1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/kernel/fork.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   *  'fork.c' contains the help-routines for the 'fork' system call
10   * (see also entry.S and others).
11   * Fork is rather simple, once you get the hang of it, but the memory
12   * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13   */
14  
15  #include <linux/anon_inodes.h>
16  #include <linux/slab.h>
17  #include <linux/sched/autogroup.h>
18  #include <linux/sched/mm.h>
19  #include <linux/sched/coredump.h>
20  #include <linux/sched/user.h>
21  #include <linux/sched/numa_balancing.h>
22  #include <linux/sched/stat.h>
23  #include <linux/sched/task.h>
24  #include <linux/sched/task_stack.h>
25  #include <linux/sched/cputime.h>
26  #include <linux/sched/ext.h>
27  #include <linux/seq_file.h>
28  #include <linux/rtmutex.h>
29  #include <linux/init.h>
30  #include <linux/unistd.h>
31  #include <linux/module.h>
32  #include <linux/vmalloc.h>
33  #include <linux/completion.h>
34  #include <linux/personality.h>
35  #include <linux/mempolicy.h>
36  #include <linux/sem.h>
37  #include <linux/file.h>
38  #include <linux/fdtable.h>
39  #include <linux/iocontext.h>
40  #include <linux/key.h>
41  #include <linux/kmsan.h>
42  #include <linux/binfmts.h>
43  #include <linux/mman.h>
44  #include <linux/mmu_notifier.h>
45  #include <linux/fs.h>
46  #include <linux/mm.h>
47  #include <linux/mm_inline.h>
48  #include <linux/memblock.h>
49  #include <linux/nsproxy.h>
50  #include <linux/capability.h>
51  #include <linux/cpu.h>
52  #include <linux/cgroup.h>
53  #include <linux/security.h>
54  #include <linux/hugetlb.h>
55  #include <linux/seccomp.h>
56  #include <linux/swap.h>
57  #include <linux/syscalls.h>
58  #include <linux/syscall_user_dispatch.h>
59  #include <linux/jiffies.h>
60  #include <linux/futex.h>
61  #include <linux/compat.h>
62  #include <linux/kthread.h>
63  #include <linux/task_io_accounting_ops.h>
64  #include <linux/rcupdate.h>
65  #include <linux/ptrace.h>
66  #include <linux/mount.h>
67  #include <linux/audit.h>
68  #include <linux/memcontrol.h>
69  #include <linux/ftrace.h>
70  #include <linux/proc_fs.h>
71  #include <linux/profile.h>
72  #include <linux/rmap.h>
73  #include <linux/ksm.h>
74  #include <linux/acct.h>
75  #include <linux/userfaultfd_k.h>
76  #include <linux/tsacct_kern.h>
77  #include <linux/cn_proc.h>
78  #include <linux/freezer.h>
79  #include <linux/delayacct.h>
80  #include <linux/taskstats_kern.h>
81  #include <linux/tty.h>
82  #include <linux/fs_struct.h>
83  #include <linux/magic.h>
84  #include <linux/perf_event.h>
85  #include <linux/posix-timers.h>
86  #include <linux/user-return-notifier.h>
87  #include <linux/oom.h>
88  #include <linux/khugepaged.h>
89  #include <linux/signalfd.h>
90  #include <linux/uprobes.h>
91  #include <linux/aio.h>
92  #include <linux/compiler.h>
93  #include <linux/sysctl.h>
94  #include <linux/kcov.h>
95  #include <linux/livepatch.h>
96  #include <linux/thread_info.h>
97  #include <linux/stackleak.h>
98  #include <linux/kasan.h>
99  #include <linux/scs.h>
100  #include <linux/io_uring.h>
101  #include <linux/bpf.h>
102  #include <linux/stackprotector.h>
103  #include <linux/user_events.h>
104  #include <linux/iommu.h>
105  #include <linux/rseq.h>
106  #include <uapi/linux/pidfd.h>
107  #include <linux/pidfs.h>
108  #include <linux/tick.h>
109  
110  #include <asm/pgalloc.h>
111  #include <linux/uaccess.h>
112  #include <asm/mmu_context.h>
113  #include <asm/cacheflush.h>
114  #include <asm/tlbflush.h>
115  
116  #include <trace/events/sched.h>
117  
118  #define CREATE_TRACE_POINTS
119  #include <trace/events/task.h>
120  
121  #include <kunit/visibility.h>
122  
123  /*
124   * Minimum number of threads to boot the kernel
125   */
126  #define MIN_THREADS 20
127  
128  /*
129   * Maximum number of threads
130   */
131  #define MAX_THREADS FUTEX_TID_MASK
132  
133  /*
134   * Protected counters by write_lock_irq(&tasklist_lock)
135   */
136  unsigned long total_forks;	/* Handle normal Linux uptimes. */
137  int nr_threads;			/* The idle threads do not count.. */
138  
139  static int max_threads;		/* tunable limit on nr_threads */
140  
141  #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
142  
143  static const char * const resident_page_types[] = {
144  	NAMED_ARRAY_INDEX(MM_FILEPAGES),
145  	NAMED_ARRAY_INDEX(MM_ANONPAGES),
146  	NAMED_ARRAY_INDEX(MM_SWAPENTS),
147  	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
148  };
149  
150  DEFINE_PER_CPU(unsigned long, process_counts) = 0;
151  
152  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
153  
154  #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)155  int lockdep_tasklist_lock_is_held(void)
156  {
157  	return lockdep_is_held(&tasklist_lock);
158  }
159  EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
160  #endif /* #ifdef CONFIG_PROVE_RCU */
161  
nr_processes(void)162  int nr_processes(void)
163  {
164  	int cpu;
165  	int total = 0;
166  
167  	for_each_possible_cpu(cpu)
168  		total += per_cpu(process_counts, cpu);
169  
170  	return total;
171  }
172  
arch_release_task_struct(struct task_struct * tsk)173  void __weak arch_release_task_struct(struct task_struct *tsk)
174  {
175  }
176  
177  static struct kmem_cache *task_struct_cachep;
178  
alloc_task_struct_node(int node)179  static inline struct task_struct *alloc_task_struct_node(int node)
180  {
181  	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
182  }
183  
free_task_struct(struct task_struct * tsk)184  static inline void free_task_struct(struct task_struct *tsk)
185  {
186  	kmem_cache_free(task_struct_cachep, tsk);
187  }
188  
189  /*
190   * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
191   * kmemcache based allocator.
192   */
193  # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194  
195  #  ifdef CONFIG_VMAP_STACK
196  /*
197   * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
198   * flush.  Try to minimize the number of calls by caching stacks.
199   */
200  #define NR_CACHED_STACKS 2
201  static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
202  
203  struct vm_stack {
204  	struct rcu_head rcu;
205  	struct vm_struct *stack_vm_area;
206  };
207  
try_release_thread_stack_to_cache(struct vm_struct * vm)208  static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
209  {
210  	unsigned int i;
211  
212  	for (i = 0; i < NR_CACHED_STACKS; i++) {
213  		struct vm_struct *tmp = NULL;
214  
215  		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
216  			return true;
217  	}
218  	return false;
219  }
220  
thread_stack_free_rcu(struct rcu_head * rh)221  static void thread_stack_free_rcu(struct rcu_head *rh)
222  {
223  	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
224  
225  	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
226  		return;
227  
228  	vfree(vm_stack);
229  }
230  
thread_stack_delayed_free(struct task_struct * tsk)231  static void thread_stack_delayed_free(struct task_struct *tsk)
232  {
233  	struct vm_stack *vm_stack = tsk->stack;
234  
235  	vm_stack->stack_vm_area = tsk->stack_vm_area;
236  	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
237  }
238  
free_vm_stack_cache(unsigned int cpu)239  static int free_vm_stack_cache(unsigned int cpu)
240  {
241  	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
242  	int i;
243  
244  	for (i = 0; i < NR_CACHED_STACKS; i++) {
245  		struct vm_struct *vm_stack = cached_vm_stacks[i];
246  
247  		if (!vm_stack)
248  			continue;
249  
250  		vfree(vm_stack->addr);
251  		cached_vm_stacks[i] = NULL;
252  	}
253  
254  	return 0;
255  }
256  
memcg_charge_kernel_stack(struct vm_struct * vm)257  static int memcg_charge_kernel_stack(struct vm_struct *vm)
258  {
259  	int i;
260  	int ret;
261  	int nr_charged = 0;
262  
263  	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
264  
265  	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
266  		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
267  		if (ret)
268  			goto err;
269  		nr_charged++;
270  	}
271  	return 0;
272  err:
273  	for (i = 0; i < nr_charged; i++)
274  		memcg_kmem_uncharge_page(vm->pages[i], 0);
275  	return ret;
276  }
277  
alloc_thread_stack_node(struct task_struct * tsk,int node)278  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
279  {
280  	struct vm_struct *vm;
281  	void *stack;
282  	int i;
283  
284  	for (i = 0; i < NR_CACHED_STACKS; i++) {
285  		struct vm_struct *s;
286  
287  		s = this_cpu_xchg(cached_stacks[i], NULL);
288  
289  		if (!s)
290  			continue;
291  
292  		/* Reset stack metadata. */
293  		kasan_unpoison_range(s->addr, THREAD_SIZE);
294  
295  		stack = kasan_reset_tag(s->addr);
296  
297  		/* Clear stale pointers from reused stack. */
298  		memset(stack, 0, THREAD_SIZE);
299  
300  		if (memcg_charge_kernel_stack(s)) {
301  			vfree(s->addr);
302  			return -ENOMEM;
303  		}
304  
305  		tsk->stack_vm_area = s;
306  		tsk->stack = stack;
307  		return 0;
308  	}
309  
310  	/*
311  	 * Allocated stacks are cached and later reused by new threads,
312  	 * so memcg accounting is performed manually on assigning/releasing
313  	 * stacks to tasks. Drop __GFP_ACCOUNT.
314  	 */
315  	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
316  				     VMALLOC_START, VMALLOC_END,
317  				     THREADINFO_GFP & ~__GFP_ACCOUNT,
318  				     PAGE_KERNEL,
319  				     0, node, __builtin_return_address(0));
320  	if (!stack)
321  		return -ENOMEM;
322  
323  	vm = find_vm_area(stack);
324  	if (memcg_charge_kernel_stack(vm)) {
325  		vfree(stack);
326  		return -ENOMEM;
327  	}
328  	/*
329  	 * We can't call find_vm_area() in interrupt context, and
330  	 * free_thread_stack() can be called in interrupt context,
331  	 * so cache the vm_struct.
332  	 */
333  	tsk->stack_vm_area = vm;
334  	stack = kasan_reset_tag(stack);
335  	tsk->stack = stack;
336  	return 0;
337  }
338  
free_thread_stack(struct task_struct * tsk)339  static void free_thread_stack(struct task_struct *tsk)
340  {
341  	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
342  		thread_stack_delayed_free(tsk);
343  
344  	tsk->stack = NULL;
345  	tsk->stack_vm_area = NULL;
346  }
347  
348  #  else /* !CONFIG_VMAP_STACK */
349  
thread_stack_free_rcu(struct rcu_head * rh)350  static void thread_stack_free_rcu(struct rcu_head *rh)
351  {
352  	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353  }
354  
thread_stack_delayed_free(struct task_struct * tsk)355  static void thread_stack_delayed_free(struct task_struct *tsk)
356  {
357  	struct rcu_head *rh = tsk->stack;
358  
359  	call_rcu(rh, thread_stack_free_rcu);
360  }
361  
alloc_thread_stack_node(struct task_struct * tsk,int node)362  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363  {
364  	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365  					     THREAD_SIZE_ORDER);
366  
367  	if (likely(page)) {
368  		tsk->stack = kasan_reset_tag(page_address(page));
369  		return 0;
370  	}
371  	return -ENOMEM;
372  }
373  
free_thread_stack(struct task_struct * tsk)374  static void free_thread_stack(struct task_struct *tsk)
375  {
376  	thread_stack_delayed_free(tsk);
377  	tsk->stack = NULL;
378  }
379  
380  #  endif /* CONFIG_VMAP_STACK */
381  # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
382  
383  static struct kmem_cache *thread_stack_cache;
384  
thread_stack_free_rcu(struct rcu_head * rh)385  static void thread_stack_free_rcu(struct rcu_head *rh)
386  {
387  	kmem_cache_free(thread_stack_cache, rh);
388  }
389  
thread_stack_delayed_free(struct task_struct * tsk)390  static void thread_stack_delayed_free(struct task_struct *tsk)
391  {
392  	struct rcu_head *rh = tsk->stack;
393  
394  	call_rcu(rh, thread_stack_free_rcu);
395  }
396  
alloc_thread_stack_node(struct task_struct * tsk,int node)397  static int alloc_thread_stack_node(struct task_struct *tsk, int node)
398  {
399  	unsigned long *stack;
400  	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
401  	stack = kasan_reset_tag(stack);
402  	tsk->stack = stack;
403  	return stack ? 0 : -ENOMEM;
404  }
405  
free_thread_stack(struct task_struct * tsk)406  static void free_thread_stack(struct task_struct *tsk)
407  {
408  	thread_stack_delayed_free(tsk);
409  	tsk->stack = NULL;
410  }
411  
thread_stack_cache_init(void)412  void thread_stack_cache_init(void)
413  {
414  	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
415  					THREAD_SIZE, THREAD_SIZE, 0, 0,
416  					THREAD_SIZE, NULL);
417  	BUG_ON(thread_stack_cache == NULL);
418  }
419  
420  # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
421  
422  /* SLAB cache for signal_struct structures (tsk->signal) */
423  static struct kmem_cache *signal_cachep;
424  
425  /* SLAB cache for sighand_struct structures (tsk->sighand) */
426  struct kmem_cache *sighand_cachep;
427  
428  /* SLAB cache for files_struct structures (tsk->files) */
429  struct kmem_cache *files_cachep;
430  
431  /* SLAB cache for fs_struct structures (tsk->fs) */
432  struct kmem_cache *fs_cachep;
433  
434  /* SLAB cache for vm_area_struct structures */
435  static struct kmem_cache *vm_area_cachep;
436  
437  /* SLAB cache for mm_struct structures (tsk->mm) */
438  static struct kmem_cache *mm_cachep;
439  
440  #ifdef CONFIG_PER_VMA_LOCK
441  
442  /* SLAB cache for vm_area_struct.lock */
443  static struct kmem_cache *vma_lock_cachep;
444  
vma_lock_alloc(struct vm_area_struct * vma)445  static bool vma_lock_alloc(struct vm_area_struct *vma)
446  {
447  	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
448  	if (!vma->vm_lock)
449  		return false;
450  
451  	init_rwsem(&vma->vm_lock->lock);
452  	vma->vm_lock_seq = -1;
453  
454  	return true;
455  }
456  
vma_lock_free(struct vm_area_struct * vma)457  static inline void vma_lock_free(struct vm_area_struct *vma)
458  {
459  	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
460  }
461  
462  #else /* CONFIG_PER_VMA_LOCK */
463  
vma_lock_alloc(struct vm_area_struct * vma)464  static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)465  static inline void vma_lock_free(struct vm_area_struct *vma) {}
466  
467  #endif /* CONFIG_PER_VMA_LOCK */
468  
vm_area_alloc(struct mm_struct * mm)469  struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
470  {
471  	struct vm_area_struct *vma;
472  
473  	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
474  	if (!vma)
475  		return NULL;
476  
477  	vma_init(vma, mm);
478  	if (!vma_lock_alloc(vma)) {
479  		kmem_cache_free(vm_area_cachep, vma);
480  		return NULL;
481  	}
482  
483  	return vma;
484  }
485  
vm_area_dup(struct vm_area_struct * orig)486  struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487  {
488  	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
489  
490  	if (!new)
491  		return NULL;
492  
493  	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
494  	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495  	/*
496  	 * orig->shared.rb may be modified concurrently, but the clone
497  	 * will be reinitialized.
498  	 */
499  	data_race(memcpy(new, orig, sizeof(*new)));
500  	if (!vma_lock_alloc(new)) {
501  		kmem_cache_free(vm_area_cachep, new);
502  		return NULL;
503  	}
504  	INIT_LIST_HEAD(&new->anon_vma_chain);
505  	vma_numab_state_init(new);
506  	dup_anon_vma_name(orig, new);
507  
508  	return new;
509  }
510  
__vm_area_free(struct vm_area_struct * vma)511  void __vm_area_free(struct vm_area_struct *vma)
512  {
513  	vma_numab_state_free(vma);
514  	free_anon_vma_name(vma);
515  	vma_lock_free(vma);
516  	kmem_cache_free(vm_area_cachep, vma);
517  }
518  
519  #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)520  static void vm_area_free_rcu_cb(struct rcu_head *head)
521  {
522  	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
523  						  vm_rcu);
524  
525  	/* The vma should not be locked while being destroyed. */
526  	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
527  	__vm_area_free(vma);
528  }
529  #endif
530  
vm_area_free(struct vm_area_struct * vma)531  void vm_area_free(struct vm_area_struct *vma)
532  {
533  #ifdef CONFIG_PER_VMA_LOCK
534  	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
535  #else
536  	__vm_area_free(vma);
537  #endif
538  }
539  
account_kernel_stack(struct task_struct * tsk,int account)540  static void account_kernel_stack(struct task_struct *tsk, int account)
541  {
542  	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
543  		struct vm_struct *vm = task_stack_vm_area(tsk);
544  		int i;
545  
546  		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
547  			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
548  					      account * (PAGE_SIZE / 1024));
549  	} else {
550  		void *stack = task_stack_page(tsk);
551  
552  		/* All stack pages are in the same node. */
553  		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
554  				      account * (THREAD_SIZE / 1024));
555  	}
556  }
557  
exit_task_stack_account(struct task_struct * tsk)558  void exit_task_stack_account(struct task_struct *tsk)
559  {
560  	account_kernel_stack(tsk, -1);
561  
562  	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
563  		struct vm_struct *vm;
564  		int i;
565  
566  		vm = task_stack_vm_area(tsk);
567  		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
568  			memcg_kmem_uncharge_page(vm->pages[i], 0);
569  	}
570  }
571  
release_task_stack(struct task_struct * tsk)572  static void release_task_stack(struct task_struct *tsk)
573  {
574  	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
575  		return;  /* Better to leak the stack than to free prematurely */
576  
577  	free_thread_stack(tsk);
578  }
579  
580  #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)581  void put_task_stack(struct task_struct *tsk)
582  {
583  	if (refcount_dec_and_test(&tsk->stack_refcount))
584  		release_task_stack(tsk);
585  }
586  #endif
587  
free_task(struct task_struct * tsk)588  void free_task(struct task_struct *tsk)
589  {
590  #ifdef CONFIG_SECCOMP
591  	WARN_ON_ONCE(tsk->seccomp.filter);
592  #endif
593  	release_user_cpus_ptr(tsk);
594  	scs_release(tsk);
595  
596  #ifndef CONFIG_THREAD_INFO_IN_TASK
597  	/*
598  	 * The task is finally done with both the stack and thread_info,
599  	 * so free both.
600  	 */
601  	release_task_stack(tsk);
602  #else
603  	/*
604  	 * If the task had a separate stack allocation, it should be gone
605  	 * by now.
606  	 */
607  	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
608  #endif
609  	rt_mutex_debug_task_free(tsk);
610  	ftrace_graph_exit_task(tsk);
611  	arch_release_task_struct(tsk);
612  	if (tsk->flags & PF_KTHREAD)
613  		free_kthread_struct(tsk);
614  	bpf_task_storage_free(tsk);
615  	free_task_struct(tsk);
616  }
617  EXPORT_SYMBOL(free_task);
618  
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)619  static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
620  {
621  	struct file *exe_file;
622  
623  	exe_file = get_mm_exe_file(oldmm);
624  	RCU_INIT_POINTER(mm->exe_file, exe_file);
625  }
626  
627  #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)628  static __latent_entropy int dup_mmap(struct mm_struct *mm,
629  					struct mm_struct *oldmm)
630  {
631  	struct vm_area_struct *mpnt, *tmp;
632  	int retval;
633  	unsigned long charge = 0;
634  	LIST_HEAD(uf);
635  	VMA_ITERATOR(vmi, mm, 0);
636  
637  	uprobe_start_dup_mmap();
638  	if (mmap_write_lock_killable(oldmm)) {
639  		retval = -EINTR;
640  		goto fail_uprobe_end;
641  	}
642  	flush_cache_dup_mm(oldmm);
643  	uprobe_dup_mmap(oldmm, mm);
644  	/*
645  	 * Not linked in yet - no deadlock potential:
646  	 */
647  	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648  
649  	/* No ordering required: file already has been exposed. */
650  	dup_mm_exe_file(mm, oldmm);
651  
652  	mm->total_vm = oldmm->total_vm;
653  	mm->data_vm = oldmm->data_vm;
654  	mm->exec_vm = oldmm->exec_vm;
655  	mm->stack_vm = oldmm->stack_vm;
656  
657  	/* Use __mt_dup() to efficiently build an identical maple tree. */
658  	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
659  	if (unlikely(retval))
660  		goto out;
661  
662  	mt_clear_in_rcu(vmi.mas.tree);
663  	for_each_vma(vmi, mpnt) {
664  		struct file *file;
665  
666  		vma_start_write(mpnt);
667  		if (mpnt->vm_flags & VM_DONTCOPY) {
668  			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
669  						    mpnt->vm_end, GFP_KERNEL);
670  			if (retval)
671  				goto loop_out;
672  
673  			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
674  			continue;
675  		}
676  		charge = 0;
677  		/*
678  		 * Don't duplicate many vmas if we've been oom-killed (for
679  		 * example)
680  		 */
681  		if (fatal_signal_pending(current)) {
682  			retval = -EINTR;
683  			goto loop_out;
684  		}
685  		if (mpnt->vm_flags & VM_ACCOUNT) {
686  			unsigned long len = vma_pages(mpnt);
687  
688  			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
689  				goto fail_nomem;
690  			charge = len;
691  		}
692  		tmp = vm_area_dup(mpnt);
693  		if (!tmp)
694  			goto fail_nomem;
695  		retval = vma_dup_policy(mpnt, tmp);
696  		if (retval)
697  			goto fail_nomem_policy;
698  		tmp->vm_mm = mm;
699  		retval = dup_userfaultfd(tmp, &uf);
700  		if (retval)
701  			goto fail_nomem_anon_vma_fork;
702  		if (tmp->vm_flags & VM_WIPEONFORK) {
703  			/*
704  			 * VM_WIPEONFORK gets a clean slate in the child.
705  			 * Don't prepare anon_vma until fault since we don't
706  			 * copy page for current vma.
707  			 */
708  			tmp->anon_vma = NULL;
709  		} else if (anon_vma_fork(tmp, mpnt))
710  			goto fail_nomem_anon_vma_fork;
711  		vm_flags_clear(tmp, VM_LOCKED_MASK);
712  		/*
713  		 * Copy/update hugetlb private vma information.
714  		 */
715  		if (is_vm_hugetlb_page(tmp))
716  			hugetlb_dup_vma_private(tmp);
717  
718  		/*
719  		 * Link the vma into the MT. After using __mt_dup(), memory
720  		 * allocation is not necessary here, so it cannot fail.
721  		 */
722  		vma_iter_bulk_store(&vmi, tmp);
723  
724  		mm->map_count++;
725  
726  		if (tmp->vm_ops && tmp->vm_ops->open)
727  			tmp->vm_ops->open(tmp);
728  
729  		file = tmp->vm_file;
730  		if (file) {
731  			struct address_space *mapping = file->f_mapping;
732  
733  			get_file(file);
734  			i_mmap_lock_write(mapping);
735  			if (vma_is_shared_maywrite(tmp))
736  				mapping_allow_writable(mapping);
737  			flush_dcache_mmap_lock(mapping);
738  			/* insert tmp into the share list, just after mpnt */
739  			vma_interval_tree_insert_after(tmp, mpnt,
740  					&mapping->i_mmap);
741  			flush_dcache_mmap_unlock(mapping);
742  			i_mmap_unlock_write(mapping);
743  		}
744  
745  		if (!(tmp->vm_flags & VM_WIPEONFORK))
746  			retval = copy_page_range(tmp, mpnt);
747  
748  		if (retval) {
749  			mpnt = vma_next(&vmi);
750  			goto loop_out;
751  		}
752  	}
753  	/* a new mm has just been created */
754  	retval = arch_dup_mmap(oldmm, mm);
755  loop_out:
756  	vma_iter_free(&vmi);
757  	if (!retval) {
758  		mt_set_in_rcu(vmi.mas.tree);
759  		ksm_fork(mm, oldmm);
760  		khugepaged_fork(mm, oldmm);
761  	} else if (mpnt) {
762  		/*
763  		 * The entire maple tree has already been duplicated. If the
764  		 * mmap duplication fails, mark the failure point with
765  		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
766  		 * stop releasing VMAs that have not been duplicated after this
767  		 * point.
768  		 */
769  		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
770  		mas_store(&vmi.mas, XA_ZERO_ENTRY);
771  	}
772  out:
773  	mmap_write_unlock(mm);
774  	flush_tlb_mm(oldmm);
775  	mmap_write_unlock(oldmm);
776  	if (!retval)
777  		dup_userfaultfd_complete(&uf);
778  	else
779  		dup_userfaultfd_fail(&uf);
780  fail_uprobe_end:
781  	uprobe_end_dup_mmap();
782  	return retval;
783  
784  fail_nomem_anon_vma_fork:
785  	mpol_put(vma_policy(tmp));
786  fail_nomem_policy:
787  	vm_area_free(tmp);
788  fail_nomem:
789  	retval = -ENOMEM;
790  	vm_unacct_memory(charge);
791  	goto loop_out;
792  }
793  
mm_alloc_pgd(struct mm_struct * mm)794  static inline int mm_alloc_pgd(struct mm_struct *mm)
795  {
796  	mm->pgd = pgd_alloc(mm);
797  	if (unlikely(!mm->pgd))
798  		return -ENOMEM;
799  	return 0;
800  }
801  
mm_free_pgd(struct mm_struct * mm)802  static inline void mm_free_pgd(struct mm_struct *mm)
803  {
804  	pgd_free(mm, mm->pgd);
805  }
806  #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)807  static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808  {
809  	mmap_write_lock(oldmm);
810  	dup_mm_exe_file(mm, oldmm);
811  	mmap_write_unlock(oldmm);
812  	return 0;
813  }
814  #define mm_alloc_pgd(mm)	(0)
815  #define mm_free_pgd(mm)
816  #endif /* CONFIG_MMU */
817  
check_mm(struct mm_struct * mm)818  static void check_mm(struct mm_struct *mm)
819  {
820  	int i;
821  
822  	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823  			 "Please make sure 'struct resident_page_types[]' is updated as well");
824  
825  	for (i = 0; i < NR_MM_COUNTERS; i++) {
826  		long x = percpu_counter_sum(&mm->rss_stat[i]);
827  
828  		if (unlikely(x))
829  			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830  				 mm, resident_page_types[i], x);
831  	}
832  
833  	if (mm_pgtables_bytes(mm))
834  		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835  				mm_pgtables_bytes(mm));
836  
837  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
838  	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839  #endif
840  }
841  
842  #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843  #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844  
do_check_lazy_tlb(void * arg)845  static void do_check_lazy_tlb(void *arg)
846  {
847  	struct mm_struct *mm = arg;
848  
849  	WARN_ON_ONCE(current->active_mm == mm);
850  }
851  
do_shoot_lazy_tlb(void * arg)852  static void do_shoot_lazy_tlb(void *arg)
853  {
854  	struct mm_struct *mm = arg;
855  
856  	if (current->active_mm == mm) {
857  		WARN_ON_ONCE(current->mm);
858  		current->active_mm = &init_mm;
859  		switch_mm(mm, &init_mm, current);
860  	}
861  }
862  
cleanup_lazy_tlbs(struct mm_struct * mm)863  static void cleanup_lazy_tlbs(struct mm_struct *mm)
864  {
865  	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866  		/*
867  		 * In this case, lazy tlb mms are refounted and would not reach
868  		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869  		 */
870  		return;
871  	}
872  
873  	/*
874  	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875  	 * requires lazy mm users to switch to another mm when the refcount
876  	 * drops to zero, before the mm is freed. This requires IPIs here to
877  	 * switch kernel threads to init_mm.
878  	 *
879  	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880  	 * switch with the final userspace teardown TLB flush which leaves the
881  	 * mm lazy on this CPU but no others, reducing the need for additional
882  	 * IPIs here. There are cases where a final IPI is still required here,
883  	 * such as the final mmdrop being performed on a different CPU than the
884  	 * one exiting, or kernel threads using the mm when userspace exits.
885  	 *
886  	 * IPI overheads have not found to be expensive, but they could be
887  	 * reduced in a number of possible ways, for example (roughly
888  	 * increasing order of complexity):
889  	 * - The last lazy reference created by exit_mm() could instead switch
890  	 *   to init_mm, however it's probable this will run on the same CPU
891  	 *   immediately afterwards, so this may not reduce IPIs much.
892  	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893  	 * - CPUs store active_mm where it can be remotely checked without a
894  	 *   lock, to filter out false-positives in the cpumask.
895  	 * - After mm_users or mm_count reaches zero, switching away from the
896  	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897  	 *   with some batching or delaying of the final IPIs.
898  	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899  	 *   switching to avoid IPIs completely.
900  	 */
901  	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902  	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903  		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904  }
905  
906  /*
907   * Called when the last reference to the mm
908   * is dropped: either by a lazy thread or by
909   * mmput. Free the page directory and the mm.
910   */
__mmdrop(struct mm_struct * mm)911  void __mmdrop(struct mm_struct *mm)
912  {
913  	BUG_ON(mm == &init_mm);
914  	WARN_ON_ONCE(mm == current->mm);
915  
916  	/* Ensure no CPUs are using this as their lazy tlb mm */
917  	cleanup_lazy_tlbs(mm);
918  
919  	WARN_ON_ONCE(mm == current->active_mm);
920  	mm_free_pgd(mm);
921  	destroy_context(mm);
922  	mmu_notifier_subscriptions_destroy(mm);
923  	check_mm(mm);
924  	put_user_ns(mm->user_ns);
925  	mm_pasid_drop(mm);
926  	mm_destroy_cid(mm);
927  	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928  
929  	free_mm(mm);
930  }
931  EXPORT_SYMBOL_GPL(__mmdrop);
932  
mmdrop_async_fn(struct work_struct * work)933  static void mmdrop_async_fn(struct work_struct *work)
934  {
935  	struct mm_struct *mm;
936  
937  	mm = container_of(work, struct mm_struct, async_put_work);
938  	__mmdrop(mm);
939  }
940  
mmdrop_async(struct mm_struct * mm)941  static void mmdrop_async(struct mm_struct *mm)
942  {
943  	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944  		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945  		schedule_work(&mm->async_put_work);
946  	}
947  }
948  
free_signal_struct(struct signal_struct * sig)949  static inline void free_signal_struct(struct signal_struct *sig)
950  {
951  	taskstats_tgid_free(sig);
952  	sched_autogroup_exit(sig);
953  	/*
954  	 * __mmdrop is not safe to call from softirq context on x86 due to
955  	 * pgd_dtor so postpone it to the async context
956  	 */
957  	if (sig->oom_mm)
958  		mmdrop_async(sig->oom_mm);
959  	kmem_cache_free(signal_cachep, sig);
960  }
961  
put_signal_struct(struct signal_struct * sig)962  static inline void put_signal_struct(struct signal_struct *sig)
963  {
964  	if (refcount_dec_and_test(&sig->sigcnt))
965  		free_signal_struct(sig);
966  }
967  
__put_task_struct(struct task_struct * tsk)968  void __put_task_struct(struct task_struct *tsk)
969  {
970  	WARN_ON(!tsk->exit_state);
971  	WARN_ON(refcount_read(&tsk->usage));
972  	WARN_ON(tsk == current);
973  
974  	sched_ext_free(tsk);
975  	io_uring_free(tsk);
976  	cgroup_free(tsk);
977  	task_numa_free(tsk, true);
978  	security_task_free(tsk);
979  	exit_creds(tsk);
980  	delayacct_tsk_free(tsk);
981  	put_signal_struct(tsk->signal);
982  	sched_core_free(tsk);
983  	free_task(tsk);
984  }
985  EXPORT_SYMBOL_GPL(__put_task_struct);
986  
__put_task_struct_rcu_cb(struct rcu_head * rhp)987  void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988  {
989  	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990  
991  	__put_task_struct(task);
992  }
993  EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994  
arch_task_cache_init(void)995  void __init __weak arch_task_cache_init(void) { }
996  
997  /*
998   * set_max_threads
999   */
set_max_threads(unsigned int max_threads_suggested)1000  static void __init set_max_threads(unsigned int max_threads_suggested)
1001  {
1002  	u64 threads;
1003  	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1004  
1005  	/*
1006  	 * The number of threads shall be limited such that the thread
1007  	 * structures may only consume a small part of the available memory.
1008  	 */
1009  	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1010  		threads = MAX_THREADS;
1011  	else
1012  		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1013  				    (u64) THREAD_SIZE * 8UL);
1014  
1015  	if (threads > max_threads_suggested)
1016  		threads = max_threads_suggested;
1017  
1018  	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1019  }
1020  
1021  #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1022  /* Initialized by the architecture: */
1023  int arch_task_struct_size __read_mostly;
1024  #endif
1025  
task_struct_whitelist(unsigned long * offset,unsigned long * size)1026  static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027  {
1028  	/* Fetch thread_struct whitelist for the architecture. */
1029  	arch_thread_struct_whitelist(offset, size);
1030  
1031  	/*
1032  	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033  	 * adjust offset to position of thread_struct in task_struct.
1034  	 */
1035  	if (unlikely(*size == 0))
1036  		*offset = 0;
1037  	else
1038  		*offset += offsetof(struct task_struct, thread);
1039  }
1040  
fork_init(void)1041  void __init fork_init(void)
1042  {
1043  	int i;
1044  #ifndef ARCH_MIN_TASKALIGN
1045  #define ARCH_MIN_TASKALIGN	0
1046  #endif
1047  	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1048  	unsigned long useroffset, usersize;
1049  
1050  	/* create a slab on which task_structs can be allocated */
1051  	task_struct_whitelist(&useroffset, &usersize);
1052  	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1053  			arch_task_struct_size, align,
1054  			SLAB_PANIC|SLAB_ACCOUNT,
1055  			useroffset, usersize, NULL);
1056  
1057  	/* do the arch specific task caches init */
1058  	arch_task_cache_init();
1059  
1060  	set_max_threads(MAX_THREADS);
1061  
1062  	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063  	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064  	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065  		init_task.signal->rlim[RLIMIT_NPROC];
1066  
1067  	for (i = 0; i < UCOUNT_COUNTS; i++)
1068  		init_user_ns.ucount_max[i] = max_threads/2;
1069  
1070  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1071  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1072  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073  	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1074  
1075  #ifdef CONFIG_VMAP_STACK
1076  	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077  			  NULL, free_vm_stack_cache);
1078  #endif
1079  
1080  	scs_init();
1081  
1082  	lockdep_init_task(&init_task);
1083  	uprobes_init();
1084  }
1085  
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1086  int __weak arch_dup_task_struct(struct task_struct *dst,
1087  					       struct task_struct *src)
1088  {
1089  	*dst = *src;
1090  	return 0;
1091  }
1092  
set_task_stack_end_magic(struct task_struct * tsk)1093  void set_task_stack_end_magic(struct task_struct *tsk)
1094  {
1095  	unsigned long *stackend;
1096  
1097  	stackend = end_of_stack(tsk);
1098  	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1099  }
1100  
dup_task_struct(struct task_struct * orig,int node)1101  static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102  {
1103  	struct task_struct *tsk;
1104  	int err;
1105  
1106  	if (node == NUMA_NO_NODE)
1107  		node = tsk_fork_get_node(orig);
1108  	tsk = alloc_task_struct_node(node);
1109  	if (!tsk)
1110  		return NULL;
1111  
1112  	err = arch_dup_task_struct(tsk, orig);
1113  	if (err)
1114  		goto free_tsk;
1115  
1116  	err = alloc_thread_stack_node(tsk, node);
1117  	if (err)
1118  		goto free_tsk;
1119  
1120  #ifdef CONFIG_THREAD_INFO_IN_TASK
1121  	refcount_set(&tsk->stack_refcount, 1);
1122  #endif
1123  	account_kernel_stack(tsk, 1);
1124  
1125  	err = scs_prepare(tsk, node);
1126  	if (err)
1127  		goto free_stack;
1128  
1129  #ifdef CONFIG_SECCOMP
1130  	/*
1131  	 * We must handle setting up seccomp filters once we're under
1132  	 * the sighand lock in case orig has changed between now and
1133  	 * then. Until then, filter must be NULL to avoid messing up
1134  	 * the usage counts on the error path calling free_task.
1135  	 */
1136  	tsk->seccomp.filter = NULL;
1137  #endif
1138  
1139  	setup_thread_stack(tsk, orig);
1140  	clear_user_return_notifier(tsk);
1141  	clear_tsk_need_resched(tsk);
1142  	set_task_stack_end_magic(tsk);
1143  	clear_syscall_work_syscall_user_dispatch(tsk);
1144  
1145  #ifdef CONFIG_STACKPROTECTOR
1146  	tsk->stack_canary = get_random_canary();
1147  #endif
1148  	if (orig->cpus_ptr == &orig->cpus_mask)
1149  		tsk->cpus_ptr = &tsk->cpus_mask;
1150  	dup_user_cpus_ptr(tsk, orig, node);
1151  
1152  	/*
1153  	 * One for the user space visible state that goes away when reaped.
1154  	 * One for the scheduler.
1155  	 */
1156  	refcount_set(&tsk->rcu_users, 2);
1157  	/* One for the rcu users */
1158  	refcount_set(&tsk->usage, 1);
1159  #ifdef CONFIG_BLK_DEV_IO_TRACE
1160  	tsk->btrace_seq = 0;
1161  #endif
1162  	tsk->splice_pipe = NULL;
1163  	tsk->task_frag.page = NULL;
1164  	tsk->wake_q.next = NULL;
1165  	tsk->worker_private = NULL;
1166  
1167  	kcov_task_init(tsk);
1168  	kmsan_task_create(tsk);
1169  	kmap_local_fork(tsk);
1170  
1171  #ifdef CONFIG_FAULT_INJECTION
1172  	tsk->fail_nth = 0;
1173  #endif
1174  
1175  #ifdef CONFIG_BLK_CGROUP
1176  	tsk->throttle_disk = NULL;
1177  	tsk->use_memdelay = 0;
1178  #endif
1179  
1180  #ifdef CONFIG_ARCH_HAS_CPU_PASID
1181  	tsk->pasid_activated = 0;
1182  #endif
1183  
1184  #ifdef CONFIG_MEMCG
1185  	tsk->active_memcg = NULL;
1186  #endif
1187  
1188  #ifdef CONFIG_CPU_SUP_INTEL
1189  	tsk->reported_split_lock = 0;
1190  #endif
1191  
1192  #ifdef CONFIG_SCHED_MM_CID
1193  	tsk->mm_cid = -1;
1194  	tsk->last_mm_cid = -1;
1195  	tsk->mm_cid_active = 0;
1196  	tsk->migrate_from_cpu = -1;
1197  #endif
1198  	return tsk;
1199  
1200  free_stack:
1201  	exit_task_stack_account(tsk);
1202  	free_thread_stack(tsk);
1203  free_tsk:
1204  	free_task_struct(tsk);
1205  	return NULL;
1206  }
1207  
1208  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209  
1210  static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211  
coredump_filter_setup(char * s)1212  static int __init coredump_filter_setup(char *s)
1213  {
1214  	default_dump_filter =
1215  		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216  		MMF_DUMP_FILTER_MASK;
1217  	return 1;
1218  }
1219  
1220  __setup("coredump_filter=", coredump_filter_setup);
1221  
1222  #include <linux/init_task.h>
1223  
mm_init_aio(struct mm_struct * mm)1224  static void mm_init_aio(struct mm_struct *mm)
1225  {
1226  #ifdef CONFIG_AIO
1227  	spin_lock_init(&mm->ioctx_lock);
1228  	mm->ioctx_table = NULL;
1229  #endif
1230  }
1231  
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1232  static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233  					   struct task_struct *p)
1234  {
1235  #ifdef CONFIG_MEMCG
1236  	if (mm->owner == p)
1237  		WRITE_ONCE(mm->owner, NULL);
1238  #endif
1239  }
1240  
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1241  static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242  {
1243  #ifdef CONFIG_MEMCG
1244  	mm->owner = p;
1245  #endif
1246  }
1247  
mm_init_uprobes_state(struct mm_struct * mm)1248  static void mm_init_uprobes_state(struct mm_struct *mm)
1249  {
1250  #ifdef CONFIG_UPROBES
1251  	mm->uprobes_state.xol_area = NULL;
1252  #endif
1253  }
1254  
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1255  static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256  	struct user_namespace *user_ns)
1257  {
1258  	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1259  	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1260  	atomic_set(&mm->mm_users, 1);
1261  	atomic_set(&mm->mm_count, 1);
1262  	seqcount_init(&mm->write_protect_seq);
1263  	mmap_init_lock(mm);
1264  	INIT_LIST_HEAD(&mm->mmlist);
1265  #ifdef CONFIG_PER_VMA_LOCK
1266  	mm->mm_lock_seq = 0;
1267  #endif
1268  	mm_pgtables_bytes_init(mm);
1269  	mm->map_count = 0;
1270  	mm->locked_vm = 0;
1271  	atomic64_set(&mm->pinned_vm, 0);
1272  	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1273  	spin_lock_init(&mm->page_table_lock);
1274  	spin_lock_init(&mm->arg_lock);
1275  	mm_init_cpumask(mm);
1276  	mm_init_aio(mm);
1277  	mm_init_owner(mm, p);
1278  	mm_pasid_init(mm);
1279  	RCU_INIT_POINTER(mm->exe_file, NULL);
1280  	mmu_notifier_subscriptions_init(mm);
1281  	init_tlb_flush_pending(mm);
1282  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1283  	mm->pmd_huge_pte = NULL;
1284  #endif
1285  	mm_init_uprobes_state(mm);
1286  	hugetlb_count_init(mm);
1287  
1288  	if (current->mm) {
1289  		mm->flags = mmf_init_flags(current->mm->flags);
1290  		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291  	} else {
1292  		mm->flags = default_dump_filter;
1293  		mm->def_flags = 0;
1294  	}
1295  
1296  	if (mm_alloc_pgd(mm))
1297  		goto fail_nopgd;
1298  
1299  	if (init_new_context(p, mm))
1300  		goto fail_nocontext;
1301  
1302  	if (mm_alloc_cid(mm))
1303  		goto fail_cid;
1304  
1305  	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306  				     NR_MM_COUNTERS))
1307  		goto fail_pcpu;
1308  
1309  	mm->user_ns = get_user_ns(user_ns);
1310  	lru_gen_init_mm(mm);
1311  	return mm;
1312  
1313  fail_pcpu:
1314  	mm_destroy_cid(mm);
1315  fail_cid:
1316  	destroy_context(mm);
1317  fail_nocontext:
1318  	mm_free_pgd(mm);
1319  fail_nopgd:
1320  	free_mm(mm);
1321  	return NULL;
1322  }
1323  
1324  /*
1325   * Allocate and initialize an mm_struct.
1326   */
mm_alloc(void)1327  struct mm_struct *mm_alloc(void)
1328  {
1329  	struct mm_struct *mm;
1330  
1331  	mm = allocate_mm();
1332  	if (!mm)
1333  		return NULL;
1334  
1335  	memset(mm, 0, sizeof(*mm));
1336  	return mm_init(mm, current, current_user_ns());
1337  }
1338  EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339  
__mmput(struct mm_struct * mm)1340  static inline void __mmput(struct mm_struct *mm)
1341  {
1342  	VM_BUG_ON(atomic_read(&mm->mm_users));
1343  
1344  	uprobe_clear_state(mm);
1345  	exit_aio(mm);
1346  	ksm_exit(mm);
1347  	khugepaged_exit(mm); /* must run before exit_mmap */
1348  	exit_mmap(mm);
1349  	mm_put_huge_zero_folio(mm);
1350  	set_mm_exe_file(mm, NULL);
1351  	if (!list_empty(&mm->mmlist)) {
1352  		spin_lock(&mmlist_lock);
1353  		list_del(&mm->mmlist);
1354  		spin_unlock(&mmlist_lock);
1355  	}
1356  	if (mm->binfmt)
1357  		module_put(mm->binfmt->module);
1358  	lru_gen_del_mm(mm);
1359  	mmdrop(mm);
1360  }
1361  
1362  /*
1363   * Decrement the use count and release all resources for an mm.
1364   */
mmput(struct mm_struct * mm)1365  void mmput(struct mm_struct *mm)
1366  {
1367  	might_sleep();
1368  
1369  	if (atomic_dec_and_test(&mm->mm_users))
1370  		__mmput(mm);
1371  }
1372  EXPORT_SYMBOL_GPL(mmput);
1373  
1374  #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1375  static void mmput_async_fn(struct work_struct *work)
1376  {
1377  	struct mm_struct *mm = container_of(work, struct mm_struct,
1378  					    async_put_work);
1379  
1380  	__mmput(mm);
1381  }
1382  
mmput_async(struct mm_struct * mm)1383  void mmput_async(struct mm_struct *mm)
1384  {
1385  	if (atomic_dec_and_test(&mm->mm_users)) {
1386  		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387  		schedule_work(&mm->async_put_work);
1388  	}
1389  }
1390  EXPORT_SYMBOL_GPL(mmput_async);
1391  #endif
1392  
1393  /**
1394   * set_mm_exe_file - change a reference to the mm's executable file
1395   * @mm: The mm to change.
1396   * @new_exe_file: The new file to use.
1397   *
1398   * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399   *
1400   * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401   * invocations: in mmput() nobody alive left, in execve it happens before
1402   * the new mm is made visible to anyone.
1403   *
1404   * Can only fail if new_exe_file != NULL.
1405   */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1406  int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407  {
1408  	struct file *old_exe_file;
1409  
1410  	/*
1411  	 * It is safe to dereference the exe_file without RCU as
1412  	 * this function is only called if nobody else can access
1413  	 * this mm -- see comment above for justification.
1414  	 */
1415  	old_exe_file = rcu_dereference_raw(mm->exe_file);
1416  
1417  	if (new_exe_file)
1418  		get_file(new_exe_file);
1419  	rcu_assign_pointer(mm->exe_file, new_exe_file);
1420  	if (old_exe_file)
1421  		fput(old_exe_file);
1422  	return 0;
1423  }
1424  
1425  /**
1426   * replace_mm_exe_file - replace a reference to the mm's executable file
1427   * @mm: The mm to change.
1428   * @new_exe_file: The new file to use.
1429   *
1430   * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1431   *
1432   * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1433   */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1434  int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1435  {
1436  	struct vm_area_struct *vma;
1437  	struct file *old_exe_file;
1438  	int ret = 0;
1439  
1440  	/* Forbid mm->exe_file change if old file still mapped. */
1441  	old_exe_file = get_mm_exe_file(mm);
1442  	if (old_exe_file) {
1443  		VMA_ITERATOR(vmi, mm, 0);
1444  		mmap_read_lock(mm);
1445  		for_each_vma(vmi, vma) {
1446  			if (!vma->vm_file)
1447  				continue;
1448  			if (path_equal(&vma->vm_file->f_path,
1449  				       &old_exe_file->f_path)) {
1450  				ret = -EBUSY;
1451  				break;
1452  			}
1453  		}
1454  		mmap_read_unlock(mm);
1455  		fput(old_exe_file);
1456  		if (ret)
1457  			return ret;
1458  	}
1459  
1460  	get_file(new_exe_file);
1461  
1462  	/* set the new file */
1463  	mmap_write_lock(mm);
1464  	old_exe_file = rcu_dereference_raw(mm->exe_file);
1465  	rcu_assign_pointer(mm->exe_file, new_exe_file);
1466  	mmap_write_unlock(mm);
1467  
1468  	if (old_exe_file)
1469  		fput(old_exe_file);
1470  	return 0;
1471  }
1472  
1473  /**
1474   * get_mm_exe_file - acquire a reference to the mm's executable file
1475   * @mm: The mm of interest.
1476   *
1477   * Returns %NULL if mm has no associated executable file.
1478   * User must release file via fput().
1479   */
get_mm_exe_file(struct mm_struct * mm)1480  struct file *get_mm_exe_file(struct mm_struct *mm)
1481  {
1482  	struct file *exe_file;
1483  
1484  	rcu_read_lock();
1485  	exe_file = get_file_rcu(&mm->exe_file);
1486  	rcu_read_unlock();
1487  	return exe_file;
1488  }
1489  
1490  /**
1491   * get_task_exe_file - acquire a reference to the task's executable file
1492   * @task: The task.
1493   *
1494   * Returns %NULL if task's mm (if any) has no associated executable file or
1495   * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1496   * User must release file via fput().
1497   */
get_task_exe_file(struct task_struct * task)1498  struct file *get_task_exe_file(struct task_struct *task)
1499  {
1500  	struct file *exe_file = NULL;
1501  	struct mm_struct *mm;
1502  
1503  	task_lock(task);
1504  	mm = task->mm;
1505  	if (mm) {
1506  		if (!(task->flags & PF_KTHREAD))
1507  			exe_file = get_mm_exe_file(mm);
1508  	}
1509  	task_unlock(task);
1510  	return exe_file;
1511  }
1512  
1513  /**
1514   * get_task_mm - acquire a reference to the task's mm
1515   * @task: The task.
1516   *
1517   * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1518   * this kernel workthread has transiently adopted a user mm with use_mm,
1519   * to do its AIO) is not set and if so returns a reference to it, after
1520   * bumping up the use count.  User must release the mm via mmput()
1521   * after use.  Typically used by /proc and ptrace.
1522   */
get_task_mm(struct task_struct * task)1523  struct mm_struct *get_task_mm(struct task_struct *task)
1524  {
1525  	struct mm_struct *mm;
1526  
1527  	if (task->flags & PF_KTHREAD)
1528  		return NULL;
1529  
1530  	task_lock(task);
1531  	mm = task->mm;
1532  	if (mm)
1533  		mmget(mm);
1534  	task_unlock(task);
1535  	return mm;
1536  }
1537  EXPORT_SYMBOL_GPL(get_task_mm);
1538  
mm_access(struct task_struct * task,unsigned int mode)1539  struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1540  {
1541  	struct mm_struct *mm;
1542  	int err;
1543  
1544  	err =  down_read_killable(&task->signal->exec_update_lock);
1545  	if (err)
1546  		return ERR_PTR(err);
1547  
1548  	mm = get_task_mm(task);
1549  	if (mm && mm != current->mm &&
1550  			!ptrace_may_access(task, mode)) {
1551  		mmput(mm);
1552  		mm = ERR_PTR(-EACCES);
1553  	}
1554  	up_read(&task->signal->exec_update_lock);
1555  
1556  	return mm;
1557  }
1558  
complete_vfork_done(struct task_struct * tsk)1559  static void complete_vfork_done(struct task_struct *tsk)
1560  {
1561  	struct completion *vfork;
1562  
1563  	task_lock(tsk);
1564  	vfork = tsk->vfork_done;
1565  	if (likely(vfork)) {
1566  		tsk->vfork_done = NULL;
1567  		complete(vfork);
1568  	}
1569  	task_unlock(tsk);
1570  }
1571  
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1572  static int wait_for_vfork_done(struct task_struct *child,
1573  				struct completion *vfork)
1574  {
1575  	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1576  	int killed;
1577  
1578  	cgroup_enter_frozen();
1579  	killed = wait_for_completion_state(vfork, state);
1580  	cgroup_leave_frozen(false);
1581  
1582  	if (killed) {
1583  		task_lock(child);
1584  		child->vfork_done = NULL;
1585  		task_unlock(child);
1586  	}
1587  
1588  	put_task_struct(child);
1589  	return killed;
1590  }
1591  
1592  /* Please note the differences between mmput and mm_release.
1593   * mmput is called whenever we stop holding onto a mm_struct,
1594   * error success whatever.
1595   *
1596   * mm_release is called after a mm_struct has been removed
1597   * from the current process.
1598   *
1599   * This difference is important for error handling, when we
1600   * only half set up a mm_struct for a new process and need to restore
1601   * the old one.  Because we mmput the new mm_struct before
1602   * restoring the old one. . .
1603   * Eric Biederman 10 January 1998
1604   */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1605  static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1606  {
1607  	uprobe_free_utask(tsk);
1608  
1609  	/* Get rid of any cached register state */
1610  	deactivate_mm(tsk, mm);
1611  
1612  	/*
1613  	 * Signal userspace if we're not exiting with a core dump
1614  	 * because we want to leave the value intact for debugging
1615  	 * purposes.
1616  	 */
1617  	if (tsk->clear_child_tid) {
1618  		if (atomic_read(&mm->mm_users) > 1) {
1619  			/*
1620  			 * We don't check the error code - if userspace has
1621  			 * not set up a proper pointer then tough luck.
1622  			 */
1623  			put_user(0, tsk->clear_child_tid);
1624  			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1625  					1, NULL, NULL, 0, 0);
1626  		}
1627  		tsk->clear_child_tid = NULL;
1628  	}
1629  
1630  	/*
1631  	 * All done, finally we can wake up parent and return this mm to him.
1632  	 * Also kthread_stop() uses this completion for synchronization.
1633  	 */
1634  	if (tsk->vfork_done)
1635  		complete_vfork_done(tsk);
1636  }
1637  
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1638  void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1639  {
1640  	futex_exit_release(tsk);
1641  	mm_release(tsk, mm);
1642  }
1643  
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1644  void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1645  {
1646  	futex_exec_release(tsk);
1647  	mm_release(tsk, mm);
1648  }
1649  
1650  /**
1651   * dup_mm() - duplicates an existing mm structure
1652   * @tsk: the task_struct with which the new mm will be associated.
1653   * @oldmm: the mm to duplicate.
1654   *
1655   * Allocates a new mm structure and duplicates the provided @oldmm structure
1656   * content into it.
1657   *
1658   * Return: the duplicated mm or NULL on failure.
1659   */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1660  static struct mm_struct *dup_mm(struct task_struct *tsk,
1661  				struct mm_struct *oldmm)
1662  {
1663  	struct mm_struct *mm;
1664  	int err;
1665  
1666  	mm = allocate_mm();
1667  	if (!mm)
1668  		goto fail_nomem;
1669  
1670  	memcpy(mm, oldmm, sizeof(*mm));
1671  
1672  	if (!mm_init(mm, tsk, mm->user_ns))
1673  		goto fail_nomem;
1674  
1675  	err = dup_mmap(mm, oldmm);
1676  	if (err)
1677  		goto free_pt;
1678  
1679  	mm->hiwater_rss = get_mm_rss(mm);
1680  	mm->hiwater_vm = mm->total_vm;
1681  
1682  	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1683  		goto free_pt;
1684  
1685  	return mm;
1686  
1687  free_pt:
1688  	/* don't put binfmt in mmput, we haven't got module yet */
1689  	mm->binfmt = NULL;
1690  	mm_init_owner(mm, NULL);
1691  	mmput(mm);
1692  
1693  fail_nomem:
1694  	return NULL;
1695  }
1696  
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1697  static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1698  {
1699  	struct mm_struct *mm, *oldmm;
1700  
1701  	tsk->min_flt = tsk->maj_flt = 0;
1702  	tsk->nvcsw = tsk->nivcsw = 0;
1703  #ifdef CONFIG_DETECT_HUNG_TASK
1704  	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1705  	tsk->last_switch_time = 0;
1706  #endif
1707  
1708  	tsk->mm = NULL;
1709  	tsk->active_mm = NULL;
1710  
1711  	/*
1712  	 * Are we cloning a kernel thread?
1713  	 *
1714  	 * We need to steal a active VM for that..
1715  	 */
1716  	oldmm = current->mm;
1717  	if (!oldmm)
1718  		return 0;
1719  
1720  	if (clone_flags & CLONE_VM) {
1721  		mmget(oldmm);
1722  		mm = oldmm;
1723  	} else {
1724  		mm = dup_mm(tsk, current->mm);
1725  		if (!mm)
1726  			return -ENOMEM;
1727  	}
1728  
1729  	tsk->mm = mm;
1730  	tsk->active_mm = mm;
1731  	sched_mm_cid_fork(tsk);
1732  	return 0;
1733  }
1734  
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1735  static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1736  {
1737  	struct fs_struct *fs = current->fs;
1738  	if (clone_flags & CLONE_FS) {
1739  		/* tsk->fs is already what we want */
1740  		spin_lock(&fs->lock);
1741  		/* "users" and "in_exec" locked for check_unsafe_exec() */
1742  		if (fs->in_exec) {
1743  			spin_unlock(&fs->lock);
1744  			return -EAGAIN;
1745  		}
1746  		fs->users++;
1747  		spin_unlock(&fs->lock);
1748  		return 0;
1749  	}
1750  	tsk->fs = copy_fs_struct(fs);
1751  	if (!tsk->fs)
1752  		return -ENOMEM;
1753  	return 0;
1754  }
1755  
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1756  static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1757  		      int no_files)
1758  {
1759  	struct files_struct *oldf, *newf;
1760  
1761  	/*
1762  	 * A background process may not have any files ...
1763  	 */
1764  	oldf = current->files;
1765  	if (!oldf)
1766  		return 0;
1767  
1768  	if (no_files) {
1769  		tsk->files = NULL;
1770  		return 0;
1771  	}
1772  
1773  	if (clone_flags & CLONE_FILES) {
1774  		atomic_inc(&oldf->count);
1775  		return 0;
1776  	}
1777  
1778  	newf = dup_fd(oldf, NULL);
1779  	if (IS_ERR(newf))
1780  		return PTR_ERR(newf);
1781  
1782  	tsk->files = newf;
1783  	return 0;
1784  }
1785  
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1786  static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1787  {
1788  	struct sighand_struct *sig;
1789  
1790  	if (clone_flags & CLONE_SIGHAND) {
1791  		refcount_inc(&current->sighand->count);
1792  		return 0;
1793  	}
1794  	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1795  	RCU_INIT_POINTER(tsk->sighand, sig);
1796  	if (!sig)
1797  		return -ENOMEM;
1798  
1799  	refcount_set(&sig->count, 1);
1800  	spin_lock_irq(&current->sighand->siglock);
1801  	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1802  	spin_unlock_irq(&current->sighand->siglock);
1803  
1804  	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1805  	if (clone_flags & CLONE_CLEAR_SIGHAND)
1806  		flush_signal_handlers(tsk, 0);
1807  
1808  	return 0;
1809  }
1810  
__cleanup_sighand(struct sighand_struct * sighand)1811  void __cleanup_sighand(struct sighand_struct *sighand)
1812  {
1813  	if (refcount_dec_and_test(&sighand->count)) {
1814  		signalfd_cleanup(sighand);
1815  		/*
1816  		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1817  		 * without an RCU grace period, see __lock_task_sighand().
1818  		 */
1819  		kmem_cache_free(sighand_cachep, sighand);
1820  	}
1821  }
1822  
1823  /*
1824   * Initialize POSIX timer handling for a thread group.
1825   */
posix_cpu_timers_init_group(struct signal_struct * sig)1826  static void posix_cpu_timers_init_group(struct signal_struct *sig)
1827  {
1828  	struct posix_cputimers *pct = &sig->posix_cputimers;
1829  	unsigned long cpu_limit;
1830  
1831  	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1832  	posix_cputimers_group_init(pct, cpu_limit);
1833  }
1834  
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1835  static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1836  {
1837  	struct signal_struct *sig;
1838  
1839  	if (clone_flags & CLONE_THREAD)
1840  		return 0;
1841  
1842  	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1843  	tsk->signal = sig;
1844  	if (!sig)
1845  		return -ENOMEM;
1846  
1847  	sig->nr_threads = 1;
1848  	sig->quick_threads = 1;
1849  	atomic_set(&sig->live, 1);
1850  	refcount_set(&sig->sigcnt, 1);
1851  
1852  	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1853  	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1854  	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1855  
1856  	init_waitqueue_head(&sig->wait_chldexit);
1857  	sig->curr_target = tsk;
1858  	init_sigpending(&sig->shared_pending);
1859  	INIT_HLIST_HEAD(&sig->multiprocess);
1860  	seqlock_init(&sig->stats_lock);
1861  	prev_cputime_init(&sig->prev_cputime);
1862  
1863  #ifdef CONFIG_POSIX_TIMERS
1864  	INIT_HLIST_HEAD(&sig->posix_timers);
1865  	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866  	sig->real_timer.function = it_real_fn;
1867  #endif
1868  
1869  	task_lock(current->group_leader);
1870  	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1871  	task_unlock(current->group_leader);
1872  
1873  	posix_cpu_timers_init_group(sig);
1874  
1875  	tty_audit_fork(sig);
1876  	sched_autogroup_fork(sig);
1877  
1878  	sig->oom_score_adj = current->signal->oom_score_adj;
1879  	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1880  
1881  	mutex_init(&sig->cred_guard_mutex);
1882  	init_rwsem(&sig->exec_update_lock);
1883  
1884  	return 0;
1885  }
1886  
copy_seccomp(struct task_struct * p)1887  static void copy_seccomp(struct task_struct *p)
1888  {
1889  #ifdef CONFIG_SECCOMP
1890  	/*
1891  	 * Must be called with sighand->lock held, which is common to
1892  	 * all threads in the group. Holding cred_guard_mutex is not
1893  	 * needed because this new task is not yet running and cannot
1894  	 * be racing exec.
1895  	 */
1896  	assert_spin_locked(&current->sighand->siglock);
1897  
1898  	/* Ref-count the new filter user, and assign it. */
1899  	get_seccomp_filter(current);
1900  	p->seccomp = current->seccomp;
1901  
1902  	/*
1903  	 * Explicitly enable no_new_privs here in case it got set
1904  	 * between the task_struct being duplicated and holding the
1905  	 * sighand lock. The seccomp state and nnp must be in sync.
1906  	 */
1907  	if (task_no_new_privs(current))
1908  		task_set_no_new_privs(p);
1909  
1910  	/*
1911  	 * If the parent gained a seccomp mode after copying thread
1912  	 * flags and between before we held the sighand lock, we have
1913  	 * to manually enable the seccomp thread flag here.
1914  	 */
1915  	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1916  		set_task_syscall_work(p, SECCOMP);
1917  #endif
1918  }
1919  
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1920  SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1921  {
1922  	current->clear_child_tid = tidptr;
1923  
1924  	return task_pid_vnr(current);
1925  }
1926  
rt_mutex_init_task(struct task_struct * p)1927  static void rt_mutex_init_task(struct task_struct *p)
1928  {
1929  	raw_spin_lock_init(&p->pi_lock);
1930  #ifdef CONFIG_RT_MUTEXES
1931  	p->pi_waiters = RB_ROOT_CACHED;
1932  	p->pi_top_task = NULL;
1933  	p->pi_blocked_on = NULL;
1934  #endif
1935  }
1936  
init_task_pid_links(struct task_struct * task)1937  static inline void init_task_pid_links(struct task_struct *task)
1938  {
1939  	enum pid_type type;
1940  
1941  	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1942  		INIT_HLIST_NODE(&task->pid_links[type]);
1943  }
1944  
1945  static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1946  init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1947  {
1948  	if (type == PIDTYPE_PID)
1949  		task->thread_pid = pid;
1950  	else
1951  		task->signal->pids[type] = pid;
1952  }
1953  
rcu_copy_process(struct task_struct * p)1954  static inline void rcu_copy_process(struct task_struct *p)
1955  {
1956  #ifdef CONFIG_PREEMPT_RCU
1957  	p->rcu_read_lock_nesting = 0;
1958  	p->rcu_read_unlock_special.s = 0;
1959  	p->rcu_blocked_node = NULL;
1960  	INIT_LIST_HEAD(&p->rcu_node_entry);
1961  #endif /* #ifdef CONFIG_PREEMPT_RCU */
1962  #ifdef CONFIG_TASKS_RCU
1963  	p->rcu_tasks_holdout = false;
1964  	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1965  	p->rcu_tasks_idle_cpu = -1;
1966  	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1967  #endif /* #ifdef CONFIG_TASKS_RCU */
1968  #ifdef CONFIG_TASKS_TRACE_RCU
1969  	p->trc_reader_nesting = 0;
1970  	p->trc_reader_special.s = 0;
1971  	INIT_LIST_HEAD(&p->trc_holdout_list);
1972  	INIT_LIST_HEAD(&p->trc_blkd_node);
1973  #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1974  }
1975  
1976  /**
1977   * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1978   * @pid:   the struct pid for which to create a pidfd
1979   * @flags: flags of the new @pidfd
1980   * @ret: Where to return the file for the pidfd.
1981   *
1982   * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1983   * caller's file descriptor table. The pidfd is reserved but not installed yet.
1984   *
1985   * The helper doesn't perform checks on @pid which makes it useful for pidfds
1986   * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1987   * pidfd file are prepared.
1988   *
1989   * If this function returns successfully the caller is responsible to either
1990   * call fd_install() passing the returned pidfd and pidfd file as arguments in
1991   * order to install the pidfd into its file descriptor table or they must use
1992   * put_unused_fd() and fput() on the returned pidfd and pidfd file
1993   * respectively.
1994   *
1995   * This function is useful when a pidfd must already be reserved but there
1996   * might still be points of failure afterwards and the caller wants to ensure
1997   * that no pidfd is leaked into its file descriptor table.
1998   *
1999   * Return: On success, a reserved pidfd is returned from the function and a new
2000   *         pidfd file is returned in the last argument to the function. On
2001   *         error, a negative error code is returned from the function and the
2002   *         last argument remains unchanged.
2003   */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2004  static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2005  {
2006  	int pidfd;
2007  	struct file *pidfd_file;
2008  
2009  	pidfd = get_unused_fd_flags(O_CLOEXEC);
2010  	if (pidfd < 0)
2011  		return pidfd;
2012  
2013  	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2014  	if (IS_ERR(pidfd_file)) {
2015  		put_unused_fd(pidfd);
2016  		return PTR_ERR(pidfd_file);
2017  	}
2018  	/*
2019  	 * anon_inode_getfile() ignores everything outside of the
2020  	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2021  	 */
2022  	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2023  	*ret = pidfd_file;
2024  	return pidfd;
2025  }
2026  
2027  /**
2028   * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2029   * @pid:   the struct pid for which to create a pidfd
2030   * @flags: flags of the new @pidfd
2031   * @ret: Where to return the pidfd.
2032   *
2033   * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2034   * caller's file descriptor table. The pidfd is reserved but not installed yet.
2035   *
2036   * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2037   * task identified by @pid must be a thread-group leader.
2038   *
2039   * If this function returns successfully the caller is responsible to either
2040   * call fd_install() passing the returned pidfd and pidfd file as arguments in
2041   * order to install the pidfd into its file descriptor table or they must use
2042   * put_unused_fd() and fput() on the returned pidfd and pidfd file
2043   * respectively.
2044   *
2045   * This function is useful when a pidfd must already be reserved but there
2046   * might still be points of failure afterwards and the caller wants to ensure
2047   * that no pidfd is leaked into its file descriptor table.
2048   *
2049   * Return: On success, a reserved pidfd is returned from the function and a new
2050   *         pidfd file is returned in the last argument to the function. On
2051   *         error, a negative error code is returned from the function and the
2052   *         last argument remains unchanged.
2053   */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2054  int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2055  {
2056  	bool thread = flags & PIDFD_THREAD;
2057  
2058  	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2059  		return -EINVAL;
2060  
2061  	return __pidfd_prepare(pid, flags, ret);
2062  }
2063  
__delayed_free_task(struct rcu_head * rhp)2064  static void __delayed_free_task(struct rcu_head *rhp)
2065  {
2066  	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2067  
2068  	free_task(tsk);
2069  }
2070  
delayed_free_task(struct task_struct * tsk)2071  static __always_inline void delayed_free_task(struct task_struct *tsk)
2072  {
2073  	if (IS_ENABLED(CONFIG_MEMCG))
2074  		call_rcu(&tsk->rcu, __delayed_free_task);
2075  	else
2076  		free_task(tsk);
2077  }
2078  
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2079  static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2080  {
2081  	/* Skip if kernel thread */
2082  	if (!tsk->mm)
2083  		return;
2084  
2085  	/* Skip if spawning a thread or using vfork */
2086  	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2087  		return;
2088  
2089  	/* We need to synchronize with __set_oom_adj */
2090  	mutex_lock(&oom_adj_mutex);
2091  	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2092  	/* Update the values in case they were changed after copy_signal */
2093  	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2094  	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2095  	mutex_unlock(&oom_adj_mutex);
2096  }
2097  
2098  #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2099  static void rv_task_fork(struct task_struct *p)
2100  {
2101  	int i;
2102  
2103  	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2104  		p->rv[i].da_mon.monitoring = false;
2105  }
2106  #else
2107  #define rv_task_fork(p) do {} while (0)
2108  #endif
2109  
2110  /*
2111   * This creates a new process as a copy of the old one,
2112   * but does not actually start it yet.
2113   *
2114   * It copies the registers, and all the appropriate
2115   * parts of the process environment (as per the clone
2116   * flags). The actual kick-off is left to the caller.
2117   */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2118  __latent_entropy struct task_struct *copy_process(
2119  					struct pid *pid,
2120  					int trace,
2121  					int node,
2122  					struct kernel_clone_args *args)
2123  {
2124  	int pidfd = -1, retval;
2125  	struct task_struct *p;
2126  	struct multiprocess_signals delayed;
2127  	struct file *pidfile = NULL;
2128  	const u64 clone_flags = args->flags;
2129  	struct nsproxy *nsp = current->nsproxy;
2130  
2131  	/*
2132  	 * Don't allow sharing the root directory with processes in a different
2133  	 * namespace
2134  	 */
2135  	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2136  		return ERR_PTR(-EINVAL);
2137  
2138  	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2139  		return ERR_PTR(-EINVAL);
2140  
2141  	/*
2142  	 * Thread groups must share signals as well, and detached threads
2143  	 * can only be started up within the thread group.
2144  	 */
2145  	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2146  		return ERR_PTR(-EINVAL);
2147  
2148  	/*
2149  	 * Shared signal handlers imply shared VM. By way of the above,
2150  	 * thread groups also imply shared VM. Blocking this case allows
2151  	 * for various simplifications in other code.
2152  	 */
2153  	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2154  		return ERR_PTR(-EINVAL);
2155  
2156  	/*
2157  	 * Siblings of global init remain as zombies on exit since they are
2158  	 * not reaped by their parent (swapper). To solve this and to avoid
2159  	 * multi-rooted process trees, prevent global and container-inits
2160  	 * from creating siblings.
2161  	 */
2162  	if ((clone_flags & CLONE_PARENT) &&
2163  				current->signal->flags & SIGNAL_UNKILLABLE)
2164  		return ERR_PTR(-EINVAL);
2165  
2166  	/*
2167  	 * If the new process will be in a different pid or user namespace
2168  	 * do not allow it to share a thread group with the forking task.
2169  	 */
2170  	if (clone_flags & CLONE_THREAD) {
2171  		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2172  		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2173  			return ERR_PTR(-EINVAL);
2174  	}
2175  
2176  	if (clone_flags & CLONE_PIDFD) {
2177  		/*
2178  		 * - CLONE_DETACHED is blocked so that we can potentially
2179  		 *   reuse it later for CLONE_PIDFD.
2180  		 */
2181  		if (clone_flags & CLONE_DETACHED)
2182  			return ERR_PTR(-EINVAL);
2183  	}
2184  
2185  	/*
2186  	 * Force any signals received before this point to be delivered
2187  	 * before the fork happens.  Collect up signals sent to multiple
2188  	 * processes that happen during the fork and delay them so that
2189  	 * they appear to happen after the fork.
2190  	 */
2191  	sigemptyset(&delayed.signal);
2192  	INIT_HLIST_NODE(&delayed.node);
2193  
2194  	spin_lock_irq(&current->sighand->siglock);
2195  	if (!(clone_flags & CLONE_THREAD))
2196  		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2197  	recalc_sigpending();
2198  	spin_unlock_irq(&current->sighand->siglock);
2199  	retval = -ERESTARTNOINTR;
2200  	if (task_sigpending(current))
2201  		goto fork_out;
2202  
2203  	retval = -ENOMEM;
2204  	p = dup_task_struct(current, node);
2205  	if (!p)
2206  		goto fork_out;
2207  	p->flags &= ~PF_KTHREAD;
2208  	if (args->kthread)
2209  		p->flags |= PF_KTHREAD;
2210  	if (args->user_worker) {
2211  		/*
2212  		 * Mark us a user worker, and block any signal that isn't
2213  		 * fatal or STOP
2214  		 */
2215  		p->flags |= PF_USER_WORKER;
2216  		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2217  	}
2218  	if (args->io_thread)
2219  		p->flags |= PF_IO_WORKER;
2220  
2221  	if (args->name)
2222  		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2223  
2224  	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2225  	/*
2226  	 * Clear TID on mm_release()?
2227  	 */
2228  	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2229  
2230  	ftrace_graph_init_task(p);
2231  
2232  	rt_mutex_init_task(p);
2233  
2234  	lockdep_assert_irqs_enabled();
2235  #ifdef CONFIG_PROVE_LOCKING
2236  	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2237  #endif
2238  	retval = copy_creds(p, clone_flags);
2239  	if (retval < 0)
2240  		goto bad_fork_free;
2241  
2242  	retval = -EAGAIN;
2243  	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2244  		if (p->real_cred->user != INIT_USER &&
2245  		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2246  			goto bad_fork_cleanup_count;
2247  	}
2248  	current->flags &= ~PF_NPROC_EXCEEDED;
2249  
2250  	/*
2251  	 * If multiple threads are within copy_process(), then this check
2252  	 * triggers too late. This doesn't hurt, the check is only there
2253  	 * to stop root fork bombs.
2254  	 */
2255  	retval = -EAGAIN;
2256  	if (data_race(nr_threads >= max_threads))
2257  		goto bad_fork_cleanup_count;
2258  
2259  	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2260  	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2261  	p->flags |= PF_FORKNOEXEC;
2262  	INIT_LIST_HEAD(&p->children);
2263  	INIT_LIST_HEAD(&p->sibling);
2264  	rcu_copy_process(p);
2265  	p->vfork_done = NULL;
2266  	spin_lock_init(&p->alloc_lock);
2267  
2268  	init_sigpending(&p->pending);
2269  
2270  	p->utime = p->stime = p->gtime = 0;
2271  #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272  	p->utimescaled = p->stimescaled = 0;
2273  #endif
2274  	prev_cputime_init(&p->prev_cputime);
2275  
2276  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2277  	seqcount_init(&p->vtime.seqcount);
2278  	p->vtime.starttime = 0;
2279  	p->vtime.state = VTIME_INACTIVE;
2280  #endif
2281  
2282  #ifdef CONFIG_IO_URING
2283  	p->io_uring = NULL;
2284  #endif
2285  
2286  	p->default_timer_slack_ns = current->timer_slack_ns;
2287  
2288  #ifdef CONFIG_PSI
2289  	p->psi_flags = 0;
2290  #endif
2291  
2292  	task_io_accounting_init(&p->ioac);
2293  	acct_clear_integrals(p);
2294  
2295  	posix_cputimers_init(&p->posix_cputimers);
2296  	tick_dep_init_task(p);
2297  
2298  	p->io_context = NULL;
2299  	audit_set_context(p, NULL);
2300  	cgroup_fork(p);
2301  	if (args->kthread) {
2302  		if (!set_kthread_struct(p))
2303  			goto bad_fork_cleanup_delayacct;
2304  	}
2305  #ifdef CONFIG_NUMA
2306  	p->mempolicy = mpol_dup(p->mempolicy);
2307  	if (IS_ERR(p->mempolicy)) {
2308  		retval = PTR_ERR(p->mempolicy);
2309  		p->mempolicy = NULL;
2310  		goto bad_fork_cleanup_delayacct;
2311  	}
2312  #endif
2313  #ifdef CONFIG_CPUSETS
2314  	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2315  	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2316  #endif
2317  #ifdef CONFIG_TRACE_IRQFLAGS
2318  	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2319  	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2320  	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2321  	p->softirqs_enabled		= 1;
2322  	p->softirq_context		= 0;
2323  #endif
2324  
2325  	p->pagefault_disabled = 0;
2326  
2327  #ifdef CONFIG_LOCKDEP
2328  	lockdep_init_task(p);
2329  #endif
2330  
2331  #ifdef CONFIG_DEBUG_MUTEXES
2332  	p->blocked_on = NULL; /* not blocked yet */
2333  #endif
2334  #ifdef CONFIG_BCACHE
2335  	p->sequential_io	= 0;
2336  	p->sequential_io_avg	= 0;
2337  #endif
2338  #ifdef CONFIG_BPF_SYSCALL
2339  	RCU_INIT_POINTER(p->bpf_storage, NULL);
2340  	p->bpf_ctx = NULL;
2341  #endif
2342  
2343  	/* Perform scheduler related setup. Assign this task to a CPU. */
2344  	retval = sched_fork(clone_flags, p);
2345  	if (retval)
2346  		goto bad_fork_cleanup_policy;
2347  
2348  	retval = perf_event_init_task(p, clone_flags);
2349  	if (retval)
2350  		goto bad_fork_sched_cancel_fork;
2351  	retval = audit_alloc(p);
2352  	if (retval)
2353  		goto bad_fork_cleanup_perf;
2354  	/* copy all the process information */
2355  	shm_init_task(p);
2356  	retval = security_task_alloc(p, clone_flags);
2357  	if (retval)
2358  		goto bad_fork_cleanup_audit;
2359  	retval = copy_semundo(clone_flags, p);
2360  	if (retval)
2361  		goto bad_fork_cleanup_security;
2362  	retval = copy_files(clone_flags, p, args->no_files);
2363  	if (retval)
2364  		goto bad_fork_cleanup_semundo;
2365  	retval = copy_fs(clone_flags, p);
2366  	if (retval)
2367  		goto bad_fork_cleanup_files;
2368  	retval = copy_sighand(clone_flags, p);
2369  	if (retval)
2370  		goto bad_fork_cleanup_fs;
2371  	retval = copy_signal(clone_flags, p);
2372  	if (retval)
2373  		goto bad_fork_cleanup_sighand;
2374  	retval = copy_mm(clone_flags, p);
2375  	if (retval)
2376  		goto bad_fork_cleanup_signal;
2377  	retval = copy_namespaces(clone_flags, p);
2378  	if (retval)
2379  		goto bad_fork_cleanup_mm;
2380  	retval = copy_io(clone_flags, p);
2381  	if (retval)
2382  		goto bad_fork_cleanup_namespaces;
2383  	retval = copy_thread(p, args);
2384  	if (retval)
2385  		goto bad_fork_cleanup_io;
2386  
2387  	stackleak_task_init(p);
2388  
2389  	if (pid != &init_struct_pid) {
2390  		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2391  				args->set_tid_size);
2392  		if (IS_ERR(pid)) {
2393  			retval = PTR_ERR(pid);
2394  			goto bad_fork_cleanup_thread;
2395  		}
2396  	}
2397  
2398  	/*
2399  	 * This has to happen after we've potentially unshared the file
2400  	 * descriptor table (so that the pidfd doesn't leak into the child
2401  	 * if the fd table isn't shared).
2402  	 */
2403  	if (clone_flags & CLONE_PIDFD) {
2404  		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2405  
2406  		/* Note that no task has been attached to @pid yet. */
2407  		retval = __pidfd_prepare(pid, flags, &pidfile);
2408  		if (retval < 0)
2409  			goto bad_fork_free_pid;
2410  		pidfd = retval;
2411  
2412  		retval = put_user(pidfd, args->pidfd);
2413  		if (retval)
2414  			goto bad_fork_put_pidfd;
2415  	}
2416  
2417  #ifdef CONFIG_BLOCK
2418  	p->plug = NULL;
2419  #endif
2420  	futex_init_task(p);
2421  
2422  	/*
2423  	 * sigaltstack should be cleared when sharing the same VM
2424  	 */
2425  	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2426  		sas_ss_reset(p);
2427  
2428  	/*
2429  	 * Syscall tracing and stepping should be turned off in the
2430  	 * child regardless of CLONE_PTRACE.
2431  	 */
2432  	user_disable_single_step(p);
2433  	clear_task_syscall_work(p, SYSCALL_TRACE);
2434  #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2435  	clear_task_syscall_work(p, SYSCALL_EMU);
2436  #endif
2437  	clear_tsk_latency_tracing(p);
2438  
2439  	/* ok, now we should be set up.. */
2440  	p->pid = pid_nr(pid);
2441  	if (clone_flags & CLONE_THREAD) {
2442  		p->group_leader = current->group_leader;
2443  		p->tgid = current->tgid;
2444  	} else {
2445  		p->group_leader = p;
2446  		p->tgid = p->pid;
2447  	}
2448  
2449  	p->nr_dirtied = 0;
2450  	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2451  	p->dirty_paused_when = 0;
2452  
2453  	p->pdeath_signal = 0;
2454  	p->task_works = NULL;
2455  	clear_posix_cputimers_work(p);
2456  
2457  #ifdef CONFIG_KRETPROBES
2458  	p->kretprobe_instances.first = NULL;
2459  #endif
2460  #ifdef CONFIG_RETHOOK
2461  	p->rethooks.first = NULL;
2462  #endif
2463  
2464  	/*
2465  	 * Ensure that the cgroup subsystem policies allow the new process to be
2466  	 * forked. It should be noted that the new process's css_set can be changed
2467  	 * between here and cgroup_post_fork() if an organisation operation is in
2468  	 * progress.
2469  	 */
2470  	retval = cgroup_can_fork(p, args);
2471  	if (retval)
2472  		goto bad_fork_put_pidfd;
2473  
2474  	/*
2475  	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2476  	 * the new task on the correct runqueue. All this *before* the task
2477  	 * becomes visible.
2478  	 *
2479  	 * This isn't part of ->can_fork() because while the re-cloning is
2480  	 * cgroup specific, it unconditionally needs to place the task on a
2481  	 * runqueue.
2482  	 */
2483  	retval = sched_cgroup_fork(p, args);
2484  	if (retval)
2485  		goto bad_fork_cancel_cgroup;
2486  
2487  	/*
2488  	 * From this point on we must avoid any synchronous user-space
2489  	 * communication until we take the tasklist-lock. In particular, we do
2490  	 * not want user-space to be able to predict the process start-time by
2491  	 * stalling fork(2) after we recorded the start_time but before it is
2492  	 * visible to the system.
2493  	 */
2494  
2495  	p->start_time = ktime_get_ns();
2496  	p->start_boottime = ktime_get_boottime_ns();
2497  
2498  	/*
2499  	 * Make it visible to the rest of the system, but dont wake it up yet.
2500  	 * Need tasklist lock for parent etc handling!
2501  	 */
2502  	write_lock_irq(&tasklist_lock);
2503  
2504  	/* CLONE_PARENT re-uses the old parent */
2505  	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2506  		p->real_parent = current->real_parent;
2507  		p->parent_exec_id = current->parent_exec_id;
2508  		if (clone_flags & CLONE_THREAD)
2509  			p->exit_signal = -1;
2510  		else
2511  			p->exit_signal = current->group_leader->exit_signal;
2512  	} else {
2513  		p->real_parent = current;
2514  		p->parent_exec_id = current->self_exec_id;
2515  		p->exit_signal = args->exit_signal;
2516  	}
2517  
2518  	klp_copy_process(p);
2519  
2520  	sched_core_fork(p);
2521  
2522  	spin_lock(&current->sighand->siglock);
2523  
2524  	rv_task_fork(p);
2525  
2526  	rseq_fork(p, clone_flags);
2527  
2528  	/* Don't start children in a dying pid namespace */
2529  	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2530  		retval = -ENOMEM;
2531  		goto bad_fork_core_free;
2532  	}
2533  
2534  	/* Let kill terminate clone/fork in the middle */
2535  	if (fatal_signal_pending(current)) {
2536  		retval = -EINTR;
2537  		goto bad_fork_core_free;
2538  	}
2539  
2540  	/* No more failure paths after this point. */
2541  
2542  	/*
2543  	 * Copy seccomp details explicitly here, in case they were changed
2544  	 * before holding sighand lock.
2545  	 */
2546  	copy_seccomp(p);
2547  
2548  	init_task_pid_links(p);
2549  	if (likely(p->pid)) {
2550  		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2551  
2552  		init_task_pid(p, PIDTYPE_PID, pid);
2553  		if (thread_group_leader(p)) {
2554  			init_task_pid(p, PIDTYPE_TGID, pid);
2555  			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2556  			init_task_pid(p, PIDTYPE_SID, task_session(current));
2557  
2558  			if (is_child_reaper(pid)) {
2559  				ns_of_pid(pid)->child_reaper = p;
2560  				p->signal->flags |= SIGNAL_UNKILLABLE;
2561  			}
2562  			p->signal->shared_pending.signal = delayed.signal;
2563  			p->signal->tty = tty_kref_get(current->signal->tty);
2564  			/*
2565  			 * Inherit has_child_subreaper flag under the same
2566  			 * tasklist_lock with adding child to the process tree
2567  			 * for propagate_has_child_subreaper optimization.
2568  			 */
2569  			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2570  							 p->real_parent->signal->is_child_subreaper;
2571  			list_add_tail(&p->sibling, &p->real_parent->children);
2572  			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2573  			attach_pid(p, PIDTYPE_TGID);
2574  			attach_pid(p, PIDTYPE_PGID);
2575  			attach_pid(p, PIDTYPE_SID);
2576  			__this_cpu_inc(process_counts);
2577  		} else {
2578  			current->signal->nr_threads++;
2579  			current->signal->quick_threads++;
2580  			atomic_inc(&current->signal->live);
2581  			refcount_inc(&current->signal->sigcnt);
2582  			task_join_group_stop(p);
2583  			list_add_tail_rcu(&p->thread_node,
2584  					  &p->signal->thread_head);
2585  		}
2586  		attach_pid(p, PIDTYPE_PID);
2587  		nr_threads++;
2588  	}
2589  	total_forks++;
2590  	hlist_del_init(&delayed.node);
2591  	spin_unlock(&current->sighand->siglock);
2592  	syscall_tracepoint_update(p);
2593  	write_unlock_irq(&tasklist_lock);
2594  
2595  	if (pidfile)
2596  		fd_install(pidfd, pidfile);
2597  
2598  	proc_fork_connector(p);
2599  	sched_post_fork(p);
2600  	cgroup_post_fork(p, args);
2601  	perf_event_fork(p);
2602  
2603  	trace_task_newtask(p, clone_flags);
2604  	uprobe_copy_process(p, clone_flags);
2605  	user_events_fork(p, clone_flags);
2606  
2607  	copy_oom_score_adj(clone_flags, p);
2608  
2609  	return p;
2610  
2611  bad_fork_core_free:
2612  	sched_core_free(p);
2613  	spin_unlock(&current->sighand->siglock);
2614  	write_unlock_irq(&tasklist_lock);
2615  bad_fork_cancel_cgroup:
2616  	cgroup_cancel_fork(p, args);
2617  bad_fork_put_pidfd:
2618  	if (clone_flags & CLONE_PIDFD) {
2619  		fput(pidfile);
2620  		put_unused_fd(pidfd);
2621  	}
2622  bad_fork_free_pid:
2623  	if (pid != &init_struct_pid)
2624  		free_pid(pid);
2625  bad_fork_cleanup_thread:
2626  	exit_thread(p);
2627  bad_fork_cleanup_io:
2628  	if (p->io_context)
2629  		exit_io_context(p);
2630  bad_fork_cleanup_namespaces:
2631  	exit_task_namespaces(p);
2632  bad_fork_cleanup_mm:
2633  	if (p->mm) {
2634  		mm_clear_owner(p->mm, p);
2635  		mmput(p->mm);
2636  	}
2637  bad_fork_cleanup_signal:
2638  	if (!(clone_flags & CLONE_THREAD))
2639  		free_signal_struct(p->signal);
2640  bad_fork_cleanup_sighand:
2641  	__cleanup_sighand(p->sighand);
2642  bad_fork_cleanup_fs:
2643  	exit_fs(p); /* blocking */
2644  bad_fork_cleanup_files:
2645  	exit_files(p); /* blocking */
2646  bad_fork_cleanup_semundo:
2647  	exit_sem(p);
2648  bad_fork_cleanup_security:
2649  	security_task_free(p);
2650  bad_fork_cleanup_audit:
2651  	audit_free(p);
2652  bad_fork_cleanup_perf:
2653  	perf_event_free_task(p);
2654  bad_fork_sched_cancel_fork:
2655  	sched_cancel_fork(p);
2656  bad_fork_cleanup_policy:
2657  	lockdep_free_task(p);
2658  #ifdef CONFIG_NUMA
2659  	mpol_put(p->mempolicy);
2660  #endif
2661  bad_fork_cleanup_delayacct:
2662  	delayacct_tsk_free(p);
2663  bad_fork_cleanup_count:
2664  	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2665  	exit_creds(p);
2666  bad_fork_free:
2667  	WRITE_ONCE(p->__state, TASK_DEAD);
2668  	exit_task_stack_account(p);
2669  	put_task_stack(p);
2670  	delayed_free_task(p);
2671  fork_out:
2672  	spin_lock_irq(&current->sighand->siglock);
2673  	hlist_del_init(&delayed.node);
2674  	spin_unlock_irq(&current->sighand->siglock);
2675  	return ERR_PTR(retval);
2676  }
2677  
init_idle_pids(struct task_struct * idle)2678  static inline void init_idle_pids(struct task_struct *idle)
2679  {
2680  	enum pid_type type;
2681  
2682  	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2683  		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2684  		init_task_pid(idle, type, &init_struct_pid);
2685  	}
2686  }
2687  
idle_dummy(void * dummy)2688  static int idle_dummy(void *dummy)
2689  {
2690  	/* This function is never called */
2691  	return 0;
2692  }
2693  
fork_idle(int cpu)2694  struct task_struct * __init fork_idle(int cpu)
2695  {
2696  	struct task_struct *task;
2697  	struct kernel_clone_args args = {
2698  		.flags		= CLONE_VM,
2699  		.fn		= &idle_dummy,
2700  		.fn_arg		= NULL,
2701  		.kthread	= 1,
2702  		.idle		= 1,
2703  	};
2704  
2705  	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2706  	if (!IS_ERR(task)) {
2707  		init_idle_pids(task);
2708  		init_idle(task, cpu);
2709  	}
2710  
2711  	return task;
2712  }
2713  
2714  /*
2715   * This is like kernel_clone(), but shaved down and tailored to just
2716   * creating io_uring workers. It returns a created task, or an error pointer.
2717   * The returned task is inactive, and the caller must fire it up through
2718   * wake_up_new_task(p). All signals are blocked in the created task.
2719   */
create_io_thread(int (* fn)(void *),void * arg,int node)2720  struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2721  {
2722  	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2723  				CLONE_IO;
2724  	struct kernel_clone_args args = {
2725  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2726  				    CLONE_UNTRACED) & ~CSIGNAL),
2727  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2728  		.fn		= fn,
2729  		.fn_arg		= arg,
2730  		.io_thread	= 1,
2731  		.user_worker	= 1,
2732  	};
2733  
2734  	return copy_process(NULL, 0, node, &args);
2735  }
2736  
2737  /*
2738   *  Ok, this is the main fork-routine.
2739   *
2740   * It copies the process, and if successful kick-starts
2741   * it and waits for it to finish using the VM if required.
2742   *
2743   * args->exit_signal is expected to be checked for sanity by the caller.
2744   */
kernel_clone(struct kernel_clone_args * args)2745  pid_t kernel_clone(struct kernel_clone_args *args)
2746  {
2747  	u64 clone_flags = args->flags;
2748  	struct completion vfork;
2749  	struct pid *pid;
2750  	struct task_struct *p;
2751  	int trace = 0;
2752  	pid_t nr;
2753  
2754  	/*
2755  	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2756  	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2757  	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2758  	 * field in struct clone_args and it still doesn't make sense to have
2759  	 * them both point at the same memory location. Performing this check
2760  	 * here has the advantage that we don't need to have a separate helper
2761  	 * to check for legacy clone().
2762  	 */
2763  	if ((clone_flags & CLONE_PIDFD) &&
2764  	    (clone_flags & CLONE_PARENT_SETTID) &&
2765  	    (args->pidfd == args->parent_tid))
2766  		return -EINVAL;
2767  
2768  	/*
2769  	 * Determine whether and which event to report to ptracer.  When
2770  	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2771  	 * requested, no event is reported; otherwise, report if the event
2772  	 * for the type of forking is enabled.
2773  	 */
2774  	if (!(clone_flags & CLONE_UNTRACED)) {
2775  		if (clone_flags & CLONE_VFORK)
2776  			trace = PTRACE_EVENT_VFORK;
2777  		else if (args->exit_signal != SIGCHLD)
2778  			trace = PTRACE_EVENT_CLONE;
2779  		else
2780  			trace = PTRACE_EVENT_FORK;
2781  
2782  		if (likely(!ptrace_event_enabled(current, trace)))
2783  			trace = 0;
2784  	}
2785  
2786  	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2787  	add_latent_entropy();
2788  
2789  	if (IS_ERR(p))
2790  		return PTR_ERR(p);
2791  
2792  	/*
2793  	 * Do this prior waking up the new thread - the thread pointer
2794  	 * might get invalid after that point, if the thread exits quickly.
2795  	 */
2796  	trace_sched_process_fork(current, p);
2797  
2798  	pid = get_task_pid(p, PIDTYPE_PID);
2799  	nr = pid_vnr(pid);
2800  
2801  	if (clone_flags & CLONE_PARENT_SETTID)
2802  		put_user(nr, args->parent_tid);
2803  
2804  	if (clone_flags & CLONE_VFORK) {
2805  		p->vfork_done = &vfork;
2806  		init_completion(&vfork);
2807  		get_task_struct(p);
2808  	}
2809  
2810  	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2811  		/* lock the task to synchronize with memcg migration */
2812  		task_lock(p);
2813  		lru_gen_add_mm(p->mm);
2814  		task_unlock(p);
2815  	}
2816  
2817  	wake_up_new_task(p);
2818  
2819  	/* forking complete and child started to run, tell ptracer */
2820  	if (unlikely(trace))
2821  		ptrace_event_pid(trace, pid);
2822  
2823  	if (clone_flags & CLONE_VFORK) {
2824  		if (!wait_for_vfork_done(p, &vfork))
2825  			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2826  	}
2827  
2828  	put_pid(pid);
2829  	return nr;
2830  }
2831  
2832  /*
2833   * Create a kernel thread.
2834   */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2835  pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2836  		    unsigned long flags)
2837  {
2838  	struct kernel_clone_args args = {
2839  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2840  				    CLONE_UNTRACED) & ~CSIGNAL),
2841  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2842  		.fn		= fn,
2843  		.fn_arg		= arg,
2844  		.name		= name,
2845  		.kthread	= 1,
2846  	};
2847  
2848  	return kernel_clone(&args);
2849  }
2850  
2851  /*
2852   * Create a user mode thread.
2853   */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2854  pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2855  {
2856  	struct kernel_clone_args args = {
2857  		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2858  				    CLONE_UNTRACED) & ~CSIGNAL),
2859  		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2860  		.fn		= fn,
2861  		.fn_arg		= arg,
2862  	};
2863  
2864  	return kernel_clone(&args);
2865  }
2866  
2867  #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2868  SYSCALL_DEFINE0(fork)
2869  {
2870  #ifdef CONFIG_MMU
2871  	struct kernel_clone_args args = {
2872  		.exit_signal = SIGCHLD,
2873  	};
2874  
2875  	return kernel_clone(&args);
2876  #else
2877  	/* can not support in nommu mode */
2878  	return -EINVAL;
2879  #endif
2880  }
2881  #endif
2882  
2883  #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2884  SYSCALL_DEFINE0(vfork)
2885  {
2886  	struct kernel_clone_args args = {
2887  		.flags		= CLONE_VFORK | CLONE_VM,
2888  		.exit_signal	= SIGCHLD,
2889  	};
2890  
2891  	return kernel_clone(&args);
2892  }
2893  #endif
2894  
2895  #ifdef __ARCH_WANT_SYS_CLONE
2896  #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2897  SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2898  		 int __user *, parent_tidptr,
2899  		 unsigned long, tls,
2900  		 int __user *, child_tidptr)
2901  #elif defined(CONFIG_CLONE_BACKWARDS2)
2902  SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2903  		 int __user *, parent_tidptr,
2904  		 int __user *, child_tidptr,
2905  		 unsigned long, tls)
2906  #elif defined(CONFIG_CLONE_BACKWARDS3)
2907  SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2908  		int, stack_size,
2909  		int __user *, parent_tidptr,
2910  		int __user *, child_tidptr,
2911  		unsigned long, tls)
2912  #else
2913  SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2914  		 int __user *, parent_tidptr,
2915  		 int __user *, child_tidptr,
2916  		 unsigned long, tls)
2917  #endif
2918  {
2919  	struct kernel_clone_args args = {
2920  		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2921  		.pidfd		= parent_tidptr,
2922  		.child_tid	= child_tidptr,
2923  		.parent_tid	= parent_tidptr,
2924  		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2925  		.stack		= newsp,
2926  		.tls		= tls,
2927  	};
2928  
2929  	return kernel_clone(&args);
2930  }
2931  #endif
2932  
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2933  noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2934  					      struct clone_args __user *uargs,
2935  					      size_t usize)
2936  {
2937  	int err;
2938  	struct clone_args args;
2939  	pid_t *kset_tid = kargs->set_tid;
2940  
2941  	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2942  		     CLONE_ARGS_SIZE_VER0);
2943  	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2944  		     CLONE_ARGS_SIZE_VER1);
2945  	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2946  		     CLONE_ARGS_SIZE_VER2);
2947  	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2948  
2949  	if (unlikely(usize > PAGE_SIZE))
2950  		return -E2BIG;
2951  	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2952  		return -EINVAL;
2953  
2954  	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2955  	if (err)
2956  		return err;
2957  
2958  	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2959  		return -EINVAL;
2960  
2961  	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2962  		return -EINVAL;
2963  
2964  	if (unlikely(args.set_tid && args.set_tid_size == 0))
2965  		return -EINVAL;
2966  
2967  	/*
2968  	 * Verify that higher 32bits of exit_signal are unset and that
2969  	 * it is a valid signal
2970  	 */
2971  	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2972  		     !valid_signal(args.exit_signal)))
2973  		return -EINVAL;
2974  
2975  	if ((args.flags & CLONE_INTO_CGROUP) &&
2976  	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2977  		return -EINVAL;
2978  
2979  	*kargs = (struct kernel_clone_args){
2980  		.flags		= args.flags,
2981  		.pidfd		= u64_to_user_ptr(args.pidfd),
2982  		.child_tid	= u64_to_user_ptr(args.child_tid),
2983  		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2984  		.exit_signal	= args.exit_signal,
2985  		.stack		= args.stack,
2986  		.stack_size	= args.stack_size,
2987  		.tls		= args.tls,
2988  		.set_tid_size	= args.set_tid_size,
2989  		.cgroup		= args.cgroup,
2990  	};
2991  
2992  	if (args.set_tid &&
2993  		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2994  			(kargs->set_tid_size * sizeof(pid_t))))
2995  		return -EFAULT;
2996  
2997  	kargs->set_tid = kset_tid;
2998  
2999  	return 0;
3000  }
3001  
3002  /**
3003   * clone3_stack_valid - check and prepare stack
3004   * @kargs: kernel clone args
3005   *
3006   * Verify that the stack arguments userspace gave us are sane.
3007   * In addition, set the stack direction for userspace since it's easy for us to
3008   * determine.
3009   */
clone3_stack_valid(struct kernel_clone_args * kargs)3010  static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3011  {
3012  	if (kargs->stack == 0) {
3013  		if (kargs->stack_size > 0)
3014  			return false;
3015  	} else {
3016  		if (kargs->stack_size == 0)
3017  			return false;
3018  
3019  		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3020  			return false;
3021  
3022  #if !defined(CONFIG_STACK_GROWSUP)
3023  		kargs->stack += kargs->stack_size;
3024  #endif
3025  	}
3026  
3027  	return true;
3028  }
3029  
clone3_args_valid(struct kernel_clone_args * kargs)3030  static bool clone3_args_valid(struct kernel_clone_args *kargs)
3031  {
3032  	/* Verify that no unknown flags are passed along. */
3033  	if (kargs->flags &
3034  	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3035  		return false;
3036  
3037  	/*
3038  	 * - make the CLONE_DETACHED bit reusable for clone3
3039  	 * - make the CSIGNAL bits reusable for clone3
3040  	 */
3041  	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3042  		return false;
3043  
3044  	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3045  	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3046  		return false;
3047  
3048  	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3049  	    kargs->exit_signal)
3050  		return false;
3051  
3052  	if (!clone3_stack_valid(kargs))
3053  		return false;
3054  
3055  	return true;
3056  }
3057  
3058  /**
3059   * sys_clone3 - create a new process with specific properties
3060   * @uargs: argument structure
3061   * @size:  size of @uargs
3062   *
3063   * clone3() is the extensible successor to clone()/clone2().
3064   * It takes a struct as argument that is versioned by its size.
3065   *
3066   * Return: On success, a positive PID for the child process.
3067   *         On error, a negative errno number.
3068   */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3069  SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3070  {
3071  	int err;
3072  
3073  	struct kernel_clone_args kargs;
3074  	pid_t set_tid[MAX_PID_NS_LEVEL];
3075  
3076  #ifdef __ARCH_BROKEN_SYS_CLONE3
3077  #warning clone3() entry point is missing, please fix
3078  	return -ENOSYS;
3079  #endif
3080  
3081  	kargs.set_tid = set_tid;
3082  
3083  	err = copy_clone_args_from_user(&kargs, uargs, size);
3084  	if (err)
3085  		return err;
3086  
3087  	if (!clone3_args_valid(&kargs))
3088  		return -EINVAL;
3089  
3090  	return kernel_clone(&kargs);
3091  }
3092  
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3093  void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3094  {
3095  	struct task_struct *leader, *parent, *child;
3096  	int res;
3097  
3098  	read_lock(&tasklist_lock);
3099  	leader = top = top->group_leader;
3100  down:
3101  	for_each_thread(leader, parent) {
3102  		list_for_each_entry(child, &parent->children, sibling) {
3103  			res = visitor(child, data);
3104  			if (res) {
3105  				if (res < 0)
3106  					goto out;
3107  				leader = child;
3108  				goto down;
3109  			}
3110  up:
3111  			;
3112  		}
3113  	}
3114  
3115  	if (leader != top) {
3116  		child = leader;
3117  		parent = child->real_parent;
3118  		leader = parent->group_leader;
3119  		goto up;
3120  	}
3121  out:
3122  	read_unlock(&tasklist_lock);
3123  }
3124  
3125  #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3126  #define ARCH_MIN_MMSTRUCT_ALIGN 0
3127  #endif
3128  
sighand_ctor(void * data)3129  static void sighand_ctor(void *data)
3130  {
3131  	struct sighand_struct *sighand = data;
3132  
3133  	spin_lock_init(&sighand->siglock);
3134  	init_waitqueue_head(&sighand->signalfd_wqh);
3135  }
3136  
mm_cache_init(void)3137  void __init mm_cache_init(void)
3138  {
3139  	unsigned int mm_size;
3140  
3141  	/*
3142  	 * The mm_cpumask is located at the end of mm_struct, and is
3143  	 * dynamically sized based on the maximum CPU number this system
3144  	 * can have, taking hotplug into account (nr_cpu_ids).
3145  	 */
3146  	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3147  
3148  	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3149  			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3150  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3151  			offsetof(struct mm_struct, saved_auxv),
3152  			sizeof_field(struct mm_struct, saved_auxv),
3153  			NULL);
3154  }
3155  
proc_caches_init(void)3156  void __init proc_caches_init(void)
3157  {
3158  	sighand_cachep = kmem_cache_create("sighand_cache",
3159  			sizeof(struct sighand_struct), 0,
3160  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3161  			SLAB_ACCOUNT, sighand_ctor);
3162  	signal_cachep = kmem_cache_create("signal_cache",
3163  			sizeof(struct signal_struct), 0,
3164  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3165  			NULL);
3166  	files_cachep = kmem_cache_create("files_cache",
3167  			sizeof(struct files_struct), 0,
3168  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3169  			NULL);
3170  	fs_cachep = kmem_cache_create("fs_cache",
3171  			sizeof(struct fs_struct), 0,
3172  			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3173  			NULL);
3174  
3175  	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3176  #ifdef CONFIG_PER_VMA_LOCK
3177  	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3178  #endif
3179  	mmap_init();
3180  	nsproxy_cache_init();
3181  }
3182  
3183  /*
3184   * Check constraints on flags passed to the unshare system call.
3185   */
check_unshare_flags(unsigned long unshare_flags)3186  static int check_unshare_flags(unsigned long unshare_flags)
3187  {
3188  	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3189  				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3190  				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3191  				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3192  				CLONE_NEWTIME))
3193  		return -EINVAL;
3194  	/*
3195  	 * Not implemented, but pretend it works if there is nothing
3196  	 * to unshare.  Note that unsharing the address space or the
3197  	 * signal handlers also need to unshare the signal queues (aka
3198  	 * CLONE_THREAD).
3199  	 */
3200  	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3201  		if (!thread_group_empty(current))
3202  			return -EINVAL;
3203  	}
3204  	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3205  		if (refcount_read(&current->sighand->count) > 1)
3206  			return -EINVAL;
3207  	}
3208  	if (unshare_flags & CLONE_VM) {
3209  		if (!current_is_single_threaded())
3210  			return -EINVAL;
3211  	}
3212  
3213  	return 0;
3214  }
3215  
3216  /*
3217   * Unshare the filesystem structure if it is being shared
3218   */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3219  static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3220  {
3221  	struct fs_struct *fs = current->fs;
3222  
3223  	if (!(unshare_flags & CLONE_FS) || !fs)
3224  		return 0;
3225  
3226  	/* don't need lock here; in the worst case we'll do useless copy */
3227  	if (fs->users == 1)
3228  		return 0;
3229  
3230  	*new_fsp = copy_fs_struct(fs);
3231  	if (!*new_fsp)
3232  		return -ENOMEM;
3233  
3234  	return 0;
3235  }
3236  
3237  /*
3238   * Unshare file descriptor table if it is being shared
3239   */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3240  static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3241  {
3242  	struct files_struct *fd = current->files;
3243  
3244  	if ((unshare_flags & CLONE_FILES) &&
3245  	    (fd && atomic_read(&fd->count) > 1)) {
3246  		fd = dup_fd(fd, NULL);
3247  		if (IS_ERR(fd))
3248  			return PTR_ERR(fd);
3249  		*new_fdp = fd;
3250  	}
3251  
3252  	return 0;
3253  }
3254  
3255  /*
3256   * unshare allows a process to 'unshare' part of the process
3257   * context which was originally shared using clone.  copy_*
3258   * functions used by kernel_clone() cannot be used here directly
3259   * because they modify an inactive task_struct that is being
3260   * constructed. Here we are modifying the current, active,
3261   * task_struct.
3262   */
ksys_unshare(unsigned long unshare_flags)3263  int ksys_unshare(unsigned long unshare_flags)
3264  {
3265  	struct fs_struct *fs, *new_fs = NULL;
3266  	struct files_struct *new_fd = NULL;
3267  	struct cred *new_cred = NULL;
3268  	struct nsproxy *new_nsproxy = NULL;
3269  	int do_sysvsem = 0;
3270  	int err;
3271  
3272  	/*
3273  	 * If unsharing a user namespace must also unshare the thread group
3274  	 * and unshare the filesystem root and working directories.
3275  	 */
3276  	if (unshare_flags & CLONE_NEWUSER)
3277  		unshare_flags |= CLONE_THREAD | CLONE_FS;
3278  	/*
3279  	 * If unsharing vm, must also unshare signal handlers.
3280  	 */
3281  	if (unshare_flags & CLONE_VM)
3282  		unshare_flags |= CLONE_SIGHAND;
3283  	/*
3284  	 * If unsharing a signal handlers, must also unshare the signal queues.
3285  	 */
3286  	if (unshare_flags & CLONE_SIGHAND)
3287  		unshare_flags |= CLONE_THREAD;
3288  	/*
3289  	 * If unsharing namespace, must also unshare filesystem information.
3290  	 */
3291  	if (unshare_flags & CLONE_NEWNS)
3292  		unshare_flags |= CLONE_FS;
3293  
3294  	err = check_unshare_flags(unshare_flags);
3295  	if (err)
3296  		goto bad_unshare_out;
3297  	/*
3298  	 * CLONE_NEWIPC must also detach from the undolist: after switching
3299  	 * to a new ipc namespace, the semaphore arrays from the old
3300  	 * namespace are unreachable.
3301  	 */
3302  	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3303  		do_sysvsem = 1;
3304  	err = unshare_fs(unshare_flags, &new_fs);
3305  	if (err)
3306  		goto bad_unshare_out;
3307  	err = unshare_fd(unshare_flags, &new_fd);
3308  	if (err)
3309  		goto bad_unshare_cleanup_fs;
3310  	err = unshare_userns(unshare_flags, &new_cred);
3311  	if (err)
3312  		goto bad_unshare_cleanup_fd;
3313  	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3314  					 new_cred, new_fs);
3315  	if (err)
3316  		goto bad_unshare_cleanup_cred;
3317  
3318  	if (new_cred) {
3319  		err = set_cred_ucounts(new_cred);
3320  		if (err)
3321  			goto bad_unshare_cleanup_cred;
3322  	}
3323  
3324  	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3325  		if (do_sysvsem) {
3326  			/*
3327  			 * CLONE_SYSVSEM is equivalent to sys_exit().
3328  			 */
3329  			exit_sem(current);
3330  		}
3331  		if (unshare_flags & CLONE_NEWIPC) {
3332  			/* Orphan segments in old ns (see sem above). */
3333  			exit_shm(current);
3334  			shm_init_task(current);
3335  		}
3336  
3337  		if (new_nsproxy)
3338  			switch_task_namespaces(current, new_nsproxy);
3339  
3340  		task_lock(current);
3341  
3342  		if (new_fs) {
3343  			fs = current->fs;
3344  			spin_lock(&fs->lock);
3345  			current->fs = new_fs;
3346  			if (--fs->users)
3347  				new_fs = NULL;
3348  			else
3349  				new_fs = fs;
3350  			spin_unlock(&fs->lock);
3351  		}
3352  
3353  		if (new_fd)
3354  			swap(current->files, new_fd);
3355  
3356  		task_unlock(current);
3357  
3358  		if (new_cred) {
3359  			/* Install the new user namespace */
3360  			commit_creds(new_cred);
3361  			new_cred = NULL;
3362  		}
3363  	}
3364  
3365  	perf_event_namespaces(current);
3366  
3367  bad_unshare_cleanup_cred:
3368  	if (new_cred)
3369  		put_cred(new_cred);
3370  bad_unshare_cleanup_fd:
3371  	if (new_fd)
3372  		put_files_struct(new_fd);
3373  
3374  bad_unshare_cleanup_fs:
3375  	if (new_fs)
3376  		free_fs_struct(new_fs);
3377  
3378  bad_unshare_out:
3379  	return err;
3380  }
3381  
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3382  SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3383  {
3384  	return ksys_unshare(unshare_flags);
3385  }
3386  
3387  /*
3388   *	Helper to unshare the files of the current task.
3389   *	We don't want to expose copy_files internals to
3390   *	the exec layer of the kernel.
3391   */
3392  
unshare_files(void)3393  int unshare_files(void)
3394  {
3395  	struct task_struct *task = current;
3396  	struct files_struct *old, *copy = NULL;
3397  	int error;
3398  
3399  	error = unshare_fd(CLONE_FILES, &copy);
3400  	if (error || !copy)
3401  		return error;
3402  
3403  	old = task->files;
3404  	task_lock(task);
3405  	task->files = copy;
3406  	task_unlock(task);
3407  	put_files_struct(old);
3408  	return 0;
3409  }
3410  
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3411  int sysctl_max_threads(const struct ctl_table *table, int write,
3412  		       void *buffer, size_t *lenp, loff_t *ppos)
3413  {
3414  	struct ctl_table t;
3415  	int ret;
3416  	int threads = max_threads;
3417  	int min = 1;
3418  	int max = MAX_THREADS;
3419  
3420  	t = *table;
3421  	t.data = &threads;
3422  	t.extra1 = &min;
3423  	t.extra2 = &max;
3424  
3425  	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3426  	if (ret || !write)
3427  		return ret;
3428  
3429  	max_threads = threads;
3430  
3431  	return 0;
3432  }
3433