1 // SPDX-License-Identifier: GPL-2.0
2 /* Maximum size of each resync request */
3 #define RESYNC_BLOCK_SIZE (64*1024)
4 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
5 
6 /*
7  * Number of guaranteed raid bios in case of extreme VM load:
8  */
9 #define	NR_RAID_BIOS 256
10 
11 /* when we get a read error on a read-only array, we redirect to another
12  * device without failing the first device, or trying to over-write to
13  * correct the read error.  To keep track of bad blocks on a per-bio
14  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
15  */
16 #define IO_BLOCKED ((struct bio *)1)
17 /* When we successfully write to a known bad-block, we need to remove the
18  * bad-block marking which must be done from process context.  So we record
19  * the success by setting devs[n].bio to IO_MADE_GOOD
20  */
21 #define IO_MADE_GOOD ((struct bio *)2)
22 
23 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
24 #define MAX_PLUG_BIO 32
25 
26 /* for managing resync I/O pages */
27 struct resync_pages {
28 	void		*raid_bio;
29 	struct page	*pages[RESYNC_PAGES];
30 };
31 
32 struct raid1_plug_cb {
33 	struct blk_plug_cb	cb;
34 	struct bio_list		pending;
35 	unsigned int		count;
36 };
37 
rbio_pool_free(void * rbio,void * data)38 static void rbio_pool_free(void *rbio, void *data)
39 {
40 	kfree(rbio);
41 }
42 
resync_alloc_pages(struct resync_pages * rp,gfp_t gfp_flags)43 static inline int resync_alloc_pages(struct resync_pages *rp,
44 				     gfp_t gfp_flags)
45 {
46 	int i;
47 
48 	for (i = 0; i < RESYNC_PAGES; i++) {
49 		rp->pages[i] = alloc_page(gfp_flags);
50 		if (!rp->pages[i])
51 			goto out_free;
52 	}
53 
54 	return 0;
55 
56 out_free:
57 	while (--i >= 0)
58 		put_page(rp->pages[i]);
59 	return -ENOMEM;
60 }
61 
resync_free_pages(struct resync_pages * rp)62 static inline void resync_free_pages(struct resync_pages *rp)
63 {
64 	int i;
65 
66 	for (i = 0; i < RESYNC_PAGES; i++)
67 		put_page(rp->pages[i]);
68 }
69 
resync_get_all_pages(struct resync_pages * rp)70 static inline void resync_get_all_pages(struct resync_pages *rp)
71 {
72 	int i;
73 
74 	for (i = 0; i < RESYNC_PAGES; i++)
75 		get_page(rp->pages[i]);
76 }
77 
resync_fetch_page(struct resync_pages * rp,unsigned idx)78 static inline struct page *resync_fetch_page(struct resync_pages *rp,
79 					     unsigned idx)
80 {
81 	if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
82 		return NULL;
83 	return rp->pages[idx];
84 }
85 
86 /*
87  * 'strct resync_pages' stores actual pages used for doing the resync
88  *  IO, and it is per-bio, so make .bi_private points to it.
89  */
get_resync_pages(struct bio * bio)90 static inline struct resync_pages *get_resync_pages(struct bio *bio)
91 {
92 	return bio->bi_private;
93 }
94 
95 /* generally called after bio_reset() for reseting bvec */
md_bio_reset_resync_pages(struct bio * bio,struct resync_pages * rp,int size)96 static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
97 			       int size)
98 {
99 	int idx = 0;
100 
101 	/* initialize bvec table again */
102 	do {
103 		struct page *page = resync_fetch_page(rp, idx);
104 		int len = min_t(int, size, PAGE_SIZE);
105 
106 		if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
107 			bio->bi_status = BLK_STS_RESOURCE;
108 			bio_endio(bio);
109 			return;
110 		}
111 
112 		size -= len;
113 	} while (idx++ < RESYNC_PAGES && size > 0);
114 }
115 
116 
raid1_submit_write(struct bio * bio)117 static inline void raid1_submit_write(struct bio *bio)
118 {
119 	struct md_rdev *rdev = (void *)bio->bi_bdev;
120 
121 	bio->bi_next = NULL;
122 	bio_set_dev(bio, rdev->bdev);
123 	if (test_bit(Faulty, &rdev->flags))
124 		bio_io_error(bio);
125 	else if (unlikely(bio_op(bio) ==  REQ_OP_DISCARD &&
126 			  !bdev_max_discard_sectors(bio->bi_bdev)))
127 		/* Just ignore it */
128 		bio_endio(bio);
129 	else
130 		submit_bio_noacct(bio);
131 }
132 
raid1_add_bio_to_plug(struct mddev * mddev,struct bio * bio,blk_plug_cb_fn unplug,int copies)133 static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
134 				      blk_plug_cb_fn unplug, int copies)
135 {
136 	struct raid1_plug_cb *plug = NULL;
137 	struct blk_plug_cb *cb;
138 
139 	/*
140 	 * If bitmap is not enabled, it's safe to submit the io directly, and
141 	 * this can get optimal performance.
142 	 */
143 	if (!mddev->bitmap_ops->enabled(mddev)) {
144 		raid1_submit_write(bio);
145 		return true;
146 	}
147 
148 	cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
149 	if (!cb)
150 		return false;
151 
152 	plug = container_of(cb, struct raid1_plug_cb, cb);
153 	bio_list_add(&plug->pending, bio);
154 	if (++plug->count / MAX_PLUG_BIO >= copies) {
155 		list_del(&cb->list);
156 		cb->callback(cb, false);
157 	}
158 
159 
160 	return true;
161 }
162 
163 /*
164  * current->bio_list will be set under submit_bio() context, in this case bitmap
165  * io will be added to the list and wait for current io submission to finish,
166  * while current io submission must wait for bitmap io to be done. In order to
167  * avoid such deadlock, submit bitmap io asynchronously.
168  */
raid1_prepare_flush_writes(struct mddev * mddev)169 static inline void raid1_prepare_flush_writes(struct mddev *mddev)
170 {
171 	mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
172 }
173 
174 /*
175  * Used by fix_read_error() to decay the per rdev read_errors.
176  * We halve the read error count for every hour that has elapsed
177  * since the last recorded read error.
178  */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)179 static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
180 {
181 	long cur_time_mon;
182 	unsigned long hours_since_last;
183 	unsigned int read_errors = atomic_read(&rdev->read_errors);
184 
185 	cur_time_mon = ktime_get_seconds();
186 
187 	if (rdev->last_read_error == 0) {
188 		/* first time we've seen a read error */
189 		rdev->last_read_error = cur_time_mon;
190 		return;
191 	}
192 
193 	hours_since_last = (long)(cur_time_mon -
194 			    rdev->last_read_error) / 3600;
195 
196 	rdev->last_read_error = cur_time_mon;
197 
198 	/*
199 	 * if hours_since_last is > the number of bits in read_errors
200 	 * just set read errors to 0. We do this to avoid
201 	 * overflowing the shift of read_errors by hours_since_last.
202 	 */
203 	if (hours_since_last >= 8 * sizeof(read_errors))
204 		atomic_set(&rdev->read_errors, 0);
205 	else
206 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
207 }
208 
exceed_read_errors(struct mddev * mddev,struct md_rdev * rdev)209 static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
210 {
211 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
212 	int read_errors;
213 
214 	check_decay_read_errors(mddev, rdev);
215 	read_errors =  atomic_inc_return(&rdev->read_errors);
216 	if (read_errors > max_read_errors) {
217 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
218 			  mdname(mddev), rdev->bdev, read_errors, max_read_errors);
219 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
220 			  mdname(mddev), rdev->bdev);
221 		md_error(mddev, rdev);
222 		return true;
223 	}
224 
225 	return false;
226 }
227 
228 /**
229  * raid1_check_read_range() - check a given read range for bad blocks,
230  * available read length is returned;
231  * @rdev: the rdev to read;
232  * @this_sector: read position;
233  * @len: read length;
234  *
235  * helper function for read_balance()
236  *
237  * 1) If there are no bad blocks in the range, @len is returned;
238  * 2) If the range are all bad blocks, 0 is returned;
239  * 3) If there are partial bad blocks:
240  *  - If the bad block range starts after @this_sector, the length of first
241  *  good region is returned;
242  *  - If the bad block range starts before @this_sector, 0 is returned and
243  *  the @len is updated to the offset into the region before we get to the
244  *  good blocks;
245  */
raid1_check_read_range(struct md_rdev * rdev,sector_t this_sector,int * len)246 static inline int raid1_check_read_range(struct md_rdev *rdev,
247 					 sector_t this_sector, int *len)
248 {
249 	sector_t first_bad;
250 	int bad_sectors;
251 
252 	/* no bad block overlap */
253 	if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
254 		return *len;
255 
256 	/*
257 	 * bad block range starts offset into our range so we can return the
258 	 * number of sectors before the bad blocks start.
259 	 */
260 	if (first_bad > this_sector)
261 		return first_bad - this_sector;
262 
263 	/* read range is fully consumed by bad blocks. */
264 	if (this_sector + *len <= first_bad + bad_sectors)
265 		return 0;
266 
267 	/*
268 	 * final case, bad block range starts before or at the start of our
269 	 * range but does not cover our entire range so we still return 0 but
270 	 * update the length with the number of sectors before we get to the
271 	 * good ones.
272 	 */
273 	*len = first_bad + bad_sectors - this_sector;
274 	return 0;
275 }
276 
277 /*
278  * Check if read should choose the first rdev.
279  *
280  * Balance on the whole device if no resync is going on (recovery is ok) or
281  * below the resync window. Otherwise, take the first readable disk.
282  */
raid1_should_read_first(struct mddev * mddev,sector_t this_sector,int len)283 static inline bool raid1_should_read_first(struct mddev *mddev,
284 					   sector_t this_sector, int len)
285 {
286 	if ((mddev->recovery_cp < this_sector + len))
287 		return true;
288 
289 	if (mddev_is_clustered(mddev) &&
290 	    md_cluster_ops->area_resyncing(mddev, READ, this_sector,
291 					   this_sector + len))
292 		return true;
293 
294 	return false;
295 }
296