1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/node.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  /* start node id of a node block dedicated to the given node id */
9  #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10  
11  /* node block offset on the NAT area dedicated to the given start node id */
12  #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13  
14  /* # of pages to perform synchronous readahead before building free nids */
15  #define FREE_NID_PAGES	8
16  #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17  
18  /* size of free nid batch when shrinking */
19  #define SHRINK_NID_BATCH_SIZE	8
20  
21  #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22  
23  /* maximum readahead size for node during getting data blocks */
24  #define MAX_RA_NODE		128
25  
26  /* control the memory footprint threshold (10MB per 1GB ram) */
27  #define DEF_RAM_THRESHOLD	1
28  
29  /* control dirty nats ratio threshold (default: 10% over max nid count) */
30  #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31  /* control total # of nats */
32  #define DEF_NAT_CACHE_THRESHOLD			100000
33  
34  /* control total # of node writes used for roll-fowrad recovery */
35  #define DEF_RF_NODE_BLOCKS			0
36  
37  /* vector size for gang look-up from nat cache that consists of radix tree */
38  #define NAT_VEC_SIZE	32
39  
40  /* return value for read_node_page */
41  #define LOCKED_PAGE	1
42  
43  /* check pinned file's alignment status of physical blocks */
44  #define FILE_NOT_ALIGNED	1
45  
46  /* For flag in struct node_info */
47  enum {
48  	IS_CHECKPOINTED,	/* is it checkpointed before? */
49  	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
50  	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
51  	IS_DIRTY,		/* this nat entry is dirty? */
52  	IS_PREALLOC,		/* nat entry is preallocated */
53  };
54  
55  /*
56   * For node information
57   */
58  struct node_info {
59  	nid_t nid;		/* node id */
60  	nid_t ino;		/* inode number of the node's owner */
61  	block_t	blk_addr;	/* block address of the node */
62  	unsigned char version;	/* version of the node */
63  	unsigned char flag;	/* for node information bits */
64  };
65  
66  struct nat_entry {
67  	struct list_head list;	/* for clean or dirty nat list */
68  	struct node_info ni;	/* in-memory node information */
69  };
70  
71  #define nat_get_nid(nat)		((nat)->ni.nid)
72  #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
73  #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
74  #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
75  #define nat_get_ino(nat)		((nat)->ni.ino)
76  #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
77  #define nat_get_version(nat)		((nat)->ni.version)
78  #define nat_set_version(nat, v)		((nat)->ni.version = (v))
79  
80  #define inc_node_version(version)	(++(version))
81  
copy_node_info(struct node_info * dst,struct node_info * src)82  static inline void copy_node_info(struct node_info *dst,
83  						struct node_info *src)
84  {
85  	dst->nid = src->nid;
86  	dst->ino = src->ino;
87  	dst->blk_addr = src->blk_addr;
88  	dst->version = src->version;
89  	/* should not copy flag here */
90  }
91  
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)92  static inline void set_nat_flag(struct nat_entry *ne,
93  				unsigned int type, bool set)
94  {
95  	if (set)
96  		ne->ni.flag |= BIT(type);
97  	else
98  		ne->ni.flag &= ~BIT(type);
99  }
100  
get_nat_flag(struct nat_entry * ne,unsigned int type)101  static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
102  {
103  	return ne->ni.flag & BIT(type);
104  }
105  
nat_reset_flag(struct nat_entry * ne)106  static inline void nat_reset_flag(struct nat_entry *ne)
107  {
108  	/* these states can be set only after checkpoint was done */
109  	set_nat_flag(ne, IS_CHECKPOINTED, true);
110  	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111  	set_nat_flag(ne, HAS_LAST_FSYNC, true);
112  }
113  
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)114  static inline void node_info_from_raw_nat(struct node_info *ni,
115  						struct f2fs_nat_entry *raw_ne)
116  {
117  	ni->ino = le32_to_cpu(raw_ne->ino);
118  	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119  	ni->version = raw_ne->version;
120  }
121  
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)122  static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123  						struct node_info *ni)
124  {
125  	raw_ne->ino = cpu_to_le32(ni->ino);
126  	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127  	raw_ne->version = ni->version;
128  }
129  
excess_dirty_nats(struct f2fs_sb_info * sbi)130  static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131  {
132  	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133  					NM_I(sbi)->dirty_nats_ratio / 100;
134  }
135  
excess_cached_nats(struct f2fs_sb_info * sbi)136  static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137  {
138  	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139  }
140  
141  enum mem_type {
142  	FREE_NIDS,	/* indicates the free nid list */
143  	NAT_ENTRIES,	/* indicates the cached nat entry */
144  	DIRTY_DENTS,	/* indicates dirty dentry pages */
145  	INO_ENTRIES,	/* indicates inode entries */
146  	READ_EXTENT_CACHE,	/* indicates read extent cache */
147  	AGE_EXTENT_CACHE,	/* indicates age extent cache */
148  	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
149  	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
150  	BASE_CHECK,	/* check kernel status */
151  };
152  
153  struct nat_entry_set {
154  	struct list_head set_list;	/* link with other nat sets */
155  	struct list_head entry_list;	/* link with dirty nat entries */
156  	nid_t set;			/* set number*/
157  	unsigned int entry_cnt;		/* the # of nat entries in set */
158  };
159  
160  struct free_nid {
161  	struct list_head list;	/* for free node id list */
162  	nid_t nid;		/* node id */
163  	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
164  };
165  
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)166  static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167  {
168  	struct f2fs_nm_info *nm_i = NM_I(sbi);
169  	struct free_nid *fnid;
170  
171  	spin_lock(&nm_i->nid_list_lock);
172  	if (nm_i->nid_cnt[FREE_NID] <= 0) {
173  		spin_unlock(&nm_i->nid_list_lock);
174  		return;
175  	}
176  	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177  	*nid = fnid->nid;
178  	spin_unlock(&nm_i->nid_list_lock);
179  }
180  
181  /*
182   * inline functions
183   */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)184  static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185  {
186  	struct f2fs_nm_info *nm_i = NM_I(sbi);
187  
188  #ifdef CONFIG_F2FS_CHECK_FS
189  	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190  						nm_i->bitmap_size))
191  		f2fs_bug_on(sbi, 1);
192  #endif
193  	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194  }
195  
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)196  static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197  {
198  	struct f2fs_nm_info *nm_i = NM_I(sbi);
199  	pgoff_t block_off;
200  	pgoff_t block_addr;
201  
202  	/*
203  	 * block_off = segment_off * 512 + off_in_segment
204  	 * OLD = (segment_off * 512) * 2 + off_in_segment
205  	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206  	 */
207  	block_off = NAT_BLOCK_OFFSET(start);
208  
209  	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210  		(block_off << 1) -
211  		(block_off & (BLKS_PER_SEG(sbi) - 1)));
212  
213  	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214  		block_addr += BLKS_PER_SEG(sbi);
215  
216  	return block_addr;
217  }
218  
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)219  static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220  						pgoff_t block_addr)
221  {
222  	struct f2fs_nm_info *nm_i = NM_I(sbi);
223  
224  	block_addr -= nm_i->nat_blkaddr;
225  	block_addr ^= BIT(sbi->log_blocks_per_seg);
226  	return block_addr + nm_i->nat_blkaddr;
227  }
228  
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)229  static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230  {
231  	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232  
233  	f2fs_change_bit(block_off, nm_i->nat_bitmap);
234  #ifdef CONFIG_F2FS_CHECK_FS
235  	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236  #endif
237  }
238  
ino_of_node(struct page * node_page)239  static inline nid_t ino_of_node(struct page *node_page)
240  {
241  	struct f2fs_node *rn = F2FS_NODE(node_page);
242  	return le32_to_cpu(rn->footer.ino);
243  }
244  
nid_of_node(struct page * node_page)245  static inline nid_t nid_of_node(struct page *node_page)
246  {
247  	struct f2fs_node *rn = F2FS_NODE(node_page);
248  	return le32_to_cpu(rn->footer.nid);
249  }
250  
ofs_of_node(struct page * node_page)251  static inline unsigned int ofs_of_node(struct page *node_page)
252  {
253  	struct f2fs_node *rn = F2FS_NODE(node_page);
254  	unsigned flag = le32_to_cpu(rn->footer.flag);
255  	return flag >> OFFSET_BIT_SHIFT;
256  }
257  
cpver_of_node(struct page * node_page)258  static inline __u64 cpver_of_node(struct page *node_page)
259  {
260  	struct f2fs_node *rn = F2FS_NODE(node_page);
261  	return le64_to_cpu(rn->footer.cp_ver);
262  }
263  
next_blkaddr_of_node(struct page * node_page)264  static inline block_t next_blkaddr_of_node(struct page *node_page)
265  {
266  	struct f2fs_node *rn = F2FS_NODE(node_page);
267  	return le32_to_cpu(rn->footer.next_blkaddr);
268  }
269  
fill_node_footer(struct page * page,nid_t nid,nid_t ino,unsigned int ofs,bool reset)270  static inline void fill_node_footer(struct page *page, nid_t nid,
271  				nid_t ino, unsigned int ofs, bool reset)
272  {
273  	struct f2fs_node *rn = F2FS_NODE(page);
274  	unsigned int old_flag = 0;
275  
276  	if (reset)
277  		memset(rn, 0, sizeof(*rn));
278  	else
279  		old_flag = le32_to_cpu(rn->footer.flag);
280  
281  	rn->footer.nid = cpu_to_le32(nid);
282  	rn->footer.ino = cpu_to_le32(ino);
283  
284  	/* should remain old flag bits such as COLD_BIT_SHIFT */
285  	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286  					(old_flag & OFFSET_BIT_MASK));
287  }
288  
copy_node_footer(struct page * dst,struct page * src)289  static inline void copy_node_footer(struct page *dst, struct page *src)
290  {
291  	struct f2fs_node *src_rn = F2FS_NODE(src);
292  	struct f2fs_node *dst_rn = F2FS_NODE(dst);
293  	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294  }
295  
fill_node_footer_blkaddr(struct page * page,block_t blkaddr)296  static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297  {
298  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299  	struct f2fs_node *rn = F2FS_NODE(page);
300  	__u64 cp_ver = cur_cp_version(ckpt);
301  
302  	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303  		cp_ver |= (cur_cp_crc(ckpt) << 32);
304  
305  	rn->footer.cp_ver = cpu_to_le64(cp_ver);
306  	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307  }
308  
is_recoverable_dnode(struct page * page)309  static inline bool is_recoverable_dnode(struct page *page)
310  {
311  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312  	__u64 cp_ver = cur_cp_version(ckpt);
313  
314  	/* Don't care crc part, if fsck.f2fs sets it. */
315  	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316  		return (cp_ver << 32) == (cpver_of_node(page) << 32);
317  
318  	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319  		cp_ver |= (cur_cp_crc(ckpt) << 32);
320  
321  	return cp_ver == cpver_of_node(page);
322  }
323  
324  /*
325   * f2fs assigns the following node offsets described as (num).
326   * N = NIDS_PER_BLOCK
327   *
328   *  Inode block (0)
329   *    |- direct node (1)
330   *    |- direct node (2)
331   *    |- indirect node (3)
332   *    |            `- direct node (4 => 4 + N - 1)
333   *    |- indirect node (4 + N)
334   *    |            `- direct node (5 + N => 5 + 2N - 1)
335   *    `- double indirect node (5 + 2N)
336   *                 `- indirect node (6 + 2N)
337   *                       `- direct node
338   *                 ......
339   *                 `- indirect node ((6 + 2N) + x(N + 1))
340   *                       `- direct node
341   *                 ......
342   *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343   *                       `- direct node
344   */
IS_DNODE(struct page * node_page)345  static inline bool IS_DNODE(struct page *node_page)
346  {
347  	unsigned int ofs = ofs_of_node(node_page);
348  
349  	if (f2fs_has_xattr_block(ofs))
350  		return true;
351  
352  	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353  			ofs == 5 + 2 * NIDS_PER_BLOCK)
354  		return false;
355  	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356  		ofs -= 6 + 2 * NIDS_PER_BLOCK;
357  		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358  			return false;
359  	}
360  	return true;
361  }
362  
set_nid(struct page * p,int off,nid_t nid,bool i)363  static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364  {
365  	struct f2fs_node *rn = F2FS_NODE(p);
366  
367  	f2fs_wait_on_page_writeback(p, NODE, true, true);
368  
369  	if (i)
370  		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371  	else
372  		rn->in.nid[off] = cpu_to_le32(nid);
373  	return set_page_dirty(p);
374  }
375  
get_nid(struct page * p,int off,bool i)376  static inline nid_t get_nid(struct page *p, int off, bool i)
377  {
378  	struct f2fs_node *rn = F2FS_NODE(p);
379  
380  	if (i)
381  		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382  	return le32_to_cpu(rn->in.nid[off]);
383  }
384  
385  /*
386   * Coldness identification:
387   *  - Mark cold files in f2fs_inode_info
388   *  - Mark cold node blocks in their node footer
389   *  - Mark cold data pages in page cache
390   */
391  
is_node(struct page * page,int type)392  static inline int is_node(struct page *page, int type)
393  {
394  	struct f2fs_node *rn = F2FS_NODE(page);
395  	return le32_to_cpu(rn->footer.flag) & BIT(type);
396  }
397  
398  #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
399  #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
400  #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
401  
set_cold_node(struct page * page,bool is_dir)402  static inline void set_cold_node(struct page *page, bool is_dir)
403  {
404  	struct f2fs_node *rn = F2FS_NODE(page);
405  	unsigned int flag = le32_to_cpu(rn->footer.flag);
406  
407  	if (is_dir)
408  		flag &= ~BIT(COLD_BIT_SHIFT);
409  	else
410  		flag |= BIT(COLD_BIT_SHIFT);
411  	rn->footer.flag = cpu_to_le32(flag);
412  }
413  
set_mark(struct page * page,int mark,int type)414  static inline void set_mark(struct page *page, int mark, int type)
415  {
416  	struct f2fs_node *rn = F2FS_NODE(page);
417  	unsigned int flag = le32_to_cpu(rn->footer.flag);
418  	if (mark)
419  		flag |= BIT(type);
420  	else
421  		flag &= ~BIT(type);
422  	rn->footer.flag = cpu_to_le32(flag);
423  
424  #ifdef CONFIG_F2FS_CHECK_FS
425  	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
426  #endif
427  }
428  #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
429  #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
430