUS_E_INVAL;
4079 		}
4080 
4081 		ce_state = scn->ce_id_to_state[pipe_num];
4082 		pipe_info = &hif_state->pipe_info[pipe_num];
4083 
4084 		if (!ce_state)
4085 			continue;
4086 
4087 		/* Do not init dynamic CEs, during initial load */
4088 		if (ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND)
4089 			continue;
4090 
4091 		if (hif_is_nss_wifi_enabled(scn) &&
4092 		    ce_state && (ce_state->htt_rx_data))
4093 			continue;
4094 
4095 		qdf_status =
4096 			hif_alloc_pages_for_direct_link_recv_pipe(hif_state,
4097 								  pipe_num);
4098 		if (QDF_IS_STATUS_SUCCESS(qdf_status))
4099 			continue;
4100 
4101 		qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
4102 		if (!QDF_IS_STATUS_SUCCESS(qdf_status) && ce_state &&
4103 			ce_state->htt_rx_data &&
4104 			scn->fastpath_mode_on) {
4105 			A_TARGET_ACCESS_UNLIKELY(scn);
4106 			return qdf_status;
4107 		}
4108 	}
4109 
4110 	A_TARGET_ACCESS_UNLIKELY(scn);
4111 
4112 	return QDF_STATUS_SUCCESS;
4113 }
4114 
4115 QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
4116 {
4117 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
4118 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4119 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
4120 
4121 	hif_update_fastpath_recv_bufs_cnt(scn);
4122 
4123 	hif_msg_callbacks_install(scn);
4124 
4125 	if (hif_completion_thread_startup(hif_state))
4126 		return QDF_STATUS_E_FAILURE;
4127 
4128 	hif_ce_rx_wbuff_register(scn);
4129 
4130 	/* enable buffer cleanup */
4131 	hif_state->started = true;
4132 
4133 	/* Post buffers once to start things off. */
4134 	qdf_status = hif_post_recv_buffers(scn);
4135 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
4136 		/* cleanup is done in hif_ce_disable */
4137 		hif_err("Failed to post buffers");
4138 		return qdf_status;
4139 	}
4140 
4141 	return qdf_status;
4142 }
4143 
4144 static void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
4145 {
4146 	struct hif_softc *scn;
4147 	struct CE_handle *ce_hdl;
4148 	uint32_t buf_sz;
4149 	struct HIF_CE_state *hif_state;
4150 	qdf_nbuf_t netbuf;
4151 	qdf_dma_addr_t CE_data;
4152 	void *per_CE_context;
4153 	QDF_STATUS status;
4154 
4155 	buf_sz = pipe_info->buf_sz;
4156 	/* Unused Copy Engine */
4157 	if (buf_sz == 0)
4158 		return;
4159 
4160 
4161 	hif_state = pipe_info->HIF_CE_state;
4162 	if (!hif_state->started)
4163 		return;
4164 
4165 	scn = HIF_GET_SOFTC(hif_state);
4166 	ce_hdl = pipe_info->ce_hdl;
4167 
4168 	if (!scn->qdf_dev)
4169 		return;
4170 
4171 	status = hif_free_pages_for_direct_link_recv_pipe(hif_state,
4172 							  pipe_info->pipe_num);
4173 	if (QDF_IS_STATUS_SUCCESS(status))
4174 		return;
4175 
4176 	while (ce_revoke_recv_next
4177 		       (ce_hdl, &per_CE_context, (void **)&netbuf,
4178 			&CE_data) == QDF_STATUS_SUCCESS) {
4179 		if (netbuf) {
4180 			qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
4181 					      QDF_DMA_FROM_DEVICE);
4182 			hif_ce_rx_nbuf_free(netbuf);
4183 		}
4184 	}
4185 }
4186 
4187 static void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
4188 {
4189 	struct CE_handle *ce_hdl;
4190 	struct HIF_CE_state *hif_state;
4191 	struct hif_softc *scn;
4192 	qdf_nbuf_t netbuf;
4193 	void *per_CE_context;
4194 	qdf_dma_addr_t CE_data;
4195 	unsigned int nbytes;
4196 	unsigned int id;
4197 	uint32_t buf_sz;
4198 	uint32_t toeplitz_hash_result;
4199 
4200 	buf_sz = pipe_info->buf_sz;
4201 	if (buf_sz == 0) {
4202 		/* Unused Copy Engine */
4203 		return;
4204 	}
4205 
4206 	hif_state = pipe_info->HIF_CE_state;
4207 	if (!hif_state->started) {
4208 		return;
4209 	}
4210 
4211 	scn = HIF_GET_SOFTC(hif_state);
4212 
4213 	ce_hdl = pipe_info->ce_hdl;
4214 
4215 	while (ce_cancel_send_next
4216 		       (ce_hdl, &per_CE_context,
4217 		       (void **)&netbuf, &CE_data, &nbytes,
4218 		       &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
4219 		if (netbuf != CE_SENDLIST_ITEM_CTXT) {
4220 			/*
4221 			 * Packets enqueued by htt_h2t_ver_req_msg() and
4222 			 * htt_h2t_rx_ring_cfg_msg_ll() have already been
4223 			 * freed in htt_htc_misc_pkt_pool_free() in
4224 			 * wlantl_close(), so do not free them here again
4225 			 * by checking whether it's the endpoint
4226 			 * which they are queued in.
4227 			 */
4228 			if (id == scn->htc_htt_tx_endpoint)
4229 				return;
4230 			/* Indicate the completion to higher
4231 			 * layer to free the buffer
4232 			 */
4233 			if (pipe_info->pipe_callbacks.txCompletionHandler)
4234 				pipe_info->pipe_callbacks.
4235 				    txCompletionHandler(pipe_info->
4236 					    pipe_callbacks.Context,
4237 					    netbuf, id, toeplitz_hash_result);
4238 		}
4239 	}
4240 }
4241 
4242 /*
4243  * Cleanup residual buffers for device shutdown:
4244  *    buffers that were enqueued for receive
4245  *    buffers that were to be sent
4246  * Note: Buffers that had completed but which were
4247  * not yet processed are on a completion queue. They
4248  * are handled when the completion thread shuts down.
4249  */
4250 static void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
4251 {
4252 	int pipe_num;
4253 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
4254 	struct CE_state *ce_state;
4255 
4256 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
4257 		struct HIF_CE_pipe_info *pipe_info;
4258 
4259 		ce_state = scn->ce_id_to_state[pipe_num];
4260 		if (hif_is_nss_wifi_enabled(scn) && ce_state &&
4261 				((ce_state->htt_tx_data) ||
4262 				 (ce_state->htt_rx_data))) {
4263 			continue;
4264 		}
4265 
4266 		pipe_info = &hif_state->pipe_info[pipe_num];
4267 		hif_recv_buffer_cleanup_on_pipe(pipe_info);
4268 		hif_send_buffer_cleanup_on_pipe(pipe_info);
4269 	}
4270 }
4271 
4272 void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
4273 {
4274 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
4275 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4276 
4277 	hif_buffer_cleanup(hif_state);
4278 }
4279 
4280 static void hif_destroy_oom_work(struct hif_softc *scn)
4281 {
4282 	struct CE_state *ce_state;
4283 	int ce_id;
4284 
4285 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
4286 		ce_state = scn->ce_id_to_state[ce_id];
4287 		if (ce_state)
4288 			qdf_destroy_work(scn->qdf_dev,
4289 					 &ce_state->oom_allocation_work);
4290 	}
4291 	qdf_atomic_set(&scn->active_oom_work_cnt, 0);
4292 }
4293 
4294 void hif_ce_stop(struct hif_softc *scn)
4295 {
4296 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4297 	int pipe_num;
4298 
4299 	/*
4300 	 * before cleaning up any memory, ensure irq &
4301 	 * bottom half contexts will not be re-entered
4302 	 */
4303 	hif_disable_isr(&scn->osc);
4304 	hif_destroy_oom_work(scn);
4305 	scn->hif_init_done = false;
4306 
4307 	/*
4308 	 * At this point, asynchronous threads are stopped,
4309 	 * The Target should not DMA nor interrupt, Host code may
4310 	 * not initiate anything more.  So we just need to clean
4311 	 * up Host-side state.
4312 	 */
4313 
4314 	if (scn->athdiag_procfs_inited) {
4315 		athdiag_procfs_remove();
4316 		scn->athdiag_procfs_inited = false;
4317 	}
4318 
4319 	hif_buffer_cleanup(hif_state);
4320 
4321 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
4322 		struct HIF_CE_pipe_info *pipe_info;
4323 		struct CE_attr attr;
4324 		struct CE_handle *ce_diag = hif_state->ce_diag;
4325 
4326 		pipe_info = &hif_state->pipe_info[pipe_num];
4327 		if (pipe_info->ce_hdl) {
4328 			if (pipe_info->ce_hdl != ce_diag &&
4329 			    hif_state->started) {
4330 				attr = hif_state->host_ce_config[pipe_num];
4331 				if (attr.src_nentries)
4332 					qdf_spinlock_destroy(&pipe_info->
4333 							completion_freeq_lock);
4334 			}
4335 			ce_fini(pipe_info->ce_hdl);
4336 			pipe_info->ce_hdl = NULL;
4337 			pipe_info->buf_sz = 0;
4338 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
4339 		}
4340 	}
4341 
4342 	hif_ce_rx_wbuff_deregister(scn);
4343 
4344 	if (hif_state->sleep_timer_init) {
4345 		qdf_timer_stop(&hif_state->sleep_timer);
4346 		qdf_timer_free(&hif_state->sleep_timer);
4347 		hif_state->sleep_timer_init = false;
4348 	}
4349 
4350 	hif_state->started = false;
4351 }
4352 
4353 #ifdef CONFIG_SHADOW_V3
4354 void hif_preare_shadow_register_cfg_v3(struct hif_softc *scn)
4355 {
4356 	int shadow_cfg_idx = scn->num_shadow_registers_configured;
4357 	int i;
4358 
4359 	/* shadow reg config for CE SRC registers */
4360 	for (i = 0; i < scn->ce_count; i++) {
4361 		scn->shadow_regs[shadow_cfg_idx].addr =
4362 				CE_BASE_ADDRESS(i) + SR_WR_INDEX_ADDRESS;
4363 		shadow_cfg_idx++;
4364 	}
4365 
4366 	/* shadow reg config for CE DST registers */
4367 	for (i = 0; i < scn->ce_count; i++) {
4368 		scn->shadow_regs[shadow_cfg_idx].addr =
4369 				CE_BASE_ADDRESS(i) + DST_WR_INDEX_ADDRESS;
4370 		shadow_cfg_idx++;
4371 	}
4372 
4373 	scn->num_shadow_registers_configured = shadow_cfg_idx;
4374 }
4375 
4376 void hif_get_shadow_reg_config_v3(struct hif_softc *scn,
4377 				  struct pld_shadow_reg_v3_cfg **shadow_config,
4378 				  int *num_shadow_registers_configured)
4379 {
4380 	*shadow_config = scn->shadow_regs;
4381 	*num_shadow_registers_configured =
4382 				scn->num_shadow_registers_configured;
4383 }
4384 #endif
4385 
4386 static void hif_get_shadow_reg_cfg(struct hif_softc *scn,
4387 				   struct shadow_reg_cfg
4388 				   **target_shadow_reg_cfg_ret,
4389 				   uint32_t *shadow_cfg_sz_ret)
4390 {
4391 	if (target_shadow_reg_cfg_ret)
4392 		*target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
4393 	if (shadow_cfg_sz_ret)
4394 		*shadow_cfg_sz_ret = shadow_cfg_sz;
4395 }
4396 
4397 /**
4398  * hif_get_target_ce_config() - get copy engine configuration
4399  * @scn: HIF context
4400  * @target_ce_config_ret: basic copy engine configuration
4401  * @target_ce_config_sz_ret: size of the basic configuration in bytes
4402  * @target_service_to_ce_map_ret: service mapping for the copy engines
4403  * @target_service_to_ce_map_sz_ret: size of the mapping in bytes
4404  * @target_shadow_reg_cfg_ret: shadow register configuration
4405  * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
4406  *
4407  * providing accessor to these values outside of this file.
4408  * currently these are stored in static pointers to const sections.
4409  * there are multiple configurations that are selected from at compile time.
4410  * Runtime selection would need to consider mode, target type and bus type.
4411  *
4412  * Return: return by parameter.
4413  */
4414 void hif_get_target_ce_config(struct hif_softc *scn,
4415 		struct CE_pipe_config **target_ce_config_ret,
4416 		uint32_t *target_ce_config_sz_ret,
4417 		struct service_to_pipe **target_service_to_ce_map_ret,
4418 		uint32_t *target_service_to_ce_map_sz_ret,
4419 		struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
4420 		uint32_t *shadow_cfg_sz_ret)
4421 {
4422 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4423 
4424 	*target_ce_config_ret = hif_state->target_ce_config;
4425 	*target_ce_config_sz_ret = hif_state->target_ce_config_sz;
4426 
4427 	hif_select_service_to_pipe_map(scn, target_service_to_ce_map_ret,
4428 				       target_service_to_ce_map_sz_ret);
4429 	hif_get_shadow_reg_cfg(scn, target_shadow_reg_cfg_ret,
4430 			       shadow_cfg_sz_ret);
4431 }
4432 
4433 #ifdef CONFIG_SHADOW_V3
4434 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
4435 {
4436 	int i;
4437 
4438 	hif_info("v3: num_config %d", cfg->num_shadow_reg_v3_cfg);
4439 	for (i = 0; i < cfg->num_shadow_reg_v3_cfg; i++)
4440 		hif_info("i %d, val %x", i, cfg->shadow_reg_v3_cfg[i].addr);
4441 }
4442 
4443 #elif defined(CONFIG_SHADOW_V2)
4444 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
4445 {
4446 	int i;
4447 
4448 	hif_info("v2: num_config %d", cfg->num_shadow_reg_v2_cfg);
4449 	for (i = 0; i < cfg->num_shadow_reg_v2_cfg; i++)
4450 		hif_info("i %d, val %x", i, cfg->shadow_reg_v2_cfg[i].addr);
4451 }
4452 
4453 #else
4454 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
4455 {
4456 	hif_info("CONFIG_SHADOW V2/V3 not defined");
4457 }
4458 #endif
4459 
4460 #ifdef ADRASTEA_RRI_ON_DDR
4461 /**
4462  * hif_get_src_ring_read_index(): Called to get the SRRI
4463  *
4464  * @scn: hif_softc pointer
4465  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
4466  *
4467  * This function returns the SRRI to the caller. For CEs that
4468  * dont have interrupts enabled, we look at the DDR based SRRI
4469  *
4470  * Return: SRRI
4471  */
4472 inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
4473 		uint32_t CE_ctrl_addr)
4474 {
4475 	struct CE_attr attr;
4476 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4477 
4478 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
4479 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
4480 		return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
4481 	} else {
4482 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
4483 			return A_TARGET_READ(scn,
4484 					(CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
4485 		else
4486 			return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn,
4487 					CE_ctrl_addr);
4488 	}
4489 }
4490 
4491 /**
4492  * hif_get_dst_ring_read_index(): Called to get the DRRI
4493  *
4494  * @scn: hif_softc pointer
4495  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
4496  *
4497  * This function returns the DRRI to the caller. For CEs that
4498  * dont have interrupts enabled, we look at the DDR based DRRI
4499  *
4500  * Return: DRRI
4501  */
4502 inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
4503 		uint32_t CE_ctrl_addr)
4504 {
4505 	struct CE_attr attr;
4506 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4507 
4508 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
4509 
4510 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
4511 		return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
4512 	} else {
4513 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
4514 			return A_TARGET_READ(scn,
4515 					(CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
4516 		else
4517 			return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn,
4518 					CE_ctrl_addr);
4519 	}
4520 }
4521 
4522 /**
4523  * hif_alloc_rri_on_ddr() - Allocate memory for rri on ddr
4524  * @scn: hif_softc pointer
4525  *
4526  * Return: qdf status
4527  */
4528 static inline QDF_STATUS hif_alloc_rri_on_ddr(struct hif_softc *scn)
4529 {
4530 	qdf_dma_addr_t paddr_rri_on_ddr = 0;
4531 
4532 	scn->vaddr_rri_on_ddr =
4533 		(void *)qdf_mem_alloc_consistent(scn->qdf_dev,
4534 		scn->qdf_dev->dev, RRI_ON_DDR_MEM_SIZE,
4535 		&paddr_rri_on_ddr);
4536 
4537 	if (!scn->vaddr_rri_on_ddr) {
4538 		hif_err("dmaable page alloc fail");
4539 		return QDF_STATUS_E_NOMEM;
4540 	}
4541 
4542 	scn->paddr_rri_on_ddr = paddr_rri_on_ddr;
4543 
4544 	qdf_mem_zero(scn->vaddr_rri_on_ddr, RRI_ON_DDR_MEM_SIZE);
4545 
4546 	return QDF_STATUS_SUCCESS;
4547 }
4548 #endif
4549 
4550 #if (!defined(QCN7605_SUPPORT)) && defined(ADRASTEA_RRI_ON_DDR)
4551 /**
4552  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
4553  *
4554  * @scn: hif_softc pointer
4555  *
4556  * This function allocates non cached memory on ddr and sends
4557  * the physical address of this memory to the CE hardware. The
4558  * hardware updates the RRI on this particular location.
4559  *
4560  * Return: None
4561  */
4562 #ifdef QCA_WIFI_WCN6450
4563 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
4564 {
4565 	unsigned int i;
4566 	uint32_t high_paddr, low_paddr;
4567 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4568 	struct CE_attr *attr;
4569 
4570 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
4571 		return;
4572 
4573 	low_paddr  = RRI_ON_DDR_PADDR_LOW(scn->paddr_rri_on_ddr);
4574 	high_paddr = RRI_ON_DDR_PADDR_HIGH(scn->paddr_rri_on_ddr);
4575 
4576 	hif_debug("using srri and drri from DDR");
4577 
4578 	WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
4579 	WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
4580 
4581 	for (i = 0; i < CE_COUNT; i++) {
4582 		attr = &hif_state->host_ce_config[i];
4583 		if (attr->src_nentries || attr->dest_nentries)
4584 			CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
4585 	}
4586 }
4587 #else
4588 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
4589 {
4590 	unsigned int i;
4591 	uint32_t high_paddr, low_paddr;
4592 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4593 	struct CE_pipe_config *ce_config;
4594 
4595 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
4596 		return;
4597 
4598 	low_paddr  = RRI_ON_DDR_PADDR_LOW(scn->paddr_rri_on_ddr);
4599 	high_paddr = RRI_ON_DDR_PADDR_HIGH(scn->paddr_rri_on_ddr);
4600 
4601 	hif_debug("using srri and drri from DDR");
4602 
4603 	WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
4604 	WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
4605 
4606 	for (i = 0; i < CE_COUNT; i++) {
4607 		ce_config = &hif_state->target_ce_config[i];
4608 		/*
4609 		 * For DST channel program both IDX_UPD_EN and
4610 		 * DMAX length(behalf of F.W) at once to avoid
4611 		 * race with F.W register update.
4612 		 */
4613 		if (ce_config->pipedir == PIPEDIR_IN && ce_config->nbytes_max)
4614 			CE_IDX_UPD_EN_DMAX_LEN_SET(scn, CE_BASE_ADDRESS(i),
4615 						   ce_config->nbytes_max);
4616 		else
4617 			CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
4618 	}
4619 }
4620 #endif
4621 
4622 #else
4623 /**
4624  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
4625  *
4626  * @scn: hif_softc pointer
4627  *
4628  * This is a dummy implementation for platforms that don't
4629  * support this functionality.
4630  *
4631  * Return: None
4632  */
4633 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
4634 {
4635 }
4636 #endif
4637 
4638 /**
4639  * hif_update_rri_over_ddr_config() - update rri_over_ddr config for
4640  *                                    QMI command
4641  * @scn: hif context
4642  * @cfg: wlan enable config
4643  *
4644  * In case of Genoa, rri_over_ddr memory configuration is passed
4645  * to firmware through QMI configure command.
4646  */
4647 #if defined(QCN7605_SUPPORT) && defined(ADRASTEA_RRI_ON_DDR)
4648 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
4649 					   struct pld_wlan_enable_cfg *cfg)
4650 {
4651 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
4652 		return;
4653 
4654 	cfg->rri_over_ddr_cfg_valid = true;
4655 	cfg->rri_over_ddr_cfg.base_addr_low =
4656 		 BITS0_TO_31(scn->paddr_rri_on_ddr);
4657 	cfg->rri_over_ddr_cfg.base_addr_high =
4658 		 BITS32_TO_35(scn->paddr_rri_on_ddr);
4659 }
4660 #else
4661 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
4662 					   struct pld_wlan_enable_cfg *cfg)
4663 {
4664 }
4665 #endif
4666 
4667 /**
4668  * hif_wlan_enable(): call the platform driver to enable wlan
4669  * @scn: HIF Context
4670  *
4671  * This function passes the con_mode and CE configuration to
4672  * platform driver to enable wlan.
4673  *
4674  * Return: linux error code
4675  */
4676 int hif_wlan_enable(struct hif_softc *scn)
4677 {
4678 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4679 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
4680 	struct pld_wlan_enable_cfg cfg = { 0 };
4681 	enum pld_driver_mode mode;
4682 	uint32_t con_mode = hif_get_conparam(scn);
4683 
4684 	hif_get_target_ce_config(scn,
4685 			(struct CE_pipe_config **)&cfg.ce_tgt_cfg,
4686 			&cfg.num_ce_tgt_cfg,
4687 			(struct service_to_pipe **)&cfg.ce_svc_cfg,
4688 			&cfg.num_ce_svc_pipe_cfg,
4689 			(struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
4690 			&cfg.num_shadow_reg_cfg);
4691 
4692 	/* translate from structure size to array size */
4693 	cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
4694 	cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
4695 	cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
4696 
4697 	switch (tgt_info->target_type) {
4698 	case TARGET_TYPE_KIWI:
4699 	case TARGET_TYPE_MANGO:
4700 	case TARGET_TYPE_PEACH:
4701 	case TARGET_TYPE_WCN6450:
4702 		hif_prepare_hal_shadow_reg_cfg_v3(scn, &cfg);
4703 		break;
4704 	default:
4705 		hif_prepare_hal_shadow_register_cfg(scn,
4706 						    &cfg.shadow_reg_v2_cfg,
4707 						    &cfg.num_shadow_reg_v2_cfg);
4708 		break;
4709 	}
4710 
4711 	hif_print_hal_shadow_register_cfg(&cfg);
4712 
4713 	hif_update_rri_over_ddr_config(scn, &cfg);
4714 
4715 	if (QDF_GLOBAL_FTM_MODE == con_mode)
4716 		mode = PLD_FTM;
4717 	else if (QDF_GLOBAL_COLDBOOT_CALIB_MODE == con_mode)
4718 		mode = PLD_COLDBOOT_CALIBRATION;
4719 	else if (QDF_GLOBAL_FTM_COLDBOOT_CALIB_MODE == con_mode)
4720 		mode = PLD_FTM_COLDBOOT_CALIBRATION;
4721 	else if (QDF_IS_EPPING_ENABLED(con_mode))
4722 		mode = PLD_EPPING;
4723 	else
4724 		mode = PLD_MISSION;
4725 
4726 	if (BYPASS_QMI)
4727 		return 0;
4728 	else
4729 		return pld_wlan_enable(scn->qdf_dev->dev, &cfg, mode);
4730 }
4731 
4732 #ifdef WLAN_FEATURE_EPPING
4733 
4734 #define CE_EPPING_USES_IRQ true
4735 
4736 void hif_ce_prepare_epping_config(struct hif_softc *scn,
4737 				  struct HIF_CE_state *hif_state)
4738 {
4739 	if (CE_EPPING_USES_IRQ)
4740 		hif_state->host_ce_config = host_ce_config_wlan_epping_irq;
4741 	else
4742 		hif_state->host_ce_config = host_ce_config_wlan_epping_poll;
4743 	hif_state->target_ce_config = target_ce_config_wlan_epping;
4744 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
4745 	target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
4746 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
4747 	scn->ce_count = EPPING_HOST_CE_COUNT;
4748 }
4749 #endif
4750 
4751 #ifdef QCN7605_SUPPORT
4752 static inline
4753 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
4754 			       struct HIF_CE_state *hif_state)
4755 {
4756 	hif_state->host_ce_config = host_ce_config_wlan_qcn7605;
4757 	hif_state->target_ce_config = target_ce_config_wlan_qcn7605;
4758 	hif_state->target_ce_config_sz =
4759 				 sizeof(target_ce_config_wlan_qcn7605);
4760 	target_shadow_reg_cfg = target_shadow_reg_cfg_map_qcn7605;
4761 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map_qcn7605);
4762 	scn->ce_count = QCN7605_CE_COUNT;
4763 }
4764 #else
4765 static inline
4766 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
4767 			       struct HIF_CE_state *hif_state)
4768 {
4769 	hif_err("QCN7605 not supported");
4770 }
4771 #endif
4772 
4773 #ifdef CE_SVC_CMN_INIT
4774 #ifdef QCA_WIFI_SUPPORT_SRNG
4775 static inline void hif_ce_service_init(void)
4776 {
4777 	ce_service_srng_init();
4778 }
4779 #else
4780 static inline void hif_ce_service_init(void)
4781 {
4782 	ce_service_legacy_init();
4783 }
4784 #endif
4785 #else
4786 static inline void hif_ce_service_init(void)
4787 {
4788 }
4789 #endif
4790 
4791 #ifdef FEATURE_DIRECT_LINK
4792 /**
4793  * hif_ce_select_config_kiwi() - Select the host and target CE
4794  *  configuration for Kiwi
4795  * @hif_state: HIF CE context
4796  *
4797  * Return: None
4798  */
4799 static inline
4800 void hif_ce_select_config_kiwi(struct HIF_CE_state *hif_state)
4801 {
4802 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif_state);
4803 
4804 	if (pld_is_direct_link_supported(hif_ctx->qdf_dev->dev)) {
4805 		hif_state->host_ce_config =
4806 				host_ce_config_wlan_kiwi_direct_link;
4807 		hif_state->target_ce_config =
4808 				target_ce_config_wlan_kiwi_direct_link;
4809 		hif_state->target_ce_config_sz =
4810 				sizeof(target_ce_config_wlan_kiwi_direct_link);
4811 	} else {
4812 		hif_state->host_ce_config = host_ce_config_wlan_kiwi;
4813 		hif_state->target_ce_config = target_ce_config_wlan_kiwi;
4814 		hif_state->target_ce_config_sz =
4815 				sizeof(target_ce_config_wlan_kiwi);
4816 	}
4817 }
4818 #else
4819 static inline
4820 void hif_ce_select_config_kiwi(struct HIF_CE_state *hif_state)
4821 {
4822 	hif_state->host_ce_config = host_ce_config_wlan_kiwi;
4823 	hif_state->target_ce_config = target_ce_config_wlan_kiwi;
4824 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_kiwi);
4825 }
4826 #endif
4827 
4828 /**
4829  * hif_ce_prepare_config() - load the correct static tables.
4830  * @scn: hif context
4831  *
4832  * Epping uses different static attribute tables than mission mode.
4833  */
4834 void hif_ce_prepare_config(struct hif_softc *scn)
4835 {
4836 	uint32_t mode = hif_get_conparam(scn);
4837 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4838 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
4839 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4840 	int ret;
4841 	int msi_data_count = 0;
4842 	int msi_data_start = 0;
4843 	int msi_irq_start = 0;
4844 
4845 	hif_ce_service_init();
4846 	hif_state->ce_services = ce_services_attach(scn);
4847 
4848 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
4849 					  &msi_data_count, &msi_data_start,
4850 					  &msi_irq_start);
4851 
4852 	scn->ce_count = HOST_CE_COUNT;
4853 	scn->int_assignment = &ce_int_context[msi_data_count];
4854 	scn->free_irq_done = false;
4855 	/* if epping is enabled we need to use the epping configuration. */
4856 	if (QDF_IS_EPPING_ENABLED(mode)) {
4857 		hif_ce_prepare_epping_config(scn, hif_state);
4858 		return;
4859 	}
4860 
4861 	switch (tgt_info->target_type) {
4862 	default:
4863 		hif_state->host_ce_config = host_ce_config_wlan;
4864 		hif_state->target_ce_config = target_ce_config_wlan;
4865 		hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan);
4866 		break;
4867 	case TARGET_TYPE_QCN7605:
4868 		hif_set_ce_config_qcn7605(scn, hif_state);
4869 		break;
4870 	case TARGET_TYPE_AR900B:
4871 	case TARGET_TYPE_QCA9984:
4872 	case TARGET_TYPE_QCA9888:
4873 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
4874 			hif_state->host_ce_config =
4875 				host_lowdesc_ce_cfg_wlan_ar900b_nopktlog;
4876 		} else if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4877 			hif_state->host_ce_config =
4878 				host_lowdesc_ce_cfg_wlan_ar900b;
4879 		} else {
4880 			hif_state->host_ce_config = host_ce_config_wlan_ar900b;
4881 		}
4882 
4883 		hif_state->target_ce_config = target_ce_config_wlan_ar900b;
4884 		hif_state->target_ce_config_sz =
4885 				sizeof(target_ce_config_wlan_ar900b);
4886 
4887 		break;
4888 
4889 	case TARGET_TYPE_AR9888:
4890 	case TARGET_TYPE_AR9888V2:
4891 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4892 			hif_state->host_ce_config = host_lowdesc_ce_cfg_wlan_ar9888;
4893 		} else {
4894 			hif_state->host_ce_config = host_ce_config_wlan_ar9888;
4895 		}
4896 
4897 		hif_state->target_ce_config = target_ce_config_wlan_ar9888;
4898 		hif_state->target_ce_config_sz =
4899 					sizeof(target_ce_config_wlan_ar9888);
4900 
4901 		break;
4902 
4903 	case TARGET_TYPE_QCA8074:
4904 	case TARGET_TYPE_QCA8074V2:
4905 	case TARGET_TYPE_QCA6018:
4906 		if (scn->bus_type == QDF_BUS_TYPE_PCI) {
4907 			hif_state->host_ce_config =
4908 					host_ce_config_wlan_qca8074_pci;
4909 			hif_state->target_ce_config =
4910 				target_ce_config_wlan_qca8074_pci;
4911 			hif_state->target_ce_config_sz =
4912 				sizeof(target_ce_config_wlan_qca8074_pci);
4913 		} else {
4914 			hif_state->host_ce_config = host_ce_config_wlan_qca8074;
4915 			hif_state->target_ce_config =
4916 					target_ce_config_wlan_qca8074;
4917 			hif_state->target_ce_config_sz =
4918 				sizeof(target_ce_config_wlan_qca8074);
4919 		}
4920 		break;
4921 	case TARGET_TYPE_QCA6290:
4922 		hif_state->host_ce_config = host_ce_config_wlan_qca6290;
4923 		hif_state->target_ce_config = target_ce_config_wlan_qca6290;
4924 		hif_state->target_ce_config_sz =
4925 					sizeof(target_ce_config_wlan_qca6290);
4926 
4927 		scn->ce_count = QCA_6290_CE_COUNT;
4928 		break;
4929 	case TARGET_TYPE_QCN9000:
4930 		hif_state->host_ce_config = host_ce_config_wlan_qcn9000;
4931 		hif_state->target_ce_config = target_ce_config_wlan_qcn9000;
4932 		hif_state->target_ce_config_sz =
4933 					sizeof(target_ce_config_wlan_qcn9000);
4934 		scn->ce_count = QCN_9000_CE_COUNT;
4935 		scn->ini_cfg.disable_wake_irq = 1;
4936 		break;
4937 	case TARGET_TYPE_QCN9224:
4938 		hif_set_ce_config_qcn9224(scn, hif_state);
4939 		break;
4940 	case TARGET_TYPE_QCA5332:
4941 		hif_state->host_ce_config = host_ce_config_wlan_qca5332;
4942 		hif_state->target_ce_config = target_ce_config_wlan_qca5332;
4943 		hif_state->target_ce_config_sz =
4944 					 sizeof(target_ce_config_wlan_qca5332);
4945 		scn->ce_count = QCA_5332_CE_COUNT;
4946 		break;
4947 	case TARGET_TYPE_QCN6122:
4948 		hif_state->host_ce_config = host_ce_config_wlan_qcn6122;
4949 		hif_state->target_ce_config = target_ce_config_wlan_qcn6122;
4950 		hif_state->target_ce_config_sz =
4951 					sizeof(target_ce_config_wlan_qcn6122);
4952 		scn->ce_count = QCN_6122_CE_COUNT;
4953 		scn->ini_cfg.disable_wake_irq = 1;
4954 		break;
4955 	case TARGET_TYPE_QCN9160:
4956 		hif_state->host_ce_config = host_ce_config_wlan_qcn9160;
4957 		hif_state->target_ce_config = target_ce_config_wlan_qcn9160;
4958 		hif_state->target_ce_config_sz =
4959 					sizeof(target_ce_config_wlan_qcn9160);
4960 		scn->ce_count = QCN_9160_CE_COUNT;
4961 		scn->ini_cfg.disable_wake_irq = 1;
4962 		break;
4963 	case TARGET_TYPE_QCN6432:
4964 		hif_state->host_ce_config = host_ce_config_wlan_qcn6432;
4965 		hif_state->target_ce_config = target_ce_config_wlan_qcn6432;
4966 		hif_state->target_ce_config_sz =
4967 					sizeof(target_ce_config_wlan_qcn6432);
4968 		scn->ce_count = QCN_6432_CE_COUNT;
4969 		scn->ini_cfg.disable_wake_irq = 1;
4970 		break;
4971 	case TARGET_TYPE_QCA5018:
4972 		hif_state->host_ce_config = host_ce_config_wlan_qca5018;
4973 		hif_state->target_ce_config = target_ce_config_wlan_qca5018;
4974 		hif_state->target_ce_config_sz =
4975 					sizeof(target_ce_config_wlan_qca5018);
4976 		scn->ce_count = QCA_5018_CE_COUNT;
4977 		break;
4978 	case TARGET_TYPE_QCA9574:
4979 		hif_state->host_ce_config = host_ce_config_wlan_qca9574;
4980 		hif_state->target_ce_config = target_ce_config_wlan_qca9574;
4981 		hif_state->target_ce_config_sz =
4982 					sizeof(target_ce_config_wlan_qca9574);
4983 		break;
4984 	case TARGET_TYPE_QCA6390:
4985 		hif_state->host_ce_config = host_ce_config_wlan_qca6390;
4986 		hif_state->target_ce_config = target_ce_config_wlan_qca6390;
4987 		hif_state->target_ce_config_sz =
4988 					sizeof(target_ce_config_wlan_qca6390);
4989 
4990 		scn->ce_count = QCA_6390_CE_COUNT;
4991 		break;
4992 	case TARGET_TYPE_QCA6490:
4993 		hif_state->host_ce_config = host_ce_config_wlan_qca6490;
4994 		hif_state->target_ce_config = target_ce_config_wlan_qca6490;
4995 		hif_state->target_ce_config_sz =
4996 					sizeof(target_ce_config_wlan_qca6490);
4997 
4998 		scn->ce_count = QCA_6490_CE_COUNT;
4999 		break;
5000 	case TARGET_TYPE_QCA6750:
5001 		hif_state->host_ce_config = host_ce_config_wlan_qca6750;
5002 		hif_state->target_ce_config = target_ce_config_wlan_qca6750;
5003 		hif_state->target_ce_config_sz =
5004 					sizeof(target_ce_config_wlan_qca6750);
5005 
5006 		scn->ce_count = QCA_6750_CE_COUNT;
5007 		break;
5008 	case TARGET_TYPE_KIWI:
5009 	case TARGET_TYPE_MANGO:
5010 	case TARGET_TYPE_PEACH:
5011 		hif_ce_select_config_kiwi(hif_state);
5012 		scn->ce_count = KIWI_CE_COUNT;
5013 		break;
5014 	case TARGET_TYPE_ADRASTEA:
5015 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
5016 			hif_state->host_ce_config =
5017 				host_lowdesc_ce_config_wlan_adrastea_nopktlog;
5018 			hif_state->target_ce_config =
5019 			       target_lowdesc_ce_config_wlan_adrastea_nopktlog;
5020 			hif_state->target_ce_config_sz =
5021 			sizeof(target_lowdesc_ce_config_wlan_adrastea_nopktlog);
5022 		} else {
5023 			hif_state->host_ce_config =
5024 				host_ce_config_wlan_adrastea;
5025 			hif_state->target_ce_config =
5026 					target_ce_config_wlan_adrastea;
5027 			hif_state->target_ce_config_sz =
5028 					sizeof(target_ce_config_wlan_adrastea);
5029 		}
5030 		break;
5031 	case TARGET_TYPE_WCN6450:
5032 		hif_state->host_ce_config = host_ce_config_wlan_wcn6450;
5033 		hif_state->target_ce_config = target_ce_config_wlan_wcn6450;
5034 		hif_state->target_ce_config_sz =
5035 				sizeof(target_ce_config_wlan_wcn6450);
5036 		break;
5037 	}
5038 	QDF_BUG(scn->ce_count <= CE_COUNT_MAX);
5039 }
5040 
5041 /**
5042  * hif_ce_open() - do ce specific allocations
5043  * @hif_sc: pointer to hif context
5044  *
5045  * return: 0 for success or QDF_STATUS_E_NOMEM
5046  */
5047 QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
5048 {
5049 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
5050 
5051 	qdf_spinlock_create(&hif_state->irq_reg_lock);
5052 	qdf_spinlock_create(&hif_state->keep_awake_lock);
5053 	return QDF_STATUS_SUCCESS;
5054 }
5055 
5056 /**
5057  * hif_ce_close() - do ce specific free
5058  * @hif_sc: pointer to hif context
5059  */
5060 void hif_ce_close(struct hif_softc *hif_sc)
5061 {
5062 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
5063 
5064 	qdf_spinlock_destroy(&hif_state->irq_reg_lock);
5065 	qdf_spinlock_destroy(&hif_state->keep_awake_lock);
5066 }
5067 
5068 /**
5069  * hif_unconfig_ce() - ensure resources from hif_config_ce are freed
5070  * @hif_sc: hif context
5071  *
5072  * uses state variables to support cleaning up when hif_config_ce fails.
5073  */
5074 void hif_unconfig_ce(struct hif_softc *hif_sc)
5075 {
5076 	int pipe_num;
5077 	struct HIF_CE_pipe_info *pipe_info;
5078 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
5079 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(hif_sc);
5080 
5081 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
5082 		pipe_info = &hif_state->pipe_info[pipe_num];
5083 		if (pipe_info->ce_hdl) {
5084 			ce_unregister_irq(hif_state, (1 << pipe_num));
5085 		}
5086 	}
5087 	deinit_tasklet_workers(hif_hdl);
5088 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
5089 		pipe_info = &hif_state->pipe_info[pipe_num];
5090 		if (pipe_info->ce_hdl) {
5091 			ce_fini(pipe_info->ce_hdl);
5092 			pipe_info->ce_hdl = NULL;
5093 			pipe_info->buf_sz = 0;
5094 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
5095 		}
5096 	}
5097 	if (hif_sc->athdiag_procfs_inited) {
5098 		athdiag_procfs_remove();
5099 		hif_sc->athdiag_procfs_inited = false;
5100 	}
5101 }
5102 
5103 #ifdef CONFIG_BYPASS_QMI
5104 #ifdef QCN7605_SUPPORT
5105 /**
5106  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
5107  * @scn: pointer to HIF structure
5108  *
5109  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
5110  *
5111  * Return: void
5112  */
5113 static void hif_post_static_buf_to_target(struct hif_softc *scn)
5114 {
5115 	phys_addr_t target_pa;
5116 	struct ce_info *ce_info_ptr;
5117 	uint32_t msi_data_start;
5118 	uint32_t msi_data_count;
5119 	uint32_t msi_irq_start;
5120 	uint32_t i = 0;
5121 	int ret;
5122 
5123 	scn->vaddr_qmi_bypass =
5124 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
5125 							     scn->qdf_dev->dev,
5126 							     FW_SHARED_MEM,
5127 							     &target_pa);
5128 	if (!scn->vaddr_qmi_bypass) {
5129 		hif_err("Memory allocation failed could not post target buf");
5130 		return;
5131 	}
5132 
5133 	scn->paddr_qmi_bypass = target_pa;
5134 
5135 	ce_info_ptr = (struct ce_info *)scn->vaddr_qmi_bypass;
5136 
5137 	if (scn->vaddr_rri_on_ddr) {
5138 		ce_info_ptr->rri_over_ddr_low_paddr  =
5139 			 BITS0_TO_31(scn->paddr_rri_on_ddr);
5140 		ce_info_ptr->rri_over_ddr_high_paddr =
5141 			 BITS32_TO_35(scn->paddr_rri_on_ddr);
5142 	}
5143 
5144 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
5145 					  &msi_data_count, &msi_data_start,
5146 					  &msi_irq_start);
5147 	if (ret) {
5148 		hif_err("Failed to get CE msi config");
5149 		return;
5150 	}
5151 
5152 	for (i = 0; i < CE_COUNT_MAX; i++) {
5153 		ce_info_ptr->cfg[i].ce_id = i;
5154 		ce_info_ptr->cfg[i].msi_vector =
5155 			 (i % msi_data_count) + msi_irq_start;
5156 	}
5157 
5158 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
5159 	hif_info("target va %pK target pa %pa", scn->vaddr_qmi_bypass,
5160 		 &target_pa);
5161 }
5162 
5163 /**
5164  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
5165  * @scn: pointer to HIF structure
5166  *
5167  *
5168  * Return: void
5169  */
5170 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
5171 {
5172 	void *target_va = scn->vaddr_qmi_bypass;
5173 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
5174 
5175 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
5176 				FW_SHARED_MEM, target_va,
5177 				target_pa, 0);
5178 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
5179 }
5180 #else
5181 /**
5182  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
5183  * @scn: pointer to HIF structure
5184  *
5185  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
5186  *
5187  * Return: void
5188  */
5189 static void hif_post_static_buf_to_target(struct hif_softc *scn)
5190 {
5191 	qdf_dma_addr_t target_pa;
5192 
5193 	scn->vaddr_qmi_bypass =
5194 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
5195 							     scn->qdf_dev->dev,
5196 							     FW_SHARED_MEM,
5197 							     &target_pa);
5198 	if (!scn->vaddr_qmi_bypass) {
5199 		hif_err("Memory allocation failed could not post target buf");
5200 		return;
5201 	}
5202 
5203 	scn->paddr_qmi_bypass = target_pa;
5204 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
5205 }
5206 
5207 /**
5208  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
5209  * @scn: pointer to HIF structure
5210  *
5211  *
5212  * Return: void
5213  */
5214 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
5215 {
5216 	void *target_va = scn->vaddr_qmi_bypass;
5217 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
5218 
5219 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
5220 				FW_SHARED_MEM, target_va,
5221 				target_pa, 0);
5222 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
5223 }
5224 #endif
5225 
5226 #else
5227 static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
5228 {
5229 }
5230 
5231 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
5232 {
5233 }
5234 #endif
5235 
5236 static int hif_srng_sleep_state_adjust(struct hif_softc *scn, bool sleep_ok,
5237 				bool wait_for_it)
5238 {
5239 	/* todo */
5240 	return 0;
5241 }
5242 
5243 int hif_config_ce_by_id(struct hif_softc *scn, int pipe_num)
5244 {
5245 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5246 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
5247 	struct HIF_CE_pipe_info *pipe_info;
5248 	struct CE_state *ce_state = NULL;
5249 	struct CE_attr *attr;
5250 	int rv = 0;
5251 
5252 	if (pipe_num >= CE_COUNT_MAX)
5253 		return -EINVAL;
5254 
5255 	pipe_info = &hif_state->pipe_info[pipe_num];
5256 	pipe_info->pipe_num = pipe_num;
5257 	pipe_info->HIF_CE_state = hif_state;
5258 	attr = &hif_state->host_ce_config[pipe_num];
5259 	ce_state = scn->ce_id_to_state[pipe_num];
5260 
5261 	if (ce_state) {
5262 		/* Do not reinitialize the CE if its done already */
5263 		rv = QDF_STATUS_E_BUSY;
5264 		goto err;
5265 	}
5266 
5267 	pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
5268 	ce_state = scn->ce_id_to_state[pipe_num];
5269 	if (!ce_state) {
5270 		A_TARGET_ACCESS_UNLIKELY(scn);
5271 		rv = QDF_STATUS_E_FAILURE;
5272 		goto err;
5273 	}
5274 	qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
5275 	QDF_ASSERT(pipe_info->ce_hdl);
5276 	if (!pipe_info->ce_hdl) {
5277 		rv = QDF_STATUS_E_FAILURE;
5278 		A_TARGET_ACCESS_UNLIKELY(scn);
5279 		goto err;
5280 	}
5281 
5282 	ce_state->lro_data = qdf_lro_init();
5283 
5284 	if (attr->flags & CE_ATTR_DIAG) {
5285 		/* Reserve the ultimate CE for
5286 		 * Diagnostic Window support
5287 		 */
5288 		hif_state->ce_diag = pipe_info->ce_hdl;
5289 		goto skip;
5290 	}
5291 
5292 	if (hif_is_nss_wifi_enabled(scn) && ce_state &&
5293 	    (ce_state->htt_rx_data)) {
5294 		goto skip;
5295 	}
5296 
5297 	pipe_info->buf_sz = (qdf_size_t)(attr->src_sz_max);
5298 	if (attr->dest_nentries > 0) {
5299 		atomic_set(&pipe_info->recv_bufs_needed,
5300 			   init_buffer_count(attr->dest_nentries - 1));
5301 		/*SRNG based CE has one entry less */
5302 		if (ce_srng_based(scn))
5303 			atomic_dec(&pipe_info->recv_bufs_needed);
5304 	} else {
5305 		atomic_set(&pipe_info->recv_bufs_needed, 0);
5306 	}
5307 	ce_tasklet_init(hif_state, (1 << pipe_num));
5308 	ce_register_irq(hif_state, (1 << pipe_num));
5309 
5310 	init_tasklet_worker_by_ceid(hif_hdl, pipe_num);
5311 skip:
5312 	return 0;
5313 err:
5314 	return rv;
5315 }
5316 
5317 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
5318 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
5319 {
5320 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
5321 	uint8_t ce_id, hist_idx = 0;
5322 
5323 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
5324 		if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE & (1 << ce_id))
5325 			ce_hist->ce_id_hist_map[ce_id] = hist_idx++;
5326 		else
5327 			ce_hist->ce_id_hist_map[ce_id] = -1;
5328 	}
5329 }
5330 #else
5331 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
5332 {
5333 }
5334 #endif
5335 
5336 /**
5337  * hif_config_ce() - configure copy engines
5338  * @scn: hif context
5339  *
5340  * Prepares fw, copy engine hardware and host sw according
5341  * to the attributes selected by hif_ce_prepare_config.
5342  *
5343  * also calls athdiag_procfs_init
5344  *
5345  * return: 0 for success nonzero for failure.
5346  */
5347 int hif_config_ce(struct hif_softc *scn)
5348 {
5349 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5350 	struct HIF_CE_pipe_info *pipe_info;
5351 	int pipe_num;
5352 
5353 #ifdef ADRASTEA_SHADOW_REGISTERS
5354 	int i;
5355 #endif
5356 	QDF_STATUS rv = QDF_STATUS_SUCCESS;
5357 
5358 	scn->notice_send = true;
5359 	scn->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM;
5360 
5361 	hif_post_static_buf_to_target(scn);
5362 
5363 	hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
5364 
5365 	hif_config_rri_on_ddr(scn);
5366 
5367 	if (ce_srng_based(scn))
5368 		scn->bus_ops.hif_target_sleep_state_adjust =
5369 			&hif_srng_sleep_state_adjust;
5370 
5371 	/* Initialise the CE debug history sysfs interface inputs ce_id and
5372 	 * index. Disable data storing
5373 	 */
5374 	reset_ce_debug_history(scn);
5375 	hif_gen_ce_id_history_idx_mapping(scn);
5376 
5377 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
5378 		struct CE_attr *attr;
5379 
5380 		pipe_info = &hif_state->pipe_info[pipe_num];
5381 		attr = &hif_state->host_ce_config[pipe_num];
5382 
5383 		if (attr->flags & CE_ATTR_INIT_ON_DEMAND)
5384 			continue;
5385 
5386 		if (hif_config_ce_by_id(scn, pipe_num))
5387 			goto err;
5388 	}
5389 
5390 	if (athdiag_procfs_init(scn) != 0) {
5391 		A_TARGET_ACCESS_UNLIKELY(scn);
5392 		goto err;
5393 	}
5394 	scn->athdiag_procfs_inited = true;
5395 
5396 	hif_debug("ce_init done");
5397 	hif_debug("X, ret = %d", rv);
5398 
5399 #ifdef ADRASTEA_SHADOW_REGISTERS
5400 	hif_debug("Using Shadow Registers instead of CE Registers");
5401 	for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
5402 		hif_debug("Shadow Register%d is mapped to address %x",
5403 			  i,
5404 			  (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
5405 	}
5406 #endif
5407 
5408 	return rv != QDF_STATUS_SUCCESS;
5409 err:
5410 	/* Failure, so clean up */
5411 	hif_unconfig_ce(scn);
5412 	hif_info("X, ret = %d", rv);
5413 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
5414 }
5415 
5416 /**
5417  * hif_config_ce_pktlog() - configure copy engines
5418  * @hif_hdl: hif context
5419  *
5420  * Prepares fw, copy engine hardware and host sw according
5421  * to the attributes selected by hif_ce_prepare_config.
5422  *
5423  * also calls athdiag_procfs_init
5424  *
5425  * return: 0 for success nonzero for failure.
5426  */
5427 int hif_config_ce_pktlog(struct hif_opaque_softc *hif_hdl)
5428 {
5429 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
5430 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5431 	int pipe_num;
5432 	QDF_STATUS qdf_status = QDF_STATUS_E_FAILURE;
5433 	struct HIF_CE_pipe_info *pipe_info;
5434 
5435 	if (!scn)
5436 		goto err;
5437 
5438 	if (scn->pktlog_init)
5439 		return QDF_STATUS_SUCCESS;
5440 
5441 	pipe_num =  hif_get_pktlog_ce_num(scn);
5442 	if (pipe_num < 0) {
5443 		qdf_status = QDF_STATUS_E_FAILURE;
5444 		goto err;
5445 	}
5446 
5447 	pipe_info = &hif_state->pipe_info[pipe_num];
5448 
5449 	qdf_status = hif_config_ce_by_id(scn, pipe_num);
5450 	/* CE Already initialized. Do not try to reinitialized again */
5451 	if (qdf_status == QDF_STATUS_E_BUSY)
5452 		return QDF_STATUS_SUCCESS;
5453 
5454 	qdf_status = hif_config_irq_by_ceid(scn, pipe_num);
5455 	if (qdf_status < 0)
5456 		goto err;
5457 
5458 	qdf_status = hif_completion_thread_startup_by_ceid(hif_state, pipe_num);
5459 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
5460 		hif_err("Failed to start hif thread");
5461 		goto err;
5462 	}
5463 
5464 	/* Post buffers for pktlog copy engine. */
5465 	qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
5466 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
5467 		/* cleanup is done in hif_ce_disable */
5468 		hif_err("Failed to post buffers");
5469 		return qdf_status;
5470 	}
5471 	scn->pktlog_init = true;
5472 	return qdf_status != QDF_STATUS_SUCCESS;
5473 
5474 err:
5475 	hif_debug("X, ret = %d", qdf_status);
5476 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
5477 }
5478 
5479 #ifdef IPA_OFFLOAD
5480 /**
5481  * hif_ce_ipa_get_ce_resource() - get uc resource on hif
5482  * @scn: bus context
5483  * @ce_sr: copyengine source ring base physical address
5484  * @ce_sr_ring_size: copyengine source ring size
5485  * @ce_reg_paddr: copyengine register physical address
5486  *
5487  * IPA micro controller data path offload feature enabled,
5488  * HIF should release copy engine related resource information to IPA UC
5489  * IPA UC will access hardware resource with released information
5490  *
5491  * Return: None
5492  */
5493 void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
5494 			     qdf_shared_mem_t **ce_sr,
5495 			     uint32_t *ce_sr_ring_size,
5496 			     qdf_dma_addr_t *ce_reg_paddr)
5497 {
5498 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5499 	struct HIF_CE_pipe_info *pipe_info =
5500 		&(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
5501 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
5502 
5503 	ce_ipa_get_resource(ce_hdl, ce_sr, ce_sr_ring_size,
5504 			    ce_reg_paddr);
5505 }
5506 #endif /* IPA_OFFLOAD */
5507 
5508 
5509 #ifdef ADRASTEA_SHADOW_REGISTERS
5510 
5511 /*
5512  * Current shadow register config
5513  *
5514  * -----------------------------------------------------------
5515  * Shadow Register      |     CE   |    src/dst write index
5516  * -----------------------------------------------------------
5517  *         0            |     0    |           src
5518  *         1     No Config - Doesn't point to anything
5519  *         2     No Config - Doesn't point to anything
5520  *         3            |     3    |           src
5521  *         4            |     4    |           src
5522  *         5            |     5    |           src
5523  *         6     No Config - Doesn't point to anything
5524  *         7            |     7    |           src
5525  *         8     No Config - Doesn't point to anything
5526  *         9     No Config - Doesn't point to anything
5527  *         10    No Config - Doesn't point to anything
5528  *         11    No Config - Doesn't point to anything
5529  * -----------------------------------------------------------
5530  *         12    No Config - Doesn't point to anything
5531  *         13           |     1    |           dst
5532  *         14           |     2    |           dst
5533  *         15    No Config - Doesn't point to anything
5534  *         16    No Config - Doesn't point to anything
5535  *         17    No Config - Doesn't point to anything
5536  *         18    No Config - Doesn't point to anything
5537  *         19           |     7    |           dst
5538  *         20           |     8    |           dst
5539  *         21    No Config - Doesn't point to anything
5540  *         22    No Config - Doesn't point to anything
5541  *         23    No Config - Doesn't point to anything
5542  * -----------------------------------------------------------
5543  *
5544  *
5545  * ToDo - Move shadow register config to following in the future
5546  * This helps free up a block of shadow registers towards the end.
5547  * Can be used for other purposes
5548  *
5549  * -----------------------------------------------------------
5550  * Shadow Register      |     CE   |    src/dst write index
5551  * -----------------------------------------------------------
5552  *      0            |     0    |           src
5553  *      1            |     3    |           src
5554  *      2            |     4    |           src
5555  *      3            |     5    |           src
5556  *      4            |     7    |           src
5557  * -----------------------------------------------------------
5558  *      5            |     1    |           dst
5559  *      6            |     2    |           dst
5560  *      7            |     7    |           dst
5561  *      8            |     8    |           dst
5562  * -----------------------------------------------------------
5563  *      9     No Config - Doesn't point to anything
5564  *      12    No Config - Doesn't point to anything
5565  *      13    No Config - Doesn't point to anything
5566  *      14    No Config - Doesn't point to anything
5567  *      15    No Config - Doesn't point to anything
5568  *      16    No Config - Doesn't point to anything
5569  *      17    No Config - Doesn't point to anything
5570  *      18    No Config - Doesn't point to anything
5571  *      19    No Config - Doesn't point to anything
5572  *      20    No Config - Doesn't point to anything
5573  *      21    No Config - Doesn't point to anything
5574  *      22    No Config - Doesn't point to anything
5575  *      23    No Config - Doesn't point to anything
5576  * -----------------------------------------------------------
5577 */
5578 #ifndef QCN7605_SUPPORT
5579 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
5580 {
5581 	u32 addr = 0;
5582 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
5583 
5584 	switch (ce) {
5585 	case 0:
5586 		addr = SHADOW_VALUE0;
5587 		break;
5588 	case 3:
5589 		addr = SHADOW_VALUE3;
5590 		break;
5591 	case 4:
5592 		addr = SHADOW_VALUE4;
5593 		break;
5594 	case 5:
5595 		addr = SHADOW_VALUE5;
5596 		break;
5597 	case 7:
5598 		addr = SHADOW_VALUE7;
5599 		break;
5600 	default:
5601 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
5602 		QDF_ASSERT(0);
5603 	}
5604 	return addr;
5605 
5606 }
5607 
5608 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
5609 {
5610 	u32 addr = 0;
5611 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
5612 
5613 	switch (ce) {
5614 	case 1:
5615 		addr = SHADOW_VALUE13;
5616 		break;
5617 	case 2:
5618 		addr = SHADOW_VALUE14;
5619 		break;
5620 	case 5:
5621 		addr = SHADOW_VALUE17;
5622 		break;
5623 	case 7:
5624 		addr = SHADOW_VALUE19;
5625 		break;
5626 	case 8:
5627 		addr = SHADOW_VALUE20;
5628 		break;
5629 	case 9:
5630 		addr = SHADOW_VALUE21;
5631 		break;
5632 	case 10:
5633 		addr = SHADOW_VALUE22;
5634 		break;
5635 	case 11:
5636 		addr = SHADOW_VALUE23;
5637 		break;
5638 	default:
5639 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
5640 		QDF_ASSERT(0);
5641 	}
5642 
5643 	return addr;
5644 
5645 }
5646 #else
5647 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
5648 {
5649 	u32 addr = 0;
5650 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
5651 
5652 	switch (ce) {
5653 	case 0:
5654 		addr = SHADOW_VALUE0;
5655 		break;
5656 	case 3:
5657 		addr = SHADOW_VALUE3;
5658 		break;
5659 	case 4:
5660 		addr = SHADOW_VALUE4;
5661 		break;
5662 	case 5:
5663 		addr = SHADOW_VALUE5;
5664 		break;
5665 	default:
5666 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
5667 		QDF_ASSERT(0);
5668 	}
5669 	return addr;
5670 }
5671 
5672 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
5673 {
5674 	u32 addr = 0;
5675 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
5676 
5677 	switch (ce) {
5678 	case 1:
5679 		addr = SHADOW_VALUE13;
5680 		break;
5681 	case 2:
5682 		addr = SHADOW_VALUE14;
5683 		break;
5684 	case 3:
5685 		addr = SHADOW_VALUE15;
5686 		break;
5687 	case 5:
5688 		addr = SHADOW_VALUE17;
5689 		break;
5690 	case 7:
5691 		addr = SHADOW_VALUE19;
5692 		break;
5693 	case 8:
5694 		addr = SHADOW_VALUE20;
5695 		break;
5696 	case 9:
5697 		addr = SHADOW_VALUE21;
5698 		break;
5699 	case 10:
5700 		addr = SHADOW_VALUE22;
5701 		break;
5702 	case 11:
5703 		addr = SHADOW_VALUE23;
5704 		break;
5705 	default:
5706 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
5707 		QDF_ASSERT(0);
5708 	}
5709 
5710 	return addr;
5711 }
5712 #endif
5713 #endif
5714 
5715 #if defined(FEATURE_LRO)
5716 void *hif_ce_get_lro_ctx(struct hif_opaque_softc *hif_hdl, int ctx_id)
5717 {
5718 	struct CE_state *ce_state;
5719 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
5720 
5721 	ce_state = scn->ce_id_to_state[ctx_id];
5722 
5723 	return ce_state->lro_data;
5724 }
5725 #endif
5726 
5727 /**
5728  * hif_map_service_to_pipe() - returns  the ce ids pertaining to
5729  * this service
5730  * @hif_hdl: hif_softc pointer.
5731  * @svc_id: Service ID for which the mapping is needed.
5732  * @ul_pipe: address of the container in which ul pipe is returned.
5733  * @dl_pipe: address of the container in which dl pipe is returned.
5734  * @ul_is_polled: address of the container in which a bool
5735  *			indicating if the UL CE for this service
5736  *			is polled is returned.
5737  * @dl_is_polled: address of the container in which a bool
5738  *			indicating if the DL CE for this service
5739  *			is polled is returned.
5740  *
5741  * Return: Indicates whether the service has been found in the table.
5742  *         Upon return, ul_is_polled is updated only if ul_pipe is updated.
5743  *         There will be warning logs if either leg has not been updated
5744  *         because it missed the entry in the table (but this is not an err).
5745  */
5746 int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
5747 			uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
5748 			int *dl_is_polled)
5749 {
5750 	int status = -EINVAL;
5751 	unsigned int i;
5752 	struct service_to_pipe element;
5753 	struct service_to_pipe *tgt_svc_map_to_use;
5754 	uint32_t sz_tgt_svc_map_to_use;
5755 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
5756 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5757 	bool dl_updated = false;
5758 	bool ul_updated = false;
5759 
5760 	hif_select_service_to_pipe_map(scn, &tgt_svc_map_to_use,
5761 				       &sz_tgt_svc_map_to_use);
5762 
5763 	*dl_is_polled = 0;  /* polling for received messages not supported */
5764 
5765 	for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
5766 
5767 		memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
5768 		if (element.service_id == svc_id) {
5769 			if (element.pipedir == PIPEDIR_OUT) {
5770 				*ul_pipe = element.pipenum;
5771 				*ul_is_polled =
5772 					(hif_state->host_ce_config[*ul_pipe].flags &
5773 					 CE_ATTR_DISABLE_INTR) != 0;
5774 				ul_updated = true;
5775 			} else if (element.pipedir == PIPEDIR_IN) {
5776 				*dl_pipe = element.pipenum;
5777 				dl_updated = true;
5778 			}
5779 			status = 0;
5780 		}
5781 	}
5782 	if (ul_updated == false)
5783 		hif_debug("ul pipe is NOT updated for service %d", svc_id);
5784 	if (dl_updated == false)
5785 		hif_debug("dl pipe is NOT updated for service %d", svc_id);
5786 
5787 	return status;
5788 }
5789 
5790 #ifdef SHADOW_REG_DEBUG
5791 inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
5792 		uint32_t CE_ctrl_addr)
5793 {
5794 	uint32_t read_from_hw, srri_from_ddr = 0;
5795 
5796 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
5797 
5798 	srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
5799 
5800 	if (read_from_hw != srri_from_ddr) {
5801 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
5802 		       srri_from_ddr, read_from_hw,
5803 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
5804 		QDF_ASSERT(0);
5805 	}
5806 	return srri_from_ddr;
5807 }
5808 
5809 
5810 inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
5811 		uint32_t CE_ctrl_addr)
5812 {
5813 	uint32_t read_from_hw, drri_from_ddr = 0;
5814 
5815 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
5816 
5817 	drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
5818 
5819 	if (read_from_hw != drri_from_ddr) {
5820 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
5821 		       drri_from_ddr, read_from_hw,
5822 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
5823 		QDF_ASSERT(0);
5824 	}
5825 	return drri_from_ddr;
5826 }
5827 
5828 #endif
5829 
5830 /**
5831  * hif_dump_ce_registers() - dump ce registers
5832  * @scn: hif_opaque_softc pointer.
5833  *
5834  * Output the copy engine registers
5835  *
5836  * Return: 0 for success or error code
5837  */
5838 int hif_dump_ce_registers(struct hif_softc *scn)
5839 {
5840 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
5841 	uint32_t ce_reg_address = CE0_BASE_ADDRESS;
5842 	uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
5843 	uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
5844 	uint16_t i;
5845 	QDF_STATUS status;
5846 
5847 	for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
5848 		if (!scn->ce_id_to_state[i]) {
5849 			hif_debug("CE%d not used", i);
5850 			continue;
5851 		}
5852 
5853 		status = hif_diag_read_mem(hif_hdl, ce_reg_address,
5854 					   (uint8_t *) &ce_reg_values[0],
5855 					   ce_reg_word_size * sizeof(uint32_t));
5856 
5857 		if (status != QDF_STATUS_SUCCESS) {
5858 			hif_err("Dumping CE register failed!");
5859 			return -EACCES;
5860 		}
5861 		hif_debug("CE%d=>", i);
5862 		qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
5863 				   (uint8_t *) &ce_reg_values[0],
5864 				   ce_reg_word_size * sizeof(uint32_t));
5865 		qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d", (ce_reg_address
5866 				+ SR_WR_INDEX_ADDRESS),
5867 				ce_reg_values[SR_WR_INDEX_ADDRESS/4]);
5868 		qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d", (ce_reg_address
5869 				+ CURRENT_SRRI_ADDRESS),
5870 				ce_reg_values[CURRENT_SRRI_ADDRESS/4]);
5871 		qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d", (ce_reg_address
5872 				+ DST_WR_INDEX_ADDRESS),
5873 				ce_reg_values[DST_WR_INDEX_ADDRESS/4]);
5874 		qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d", (ce_reg_address
5875 				+ CURRENT_DRRI_ADDRESS),
5876 				ce_reg_values[CURRENT_DRRI_ADDRESS/4]);
5877 		qdf_print("---");
5878 	}
5879 	return 0;
5880 }
5881 qdf_export_symbol(hif_dump_ce_registers);
5882 #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
5883 struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
5884 		struct hif_pipe_addl_info *hif_info, uint32_t pipe)
5885 {
5886 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5887 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
5888 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
5889 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
5890 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
5891 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
5892 	struct CE_ring_state *src_ring = ce_state->src_ring;
5893 	struct CE_ring_state *dest_ring = ce_state->dest_ring;
5894 
5895 	if (src_ring) {
5896 		hif_info->ul_pipe.nentries = src_ring->nentries;
5897 		hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
5898 		hif_info->ul_pipe.sw_index = src_ring->sw_index;
5899 		hif_info->ul_pipe.write_index = src_ring->write_index;
5900 		hif_info->ul_pipe.hw_index = src_ring->hw_index;
5901 		hif_info->ul_pipe.base_addr_CE_space =
5902 			src_ring->base_addr_CE_space;
5903 		hif_info->ul_pipe.base_addr_owner_space =
5904 			src_ring->base_addr_owner_space;
5905 	}
5906 
5907 
5908 	if (dest_ring) {
5909 		hif_info->dl_pipe.nentries = dest_ring->nentries;
5910 		hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
5911 		hif_info->dl_pipe.sw_index = dest_ring->sw_index;
5912 		hif_info->dl_pipe.write_index = dest_ring->write_index;
5913 		hif_info->dl_pipe.hw_index = dest_ring->hw_index;
5914 		hif_info->dl_pipe.base_addr_CE_space =
5915 			dest_ring->base_addr_CE_space;
5916 		hif_info->dl_pipe.base_addr_owner_space =
5917 			dest_ring->base_addr_owner_space;
5918 	}
5919 
5920 	hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
5921 	hif_info->ctrl_addr = ce_state->ctrl_addr;
5922 
5923 	return hif_info;
5924 }
5925 qdf_export_symbol(hif_get_addl_pipe_info);
5926 
5927 uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
5928 {
5929 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5930 
5931 	scn->nss_wifi_ol_mode = mode;
5932 	return 0;
5933 }
5934 qdf_export_symbol(hif_set_nss_wifiol_mode);
5935 #endif
5936 
5937 void hif_set_attribute(struct hif_opaque_softc *osc, uint8_t hif_attrib)
5938 {
5939 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5940 	scn->hif_attribute = hif_attrib;
5941 }
5942 
5943 
5944 /* disable interrupts (only applicable for legacy copy engine currently */
5945 void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
5946 {
5947 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5948 	struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
5949 	uint32_t ctrl_addr = CE_state->ctrl_addr;
5950 
5951 	Q_TARGET_ACCESS_BEGIN(scn);
5952 	CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
5953 	Q_TARGET_ACCESS_END(scn);
5954 }
5955 qdf_export_symbol(hif_disable_interrupt);
5956 
5957 /**
5958  * hif_fw_event_handler() - hif fw event handler
5959  * @hif_state: pointer to hif ce state structure
5960  *
5961  * Process fw events and raise HTC callback to process fw events.
5962  *
5963  * Return: none
5964  */
5965 static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
5966 {
5967 	struct hif_msg_callbacks *msg_callbacks =
5968 		&hif_state->msg_callbacks_current;
5969 
5970 	if (!msg_callbacks->fwEventHandler)
5971 		return;
5972 
5973 	msg_callbacks->fwEventHandler(msg_callbacks->Context,
5974 			QDF_STATUS_E_FAILURE);
5975 }
5976 
5977 #ifndef QCA_WIFI_3_0
5978 /**
5979  * hif_fw_interrupt_handler() - FW interrupt handler
5980  * @irq: irq number
5981  * @arg: the user pointer
5982  *
5983  * Called from the PCI interrupt handler when a
5984  * firmware-generated interrupt to the Host.
5985  *
5986  * only registered for legacy ce devices
5987  *
5988  * Return: status of handled irq
5989  */
5990 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
5991 {
5992 	struct hif_softc *scn = arg;
5993 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5994 	uint32_t fw_indicator_address, fw_indicator;
5995 
5996 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
5997 		return ATH_ISR_NOSCHED;
5998 
5999 	fw_indicator_address = hif_state->fw_indicator_address;
6000 	/* For sudden unplug this will return ~0 */
6001 	fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
6002 
6003 	if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
6004 		/* ACK: clear Target-side pending event */
6005 		A_TARGET_WRITE(scn, fw_indicator_address,
6006 			       fw_indicator & ~FW_IND_EVENT_PENDING);
6007 		if (Q_TARGET_ACCESS_END(scn) < 0)
6008 			return ATH_ISR_SCHED;
6009 
6010 		if (hif_state->started) {
6011 			hif_fw_event_handler(hif_state);
6012 		} else {
6013 			/*
6014 			 * Probable Target failure before we're prepared
6015 			 * to handle it.  Generally unexpected.
6016 			 * fw_indicator used as bitmap, and defined as below:
6017 			 *     FW_IND_EVENT_PENDING    0x1
6018 			 *     FW_IND_INITIALIZED      0x2
6019 			 *     FW_IND_NEEDRECOVER      0x4
6020 			 */
6021 			AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
6022 				("%s: Early firmware event indicated 0x%x\n",
6023 				 __func__, fw_indicator));
6024 		}
6025 	} else {
6026 		if (Q_TARGET_ACCESS_END(scn) < 0)
6027 			return ATH_ISR_SCHED;
6028 	}
6029 
6030 	return ATH_ISR_SCHED;
6031 }
6032 #else
6033 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
6034 {
6035 	return ATH_ISR_SCHED;
6036 }
6037 #endif /* #ifdef QCA_WIFI_3_0 */
6038 
6039 
6040 /**
6041  * hif_wlan_disable(): call the platform driver to disable wlan
6042  * @scn: HIF Context
6043  *
6044  * This function passes the con_mode to platform driver to disable
6045  * wlan.
6046  *
6047  * Return: void
6048  */
6049 void hif_wlan_disable(struct hif_softc *scn)
6050 {
6051 	enum pld_driver_mode mode;
6052 	uint32_t con_mode = hif_get_conparam(scn);
6053 
6054 	if (scn->target_status == TARGET_STATUS_RESET)
6055 		return;
6056 
6057 	if (QDF_GLOBAL_FTM_MODE == con_mode)
6058 		mode = PLD_FTM;
6059 	else if (QDF_IS_EPPING_ENABLED(con_mode))
6060 		mode = PLD_EPPING;
6061 	else
6062 		mode = PLD_MISSION;
6063 
6064 	pld_wlan_disable(scn->qdf_dev->dev, mode);
6065 }
6066 
6067 int hif_get_wake_ce_id(struct hif_softc *scn, uint8_t *ce_id)
6068 {
6069 	int status;
6070 	uint8_t ul_pipe, dl_pipe;
6071 	int ul_is_polled, dl_is_polled;
6072 
6073 	/* DL pipe for HTC_CTRL_RSVD_SVC should map to the wake CE */
6074 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
6075 					 HTC_CTRL_RSVD_SVC,
6076 					 &ul_pipe, &dl_pipe,
6077 					 &ul_is_polled, &dl_is_polled);
6078 	if (status) {
6079 		hif_err("Failed to map pipe: %d", status);
6080 		return status;
6081 	}
6082 
6083 	*ce_id = dl_pipe;
6084 
6085 	return 0;
6086 }
6087 
6088 int hif_get_fw_diag_ce_id(struct hif_softc *scn, uint8_t *ce_id)
6089 {
6090 	int status;
6091 	uint8_t ul_pipe, dl_pipe;
6092 	int ul_is_polled, dl_is_polled;
6093 
6094 	/* DL pipe for WMI_CONTROL_DIAG_SVC should map to the FW DIAG CE_ID */
6095 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
6096 					 WMI_CONTROL_DIAG_SVC,
6097 					 &ul_pipe, &dl_pipe,
6098 					 &ul_is_polled, &dl_is_polled);
6099 	if (status) {
6100 		hif_err("Failed to map pipe: %d", status);
6101 		return status;
6102 	}
6103 
6104 	*ce_id = dl_pipe;
6105 
6106 	return 0;
6107 }
6108 
6109 #ifdef HIF_CE_LOG_INFO
6110 /**
6111  * ce_get_index_info(): Get CE index info
6112  * @scn: HIF Context
6113  * @ce_state: CE opaque handle
6114  * @info: CE info
6115  *
6116  * Return: 0 for success and non zero for failure
6117  */
6118 static
6119 int ce_get_index_info(struct hif_softc *scn, void *ce_state,
6120 		      struct ce_index *info)
6121 {
6122 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
6123 
6124 	return hif_state->ce_services->ce_get_index_info(scn, ce_state, info);
6125 }
6126 
6127 void hif_log_ce_info(struct hif_softc *scn, uint8_t *data,
6128 		     unsigned int *offset)
6129 {
6130 	struct hang_event_info info = {0};
6131 	static uint32_t tracked_ce = BIT(CE_ID_1) | BIT(CE_ID_2) |
6132 		BIT(CE_ID_3) | BIT(CE_ID_4) | BIT(CE_ID_9) | BIT(CE_ID_10);
6133 	uint8_t curr_index = 0;
6134 	uint8_t i;
6135 	uint16_t size;
6136 
6137 	info.active_tasklet_count = qdf_atomic_read(&scn->active_tasklet_cnt);
6138 	info.active_grp_tasklet_cnt =
6139 				qdf_atomic_read(&scn->active_grp_tasklet_cnt);
6140 
6141 	for (i = 0; i < scn->ce_count; i++) {
6142 		if (!(tracked_ce & BIT(i)) || !scn->ce_id_to_state[i])
6143 			continue;
6144 
6145 		if (ce_get_index_info(scn, scn->ce_id_to_state[i],
6146 				      &info.ce_info[curr_index]))
6147 			continue;
6148 
6149 		curr_index++;
6150 	}
6151 
6152 	info.ce_count = curr_index;
6153 	size = sizeof(info) -
6154 		(CE_COUNT_MAX - info.ce_count) * sizeof(struct ce_index);
6155 
6156 	if (*offset + size > QDF_WLAN_HANG_FW_OFFSET)
6157 		return;
6158 
6159 	QDF_HANG_EVT_SET_HDR(&info.tlv_header, HANG_EVT_TAG_CE_INFO,
6160 			     size - QDF_HANG_EVENT_TLV_HDR_SIZE);
6161 
6162 	qdf_mem_copy(data + *offset, &info, size);
6163 	*offset = *offset + size;
6164 }
6165 #endif
6166 
6167 #ifdef FEATURE_DIRECT_LINK
6168 QDF_STATUS
6169 hif_set_irq_config_by_ceid(struct hif_opaque_softc *scn, uint8_t ce_id,
6170 			   uint64_t addr, uint32_t data)
6171 {
6172 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
6173 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
6174 
6175 	if (hif_state->ce_services->ce_set_irq_config_by_ceid)
6176 		return hif_state->ce_services->ce_set_irq_config_by_ceid(
6177 									hif_ctx,
6178 									ce_id,
6179 									addr,
6180 									data);
6181 
6182 	return QDF_STATUS_E_NOSUPPORT;
6183 }
6184 
6185 uint16_t hif_get_direct_link_ce_dest_srng_buffers(struct hif_opaque_softc *scn,
6186 						  uint64_t **dma_addr,
6187 						  uint32_t *buf_size)
6188 {
6189 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
6190 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
6191 	struct ce_ops *ce_services = hif_state->ce_services;
6192 
6193 	if (ce_services->ce_get_direct_link_dest_buffers)
6194 		return ce_services->ce_get_direct_link_dest_buffers(hif_ctx,
6195 								    dma_addr,
6196 								    buf_size);
6197 
6198 	return 0;
6199 }
6200 
6201 QDF_STATUS
6202 hif_get_direct_link_ce_srng_info(struct hif_opaque_softc *scn,
6203 				 struct hif_direct_link_ce_info *info,
6204 				 uint8_t max_ce_info_len)
6205 {
6206 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
6207 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
6208 	struct ce_ops *ce_services = hif_state->ce_services;
6209 
6210 	if (ce_services->ce_get_direct_link_ring_info)
6211 		return ce_services->ce_get_direct_link_ring_info(hif_ctx,
6212 							       info,
6213 							       max_ce_info_len);
6214 
6215 	return QDF_STATUS_E_NOSUPPORT;
6216 }
6217 #endif
6218