1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * DSA driver for:
4  * Hirschmann Hellcreek TSN switch.
5  *
6  * Copyright (C) 2019,2020 Hochschule Offenburg
7  * Copyright (C) 2019,2020 Linutronix GmbH
8  * Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
9  *	    Kurt Kanzenbach <kurt@linutronix.de>
10  */
11 
12 #include <linux/of.h>
13 #include <linux/ptp_clock_kernel.h>
14 #include "hellcreek.h"
15 #include "hellcreek_ptp.h"
16 #include "hellcreek_hwtstamp.h"
17 
hellcreek_ptp_read(struct hellcreek * hellcreek,unsigned int offset)18 u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset)
19 {
20 	return readw(hellcreek->ptp_base + offset);
21 }
22 
hellcreek_ptp_write(struct hellcreek * hellcreek,u16 data,unsigned int offset)23 void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data,
24 			 unsigned int offset)
25 {
26 	writew(data, hellcreek->ptp_base + offset);
27 }
28 
29 /* Get nanoseconds from PTP clock */
hellcreek_ptp_clock_read(struct hellcreek * hellcreek,struct ptp_system_timestamp * sts)30 static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek,
31 				    struct ptp_system_timestamp *sts)
32 {
33 	u16 nsl, nsh;
34 
35 	/* Take a snapshot */
36 	hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C);
37 
38 	/* The time of the day is saved as 96 bits. However, due to hardware
39 	 * limitations the seconds are not or only partly kept in the PTP
40 	 * core. Currently only three bits for the seconds are available. That's
41 	 * why only the nanoseconds are used and the seconds are tracked in
42 	 * software. Anyway due to internal locking all five registers should be
43 	 * read.
44 	 */
45 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
46 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
47 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
48 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
49 	ptp_read_system_prets(sts);
50 	nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
51 	ptp_read_system_postts(sts);
52 
53 	return (u64)nsl | ((u64)nsh << 16);
54 }
55 
__hellcreek_ptp_gettime(struct hellcreek * hellcreek,struct ptp_system_timestamp * sts)56 static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek,
57 				   struct ptp_system_timestamp *sts)
58 {
59 	u64 ns;
60 
61 	ns = hellcreek_ptp_clock_read(hellcreek, sts);
62 	if (ns < hellcreek->last_ts)
63 		hellcreek->seconds++;
64 	hellcreek->last_ts = ns;
65 	ns += hellcreek->seconds * NSEC_PER_SEC;
66 
67 	return ns;
68 }
69 
70 /* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns.
71  * There has to be a check whether an overflow occurred between the packet
72  * arrival and now. If so use the correct seconds (-1) for calculating the
73  * packet arrival time.
74  */
hellcreek_ptp_gettime_seconds(struct hellcreek * hellcreek,u64 ns)75 u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns)
76 {
77 	u64 s;
78 
79 	__hellcreek_ptp_gettime(hellcreek, NULL);
80 	if (hellcreek->last_ts > ns)
81 		s = hellcreek->seconds * NSEC_PER_SEC;
82 	else
83 		s = (hellcreek->seconds - 1) * NSEC_PER_SEC;
84 
85 	return s;
86 }
87 
hellcreek_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)88 static int hellcreek_ptp_gettimex(struct ptp_clock_info *ptp,
89 				  struct timespec64 *ts,
90 				  struct ptp_system_timestamp *sts)
91 {
92 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
93 	u64 ns;
94 
95 	mutex_lock(&hellcreek->ptp_lock);
96 	ns = __hellcreek_ptp_gettime(hellcreek, sts);
97 	mutex_unlock(&hellcreek->ptp_lock);
98 
99 	*ts = ns_to_timespec64(ns);
100 
101 	return 0;
102 }
103 
hellcreek_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)104 static int hellcreek_ptp_settime(struct ptp_clock_info *ptp,
105 				 const struct timespec64 *ts)
106 {
107 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
108 	u16 secl, nsh, nsl;
109 
110 	secl = ts->tv_sec & 0xffff;
111 	nsh  = ((u32)ts->tv_nsec & 0xffff0000) >> 16;
112 	nsl  = ts->tv_nsec & 0xffff;
113 
114 	mutex_lock(&hellcreek->ptp_lock);
115 
116 	/* Update overflow data structure */
117 	hellcreek->seconds = ts->tv_sec;
118 	hellcreek->last_ts = ts->tv_nsec;
119 
120 	/* Set time in clock */
121 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
122 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
123 	hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C);
124 	hellcreek_ptp_write(hellcreek, nsh,  PR_CLOCK_WRITE_C);
125 	hellcreek_ptp_write(hellcreek, nsl,  PR_CLOCK_WRITE_C);
126 
127 	mutex_unlock(&hellcreek->ptp_lock);
128 
129 	return 0;
130 }
131 
hellcreek_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)132 static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
133 {
134 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
135 	u16 negative = 0, addendh, addendl;
136 	u32 addend;
137 	u64 adj;
138 
139 	if (scaled_ppm < 0) {
140 		negative = 1;
141 		scaled_ppm = -scaled_ppm;
142 	}
143 
144 	/* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns
145 	 * from the 8 ns (period of the oscillator) every time the accumulator
146 	 * register overflows. The value stored in the addend register is added
147 	 * to the accumulator register every 8 ns.
148 	 *
149 	 * addend value = (2^30 * accumulator_overflow_rate) /
150 	 *                oscillator_frequency
151 	 * where:
152 	 *
153 	 * oscillator_frequency = 125 MHz
154 	 * accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8
155 	 */
156 	adj = scaled_ppm;
157 	adj <<= 11;
158 	addend = (u32)div_u64(adj, 15625);
159 
160 	addendh = (addend & 0xffff0000) >> 16;
161 	addendl = addend & 0xffff;
162 
163 	negative = (negative << 15) & 0x8000;
164 
165 	mutex_lock(&hellcreek->ptp_lock);
166 
167 	/* Set drift register */
168 	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C);
169 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
170 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
171 	hellcreek_ptp_write(hellcreek, addendh,  PR_CLOCK_DRIFT_C);
172 	hellcreek_ptp_write(hellcreek, addendl,  PR_CLOCK_DRIFT_C);
173 
174 	mutex_unlock(&hellcreek->ptp_lock);
175 
176 	return 0;
177 }
178 
hellcreek_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)179 static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
180 {
181 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
182 	u16 negative = 0, counth, countl;
183 	u32 count_val;
184 
185 	/* If the offset is larger than IP-Core slow offset resources. Don't
186 	 * consider slow adjustment. Rather, add the offset directly to the
187 	 * current time
188 	 */
189 	if (abs(delta) > MAX_SLOW_OFFSET_ADJ) {
190 		struct timespec64 now, then = ns_to_timespec64(delta);
191 
192 		hellcreek_ptp_gettimex(ptp, &now, NULL);
193 		now = timespec64_add(now, then);
194 		hellcreek_ptp_settime(ptp, &now);
195 
196 		return 0;
197 	}
198 
199 	if (delta < 0) {
200 		negative = 1;
201 		delta = -delta;
202 	}
203 
204 	/* 'count_val' does not exceed the maximum register size (2^30) */
205 	count_val = div_s64(delta, MAX_NS_PER_STEP);
206 
207 	counth = (count_val & 0xffff0000) >> 16;
208 	countl = count_val & 0xffff;
209 
210 	negative = (negative << 15) & 0x8000;
211 
212 	mutex_lock(&hellcreek->ptp_lock);
213 
214 	/* Set offset write register */
215 	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C);
216 	hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C);
217 	hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS,
218 			    PR_CLOCK_OFFSET_C);
219 	hellcreek_ptp_write(hellcreek, countl,  PR_CLOCK_OFFSET_C);
220 	hellcreek_ptp_write(hellcreek, counth,  PR_CLOCK_OFFSET_C);
221 
222 	mutex_unlock(&hellcreek->ptp_lock);
223 
224 	return 0;
225 }
226 
hellcreek_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)227 static int hellcreek_ptp_enable(struct ptp_clock_info *ptp,
228 				struct ptp_clock_request *rq, int on)
229 {
230 	return -EOPNOTSUPP;
231 }
232 
hellcreek_ptp_overflow_check(struct work_struct * work)233 static void hellcreek_ptp_overflow_check(struct work_struct *work)
234 {
235 	struct delayed_work *dw = to_delayed_work(work);
236 	struct hellcreek *hellcreek;
237 
238 	hellcreek = dw_overflow_to_hellcreek(dw);
239 
240 	mutex_lock(&hellcreek->ptp_lock);
241 	__hellcreek_ptp_gettime(hellcreek, NULL);
242 	mutex_unlock(&hellcreek->ptp_lock);
243 
244 	schedule_delayed_work(&hellcreek->overflow_work,
245 			      HELLCREEK_OVERFLOW_PERIOD);
246 }
247 
hellcreek_get_brightness(struct hellcreek * hellcreek,int led)248 static enum led_brightness hellcreek_get_brightness(struct hellcreek *hellcreek,
249 						    int led)
250 {
251 	return (hellcreek->status_out & led) ? 1 : 0;
252 }
253 
hellcreek_set_brightness(struct hellcreek * hellcreek,int led,enum led_brightness b)254 static void hellcreek_set_brightness(struct hellcreek *hellcreek, int led,
255 				     enum led_brightness b)
256 {
257 	mutex_lock(&hellcreek->ptp_lock);
258 
259 	if (b)
260 		hellcreek->status_out |= led;
261 	else
262 		hellcreek->status_out &= ~led;
263 
264 	hellcreek_ptp_write(hellcreek, hellcreek->status_out, STATUS_OUT);
265 
266 	mutex_unlock(&hellcreek->ptp_lock);
267 }
268 
hellcreek_led_sync_good_set(struct led_classdev * ldev,enum led_brightness b)269 static void hellcreek_led_sync_good_set(struct led_classdev *ldev,
270 					enum led_brightness b)
271 {
272 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
273 
274 	hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, b);
275 }
276 
hellcreek_led_sync_good_get(struct led_classdev * ldev)277 static enum led_brightness hellcreek_led_sync_good_get(struct led_classdev *ldev)
278 {
279 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
280 
281 	return hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
282 }
283 
hellcreek_led_is_gm_set(struct led_classdev * ldev,enum led_brightness b)284 static void hellcreek_led_is_gm_set(struct led_classdev *ldev,
285 				    enum led_brightness b)
286 {
287 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
288 
289 	hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, b);
290 }
291 
hellcreek_led_is_gm_get(struct led_classdev * ldev)292 static enum led_brightness hellcreek_led_is_gm_get(struct led_classdev *ldev)
293 {
294 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
295 
296 	return hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
297 }
298 
299 /* There two available LEDs internally called sync_good and is_gm. However, the
300  * user might want to use a different label and specify the default state. Take
301  * those properties from device tree.
302  */
hellcreek_led_setup(struct hellcreek * hellcreek)303 static int hellcreek_led_setup(struct hellcreek *hellcreek)
304 {
305 	struct device_node *leds, *led = NULL;
306 	enum led_default_state state;
307 	const char *label;
308 	int ret = -EINVAL;
309 
310 	of_node_get(hellcreek->dev->of_node);
311 	leds = of_find_node_by_name(hellcreek->dev->of_node, "leds");
312 	if (!leds) {
313 		dev_err(hellcreek->dev, "No LEDs specified in device tree!\n");
314 		return ret;
315 	}
316 
317 	hellcreek->status_out = 0;
318 
319 	led = of_get_next_available_child(leds, led);
320 	if (!led) {
321 		dev_err(hellcreek->dev, "First LED not specified!\n");
322 		goto out;
323 	}
324 
325 	ret = of_property_read_string(led, "label", &label);
326 	hellcreek->led_sync_good.name = ret ? "sync_good" : label;
327 
328 	state = led_init_default_state_get(of_fwnode_handle(led));
329 	switch (state) {
330 	case LEDS_DEFSTATE_ON:
331 		hellcreek->led_sync_good.brightness = 1;
332 		break;
333 	case LEDS_DEFSTATE_KEEP:
334 		hellcreek->led_sync_good.brightness =
335 			hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
336 		break;
337 	default:
338 		hellcreek->led_sync_good.brightness = 0;
339 	}
340 
341 	hellcreek->led_sync_good.max_brightness = 1;
342 	hellcreek->led_sync_good.brightness_set = hellcreek_led_sync_good_set;
343 	hellcreek->led_sync_good.brightness_get = hellcreek_led_sync_good_get;
344 
345 	led = of_get_next_available_child(leds, led);
346 	if (!led) {
347 		dev_err(hellcreek->dev, "Second LED not specified!\n");
348 		ret = -EINVAL;
349 		goto out;
350 	}
351 
352 	ret = of_property_read_string(led, "label", &label);
353 	hellcreek->led_is_gm.name = ret ? "is_gm" : label;
354 
355 	state = led_init_default_state_get(of_fwnode_handle(led));
356 	switch (state) {
357 	case LEDS_DEFSTATE_ON:
358 		hellcreek->led_is_gm.brightness = 1;
359 		break;
360 	case LEDS_DEFSTATE_KEEP:
361 		hellcreek->led_is_gm.brightness =
362 			hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
363 		break;
364 	default:
365 		hellcreek->led_is_gm.brightness = 0;
366 	}
367 
368 	hellcreek->led_is_gm.max_brightness = 1;
369 	hellcreek->led_is_gm.brightness_set = hellcreek_led_is_gm_set;
370 	hellcreek->led_is_gm.brightness_get = hellcreek_led_is_gm_get;
371 
372 	/* Set initial state */
373 	if (hellcreek->led_sync_good.brightness == 1)
374 		hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, 1);
375 	if (hellcreek->led_is_gm.brightness == 1)
376 		hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, 1);
377 
378 	/* Register both leds */
379 	led_classdev_register(hellcreek->dev, &hellcreek->led_sync_good);
380 	led_classdev_register(hellcreek->dev, &hellcreek->led_is_gm);
381 
382 	ret = 0;
383 
384 out:
385 	of_node_put(leds);
386 
387 	return ret;
388 }
389 
hellcreek_ptp_setup(struct hellcreek * hellcreek)390 int hellcreek_ptp_setup(struct hellcreek *hellcreek)
391 {
392 	u16 status;
393 	int ret;
394 
395 	/* Set up the overflow work */
396 	INIT_DELAYED_WORK(&hellcreek->overflow_work,
397 			  hellcreek_ptp_overflow_check);
398 
399 	/* Setup PTP clock */
400 	hellcreek->ptp_clock_info.owner = THIS_MODULE;
401 	snprintf(hellcreek->ptp_clock_info.name,
402 		 sizeof(hellcreek->ptp_clock_info.name),
403 		 dev_name(hellcreek->dev));
404 
405 	/* IP-Core can add up to 0.5 ns per 8 ns cycle, which means
406 	 * accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts
407 	 * the nominal frequency by 6.25%)
408 	 */
409 	hellcreek->ptp_clock_info.max_adj     = 62500000;
410 	hellcreek->ptp_clock_info.n_alarm     = 0;
411 	hellcreek->ptp_clock_info.n_pins      = 0;
412 	hellcreek->ptp_clock_info.n_ext_ts    = 0;
413 	hellcreek->ptp_clock_info.n_per_out   = 0;
414 	hellcreek->ptp_clock_info.pps	      = 0;
415 	hellcreek->ptp_clock_info.adjfine     = hellcreek_ptp_adjfine;
416 	hellcreek->ptp_clock_info.adjtime     = hellcreek_ptp_adjtime;
417 	hellcreek->ptp_clock_info.gettimex64  = hellcreek_ptp_gettimex;
418 	hellcreek->ptp_clock_info.settime64   = hellcreek_ptp_settime;
419 	hellcreek->ptp_clock_info.enable      = hellcreek_ptp_enable;
420 	hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work;
421 
422 	hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info,
423 						  hellcreek->dev);
424 	if (IS_ERR(hellcreek->ptp_clock))
425 		return PTR_ERR(hellcreek->ptp_clock);
426 
427 	/* Enable the offset correction process, if no offset correction is
428 	 * already taking place
429 	 */
430 	status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C);
431 	if (!(status & PR_CLOCK_STATUS_C_OFS_ACT))
432 		hellcreek_ptp_write(hellcreek,
433 				    status | PR_CLOCK_STATUS_C_ENA_OFS,
434 				    PR_CLOCK_STATUS_C);
435 
436 	/* Enable the drift correction process */
437 	hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT,
438 			    PR_CLOCK_STATUS_C);
439 
440 	/* LED setup */
441 	ret = hellcreek_led_setup(hellcreek);
442 	if (ret) {
443 		if (hellcreek->ptp_clock)
444 			ptp_clock_unregister(hellcreek->ptp_clock);
445 		return ret;
446 	}
447 
448 	schedule_delayed_work(&hellcreek->overflow_work,
449 			      HELLCREEK_OVERFLOW_PERIOD);
450 
451 	return 0;
452 }
453 
hellcreek_ptp_free(struct hellcreek * hellcreek)454 void hellcreek_ptp_free(struct hellcreek *hellcreek)
455 {
456 	led_classdev_unregister(&hellcreek->led_is_gm);
457 	led_classdev_unregister(&hellcreek->led_sync_good);
458 	cancel_delayed_work_sync(&hellcreek->overflow_work);
459 	if (hellcreek->ptp_clock)
460 		ptp_clock_unregister(hellcreek->ptp_clock);
461 	hellcreek->ptp_clock = NULL;
462 }
463