1  /*
2   * wpa_supplicant/hostapd / common helper functions, etc.
3   * Copyright (c) 2002-2019, Jouni Malinen <j@w1.fi>
4   *
5   * This software may be distributed under the terms of the BSD license.
6   * See README for more details.
7   */
8  
9  #include "includes.h"
10  #include <limits.h>
11  
12  #include "common/ieee802_11_defs.h"
13  #include "common.h"
14  
15  
hex2num(char c)16  int hex2num(char c)
17  {
18  	if (c >= '0' && c <= '9')
19  		return c - '0';
20  	if (c >= 'a' && c <= 'f')
21  		return c - 'a' + 10;
22  	if (c >= 'A' && c <= 'F')
23  		return c - 'A' + 10;
24  	return -1;
25  }
26  
27  
hex2byte(const char * hex)28  int hex2byte(const char *hex)
29  {
30  	int a, b;
31  	a = hex2num(*hex++);
32  	if (a < 0)
33  		return -1;
34  	b = hex2num(*hex++);
35  	if (b < 0)
36  		return -1;
37  	return (a << 4) | b;
38  }
39  
40  
hwaddr_parse(const char * txt,u8 * addr)41  static const char * hwaddr_parse(const char *txt, u8 *addr)
42  {
43  	size_t i;
44  
45  	for (i = 0; i < ETH_ALEN; i++) {
46  		int a;
47  
48  		a = hex2byte(txt);
49  		if (a < 0)
50  			return NULL;
51  		txt += 2;
52  		addr[i] = a;
53  		if (i < ETH_ALEN - 1 && *txt++ != ':')
54  			return NULL;
55  	}
56  	return txt;
57  }
58  
59  
60  /**
61   * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
62   * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
63   * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
64   * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
65   */
hwaddr_aton(const char * txt,u8 * addr)66  int hwaddr_aton(const char *txt, u8 *addr)
67  {
68  	return hwaddr_parse(txt, addr) ? 0 : -1;
69  }
70  
71  
72  /**
73   * hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
74   * @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
75   * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
76   * @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
77   * @maskable: Flag to indicate whether a mask is allowed
78   * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
79   */
hwaddr_masked_aton(const char * txt,u8 * addr,u8 * mask,u8 maskable)80  int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
81  {
82  	const char *r;
83  
84  	/* parse address part */
85  	r = hwaddr_parse(txt, addr);
86  	if (!r)
87  		return -1;
88  
89  	/* check for optional mask */
90  	if (*r == '\0' || isspace((unsigned char) *r)) {
91  		/* no mask specified, assume default */
92  		os_memset(mask, 0xff, ETH_ALEN);
93  	} else if (maskable && *r == '/') {
94  		/* mask specified and allowed */
95  		r = hwaddr_parse(r + 1, mask);
96  		/* parser error? */
97  		if (!r)
98  			return -1;
99  	} else {
100  		/* mask specified but not allowed or trailing garbage */
101  		return -1;
102  	}
103  
104  	return 0;
105  }
106  
107  
108  /**
109   * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
110   * @txt: MAC address as a string (e.g., "001122334455")
111   * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
112   * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
113   */
hwaddr_compact_aton(const char * txt,u8 * addr)114  int hwaddr_compact_aton(const char *txt, u8 *addr)
115  {
116  	int i;
117  
118  	for (i = 0; i < 6; i++) {
119  		int a, b;
120  
121  		a = hex2num(*txt++);
122  		if (a < 0)
123  			return -1;
124  		b = hex2num(*txt++);
125  		if (b < 0)
126  			return -1;
127  		*addr++ = (a << 4) | b;
128  	}
129  
130  	return 0;
131  }
132  
133  /**
134   * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
135   * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
136   * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
137   * Returns: Characters used (> 0) on success, -1 on failure
138   */
hwaddr_aton2(const char * txt,u8 * addr)139  int hwaddr_aton2(const char *txt, u8 *addr)
140  {
141  	int i;
142  	const char *pos = txt;
143  
144  	for (i = 0; i < 6; i++) {
145  		int a, b;
146  
147  		while (*pos == ':' || *pos == '.' || *pos == '-')
148  			pos++;
149  
150  		a = hex2num(*pos++);
151  		if (a < 0)
152  			return -1;
153  		b = hex2num(*pos++);
154  		if (b < 0)
155  			return -1;
156  		*addr++ = (a << 4) | b;
157  	}
158  
159  	return pos - txt;
160  }
161  
162  
163  /**
164   * hexstr2bin - Convert ASCII hex string into binary data
165   * @hex: ASCII hex string (e.g., "01ab")
166   * @buf: Buffer for the binary data
167   * @len: Length of the text to convert in bytes (of buf); hex will be double
168   * this size
169   * Returns: 0 on success, -1 on failure (invalid hex string)
170   */
hexstr2bin(const char * hex,u8 * buf,size_t len)171  int hexstr2bin(const char *hex, u8 *buf, size_t len)
172  {
173  	size_t i;
174  	int a;
175  	const char *ipos = hex;
176  	u8 *opos = buf;
177  
178  	for (i = 0; i < len; i++) {
179  		a = hex2byte(ipos);
180  		if (a < 0)
181  			return -1;
182  		*opos++ = a;
183  		ipos += 2;
184  	}
185  	return 0;
186  }
187  
188  
hwaddr_mask_txt(char * buf,size_t len,const u8 * addr,const u8 * mask)189  int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
190  {
191  	size_t i;
192  	int print_mask = 0;
193  	int res;
194  
195  	for (i = 0; i < ETH_ALEN; i++) {
196  		if (mask[i] != 0xff) {
197  			print_mask = 1;
198  			break;
199  		}
200  	}
201  
202  	if (print_mask)
203  		res = os_snprintf(buf, len, MACSTR "/" MACSTR,
204  				  MAC2STR(addr), MAC2STR(mask));
205  	else
206  		res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
207  	if (os_snprintf_error(len, res))
208  		return -1;
209  	return res;
210  }
211  
212  
213  /**
214   * inc_byte_array - Increment arbitrary length byte array by one
215   * @counter: Pointer to byte array
216   * @len: Length of the counter in bytes
217   *
218   * This function increments the last byte of the counter by one and continues
219   * rolling over to more significant bytes if the byte was incremented from
220   * 0xff to 0x00.
221   */
inc_byte_array(u8 * counter,size_t len)222  void inc_byte_array(u8 *counter, size_t len)
223  {
224  	int pos = len - 1;
225  	while (pos >= 0) {
226  		counter[pos]++;
227  		if (counter[pos] != 0)
228  			break;
229  		pos--;
230  	}
231  }
232  
233  
buf_shift_right(u8 * buf,size_t len,size_t bits)234  void buf_shift_right(u8 *buf, size_t len, size_t bits)
235  {
236  	size_t i;
237  
238  	for (i = len - 1; i > 0; i--)
239  		buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
240  	buf[0] >>= bits;
241  }
242  
243  
wpa_get_ntp_timestamp(u8 * buf)244  void wpa_get_ntp_timestamp(u8 *buf)
245  {
246  	struct os_time now;
247  	u32 sec, usec;
248  	be32 tmp;
249  
250  	/* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
251  	os_get_time(&now);
252  	sec = now.sec + 2208988800U; /* Epoch to 1900 */
253  	/* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
254  	usec = now.usec;
255  	usec = 4295 * usec - (usec >> 5) - (usec >> 9);
256  	tmp = host_to_be32(sec);
257  	os_memcpy(buf, (u8 *) &tmp, 4);
258  	tmp = host_to_be32(usec);
259  	os_memcpy(buf + 4, (u8 *) &tmp, 4);
260  }
261  
262  /**
263   * wpa_scnprintf - Simpler-to-use snprintf function
264   * @buf: Output buffer
265   * @size: Buffer size
266   * @fmt: format
267   *
268   * Simpler snprintf version that doesn't require further error checks - the
269   * return value only indicates how many bytes were actually written, excluding
270   * the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
271   */
wpa_scnprintf(char * buf,size_t size,const char * fmt,...)272  int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
273  {
274  	va_list ap;
275  	int ret;
276  
277  	if (!size)
278  		return 0;
279  
280  	va_start(ap, fmt);
281  	ret = vsnprintf(buf, size, fmt, ap);
282  	va_end(ap);
283  
284  	if (ret < 0)
285  		return 0;
286  	if ((size_t) ret >= size)
287  		return size - 1;
288  
289  	return ret;
290  }
291  
292  
wpa_snprintf_hex_sep(char * buf,size_t buf_size,const u8 * data,size_t len,char sep)293  int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
294  			 char sep)
295  {
296  	size_t i;
297  	char *pos = buf, *end = buf + buf_size;
298  	int ret;
299  
300  	if (buf_size == 0)
301  		return 0;
302  
303  	for (i = 0; i < len; i++) {
304  		ret = os_snprintf(pos, end - pos, "%02x%c",
305  				  data[i], sep);
306  		if (os_snprintf_error(end - pos, ret)) {
307  			end[-1] = '\0';
308  			return pos - buf;
309  		}
310  		pos += ret;
311  	}
312  	pos[-1] = '\0';
313  	return pos - buf;
314  }
315  
316  
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)317  static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
318  				    size_t len, int uppercase)
319  {
320  	size_t i;
321  	char *pos = buf, *end = buf + buf_size;
322  	int ret;
323  	if (buf_size == 0)
324  		return 0;
325  	for (i = 0; i < len; i++) {
326  		ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
327  				  data[i]);
328  		if (os_snprintf_error(end - pos, ret)) {
329  			end[-1] = '\0';
330  			return pos - buf;
331  		}
332  		pos += ret;
333  	}
334  	end[-1] = '\0';
335  	return pos - buf;
336  }
337  
338  /**
339   * wpa_snprintf_hex - Print data as a hex string into a buffer
340   * @buf: Memory area to use as the output buffer
341   * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
342   * @data: Data to be printed
343   * @len: Length of data in bytes
344   * Returns: Number of bytes written
345   */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)346  int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
347  {
348  	return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
349  }
350  
351  
352  /**
353   * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
354   * @buf: Memory area to use as the output buffer
355   * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
356   * @data: Data to be printed
357   * @len: Length of data in bytes
358   * Returns: Number of bytes written
359   */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)360  int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
361  			       size_t len)
362  {
363  	return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
364  }
365  
366  
367  #ifdef CONFIG_ANSI_C_EXTRA
368  
369  #ifdef _WIN32_WCE
perror(const char * s)370  void perror(const char *s)
371  {
372  	wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
373  		   s, (int) GetLastError());
374  }
375  #endif /* _WIN32_WCE */
376  
377  
378  int optind = 1;
379  int optopt;
380  char *optarg;
381  
getopt(int argc,char * const argv[],const char * optstring)382  int getopt(int argc, char *const argv[], const char *optstring)
383  {
384  	static int optchr = 1;
385  	char *cp;
386  
387  	if (optchr == 1) {
388  		if (optind >= argc) {
389  			/* all arguments processed */
390  			return EOF;
391  		}
392  
393  		if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
394  			/* no option characters */
395  			return EOF;
396  		}
397  	}
398  
399  	if (os_strcmp(argv[optind], "--") == 0) {
400  		/* no more options */
401  		optind++;
402  		return EOF;
403  	}
404  
405  	optopt = argv[optind][optchr];
406  	cp = os_strchr(optstring, optopt);
407  	if (cp == NULL || optopt == ':') {
408  		if (argv[optind][++optchr] == '\0') {
409  			optchr = 1;
410  			optind++;
411  		}
412  		return '?';
413  	}
414  
415  	if (cp[1] == ':') {
416  		/* Argument required */
417  		optchr = 1;
418  		if (argv[optind][optchr + 1]) {
419  			/* No space between option and argument */
420  			optarg = &argv[optind++][optchr + 1];
421  		} else if (++optind >= argc) {
422  			/* option requires an argument */
423  			return '?';
424  		} else {
425  			/* Argument in the next argv */
426  			optarg = argv[optind++];
427  		}
428  	} else {
429  		/* No argument */
430  		if (argv[optind][++optchr] == '\0') {
431  			optchr = 1;
432  			optind++;
433  		}
434  		optarg = NULL;
435  	}
436  	return *cp;
437  }
438  #endif /* CONFIG_ANSI_C_EXTRA */
439  
440  
441  #ifdef CONFIG_NATIVE_WINDOWS
442  /**
443   * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
444   * @str: Pointer to string to convert
445   *
446   * This function converts a unicode string to ASCII using the same
447   * buffer for output. If UNICODE is not set, the buffer is not
448   * modified.
449   */
wpa_unicode2ascii_inplace(TCHAR * str)450  void wpa_unicode2ascii_inplace(TCHAR *str)
451  {
452  #ifdef UNICODE
453  	char *dst = (char *) str;
454  	while (*str)
455  		*dst++ = (char) *str++;
456  	*dst = '\0';
457  #endif /* UNICODE */
458  }
459  
460  
wpa_strdup_tchar(const char * str)461  TCHAR * wpa_strdup_tchar(const char *str)
462  {
463  #ifdef UNICODE
464  	TCHAR *buf;
465  	buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
466  	if (buf == NULL)
467  		return NULL;
468  	wsprintf(buf, L"%S", str);
469  	return buf;
470  #else /* UNICODE */
471  	return os_strdup(str);
472  #endif /* UNICODE */
473  }
474  #endif /* CONFIG_NATIVE_WINDOWS */
475  
476  
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)477  void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
478  {
479  	char *end = txt + maxlen;
480  	size_t i;
481  
482  	for (i = 0; i < len; i++) {
483  		if (txt + 4 >= end)
484  			break;
485  
486  		switch (data[i]) {
487  		case '\"':
488  			*txt++ = '\\';
489  			*txt++ = '\"';
490  			break;
491  		case '\\':
492  			*txt++ = '\\';
493  			*txt++ = '\\';
494  			break;
495  		case '\033':
496  			*txt++ = '\\';
497  			*txt++ = 'e';
498  			break;
499  		case '\n':
500  			*txt++ = '\\';
501  			*txt++ = 'n';
502  			break;
503  		case '\r':
504  			*txt++ = '\\';
505  			*txt++ = 'r';
506  			break;
507  		case '\t':
508  			*txt++ = '\\';
509  			*txt++ = 't';
510  			break;
511  		default:
512  			if (data[i] >= 32 && data[i] <= 126) {
513  				*txt++ = data[i];
514  			} else {
515  				txt += os_snprintf(txt, end - txt, "\\x%02x",
516  						   data[i]);
517  			}
518  			break;
519  		}
520  	}
521  
522  	*txt = '\0';
523  }
524  
525  
printf_decode(u8 * buf,size_t maxlen,const char * str)526  size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
527  {
528  	const char *pos = str;
529  	size_t len = 0;
530  	int val;
531  
532  	while (*pos) {
533  		if (len + 1 >= maxlen)
534  			break;
535  		switch (*pos) {
536  		case '\\':
537  			pos++;
538  			switch (*pos) {
539  			case '\\':
540  				buf[len++] = '\\';
541  				pos++;
542  				break;
543  			case '"':
544  				buf[len++] = '"';
545  				pos++;
546  				break;
547  			case 'n':
548  				buf[len++] = '\n';
549  				pos++;
550  				break;
551  			case 'r':
552  				buf[len++] = '\r';
553  				pos++;
554  				break;
555  			case 't':
556  				buf[len++] = '\t';
557  				pos++;
558  				break;
559  			case 'e':
560  				buf[len++] = '\033';
561  				pos++;
562  				break;
563  			case 'x':
564  				pos++;
565  				val = hex2byte(pos);
566  				if (val < 0) {
567  					val = hex2num(*pos);
568  					if (val < 0)
569  						break;
570  					buf[len++] = val;
571  					pos++;
572  				} else {
573  					buf[len++] = val;
574  					pos += 2;
575  				}
576  				break;
577  			case '0':
578  			case '1':
579  			case '2':
580  			case '3':
581  			case '4':
582  			case '5':
583  			case '6':
584  			case '7':
585  				val = *pos++ - '0';
586  				if (*pos >= '0' && *pos <= '7')
587  					val = val * 8 + (*pos++ - '0');
588  				if (*pos >= '0' && *pos <= '7')
589  					val = val * 8 + (*pos++ - '0');
590  				buf[len++] = val;
591  				break;
592  			default:
593  				break;
594  			}
595  			break;
596  		default:
597  			buf[len++] = *pos++;
598  			break;
599  		}
600  	}
601  	if (maxlen > len)
602  		buf[len] = '\0';
603  
604  	return len;
605  }
606  
607  
608  /**
609   * wpa_ssid_txt - Convert SSID to a printable string
610   * @ssid: SSID (32-octet string)
611   * @ssid_len: Length of ssid in octets
612   * Returns: Pointer to a printable string
613   *
614   * This function can be used to convert SSIDs into printable form. In most
615   * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
616   * does not limit the used character set, so anything could be used in an SSID.
617   *
618   * This function uses a static buffer, so only one call can be used at the
619   * time, i.e., this is not re-entrant and the returned buffer must be used
620   * before calling this again.
621   */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)622  const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
623  {
624  	static char ssid_txt[SSID_MAX_LEN * 4 + 1];
625  
626  	if (ssid == NULL) {
627  		ssid_txt[0] = '\0';
628  		return ssid_txt;
629  	}
630  
631  	printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
632  	return ssid_txt;
633  }
634  
635  
__hide_aliasing_typecast(void * foo)636  void * __hide_aliasing_typecast(void *foo)
637  {
638  	return foo;
639  }
640  
641  
wpa_config_parse_string(const char * value,size_t * len)642  char * wpa_config_parse_string(const char *value, size_t *len)
643  {
644  	if (*value == '"') {
645  		const char *pos;
646  		char *str;
647  		value++;
648  		pos = os_strrchr(value, '"');
649  		if (pos == NULL || pos[1] != '\0')
650  			return NULL;
651  		*len = pos - value;
652  		str = dup_binstr(value, *len);
653  		if (str == NULL)
654  			return NULL;
655  		return str;
656  	} else if (*value == 'P' && value[1] == '"') {
657  		const char *pos;
658  		char *tstr, *str;
659  		size_t tlen;
660  		value += 2;
661  		pos = os_strrchr(value, '"');
662  		if (pos == NULL || pos[1] != '\0')
663  			return NULL;
664  		tlen = pos - value;
665  		tstr = dup_binstr(value, tlen);
666  		if (tstr == NULL)
667  			return NULL;
668  
669  		str = os_malloc(tlen + 1);
670  		if (str == NULL) {
671  			os_free(tstr);
672  			return NULL;
673  		}
674  
675  		*len = printf_decode((u8 *) str, tlen + 1, tstr);
676  		os_free(tstr);
677  
678  		return str;
679  	} else {
680  		u8 *str;
681  		size_t tlen, hlen = os_strlen(value);
682  		if (hlen & 1)
683  			return NULL;
684  		tlen = hlen / 2;
685  		str = os_malloc(tlen + 1);
686  		if (str == NULL)
687  			return NULL;
688  		if (hexstr2bin(value, str, tlen)) {
689  			os_free(str);
690  			return NULL;
691  		}
692  		str[tlen] = '\0';
693  		*len = tlen;
694  		return (char *) str;
695  	}
696  }
697  
698  
is_hex(const u8 * data,size_t len)699  int is_hex(const u8 *data, size_t len)
700  {
701  	size_t i;
702  
703  	for (i = 0; i < len; i++) {
704  		if (data[i] < 32 || data[i] >= 127)
705  			return 1;
706  	}
707  	return 0;
708  }
709  
710  
has_ctrl_char(const u8 * data,size_t len)711  int has_ctrl_char(const u8 *data, size_t len)
712  {
713  	size_t i;
714  
715  	for (i = 0; i < len; i++) {
716  		if (data[i] < 32 || data[i] == 127)
717  			return 1;
718  	}
719  	return 0;
720  }
721  
722  
has_newline(const char * str)723  int has_newline(const char *str)
724  {
725  	while (*str) {
726  		if (*str == '\n' || *str == '\r')
727  			return 1;
728  		str++;
729  	}
730  	return 0;
731  }
732  
733  
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)734  size_t merge_byte_arrays(u8 *res, size_t res_len,
735  			 const u8 *src1, size_t src1_len,
736  			 const u8 *src2, size_t src2_len)
737  {
738  	size_t len = 0;
739  
740  	os_memset(res, 0, res_len);
741  
742  	if (src1) {
743  		if (src1_len >= res_len) {
744  			os_memcpy(res, src1, res_len);
745  			return res_len;
746  		}
747  
748  		os_memcpy(res, src1, src1_len);
749  		len += src1_len;
750  	}
751  
752  	if (src2) {
753  		if (len + src2_len >= res_len) {
754  			os_memcpy(res + len, src2, res_len - len);
755  			return res_len;
756  		}
757  
758  		os_memcpy(res + len, src2, src2_len);
759  		len += src2_len;
760  	}
761  
762  	return len;
763  }
764  
765  
dup_binstr(const void * src,size_t len)766  char * dup_binstr(const void *src, size_t len)
767  {
768  	char *res;
769  
770  	if (src == NULL)
771  		return NULL;
772  	res = os_malloc(len + 1);
773  	if (res == NULL)
774  		return NULL;
775  	os_memcpy(res, src, len);
776  	res[len] = '\0';
777  
778  	return res;
779  }
780  
781  
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)782  int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
783  {
784  	struct wpa_freq_range *freq = NULL, *n;
785  	unsigned int count = 0;
786  	const char *pos, *pos2, *pos3;
787  
788  	/*
789  	 * Comma separated list of frequency ranges.
790  	 * For example: 2412-2432,2462,5000-6000
791  	 */
792  	pos = value;
793  	while (pos && pos[0]) {
794  		if (count == UINT_MAX) {
795  			os_free(freq);
796  			return -1;
797  		}
798  		n = os_realloc_array(freq, count + 1,
799  				     sizeof(struct wpa_freq_range));
800  		if (n == NULL) {
801  			os_free(freq);
802  			return -1;
803  		}
804  		freq = n;
805  		freq[count].min = atoi(pos);
806  		pos2 = os_strchr(pos, '-');
807  		pos3 = os_strchr(pos, ',');
808  		if (pos2 && (!pos3 || pos2 < pos3)) {
809  			pos2++;
810  			freq[count].max = atoi(pos2);
811  		} else
812  			freq[count].max = freq[count].min;
813  		pos = pos3;
814  		if (pos)
815  			pos++;
816  		count++;
817  	}
818  
819  	os_free(res->range);
820  	res->range = freq;
821  	res->num = count;
822  
823  	return 0;
824  }
825  
826  
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)827  int freq_range_list_includes(const struct wpa_freq_range_list *list,
828  			     unsigned int freq)
829  {
830  	unsigned int i;
831  
832  	if (list == NULL)
833  		return 0;
834  
835  	for (i = 0; i < list->num; i++) {
836  		if (freq >= list->range[i].min && freq <= list->range[i].max)
837  			return 1;
838  	}
839  
840  	return 0;
841  }
842  
843  
freq_range_list_str(const struct wpa_freq_range_list * list)844  char * freq_range_list_str(const struct wpa_freq_range_list *list)
845  {
846  	char *buf, *pos, *end;
847  	size_t maxlen;
848  	unsigned int i;
849  	int res;
850  
851  	if (list->num == 0)
852  		return NULL;
853  
854  	maxlen = list->num * 30;
855  	buf = os_malloc(maxlen);
856  	if (buf == NULL)
857  		return NULL;
858  	pos = buf;
859  	end = buf + maxlen;
860  
861  	for (i = 0; i < list->num; i++) {
862  		struct wpa_freq_range *range = &list->range[i];
863  
864  		if (range->min == range->max)
865  			res = os_snprintf(pos, end - pos, "%s%u",
866  					  i == 0 ? "" : ",", range->min);
867  		else
868  			res = os_snprintf(pos, end - pos, "%s%u-%u",
869  					  i == 0 ? "" : ",",
870  					  range->min, range->max);
871  		if (os_snprintf_error(end - pos, res)) {
872  			os_free(buf);
873  			return NULL;
874  		}
875  		pos += res;
876  	}
877  
878  	return buf;
879  }
880  
881  
int_array_len(const int * a)882  size_t int_array_len(const int *a)
883  {
884  	size_t i;
885  
886  	for (i = 0; a && a[i]; i++)
887  		;
888  	return i;
889  }
890  
891  
int_array_concat(int ** res,const int * a)892  void int_array_concat(int **res, const int *a)
893  {
894  	size_t reslen, alen, i, max_size;
895  	int *n;
896  
897  	reslen = int_array_len(*res);
898  	alen = int_array_len(a);
899  	max_size = (size_t) -1;
900  	if (alen >= max_size - reslen) {
901  		/* This should not really happen, but if it did, something
902  		 * would overflow. Do not try to merge the arrays; instead, make
903  		 * this behave like memory allocation failure to avoid messing
904  		 * up memory. */
905  		os_free(*res);
906  		*res = NULL;
907  		return;
908  	}
909  	n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
910  	if (n == NULL) {
911  		os_free(*res);
912  		*res = NULL;
913  		return;
914  	}
915  	for (i = 0; i <= alen; i++)
916  		n[reslen + i] = a[i];
917  	*res = n;
918  }
919  
920  
freq_cmp(const void * a,const void * b)921  static int freq_cmp(const void *a, const void *b)
922  {
923  	int _a = *(int *) a;
924  	int _b = *(int *) b;
925  
926  	if (_a == 0)
927  		return 1;
928  	if (_b == 0)
929  		return -1;
930  	return _a - _b;
931  }
932  
933  
int_array_sort_unique(int * a)934  void int_array_sort_unique(int *a)
935  {
936  	size_t alen, i, j;
937  
938  	if (a == NULL)
939  		return;
940  
941  	alen = int_array_len(a);
942  	qsort(a, alen, sizeof(int), freq_cmp);
943  
944  	i = 0;
945  	j = 1;
946  	while (a[i] && a[j]) {
947  		if (a[i] == a[j]) {
948  			j++;
949  			continue;
950  		}
951  		a[++i] = a[j++];
952  	}
953  	if (a[i])
954  		i++;
955  	a[i] = 0;
956  }
957  
958  
int_array_add_unique(int ** res,int a)959  void int_array_add_unique(int **res, int a)
960  {
961  	size_t reslen, max_size;
962  	int *n;
963  
964  	for (reslen = 0; *res && (*res)[reslen]; reslen++) {
965  		if ((*res)[reslen] == a)
966  			return; /* already in the list */
967  	}
968  
969  	max_size = (size_t) -1;
970  	if (reslen > max_size - 2) {
971  		/* This should not really happen in practice, but if it did,
972  		 * something would overflow. Do not try to add the new value;
973  		 * instead, make this behave like memory allocation failure to
974  		 * avoid messing up memory. */
975  		os_free(*res);
976  		*res = NULL;
977  		return;
978  	}
979  	n = os_realloc_array(*res, reslen + 2, sizeof(int));
980  	if (n == NULL) {
981  		os_free(*res);
982  		*res = NULL;
983  		return;
984  	}
985  
986  	n[reslen] = a;
987  	n[reslen + 1] = 0;
988  
989  	*res = n;
990  }
991  
992  
int_array_includes(int * arr,int val)993  bool int_array_includes(int *arr, int val)
994  {
995  	int i;
996  
997  	for (i = 0; arr && arr[i]; i++) {
998  		if (val == arr[i])
999  			return true;
1000  	}
1001  
1002  	return false;
1003  }
1004  
1005  
str_clear_free(char * str)1006  void str_clear_free(char *str)
1007  {
1008  	if (str) {
1009  		size_t len = os_strlen(str);
1010  		forced_memzero(str, len);
1011  		os_free(str);
1012  	}
1013  }
1014  
1015  
bin_clear_free(void * bin,size_t len)1016  void bin_clear_free(void *bin, size_t len)
1017  {
1018  	if (bin) {
1019  		forced_memzero(bin, len);
1020  		os_free(bin);
1021  	}
1022  }
1023  
1024  
random_mac_addr(u8 * addr)1025  int random_mac_addr(u8 *addr)
1026  {
1027  	if (os_get_random(addr, ETH_ALEN) < 0)
1028  		return -1;
1029  	addr[0] &= 0xfe; /* unicast */
1030  	addr[0] |= 0x02; /* locally administered */
1031  	return 0;
1032  }
1033  
1034  
random_mac_addr_keep_oui(u8 * addr)1035  int random_mac_addr_keep_oui(u8 *addr)
1036  {
1037  	if (os_get_random(addr + 3, 3) < 0)
1038  		return -1;
1039  	addr[0] &= 0xfe; /* unicast */
1040  	addr[0] |= 0x02; /* locally administered */
1041  	return 0;
1042  }
1043  
1044  
1045  /**
1046   * cstr_token - Get next token from const char string
1047   * @str: a constant string to tokenize
1048   * @delim: a string of delimiters
1049   * @last: a pointer to a character following the returned token
1050   *      It has to be set to NULL for the first call and passed for any
1051   *      further call.
1052   * Returns: a pointer to token position in str or NULL
1053   *
1054   * This function is similar to str_token, but it can be used with both
1055   * char and const char strings. Differences:
1056   * - The str buffer remains unmodified
1057   * - The returned token is not a NULL terminated string, but a token
1058   *   position in str buffer. If a return value is not NULL a size
1059   *   of the returned token could be calculated as (last - token).
1060   */
cstr_token(const char * str,const char * delim,const char ** last)1061  const char * cstr_token(const char *str, const char *delim, const char **last)
1062  {
1063  	const char *end, *token = str;
1064  
1065  	if (!str || !delim || !last)
1066  		return NULL;
1067  
1068  	if (*last)
1069  		token = *last;
1070  
1071  	while (*token && os_strchr(delim, *token))
1072  		token++;
1073  
1074  	if (!*token)
1075  		return NULL;
1076  
1077  	end = token + 1;
1078  
1079  	while (*end && !os_strchr(delim, *end))
1080  		end++;
1081  
1082  	*last = end;
1083  	return token;
1084  }
1085  
1086  
1087  /**
1088   * str_token - Get next token from a string
1089   * @buf: String to tokenize. Note that the string might be modified.
1090   * @delim: String of delimiters
1091   * @context: Pointer to save our context. Should be initialized with
1092   *	NULL on the first call, and passed for any further call.
1093   * Returns: The next token, NULL if there are no more valid tokens.
1094   */
str_token(char * str,const char * delim,char ** context)1095  char * str_token(char *str, const char *delim, char **context)
1096  {
1097  	char *token = (char *) cstr_token(str, delim, (const char **) context);
1098  
1099  	if (token && **context)
1100  		*(*context)++ = '\0';
1101  
1102  	return token;
1103  }
1104  
1105  
utf8_unescape(const char * inp,size_t in_size,char * outp,size_t out_size)1106  size_t utf8_unescape(const char *inp, size_t in_size,
1107  		     char *outp, size_t out_size)
1108  {
1109  	size_t res_size = 0;
1110  
1111  	if (!inp || !outp)
1112  		return 0;
1113  
1114  	if (!in_size)
1115  		in_size = os_strlen(inp);
1116  
1117  	/* Advance past leading single quote */
1118  	if (*inp == '\'' && in_size) {
1119  		inp++;
1120  		in_size--;
1121  	}
1122  
1123  	while (in_size) {
1124  		in_size--;
1125  		if (res_size >= out_size)
1126  			return 0;
1127  
1128  		switch (*inp) {
1129  		case '\'':
1130  			/* Terminate on bare single quote */
1131  			*outp = '\0';
1132  			return res_size;
1133  
1134  		case '\\':
1135  			if (!in_size)
1136  				return 0;
1137  			in_size--;
1138  			inp++;
1139  			/* fall through */
1140  
1141  		default:
1142  			*outp++ = *inp++;
1143  			res_size++;
1144  		}
1145  	}
1146  
1147  	/* NUL terminate if space allows */
1148  	if (res_size < out_size)
1149  		*outp = '\0';
1150  
1151  	return res_size;
1152  }
1153  
1154  
utf8_escape(const char * inp,size_t in_size,char * outp,size_t out_size)1155  size_t utf8_escape(const char *inp, size_t in_size,
1156  		   char *outp, size_t out_size)
1157  {
1158  	size_t res_size = 0;
1159  
1160  	if (!inp || !outp)
1161  		return 0;
1162  
1163  	/* inp may or may not be NUL terminated, but must be if 0 size
1164  	 * is specified */
1165  	if (!in_size)
1166  		in_size = os_strlen(inp);
1167  
1168  	while (in_size) {
1169  		in_size--;
1170  		if (res_size++ >= out_size)
1171  			return 0;
1172  
1173  		switch (*inp) {
1174  		case '\\':
1175  		case '\'':
1176  			if (res_size++ >= out_size)
1177  				return 0;
1178  			*outp++ = '\\';
1179  			/* fall through */
1180  
1181  		default:
1182  			*outp++ = *inp++;
1183  			break;
1184  		}
1185  	}
1186  
1187  	/* NUL terminate if space allows */
1188  	if (res_size < out_size)
1189  		*outp = '\0';
1190  
1191  	return res_size;
1192  }
1193  
1194  
is_ctrl_char(char c)1195  int is_ctrl_char(char c)
1196  {
1197  	return c > 0 && c < 32;
1198  }
1199  
1200  
1201  /**
1202   * ssid_parse - Parse a string that contains SSID in hex or text format
1203   * @buf: Input NULL terminated string that contains the SSID
1204   * @ssid: Output SSID
1205   * Returns: 0 on success, -1 otherwise
1206   *
1207   * The SSID has to be enclosed in double quotes for the text format or space
1208   * or NULL terminated string of hex digits for the hex format. buf can include
1209   * additional arguments after the SSID.
1210   */
ssid_parse(const char * buf,struct wpa_ssid_value * ssid)1211  int ssid_parse(const char *buf, struct wpa_ssid_value *ssid)
1212  {
1213  	char *tmp, *res, *end;
1214  	size_t len;
1215  
1216  	ssid->ssid_len = 0;
1217  
1218  	tmp = os_strdup(buf);
1219  	if (!tmp)
1220  		return -1;
1221  
1222  	if (*tmp != '"') {
1223  		end = os_strchr(tmp, ' ');
1224  		if (end)
1225  			*end = '\0';
1226  	} else {
1227  		end = os_strchr(tmp + 1, '"');
1228  		if (!end) {
1229  			os_free(tmp);
1230  			return -1;
1231  		}
1232  
1233  		end[1] = '\0';
1234  	}
1235  
1236  	res = wpa_config_parse_string(tmp, &len);
1237  	if (res && len <= SSID_MAX_LEN) {
1238  		ssid->ssid_len = len;
1239  		os_memcpy(ssid->ssid, res, len);
1240  	}
1241  
1242  	os_free(tmp);
1243  	os_free(res);
1244  
1245  	return ssid->ssid_len ? 0 : -1;
1246  }
1247  
1248  
str_starts(const char * str,const char * start)1249  int str_starts(const char *str, const char *start)
1250  {
1251  	return os_strncmp(str, start, os_strlen(start)) == 0;
1252  }
1253  
1254  
1255  /**
1256   * rssi_to_rcpi - Convert RSSI to RCPI
1257   * @rssi: RSSI to convert
1258   * Returns: RCPI corresponding to the given RSSI value, or 255 if not available.
1259   *
1260   * It's possible to estimate RCPI based on RSSI in dBm. This calculation will
1261   * not reflect the correct value for high rates, but it's good enough for Action
1262   * frames which are transmitted with up to 24 Mbps rates.
1263   */
rssi_to_rcpi(int rssi)1264  u8 rssi_to_rcpi(int rssi)
1265  {
1266  	if (!rssi)
1267  		return 255; /* not available */
1268  	if (rssi < -110)
1269  		return 0;
1270  	if (rssi > 0)
1271  		return 220;
1272  	return (rssi + 110) * 2;
1273  }
1274  
1275  
get_param(const char * cmd,const char * param)1276  char * get_param(const char *cmd, const char *param)
1277  {
1278  	const char *pos, *end;
1279  	char *val;
1280  	size_t len;
1281  
1282  	pos = os_strstr(cmd, param);
1283  	if (!pos)
1284  		return NULL;
1285  
1286  	pos += os_strlen(param);
1287  	end = os_strchr(pos, ' ');
1288  	if (end)
1289  		len = end - pos;
1290  	else
1291  		len = os_strlen(pos);
1292  	val = os_malloc(len + 1);
1293  	if (!val)
1294  		return NULL;
1295  	os_memcpy(val, pos, len);
1296  	val[len] = '\0';
1297  	return val;
1298  }
1299  
1300  
1301  /* Try to prevent most compilers from optimizing out clearing of memory that
1302   * becomes unaccessible after this function is called. This is mostly the case
1303   * for clearing local stack variables at the end of a function. This is not
1304   * exactly perfect, i.e., someone could come up with a compiler that figures out
1305   * the pointer is pointing to memset and then end up optimizing the call out, so
1306   * try go a bit further by storing the first octet (now zero) to make this even
1307   * a bit more difficult to optimize out. Once memset_s() is available, that
1308   * could be used here instead. */
1309  static void * (* const volatile memset_func)(void *, int, size_t) = memset;
1310  static u8 forced_memzero_val;
1311  
forced_memzero(void * ptr,size_t len)1312  void forced_memzero(void *ptr, size_t len)
1313  {
1314  	memset_func(ptr, 0, len);
1315  	if (len)
1316  		forced_memzero_val = ((u8 *) ptr)[0];
1317  }
1318