1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	fs/libfs.c
4   *	Library for filesystems writers.
5   */
6  
7  #include <linux/blkdev.h>
8  #include <linux/export.h>
9  #include <linux/pagemap.h>
10  #include <linux/slab.h>
11  #include <linux/cred.h>
12  #include <linux/mount.h>
13  #include <linux/vfs.h>
14  #include <linux/quotaops.h>
15  #include <linux/mutex.h>
16  #include <linux/namei.h>
17  #include <linux/exportfs.h>
18  #include <linux/iversion.h>
19  #include <linux/writeback.h>
20  #include <linux/buffer_head.h> /* sync_mapping_buffers */
21  #include <linux/fs_context.h>
22  #include <linux/pseudo_fs.h>
23  #include <linux/fsnotify.h>
24  #include <linux/unicode.h>
25  #include <linux/fscrypt.h>
26  #include <linux/pidfs.h>
27  
28  #include <linux/uaccess.h>
29  
30  #include "internal.h"
31  
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32  int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33  		   struct kstat *stat, u32 request_mask,
34  		   unsigned int query_flags)
35  {
36  	struct inode *inode = d_inode(path->dentry);
37  	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38  	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39  	return 0;
40  }
41  EXPORT_SYMBOL(simple_getattr);
42  
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43  int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44  {
45  	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46  
47  	buf->f_fsid = u64_to_fsid(id);
48  	buf->f_type = dentry->d_sb->s_magic;
49  	buf->f_bsize = PAGE_SIZE;
50  	buf->f_namelen = NAME_MAX;
51  	return 0;
52  }
53  EXPORT_SYMBOL(simple_statfs);
54  
55  /*
56   * Retaining negative dentries for an in-memory filesystem just wastes
57   * memory and lookup time: arrange for them to be deleted immediately.
58   */
always_delete_dentry(const struct dentry * dentry)59  int always_delete_dentry(const struct dentry *dentry)
60  {
61  	return 1;
62  }
63  EXPORT_SYMBOL(always_delete_dentry);
64  
65  const struct dentry_operations simple_dentry_operations = {
66  	.d_delete = always_delete_dentry,
67  };
68  EXPORT_SYMBOL(simple_dentry_operations);
69  
70  /*
71   * Lookup the data. This is trivial - if the dentry didn't already
72   * exist, we know it is negative.  Set d_op to delete negative dentries.
73   */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74  struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75  {
76  	if (dentry->d_name.len > NAME_MAX)
77  		return ERR_PTR(-ENAMETOOLONG);
78  	if (!dentry->d_sb->s_d_op)
79  		d_set_d_op(dentry, &simple_dentry_operations);
80  	d_add(dentry, NULL);
81  	return NULL;
82  }
83  EXPORT_SYMBOL(simple_lookup);
84  
dcache_dir_open(struct inode * inode,struct file * file)85  int dcache_dir_open(struct inode *inode, struct file *file)
86  {
87  	file->private_data = d_alloc_cursor(file->f_path.dentry);
88  
89  	return file->private_data ? 0 : -ENOMEM;
90  }
91  EXPORT_SYMBOL(dcache_dir_open);
92  
dcache_dir_close(struct inode * inode,struct file * file)93  int dcache_dir_close(struct inode *inode, struct file *file)
94  {
95  	dput(file->private_data);
96  	return 0;
97  }
98  EXPORT_SYMBOL(dcache_dir_close);
99  
100  /* parent is locked at least shared */
101  /*
102   * Returns an element of siblings' list.
103   * We are looking for <count>th positive after <p>; if
104   * found, dentry is grabbed and returned to caller.
105   * If no such element exists, NULL is returned.
106   */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)107  static struct dentry *scan_positives(struct dentry *cursor,
108  					struct hlist_node **p,
109  					loff_t count,
110  					struct dentry *last)
111  {
112  	struct dentry *dentry = cursor->d_parent, *found = NULL;
113  
114  	spin_lock(&dentry->d_lock);
115  	while (*p) {
116  		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117  		p = &d->d_sib.next;
118  		// we must at least skip cursors, to avoid livelocks
119  		if (d->d_flags & DCACHE_DENTRY_CURSOR)
120  			continue;
121  		if (simple_positive(d) && !--count) {
122  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123  			if (simple_positive(d))
124  				found = dget_dlock(d);
125  			spin_unlock(&d->d_lock);
126  			if (likely(found))
127  				break;
128  			count = 1;
129  		}
130  		if (need_resched()) {
131  			if (!hlist_unhashed(&cursor->d_sib))
132  				__hlist_del(&cursor->d_sib);
133  			hlist_add_behind(&cursor->d_sib, &d->d_sib);
134  			p = &cursor->d_sib.next;
135  			spin_unlock(&dentry->d_lock);
136  			cond_resched();
137  			spin_lock(&dentry->d_lock);
138  		}
139  	}
140  	spin_unlock(&dentry->d_lock);
141  	dput(last);
142  	return found;
143  }
144  
dcache_dir_lseek(struct file * file,loff_t offset,int whence)145  loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146  {
147  	struct dentry *dentry = file->f_path.dentry;
148  	switch (whence) {
149  		case 1:
150  			offset += file->f_pos;
151  			fallthrough;
152  		case 0:
153  			if (offset >= 0)
154  				break;
155  			fallthrough;
156  		default:
157  			return -EINVAL;
158  	}
159  	if (offset != file->f_pos) {
160  		struct dentry *cursor = file->private_data;
161  		struct dentry *to = NULL;
162  
163  		inode_lock_shared(dentry->d_inode);
164  
165  		if (offset > 2)
166  			to = scan_positives(cursor, &dentry->d_children.first,
167  					    offset - 2, NULL);
168  		spin_lock(&dentry->d_lock);
169  		hlist_del_init(&cursor->d_sib);
170  		if (to)
171  			hlist_add_behind(&cursor->d_sib, &to->d_sib);
172  		spin_unlock(&dentry->d_lock);
173  		dput(to);
174  
175  		file->f_pos = offset;
176  
177  		inode_unlock_shared(dentry->d_inode);
178  	}
179  	return offset;
180  }
181  EXPORT_SYMBOL(dcache_dir_lseek);
182  
183  /*
184   * Directory is locked and all positive dentries in it are safe, since
185   * for ramfs-type trees they can't go away without unlink() or rmdir(),
186   * both impossible due to the lock on directory.
187   */
188  
dcache_readdir(struct file * file,struct dir_context * ctx)189  int dcache_readdir(struct file *file, struct dir_context *ctx)
190  {
191  	struct dentry *dentry = file->f_path.dentry;
192  	struct dentry *cursor = file->private_data;
193  	struct dentry *next = NULL;
194  	struct hlist_node **p;
195  
196  	if (!dir_emit_dots(file, ctx))
197  		return 0;
198  
199  	if (ctx->pos == 2)
200  		p = &dentry->d_children.first;
201  	else
202  		p = &cursor->d_sib.next;
203  
204  	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205  		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206  			      d_inode(next)->i_ino,
207  			      fs_umode_to_dtype(d_inode(next)->i_mode)))
208  			break;
209  		ctx->pos++;
210  		p = &next->d_sib.next;
211  	}
212  	spin_lock(&dentry->d_lock);
213  	hlist_del_init(&cursor->d_sib);
214  	if (next)
215  		hlist_add_before(&cursor->d_sib, &next->d_sib);
216  	spin_unlock(&dentry->d_lock);
217  	dput(next);
218  
219  	return 0;
220  }
221  EXPORT_SYMBOL(dcache_readdir);
222  
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)223  ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224  {
225  	return -EISDIR;
226  }
227  EXPORT_SYMBOL(generic_read_dir);
228  
229  const struct file_operations simple_dir_operations = {
230  	.open		= dcache_dir_open,
231  	.release	= dcache_dir_close,
232  	.llseek		= dcache_dir_lseek,
233  	.read		= generic_read_dir,
234  	.iterate_shared	= dcache_readdir,
235  	.fsync		= noop_fsync,
236  };
237  EXPORT_SYMBOL(simple_dir_operations);
238  
239  const struct inode_operations simple_dir_inode_operations = {
240  	.lookup		= simple_lookup,
241  };
242  EXPORT_SYMBOL(simple_dir_inode_operations);
243  
244  /* 0 is '.', 1 is '..', so always start with offset 2 or more */
245  enum {
246  	DIR_OFFSET_MIN	= 2,
247  };
248  
offset_set(struct dentry * dentry,long offset)249  static void offset_set(struct dentry *dentry, long offset)
250  {
251  	dentry->d_fsdata = (void *)offset;
252  }
253  
dentry2offset(struct dentry * dentry)254  static long dentry2offset(struct dentry *dentry)
255  {
256  	return (long)dentry->d_fsdata;
257  }
258  
259  static struct lock_class_key simple_offset_lock_class;
260  
261  /**
262   * simple_offset_init - initialize an offset_ctx
263   * @octx: directory offset map to be initialized
264   *
265   */
simple_offset_init(struct offset_ctx * octx)266  void simple_offset_init(struct offset_ctx *octx)
267  {
268  	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269  	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270  	octx->next_offset = DIR_OFFSET_MIN;
271  }
272  
273  /**
274   * simple_offset_add - Add an entry to a directory's offset map
275   * @octx: directory offset ctx to be updated
276   * @dentry: new dentry being added
277   *
278   * Returns zero on success. @octx and the dentry's offset are updated.
279   * Otherwise, a negative errno value is returned.
280   */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)281  int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282  {
283  	unsigned long offset;
284  	int ret;
285  
286  	if (dentry2offset(dentry) != 0)
287  		return -EBUSY;
288  
289  	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290  				 LONG_MAX, &octx->next_offset, GFP_KERNEL);
291  	if (ret < 0)
292  		return ret;
293  
294  	offset_set(dentry, offset);
295  	return 0;
296  }
297  
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)298  static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
299  				 long offset)
300  {
301  	int ret;
302  
303  	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
304  	if (ret)
305  		return ret;
306  	offset_set(dentry, offset);
307  	return 0;
308  }
309  
310  /**
311   * simple_offset_remove - Remove an entry to a directory's offset map
312   * @octx: directory offset ctx to be updated
313   * @dentry: dentry being removed
314   *
315   */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)316  void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
317  {
318  	long offset;
319  
320  	offset = dentry2offset(dentry);
321  	if (offset == 0)
322  		return;
323  
324  	mtree_erase(&octx->mt, offset);
325  	offset_set(dentry, 0);
326  }
327  
328  /**
329   * simple_offset_empty - Check if a dentry can be unlinked
330   * @dentry: dentry to be tested
331   *
332   * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
333   */
simple_offset_empty(struct dentry * dentry)334  int simple_offset_empty(struct dentry *dentry)
335  {
336  	struct inode *inode = d_inode(dentry);
337  	struct offset_ctx *octx;
338  	struct dentry *child;
339  	unsigned long index;
340  	int ret = 1;
341  
342  	if (!inode || !S_ISDIR(inode->i_mode))
343  		return ret;
344  
345  	index = DIR_OFFSET_MIN;
346  	octx = inode->i_op->get_offset_ctx(inode);
347  	mt_for_each(&octx->mt, child, index, LONG_MAX) {
348  		spin_lock(&child->d_lock);
349  		if (simple_positive(child)) {
350  			spin_unlock(&child->d_lock);
351  			ret = 0;
352  			break;
353  		}
354  		spin_unlock(&child->d_lock);
355  	}
356  
357  	return ret;
358  }
359  
360  /**
361   * simple_offset_rename - handle directory offsets for rename
362   * @old_dir: parent directory of source entry
363   * @old_dentry: dentry of source entry
364   * @new_dir: parent_directory of destination entry
365   * @new_dentry: dentry of destination
366   *
367   * Caller provides appropriate serialization.
368   *
369   * User space expects the directory offset value of the replaced
370   * (new) directory entry to be unchanged after a rename.
371   *
372   * Returns zero on success, a negative errno value on failure.
373   */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)374  int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
375  			 struct inode *new_dir, struct dentry *new_dentry)
376  {
377  	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
378  	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
379  	long new_offset = dentry2offset(new_dentry);
380  
381  	simple_offset_remove(old_ctx, old_dentry);
382  
383  	if (new_offset) {
384  		offset_set(new_dentry, 0);
385  		return simple_offset_replace(new_ctx, old_dentry, new_offset);
386  	}
387  	return simple_offset_add(new_ctx, old_dentry);
388  }
389  
390  /**
391   * simple_offset_rename_exchange - exchange rename with directory offsets
392   * @old_dir: parent of dentry being moved
393   * @old_dentry: dentry being moved
394   * @new_dir: destination parent
395   * @new_dentry: destination dentry
396   *
397   * This API preserves the directory offset values. Caller provides
398   * appropriate serialization.
399   *
400   * Returns zero on success. Otherwise a negative errno is returned and the
401   * rename is rolled back.
402   */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)403  int simple_offset_rename_exchange(struct inode *old_dir,
404  				  struct dentry *old_dentry,
405  				  struct inode *new_dir,
406  				  struct dentry *new_dentry)
407  {
408  	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
409  	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
410  	long old_index = dentry2offset(old_dentry);
411  	long new_index = dentry2offset(new_dentry);
412  	int ret;
413  
414  	simple_offset_remove(old_ctx, old_dentry);
415  	simple_offset_remove(new_ctx, new_dentry);
416  
417  	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
418  	if (ret)
419  		goto out_restore;
420  
421  	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
422  	if (ret) {
423  		simple_offset_remove(new_ctx, old_dentry);
424  		goto out_restore;
425  	}
426  
427  	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
428  	if (ret) {
429  		simple_offset_remove(new_ctx, old_dentry);
430  		simple_offset_remove(old_ctx, new_dentry);
431  		goto out_restore;
432  	}
433  	return 0;
434  
435  out_restore:
436  	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
437  	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
438  	return ret;
439  }
440  
441  /**
442   * simple_offset_destroy - Release offset map
443   * @octx: directory offset ctx that is about to be destroyed
444   *
445   * During fs teardown (eg. umount), a directory's offset map might still
446   * contain entries. xa_destroy() cleans out anything that remains.
447   */
simple_offset_destroy(struct offset_ctx * octx)448  void simple_offset_destroy(struct offset_ctx *octx)
449  {
450  	mtree_destroy(&octx->mt);
451  }
452  
offset_dir_open(struct inode * inode,struct file * file)453  static int offset_dir_open(struct inode *inode, struct file *file)
454  {
455  	struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
456  
457  	file->private_data = (void *)ctx->next_offset;
458  	return 0;
459  }
460  
461  /**
462   * offset_dir_llseek - Advance the read position of a directory descriptor
463   * @file: an open directory whose position is to be updated
464   * @offset: a byte offset
465   * @whence: enumerator describing the starting position for this update
466   *
467   * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
468   *
469   * Returns the updated read position if successful; otherwise a
470   * negative errno is returned and the read position remains unchanged.
471   */
offset_dir_llseek(struct file * file,loff_t offset,int whence)472  static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
473  {
474  	struct inode *inode = file->f_inode;
475  	struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
476  
477  	switch (whence) {
478  	case SEEK_CUR:
479  		offset += file->f_pos;
480  		fallthrough;
481  	case SEEK_SET:
482  		if (offset >= 0)
483  			break;
484  		fallthrough;
485  	default:
486  		return -EINVAL;
487  	}
488  
489  	/* In this case, ->private_data is protected by f_pos_lock */
490  	if (!offset)
491  		file->private_data = (void *)ctx->next_offset;
492  	return vfs_setpos(file, offset, LONG_MAX);
493  }
494  
offset_find_next(struct offset_ctx * octx,loff_t offset)495  static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
496  {
497  	MA_STATE(mas, &octx->mt, offset, offset);
498  	struct dentry *child, *found = NULL;
499  
500  	rcu_read_lock();
501  	child = mas_find(&mas, LONG_MAX);
502  	if (!child)
503  		goto out;
504  	spin_lock(&child->d_lock);
505  	if (simple_positive(child))
506  		found = dget_dlock(child);
507  	spin_unlock(&child->d_lock);
508  out:
509  	rcu_read_unlock();
510  	return found;
511  }
512  
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)513  static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
514  {
515  	struct inode *inode = d_inode(dentry);
516  	long offset = dentry2offset(dentry);
517  
518  	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
519  			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
520  }
521  
offset_iterate_dir(struct inode * inode,struct dir_context * ctx,long last_index)522  static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index)
523  {
524  	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
525  	struct dentry *dentry;
526  
527  	while (true) {
528  		dentry = offset_find_next(octx, ctx->pos);
529  		if (!dentry)
530  			return;
531  
532  		if (dentry2offset(dentry) >= last_index) {
533  			dput(dentry);
534  			return;
535  		}
536  
537  		if (!offset_dir_emit(ctx, dentry)) {
538  			dput(dentry);
539  			return;
540  		}
541  
542  		ctx->pos = dentry2offset(dentry) + 1;
543  		dput(dentry);
544  	}
545  }
546  
547  /**
548   * offset_readdir - Emit entries starting at offset @ctx->pos
549   * @file: an open directory to iterate over
550   * @ctx: directory iteration context
551   *
552   * Caller must hold @file's i_rwsem to prevent insertion or removal of
553   * entries during this call.
554   *
555   * On entry, @ctx->pos contains an offset that represents the first entry
556   * to be read from the directory.
557   *
558   * The operation continues until there are no more entries to read, or
559   * until the ctx->actor indicates there is no more space in the caller's
560   * output buffer.
561   *
562   * On return, @ctx->pos contains an offset that will read the next entry
563   * in this directory when offset_readdir() is called again with @ctx.
564   *
565   * Return values:
566   *   %0 - Complete
567   */
offset_readdir(struct file * file,struct dir_context * ctx)568  static int offset_readdir(struct file *file, struct dir_context *ctx)
569  {
570  	struct dentry *dir = file->f_path.dentry;
571  	long last_index = (long)file->private_data;
572  
573  	lockdep_assert_held(&d_inode(dir)->i_rwsem);
574  
575  	if (!dir_emit_dots(file, ctx))
576  		return 0;
577  
578  	offset_iterate_dir(d_inode(dir), ctx, last_index);
579  	return 0;
580  }
581  
582  const struct file_operations simple_offset_dir_operations = {
583  	.open		= offset_dir_open,
584  	.llseek		= offset_dir_llseek,
585  	.iterate_shared	= offset_readdir,
586  	.read		= generic_read_dir,
587  	.fsync		= noop_fsync,
588  };
589  
find_next_child(struct dentry * parent,struct dentry * prev)590  static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
591  {
592  	struct dentry *child = NULL, *d;
593  
594  	spin_lock(&parent->d_lock);
595  	d = prev ? d_next_sibling(prev) : d_first_child(parent);
596  	hlist_for_each_entry_from(d, d_sib) {
597  		if (simple_positive(d)) {
598  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
599  			if (simple_positive(d))
600  				child = dget_dlock(d);
601  			spin_unlock(&d->d_lock);
602  			if (likely(child))
603  				break;
604  		}
605  	}
606  	spin_unlock(&parent->d_lock);
607  	dput(prev);
608  	return child;
609  }
610  
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))611  void simple_recursive_removal(struct dentry *dentry,
612                                void (*callback)(struct dentry *))
613  {
614  	struct dentry *this = dget(dentry);
615  	while (true) {
616  		struct dentry *victim = NULL, *child;
617  		struct inode *inode = this->d_inode;
618  
619  		inode_lock(inode);
620  		if (d_is_dir(this))
621  			inode->i_flags |= S_DEAD;
622  		while ((child = find_next_child(this, victim)) == NULL) {
623  			// kill and ascend
624  			// update metadata while it's still locked
625  			inode_set_ctime_current(inode);
626  			clear_nlink(inode);
627  			inode_unlock(inode);
628  			victim = this;
629  			this = this->d_parent;
630  			inode = this->d_inode;
631  			inode_lock(inode);
632  			if (simple_positive(victim)) {
633  				d_invalidate(victim);	// avoid lost mounts
634  				if (d_is_dir(victim))
635  					fsnotify_rmdir(inode, victim);
636  				else
637  					fsnotify_unlink(inode, victim);
638  				if (callback)
639  					callback(victim);
640  				dput(victim);		// unpin it
641  			}
642  			if (victim == dentry) {
643  				inode_set_mtime_to_ts(inode,
644  						      inode_set_ctime_current(inode));
645  				if (d_is_dir(dentry))
646  					drop_nlink(inode);
647  				inode_unlock(inode);
648  				dput(dentry);
649  				return;
650  			}
651  		}
652  		inode_unlock(inode);
653  		this = child;
654  	}
655  }
656  EXPORT_SYMBOL(simple_recursive_removal);
657  
658  static const struct super_operations simple_super_operations = {
659  	.statfs		= simple_statfs,
660  };
661  
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)662  static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
663  {
664  	struct pseudo_fs_context *ctx = fc->fs_private;
665  	struct inode *root;
666  
667  	s->s_maxbytes = MAX_LFS_FILESIZE;
668  	s->s_blocksize = PAGE_SIZE;
669  	s->s_blocksize_bits = PAGE_SHIFT;
670  	s->s_magic = ctx->magic;
671  	s->s_op = ctx->ops ?: &simple_super_operations;
672  	s->s_xattr = ctx->xattr;
673  	s->s_time_gran = 1;
674  	root = new_inode(s);
675  	if (!root)
676  		return -ENOMEM;
677  
678  	/*
679  	 * since this is the first inode, make it number 1. New inodes created
680  	 * after this must take care not to collide with it (by passing
681  	 * max_reserved of 1 to iunique).
682  	 */
683  	root->i_ino = 1;
684  	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
685  	simple_inode_init_ts(root);
686  	s->s_root = d_make_root(root);
687  	if (!s->s_root)
688  		return -ENOMEM;
689  	s->s_d_op = ctx->dops;
690  	return 0;
691  }
692  
pseudo_fs_get_tree(struct fs_context * fc)693  static int pseudo_fs_get_tree(struct fs_context *fc)
694  {
695  	return get_tree_nodev(fc, pseudo_fs_fill_super);
696  }
697  
pseudo_fs_free(struct fs_context * fc)698  static void pseudo_fs_free(struct fs_context *fc)
699  {
700  	kfree(fc->fs_private);
701  }
702  
703  static const struct fs_context_operations pseudo_fs_context_ops = {
704  	.free		= pseudo_fs_free,
705  	.get_tree	= pseudo_fs_get_tree,
706  };
707  
708  /*
709   * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
710   * will never be mountable)
711   */
init_pseudo(struct fs_context * fc,unsigned long magic)712  struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
713  					unsigned long magic)
714  {
715  	struct pseudo_fs_context *ctx;
716  
717  	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
718  	if (likely(ctx)) {
719  		ctx->magic = magic;
720  		fc->fs_private = ctx;
721  		fc->ops = &pseudo_fs_context_ops;
722  		fc->sb_flags |= SB_NOUSER;
723  		fc->global = true;
724  	}
725  	return ctx;
726  }
727  EXPORT_SYMBOL(init_pseudo);
728  
simple_open(struct inode * inode,struct file * file)729  int simple_open(struct inode *inode, struct file *file)
730  {
731  	if (inode->i_private)
732  		file->private_data = inode->i_private;
733  	return 0;
734  }
735  EXPORT_SYMBOL(simple_open);
736  
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)737  int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
738  {
739  	struct inode *inode = d_inode(old_dentry);
740  
741  	inode_set_mtime_to_ts(dir,
742  			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
743  	inc_nlink(inode);
744  	ihold(inode);
745  	dget(dentry);
746  	d_instantiate(dentry, inode);
747  	return 0;
748  }
749  EXPORT_SYMBOL(simple_link);
750  
simple_empty(struct dentry * dentry)751  int simple_empty(struct dentry *dentry)
752  {
753  	struct dentry *child;
754  	int ret = 0;
755  
756  	spin_lock(&dentry->d_lock);
757  	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
758  		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
759  		if (simple_positive(child)) {
760  			spin_unlock(&child->d_lock);
761  			goto out;
762  		}
763  		spin_unlock(&child->d_lock);
764  	}
765  	ret = 1;
766  out:
767  	spin_unlock(&dentry->d_lock);
768  	return ret;
769  }
770  EXPORT_SYMBOL(simple_empty);
771  
simple_unlink(struct inode * dir,struct dentry * dentry)772  int simple_unlink(struct inode *dir, struct dentry *dentry)
773  {
774  	struct inode *inode = d_inode(dentry);
775  
776  	inode_set_mtime_to_ts(dir,
777  			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
778  	drop_nlink(inode);
779  	dput(dentry);
780  	return 0;
781  }
782  EXPORT_SYMBOL(simple_unlink);
783  
simple_rmdir(struct inode * dir,struct dentry * dentry)784  int simple_rmdir(struct inode *dir, struct dentry *dentry)
785  {
786  	if (!simple_empty(dentry))
787  		return -ENOTEMPTY;
788  
789  	drop_nlink(d_inode(dentry));
790  	simple_unlink(dir, dentry);
791  	drop_nlink(dir);
792  	return 0;
793  }
794  EXPORT_SYMBOL(simple_rmdir);
795  
796  /**
797   * simple_rename_timestamp - update the various inode timestamps for rename
798   * @old_dir: old parent directory
799   * @old_dentry: dentry that is being renamed
800   * @new_dir: new parent directory
801   * @new_dentry: target for rename
802   *
803   * POSIX mandates that the old and new parent directories have their ctime and
804   * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
805   * their ctime updated.
806   */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)807  void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
808  			     struct inode *new_dir, struct dentry *new_dentry)
809  {
810  	struct inode *newino = d_inode(new_dentry);
811  
812  	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
813  	if (new_dir != old_dir)
814  		inode_set_mtime_to_ts(new_dir,
815  				      inode_set_ctime_current(new_dir));
816  	inode_set_ctime_current(d_inode(old_dentry));
817  	if (newino)
818  		inode_set_ctime_current(newino);
819  }
820  EXPORT_SYMBOL_GPL(simple_rename_timestamp);
821  
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)822  int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
823  			   struct inode *new_dir, struct dentry *new_dentry)
824  {
825  	bool old_is_dir = d_is_dir(old_dentry);
826  	bool new_is_dir = d_is_dir(new_dentry);
827  
828  	if (old_dir != new_dir && old_is_dir != new_is_dir) {
829  		if (old_is_dir) {
830  			drop_nlink(old_dir);
831  			inc_nlink(new_dir);
832  		} else {
833  			drop_nlink(new_dir);
834  			inc_nlink(old_dir);
835  		}
836  	}
837  	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
838  	return 0;
839  }
840  EXPORT_SYMBOL_GPL(simple_rename_exchange);
841  
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)842  int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
843  		  struct dentry *old_dentry, struct inode *new_dir,
844  		  struct dentry *new_dentry, unsigned int flags)
845  {
846  	int they_are_dirs = d_is_dir(old_dentry);
847  
848  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
849  		return -EINVAL;
850  
851  	if (flags & RENAME_EXCHANGE)
852  		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
853  
854  	if (!simple_empty(new_dentry))
855  		return -ENOTEMPTY;
856  
857  	if (d_really_is_positive(new_dentry)) {
858  		simple_unlink(new_dir, new_dentry);
859  		if (they_are_dirs) {
860  			drop_nlink(d_inode(new_dentry));
861  			drop_nlink(old_dir);
862  		}
863  	} else if (they_are_dirs) {
864  		drop_nlink(old_dir);
865  		inc_nlink(new_dir);
866  	}
867  
868  	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
869  	return 0;
870  }
871  EXPORT_SYMBOL(simple_rename);
872  
873  /**
874   * simple_setattr - setattr for simple filesystem
875   * @idmap: idmap of the target mount
876   * @dentry: dentry
877   * @iattr: iattr structure
878   *
879   * Returns 0 on success, -error on failure.
880   *
881   * simple_setattr is a simple ->setattr implementation without a proper
882   * implementation of size changes.
883   *
884   * It can either be used for in-memory filesystems or special files
885   * on simple regular filesystems.  Anything that needs to change on-disk
886   * or wire state on size changes needs its own setattr method.
887   */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)888  int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
889  		   struct iattr *iattr)
890  {
891  	struct inode *inode = d_inode(dentry);
892  	int error;
893  
894  	error = setattr_prepare(idmap, dentry, iattr);
895  	if (error)
896  		return error;
897  
898  	if (iattr->ia_valid & ATTR_SIZE)
899  		truncate_setsize(inode, iattr->ia_size);
900  	setattr_copy(idmap, inode, iattr);
901  	mark_inode_dirty(inode);
902  	return 0;
903  }
904  EXPORT_SYMBOL(simple_setattr);
905  
simple_read_folio(struct file * file,struct folio * folio)906  static int simple_read_folio(struct file *file, struct folio *folio)
907  {
908  	folio_zero_range(folio, 0, folio_size(folio));
909  	flush_dcache_folio(folio);
910  	folio_mark_uptodate(folio);
911  	folio_unlock(folio);
912  	return 0;
913  }
914  
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)915  int simple_write_begin(struct file *file, struct address_space *mapping,
916  			loff_t pos, unsigned len,
917  			struct folio **foliop, void **fsdata)
918  {
919  	struct folio *folio;
920  
921  	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
922  			mapping_gfp_mask(mapping));
923  	if (IS_ERR(folio))
924  		return PTR_ERR(folio);
925  
926  	*foliop = folio;
927  
928  	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
929  		size_t from = offset_in_folio(folio, pos);
930  
931  		folio_zero_segments(folio, 0, from,
932  				from + len, folio_size(folio));
933  	}
934  	return 0;
935  }
936  EXPORT_SYMBOL(simple_write_begin);
937  
938  /**
939   * simple_write_end - .write_end helper for non-block-device FSes
940   * @file: See .write_end of address_space_operations
941   * @mapping: 		"
942   * @pos: 		"
943   * @len: 		"
944   * @copied: 		"
945   * @folio: 		"
946   * @fsdata: 		"
947   *
948   * simple_write_end does the minimum needed for updating a folio after
949   * writing is done. It has the same API signature as the .write_end of
950   * address_space_operations vector. So it can just be set onto .write_end for
951   * FSes that don't need any other processing. i_mutex is assumed to be held.
952   * Block based filesystems should use generic_write_end().
953   * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
954   * is not called, so a filesystem that actually does store data in .write_inode
955   * should extend on what's done here with a call to mark_inode_dirty() in the
956   * case that i_size has changed.
957   *
958   * Use *ONLY* with simple_read_folio()
959   */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)960  static int simple_write_end(struct file *file, struct address_space *mapping,
961  			loff_t pos, unsigned len, unsigned copied,
962  			struct folio *folio, void *fsdata)
963  {
964  	struct inode *inode = folio->mapping->host;
965  	loff_t last_pos = pos + copied;
966  
967  	/* zero the stale part of the folio if we did a short copy */
968  	if (!folio_test_uptodate(folio)) {
969  		if (copied < len) {
970  			size_t from = offset_in_folio(folio, pos);
971  
972  			folio_zero_range(folio, from + copied, len - copied);
973  		}
974  		folio_mark_uptodate(folio);
975  	}
976  	/*
977  	 * No need to use i_size_read() here, the i_size
978  	 * cannot change under us because we hold the i_mutex.
979  	 */
980  	if (last_pos > inode->i_size)
981  		i_size_write(inode, last_pos);
982  
983  	folio_mark_dirty(folio);
984  	folio_unlock(folio);
985  	folio_put(folio);
986  
987  	return copied;
988  }
989  
990  /*
991   * Provides ramfs-style behavior: data in the pagecache, but no writeback.
992   */
993  const struct address_space_operations ram_aops = {
994  	.read_folio	= simple_read_folio,
995  	.write_begin	= simple_write_begin,
996  	.write_end	= simple_write_end,
997  	.dirty_folio	= noop_dirty_folio,
998  };
999  EXPORT_SYMBOL(ram_aops);
1000  
1001  /*
1002   * the inodes created here are not hashed. If you use iunique to generate
1003   * unique inode values later for this filesystem, then you must take care
1004   * to pass it an appropriate max_reserved value to avoid collisions.
1005   */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1006  int simple_fill_super(struct super_block *s, unsigned long magic,
1007  		      const struct tree_descr *files)
1008  {
1009  	struct inode *inode;
1010  	struct dentry *dentry;
1011  	int i;
1012  
1013  	s->s_blocksize = PAGE_SIZE;
1014  	s->s_blocksize_bits = PAGE_SHIFT;
1015  	s->s_magic = magic;
1016  	s->s_op = &simple_super_operations;
1017  	s->s_time_gran = 1;
1018  
1019  	inode = new_inode(s);
1020  	if (!inode)
1021  		return -ENOMEM;
1022  	/*
1023  	 * because the root inode is 1, the files array must not contain an
1024  	 * entry at index 1
1025  	 */
1026  	inode->i_ino = 1;
1027  	inode->i_mode = S_IFDIR | 0755;
1028  	simple_inode_init_ts(inode);
1029  	inode->i_op = &simple_dir_inode_operations;
1030  	inode->i_fop = &simple_dir_operations;
1031  	set_nlink(inode, 2);
1032  	s->s_root = d_make_root(inode);
1033  	if (!s->s_root)
1034  		return -ENOMEM;
1035  	for (i = 0; !files->name || files->name[0]; i++, files++) {
1036  		if (!files->name)
1037  			continue;
1038  
1039  		/* warn if it tries to conflict with the root inode */
1040  		if (unlikely(i == 1))
1041  			printk(KERN_WARNING "%s: %s passed in a files array"
1042  				"with an index of 1!\n", __func__,
1043  				s->s_type->name);
1044  
1045  		dentry = d_alloc_name(s->s_root, files->name);
1046  		if (!dentry)
1047  			return -ENOMEM;
1048  		inode = new_inode(s);
1049  		if (!inode) {
1050  			dput(dentry);
1051  			return -ENOMEM;
1052  		}
1053  		inode->i_mode = S_IFREG | files->mode;
1054  		simple_inode_init_ts(inode);
1055  		inode->i_fop = files->ops;
1056  		inode->i_ino = i;
1057  		d_add(dentry, inode);
1058  	}
1059  	return 0;
1060  }
1061  EXPORT_SYMBOL(simple_fill_super);
1062  
1063  static DEFINE_SPINLOCK(pin_fs_lock);
1064  
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1065  int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1066  {
1067  	struct vfsmount *mnt = NULL;
1068  	spin_lock(&pin_fs_lock);
1069  	if (unlikely(!*mount)) {
1070  		spin_unlock(&pin_fs_lock);
1071  		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1072  		if (IS_ERR(mnt))
1073  			return PTR_ERR(mnt);
1074  		spin_lock(&pin_fs_lock);
1075  		if (!*mount)
1076  			*mount = mnt;
1077  	}
1078  	mntget(*mount);
1079  	++*count;
1080  	spin_unlock(&pin_fs_lock);
1081  	mntput(mnt);
1082  	return 0;
1083  }
1084  EXPORT_SYMBOL(simple_pin_fs);
1085  
simple_release_fs(struct vfsmount ** mount,int * count)1086  void simple_release_fs(struct vfsmount **mount, int *count)
1087  {
1088  	struct vfsmount *mnt;
1089  	spin_lock(&pin_fs_lock);
1090  	mnt = *mount;
1091  	if (!--*count)
1092  		*mount = NULL;
1093  	spin_unlock(&pin_fs_lock);
1094  	mntput(mnt);
1095  }
1096  EXPORT_SYMBOL(simple_release_fs);
1097  
1098  /**
1099   * simple_read_from_buffer - copy data from the buffer to user space
1100   * @to: the user space buffer to read to
1101   * @count: the maximum number of bytes to read
1102   * @ppos: the current position in the buffer
1103   * @from: the buffer to read from
1104   * @available: the size of the buffer
1105   *
1106   * The simple_read_from_buffer() function reads up to @count bytes from the
1107   * buffer @from at offset @ppos into the user space address starting at @to.
1108   *
1109   * On success, the number of bytes read is returned and the offset @ppos is
1110   * advanced by this number, or negative value is returned on error.
1111   **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1112  ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1113  				const void *from, size_t available)
1114  {
1115  	loff_t pos = *ppos;
1116  	size_t ret;
1117  
1118  	if (pos < 0)
1119  		return -EINVAL;
1120  	if (pos >= available || !count)
1121  		return 0;
1122  	if (count > available - pos)
1123  		count = available - pos;
1124  	ret = copy_to_user(to, from + pos, count);
1125  	if (ret == count)
1126  		return -EFAULT;
1127  	count -= ret;
1128  	*ppos = pos + count;
1129  	return count;
1130  }
1131  EXPORT_SYMBOL(simple_read_from_buffer);
1132  
1133  /**
1134   * simple_write_to_buffer - copy data from user space to the buffer
1135   * @to: the buffer to write to
1136   * @available: the size of the buffer
1137   * @ppos: the current position in the buffer
1138   * @from: the user space buffer to read from
1139   * @count: the maximum number of bytes to read
1140   *
1141   * The simple_write_to_buffer() function reads up to @count bytes from the user
1142   * space address starting at @from into the buffer @to at offset @ppos.
1143   *
1144   * On success, the number of bytes written is returned and the offset @ppos is
1145   * advanced by this number, or negative value is returned on error.
1146   **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1147  ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1148  		const void __user *from, size_t count)
1149  {
1150  	loff_t pos = *ppos;
1151  	size_t res;
1152  
1153  	if (pos < 0)
1154  		return -EINVAL;
1155  	if (pos >= available || !count)
1156  		return 0;
1157  	if (count > available - pos)
1158  		count = available - pos;
1159  	res = copy_from_user(to + pos, from, count);
1160  	if (res == count)
1161  		return -EFAULT;
1162  	count -= res;
1163  	*ppos = pos + count;
1164  	return count;
1165  }
1166  EXPORT_SYMBOL(simple_write_to_buffer);
1167  
1168  /**
1169   * memory_read_from_buffer - copy data from the buffer
1170   * @to: the kernel space buffer to read to
1171   * @count: the maximum number of bytes to read
1172   * @ppos: the current position in the buffer
1173   * @from: the buffer to read from
1174   * @available: the size of the buffer
1175   *
1176   * The memory_read_from_buffer() function reads up to @count bytes from the
1177   * buffer @from at offset @ppos into the kernel space address starting at @to.
1178   *
1179   * On success, the number of bytes read is returned and the offset @ppos is
1180   * advanced by this number, or negative value is returned on error.
1181   **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1182  ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1183  				const void *from, size_t available)
1184  {
1185  	loff_t pos = *ppos;
1186  
1187  	if (pos < 0)
1188  		return -EINVAL;
1189  	if (pos >= available)
1190  		return 0;
1191  	if (count > available - pos)
1192  		count = available - pos;
1193  	memcpy(to, from + pos, count);
1194  	*ppos = pos + count;
1195  
1196  	return count;
1197  }
1198  EXPORT_SYMBOL(memory_read_from_buffer);
1199  
1200  /*
1201   * Transaction based IO.
1202   * The file expects a single write which triggers the transaction, and then
1203   * possibly a read which collects the result - which is stored in a
1204   * file-local buffer.
1205   */
1206  
simple_transaction_set(struct file * file,size_t n)1207  void simple_transaction_set(struct file *file, size_t n)
1208  {
1209  	struct simple_transaction_argresp *ar = file->private_data;
1210  
1211  	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1212  
1213  	/*
1214  	 * The barrier ensures that ar->size will really remain zero until
1215  	 * ar->data is ready for reading.
1216  	 */
1217  	smp_mb();
1218  	ar->size = n;
1219  }
1220  EXPORT_SYMBOL(simple_transaction_set);
1221  
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1222  char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1223  {
1224  	struct simple_transaction_argresp *ar;
1225  	static DEFINE_SPINLOCK(simple_transaction_lock);
1226  
1227  	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1228  		return ERR_PTR(-EFBIG);
1229  
1230  	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1231  	if (!ar)
1232  		return ERR_PTR(-ENOMEM);
1233  
1234  	spin_lock(&simple_transaction_lock);
1235  
1236  	/* only one write allowed per open */
1237  	if (file->private_data) {
1238  		spin_unlock(&simple_transaction_lock);
1239  		free_page((unsigned long)ar);
1240  		return ERR_PTR(-EBUSY);
1241  	}
1242  
1243  	file->private_data = ar;
1244  
1245  	spin_unlock(&simple_transaction_lock);
1246  
1247  	if (copy_from_user(ar->data, buf, size))
1248  		return ERR_PTR(-EFAULT);
1249  
1250  	return ar->data;
1251  }
1252  EXPORT_SYMBOL(simple_transaction_get);
1253  
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1254  ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1255  {
1256  	struct simple_transaction_argresp *ar = file->private_data;
1257  
1258  	if (!ar)
1259  		return 0;
1260  	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1261  }
1262  EXPORT_SYMBOL(simple_transaction_read);
1263  
simple_transaction_release(struct inode * inode,struct file * file)1264  int simple_transaction_release(struct inode *inode, struct file *file)
1265  {
1266  	free_page((unsigned long)file->private_data);
1267  	return 0;
1268  }
1269  EXPORT_SYMBOL(simple_transaction_release);
1270  
1271  /* Simple attribute files */
1272  
1273  struct simple_attr {
1274  	int (*get)(void *, u64 *);
1275  	int (*set)(void *, u64);
1276  	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1277  	char set_buf[24];
1278  	void *data;
1279  	const char *fmt;	/* format for read operation */
1280  	struct mutex mutex;	/* protects access to these buffers */
1281  };
1282  
1283  /* simple_attr_open is called by an actual attribute open file operation
1284   * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1285  int simple_attr_open(struct inode *inode, struct file *file,
1286  		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1287  		     const char *fmt)
1288  {
1289  	struct simple_attr *attr;
1290  
1291  	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1292  	if (!attr)
1293  		return -ENOMEM;
1294  
1295  	attr->get = get;
1296  	attr->set = set;
1297  	attr->data = inode->i_private;
1298  	attr->fmt = fmt;
1299  	mutex_init(&attr->mutex);
1300  
1301  	file->private_data = attr;
1302  
1303  	return nonseekable_open(inode, file);
1304  }
1305  EXPORT_SYMBOL_GPL(simple_attr_open);
1306  
simple_attr_release(struct inode * inode,struct file * file)1307  int simple_attr_release(struct inode *inode, struct file *file)
1308  {
1309  	kfree(file->private_data);
1310  	return 0;
1311  }
1312  EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1313  
1314  /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1315  ssize_t simple_attr_read(struct file *file, char __user *buf,
1316  			 size_t len, loff_t *ppos)
1317  {
1318  	struct simple_attr *attr;
1319  	size_t size;
1320  	ssize_t ret;
1321  
1322  	attr = file->private_data;
1323  
1324  	if (!attr->get)
1325  		return -EACCES;
1326  
1327  	ret = mutex_lock_interruptible(&attr->mutex);
1328  	if (ret)
1329  		return ret;
1330  
1331  	if (*ppos && attr->get_buf[0]) {
1332  		/* continued read */
1333  		size = strlen(attr->get_buf);
1334  	} else {
1335  		/* first read */
1336  		u64 val;
1337  		ret = attr->get(attr->data, &val);
1338  		if (ret)
1339  			goto out;
1340  
1341  		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1342  				 attr->fmt, (unsigned long long)val);
1343  	}
1344  
1345  	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1346  out:
1347  	mutex_unlock(&attr->mutex);
1348  	return ret;
1349  }
1350  EXPORT_SYMBOL_GPL(simple_attr_read);
1351  
1352  /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1353  static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1354  			  size_t len, loff_t *ppos, bool is_signed)
1355  {
1356  	struct simple_attr *attr;
1357  	unsigned long long val;
1358  	size_t size;
1359  	ssize_t ret;
1360  
1361  	attr = file->private_data;
1362  	if (!attr->set)
1363  		return -EACCES;
1364  
1365  	ret = mutex_lock_interruptible(&attr->mutex);
1366  	if (ret)
1367  		return ret;
1368  
1369  	ret = -EFAULT;
1370  	size = min(sizeof(attr->set_buf) - 1, len);
1371  	if (copy_from_user(attr->set_buf, buf, size))
1372  		goto out;
1373  
1374  	attr->set_buf[size] = '\0';
1375  	if (is_signed)
1376  		ret = kstrtoll(attr->set_buf, 0, &val);
1377  	else
1378  		ret = kstrtoull(attr->set_buf, 0, &val);
1379  	if (ret)
1380  		goto out;
1381  	ret = attr->set(attr->data, val);
1382  	if (ret == 0)
1383  		ret = len; /* on success, claim we got the whole input */
1384  out:
1385  	mutex_unlock(&attr->mutex);
1386  	return ret;
1387  }
1388  
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1389  ssize_t simple_attr_write(struct file *file, const char __user *buf,
1390  			  size_t len, loff_t *ppos)
1391  {
1392  	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1393  }
1394  EXPORT_SYMBOL_GPL(simple_attr_write);
1395  
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1396  ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1397  			  size_t len, loff_t *ppos)
1398  {
1399  	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1400  }
1401  EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1402  
1403  /**
1404   * generic_encode_ino32_fh - generic export_operations->encode_fh function
1405   * @inode:   the object to encode
1406   * @fh:      where to store the file handle fragment
1407   * @max_len: maximum length to store there (in 4 byte units)
1408   * @parent:  parent directory inode, if wanted
1409   *
1410   * This generic encode_fh function assumes that the 32 inode number
1411   * is suitable for locating an inode, and that the generation number
1412   * can be used to check that it is still valid.  It places them in the
1413   * filehandle fragment where export_decode_fh expects to find them.
1414   */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1415  int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1416  			    struct inode *parent)
1417  {
1418  	struct fid *fid = (void *)fh;
1419  	int len = *max_len;
1420  	int type = FILEID_INO32_GEN;
1421  
1422  	if (parent && (len < 4)) {
1423  		*max_len = 4;
1424  		return FILEID_INVALID;
1425  	} else if (len < 2) {
1426  		*max_len = 2;
1427  		return FILEID_INVALID;
1428  	}
1429  
1430  	len = 2;
1431  	fid->i32.ino = inode->i_ino;
1432  	fid->i32.gen = inode->i_generation;
1433  	if (parent) {
1434  		fid->i32.parent_ino = parent->i_ino;
1435  		fid->i32.parent_gen = parent->i_generation;
1436  		len = 4;
1437  		type = FILEID_INO32_GEN_PARENT;
1438  	}
1439  	*max_len = len;
1440  	return type;
1441  }
1442  EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1443  
1444  /**
1445   * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1446   * @sb:		filesystem to do the file handle conversion on
1447   * @fid:	file handle to convert
1448   * @fh_len:	length of the file handle in bytes
1449   * @fh_type:	type of file handle
1450   * @get_inode:	filesystem callback to retrieve inode
1451   *
1452   * This function decodes @fid as long as it has one of the well-known
1453   * Linux filehandle types and calls @get_inode on it to retrieve the
1454   * inode for the object specified in the file handle.
1455   */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1456  struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1457  		int fh_len, int fh_type, struct inode *(*get_inode)
1458  			(struct super_block *sb, u64 ino, u32 gen))
1459  {
1460  	struct inode *inode = NULL;
1461  
1462  	if (fh_len < 2)
1463  		return NULL;
1464  
1465  	switch (fh_type) {
1466  	case FILEID_INO32_GEN:
1467  	case FILEID_INO32_GEN_PARENT:
1468  		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1469  		break;
1470  	}
1471  
1472  	return d_obtain_alias(inode);
1473  }
1474  EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1475  
1476  /**
1477   * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1478   * @sb:		filesystem to do the file handle conversion on
1479   * @fid:	file handle to convert
1480   * @fh_len:	length of the file handle in bytes
1481   * @fh_type:	type of file handle
1482   * @get_inode:	filesystem callback to retrieve inode
1483   *
1484   * This function decodes @fid as long as it has one of the well-known
1485   * Linux filehandle types and calls @get_inode on it to retrieve the
1486   * inode for the _parent_ object specified in the file handle if it
1487   * is specified in the file handle, or NULL otherwise.
1488   */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1489  struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1490  		int fh_len, int fh_type, struct inode *(*get_inode)
1491  			(struct super_block *sb, u64 ino, u32 gen))
1492  {
1493  	struct inode *inode = NULL;
1494  
1495  	if (fh_len <= 2)
1496  		return NULL;
1497  
1498  	switch (fh_type) {
1499  	case FILEID_INO32_GEN_PARENT:
1500  		inode = get_inode(sb, fid->i32.parent_ino,
1501  				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1502  		break;
1503  	}
1504  
1505  	return d_obtain_alias(inode);
1506  }
1507  EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1508  
1509  /**
1510   * __generic_file_fsync - generic fsync implementation for simple filesystems
1511   *
1512   * @file:	file to synchronize
1513   * @start:	start offset in bytes
1514   * @end:	end offset in bytes (inclusive)
1515   * @datasync:	only synchronize essential metadata if true
1516   *
1517   * This is a generic implementation of the fsync method for simple
1518   * filesystems which track all non-inode metadata in the buffers list
1519   * hanging off the address_space structure.
1520   */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1521  int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1522  				 int datasync)
1523  {
1524  	struct inode *inode = file->f_mapping->host;
1525  	int err;
1526  	int ret;
1527  
1528  	err = file_write_and_wait_range(file, start, end);
1529  	if (err)
1530  		return err;
1531  
1532  	inode_lock(inode);
1533  	ret = sync_mapping_buffers(inode->i_mapping);
1534  	if (!(inode->i_state & I_DIRTY_ALL))
1535  		goto out;
1536  	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1537  		goto out;
1538  
1539  	err = sync_inode_metadata(inode, 1);
1540  	if (ret == 0)
1541  		ret = err;
1542  
1543  out:
1544  	inode_unlock(inode);
1545  	/* check and advance again to catch errors after syncing out buffers */
1546  	err = file_check_and_advance_wb_err(file);
1547  	if (ret == 0)
1548  		ret = err;
1549  	return ret;
1550  }
1551  EXPORT_SYMBOL(__generic_file_fsync);
1552  
1553  /**
1554   * generic_file_fsync - generic fsync implementation for simple filesystems
1555   *			with flush
1556   * @file:	file to synchronize
1557   * @start:	start offset in bytes
1558   * @end:	end offset in bytes (inclusive)
1559   * @datasync:	only synchronize essential metadata if true
1560   *
1561   */
1562  
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1563  int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1564  		       int datasync)
1565  {
1566  	struct inode *inode = file->f_mapping->host;
1567  	int err;
1568  
1569  	err = __generic_file_fsync(file, start, end, datasync);
1570  	if (err)
1571  		return err;
1572  	return blkdev_issue_flush(inode->i_sb->s_bdev);
1573  }
1574  EXPORT_SYMBOL(generic_file_fsync);
1575  
1576  /**
1577   * generic_check_addressable - Check addressability of file system
1578   * @blocksize_bits:	log of file system block size
1579   * @num_blocks:		number of blocks in file system
1580   *
1581   * Determine whether a file system with @num_blocks blocks (and a
1582   * block size of 2**@blocksize_bits) is addressable by the sector_t
1583   * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1584   */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1585  int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1586  {
1587  	u64 last_fs_block = num_blocks - 1;
1588  	u64 last_fs_page =
1589  		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1590  
1591  	if (unlikely(num_blocks == 0))
1592  		return 0;
1593  
1594  	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1595  		return -EINVAL;
1596  
1597  	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1598  	    (last_fs_page > (pgoff_t)(~0ULL))) {
1599  		return -EFBIG;
1600  	}
1601  	return 0;
1602  }
1603  EXPORT_SYMBOL(generic_check_addressable);
1604  
1605  /*
1606   * No-op implementation of ->fsync for in-memory filesystems.
1607   */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1608  int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1609  {
1610  	return 0;
1611  }
1612  EXPORT_SYMBOL(noop_fsync);
1613  
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1614  ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1615  {
1616  	/*
1617  	 * iomap based filesystems support direct I/O without need for
1618  	 * this callback. However, it still needs to be set in
1619  	 * inode->a_ops so that open/fcntl know that direct I/O is
1620  	 * generally supported.
1621  	 */
1622  	return -EINVAL;
1623  }
1624  EXPORT_SYMBOL_GPL(noop_direct_IO);
1625  
1626  /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1627  void kfree_link(void *p)
1628  {
1629  	kfree(p);
1630  }
1631  EXPORT_SYMBOL(kfree_link);
1632  
alloc_anon_inode(struct super_block * s)1633  struct inode *alloc_anon_inode(struct super_block *s)
1634  {
1635  	static const struct address_space_operations anon_aops = {
1636  		.dirty_folio	= noop_dirty_folio,
1637  	};
1638  	struct inode *inode = new_inode_pseudo(s);
1639  
1640  	if (!inode)
1641  		return ERR_PTR(-ENOMEM);
1642  
1643  	inode->i_ino = get_next_ino();
1644  	inode->i_mapping->a_ops = &anon_aops;
1645  
1646  	/*
1647  	 * Mark the inode dirty from the very beginning,
1648  	 * that way it will never be moved to the dirty
1649  	 * list because mark_inode_dirty() will think
1650  	 * that it already _is_ on the dirty list.
1651  	 */
1652  	inode->i_state = I_DIRTY;
1653  	inode->i_mode = S_IRUSR | S_IWUSR;
1654  	inode->i_uid = current_fsuid();
1655  	inode->i_gid = current_fsgid();
1656  	inode->i_flags |= S_PRIVATE;
1657  	simple_inode_init_ts(inode);
1658  	return inode;
1659  }
1660  EXPORT_SYMBOL(alloc_anon_inode);
1661  
1662  /**
1663   * simple_nosetlease - generic helper for prohibiting leases
1664   * @filp: file pointer
1665   * @arg: type of lease to obtain
1666   * @flp: new lease supplied for insertion
1667   * @priv: private data for lm_setup operation
1668   *
1669   * Generic helper for filesystems that do not wish to allow leases to be set.
1670   * All arguments are ignored and it just returns -EINVAL.
1671   */
1672  int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1673  simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1674  		  void **priv)
1675  {
1676  	return -EINVAL;
1677  }
1678  EXPORT_SYMBOL(simple_nosetlease);
1679  
1680  /**
1681   * simple_get_link - generic helper to get the target of "fast" symlinks
1682   * @dentry: not used here
1683   * @inode: the symlink inode
1684   * @done: not used here
1685   *
1686   * Generic helper for filesystems to use for symlink inodes where a pointer to
1687   * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1688   * since as an optimization the path lookup code uses any non-NULL ->i_link
1689   * directly, without calling ->get_link().  But ->get_link() still must be set,
1690   * to mark the inode_operations as being for a symlink.
1691   *
1692   * Return: the symlink target
1693   */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1694  const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1695  			    struct delayed_call *done)
1696  {
1697  	return inode->i_link;
1698  }
1699  EXPORT_SYMBOL(simple_get_link);
1700  
1701  const struct inode_operations simple_symlink_inode_operations = {
1702  	.get_link = simple_get_link,
1703  };
1704  EXPORT_SYMBOL(simple_symlink_inode_operations);
1705  
1706  /*
1707   * Operations for a permanently empty directory.
1708   */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1709  static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1710  {
1711  	return ERR_PTR(-ENOENT);
1712  }
1713  
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1714  static int empty_dir_getattr(struct mnt_idmap *idmap,
1715  			     const struct path *path, struct kstat *stat,
1716  			     u32 request_mask, unsigned int query_flags)
1717  {
1718  	struct inode *inode = d_inode(path->dentry);
1719  	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1720  	return 0;
1721  }
1722  
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1723  static int empty_dir_setattr(struct mnt_idmap *idmap,
1724  			     struct dentry *dentry, struct iattr *attr)
1725  {
1726  	return -EPERM;
1727  }
1728  
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1729  static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1730  {
1731  	return -EOPNOTSUPP;
1732  }
1733  
1734  static const struct inode_operations empty_dir_inode_operations = {
1735  	.lookup		= empty_dir_lookup,
1736  	.permission	= generic_permission,
1737  	.setattr	= empty_dir_setattr,
1738  	.getattr	= empty_dir_getattr,
1739  	.listxattr	= empty_dir_listxattr,
1740  };
1741  
empty_dir_llseek(struct file * file,loff_t offset,int whence)1742  static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1743  {
1744  	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1745  	return generic_file_llseek_size(file, offset, whence, 2, 2);
1746  }
1747  
empty_dir_readdir(struct file * file,struct dir_context * ctx)1748  static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1749  {
1750  	dir_emit_dots(file, ctx);
1751  	return 0;
1752  }
1753  
1754  static const struct file_operations empty_dir_operations = {
1755  	.llseek		= empty_dir_llseek,
1756  	.read		= generic_read_dir,
1757  	.iterate_shared	= empty_dir_readdir,
1758  	.fsync		= noop_fsync,
1759  };
1760  
1761  
make_empty_dir_inode(struct inode * inode)1762  void make_empty_dir_inode(struct inode *inode)
1763  {
1764  	set_nlink(inode, 2);
1765  	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1766  	inode->i_uid = GLOBAL_ROOT_UID;
1767  	inode->i_gid = GLOBAL_ROOT_GID;
1768  	inode->i_rdev = 0;
1769  	inode->i_size = 0;
1770  	inode->i_blkbits = PAGE_SHIFT;
1771  	inode->i_blocks = 0;
1772  
1773  	inode->i_op = &empty_dir_inode_operations;
1774  	inode->i_opflags &= ~IOP_XATTR;
1775  	inode->i_fop = &empty_dir_operations;
1776  }
1777  
is_empty_dir_inode(struct inode * inode)1778  bool is_empty_dir_inode(struct inode *inode)
1779  {
1780  	return (inode->i_fop == &empty_dir_operations) &&
1781  		(inode->i_op == &empty_dir_inode_operations);
1782  }
1783  
1784  #if IS_ENABLED(CONFIG_UNICODE)
1785  /**
1786   * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1787   * @dentry:	dentry whose name we are checking against
1788   * @len:	len of name of dentry
1789   * @str:	str pointer to name of dentry
1790   * @name:	Name to compare against
1791   *
1792   * Return: 0 if names match, 1 if mismatch, or -ERRNO
1793   */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1794  static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1795  				const char *str, const struct qstr *name)
1796  {
1797  	const struct dentry *parent;
1798  	const struct inode *dir;
1799  	char strbuf[DNAME_INLINE_LEN];
1800  	struct qstr qstr;
1801  
1802  	/*
1803  	 * Attempt a case-sensitive match first. It is cheaper and
1804  	 * should cover most lookups, including all the sane
1805  	 * applications that expect a case-sensitive filesystem.
1806  	 *
1807  	 * This comparison is safe under RCU because the caller
1808  	 * guarantees the consistency between str and len. See
1809  	 * __d_lookup_rcu_op_compare() for details.
1810  	 */
1811  	if (len == name->len && !memcmp(str, name->name, len))
1812  		return 0;
1813  
1814  	parent = READ_ONCE(dentry->d_parent);
1815  	dir = READ_ONCE(parent->d_inode);
1816  	if (!dir || !IS_CASEFOLDED(dir))
1817  		return 1;
1818  
1819  	/*
1820  	 * If the dentry name is stored in-line, then it may be concurrently
1821  	 * modified by a rename.  If this happens, the VFS will eventually retry
1822  	 * the lookup, so it doesn't matter what ->d_compare() returns.
1823  	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1824  	 * string.  Therefore, we have to copy the name into a temporary buffer.
1825  	 */
1826  	if (len <= DNAME_INLINE_LEN - 1) {
1827  		memcpy(strbuf, str, len);
1828  		strbuf[len] = 0;
1829  		str = strbuf;
1830  		/* prevent compiler from optimizing out the temporary buffer */
1831  		barrier();
1832  	}
1833  	qstr.len = len;
1834  	qstr.name = str;
1835  
1836  	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1837  }
1838  
1839  /**
1840   * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1841   * @dentry:	dentry of the parent directory
1842   * @str:	qstr of name whose hash we should fill in
1843   *
1844   * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1845   */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1846  static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1847  {
1848  	const struct inode *dir = READ_ONCE(dentry->d_inode);
1849  	struct super_block *sb = dentry->d_sb;
1850  	const struct unicode_map *um = sb->s_encoding;
1851  	int ret;
1852  
1853  	if (!dir || !IS_CASEFOLDED(dir))
1854  		return 0;
1855  
1856  	ret = utf8_casefold_hash(um, dentry, str);
1857  	if (ret < 0 && sb_has_strict_encoding(sb))
1858  		return -EINVAL;
1859  	return 0;
1860  }
1861  
1862  static const struct dentry_operations generic_ci_dentry_ops = {
1863  	.d_hash = generic_ci_d_hash,
1864  	.d_compare = generic_ci_d_compare,
1865  #ifdef CONFIG_FS_ENCRYPTION
1866  	.d_revalidate = fscrypt_d_revalidate,
1867  #endif
1868  };
1869  
1870  /**
1871   * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1872   * This is a filesystem helper for comparison with directory entries.
1873   * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1874   *
1875   * @parent: Inode of the parent of the dirent under comparison
1876   * @name: name under lookup.
1877   * @folded_name: Optional pre-folded name under lookup
1878   * @de_name: Dirent name.
1879   * @de_name_len: dirent name length.
1880   *
1881   * Test whether a case-insensitive directory entry matches the filename
1882   * being searched.  If @folded_name is provided, it is used instead of
1883   * recalculating the casefold of @name.
1884   *
1885   * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1886   * < 0 on error.
1887   */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1888  int generic_ci_match(const struct inode *parent,
1889  		     const struct qstr *name,
1890  		     const struct qstr *folded_name,
1891  		     const u8 *de_name, u32 de_name_len)
1892  {
1893  	const struct super_block *sb = parent->i_sb;
1894  	const struct unicode_map *um = sb->s_encoding;
1895  	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1896  	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1897  	int res = 0;
1898  
1899  	if (IS_ENCRYPTED(parent)) {
1900  		const struct fscrypt_str encrypted_name =
1901  			FSTR_INIT((u8 *) de_name, de_name_len);
1902  
1903  		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1904  			return -EINVAL;
1905  
1906  		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1907  		if (!decrypted_name.name)
1908  			return -ENOMEM;
1909  		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1910  						&decrypted_name);
1911  		if (res < 0) {
1912  			kfree(decrypted_name.name);
1913  			return res;
1914  		}
1915  		dirent.name = decrypted_name.name;
1916  		dirent.len = decrypted_name.len;
1917  	}
1918  
1919  	/*
1920  	 * Attempt a case-sensitive match first. It is cheaper and
1921  	 * should cover most lookups, including all the sane
1922  	 * applications that expect a case-sensitive filesystem.
1923  	 */
1924  
1925  	if (dirent.len == name->len &&
1926  	    !memcmp(name->name, dirent.name, dirent.len))
1927  		goto out;
1928  
1929  	if (folded_name->name)
1930  		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1931  	else
1932  		res = utf8_strncasecmp(um, name, &dirent);
1933  
1934  out:
1935  	kfree(decrypted_name.name);
1936  	if (res < 0 && sb_has_strict_encoding(sb)) {
1937  		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1938  		return 0;
1939  	}
1940  	return !res;
1941  }
1942  EXPORT_SYMBOL(generic_ci_match);
1943  #endif
1944  
1945  #ifdef CONFIG_FS_ENCRYPTION
1946  static const struct dentry_operations generic_encrypted_dentry_ops = {
1947  	.d_revalidate = fscrypt_d_revalidate,
1948  };
1949  #endif
1950  
1951  /**
1952   * generic_set_sb_d_ops - helper for choosing the set of
1953   * filesystem-wide dentry operations for the enabled features
1954   * @sb: superblock to be configured
1955   *
1956   * Filesystems supporting casefolding and/or fscrypt can call this
1957   * helper at mount-time to configure sb->s_d_op to best set of dentry
1958   * operations required for the enabled features. The helper must be
1959   * called after these have been configured, but before the root dentry
1960   * is created.
1961   */
generic_set_sb_d_ops(struct super_block * sb)1962  void generic_set_sb_d_ops(struct super_block *sb)
1963  {
1964  #if IS_ENABLED(CONFIG_UNICODE)
1965  	if (sb->s_encoding) {
1966  		sb->s_d_op = &generic_ci_dentry_ops;
1967  		return;
1968  	}
1969  #endif
1970  #ifdef CONFIG_FS_ENCRYPTION
1971  	if (sb->s_cop) {
1972  		sb->s_d_op = &generic_encrypted_dentry_ops;
1973  		return;
1974  	}
1975  #endif
1976  }
1977  EXPORT_SYMBOL(generic_set_sb_d_ops);
1978  
1979  /**
1980   * inode_maybe_inc_iversion - increments i_version
1981   * @inode: inode with the i_version that should be updated
1982   * @force: increment the counter even if it's not necessary?
1983   *
1984   * Every time the inode is modified, the i_version field must be seen to have
1985   * changed by any observer.
1986   *
1987   * If "force" is set or the QUERIED flag is set, then ensure that we increment
1988   * the value, and clear the queried flag.
1989   *
1990   * In the common case where neither is set, then we can return "false" without
1991   * updating i_version.
1992   *
1993   * If this function returns false, and no other metadata has changed, then we
1994   * can avoid logging the metadata.
1995   */
inode_maybe_inc_iversion(struct inode * inode,bool force)1996  bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1997  {
1998  	u64 cur, new;
1999  
2000  	/*
2001  	 * The i_version field is not strictly ordered with any other inode
2002  	 * information, but the legacy inode_inc_iversion code used a spinlock
2003  	 * to serialize increments.
2004  	 *
2005  	 * We add a full memory barrier to ensure that any de facto ordering
2006  	 * with other state is preserved (either implicitly coming from cmpxchg
2007  	 * or explicitly from smp_mb if we don't know upfront if we will execute
2008  	 * the former).
2009  	 *
2010  	 * These barriers pair with inode_query_iversion().
2011  	 */
2012  	cur = inode_peek_iversion_raw(inode);
2013  	if (!force && !(cur & I_VERSION_QUERIED)) {
2014  		smp_mb();
2015  		cur = inode_peek_iversion_raw(inode);
2016  	}
2017  
2018  	do {
2019  		/* If flag is clear then we needn't do anything */
2020  		if (!force && !(cur & I_VERSION_QUERIED))
2021  			return false;
2022  
2023  		/* Since lowest bit is flag, add 2 to avoid it */
2024  		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2025  	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2026  	return true;
2027  }
2028  EXPORT_SYMBOL(inode_maybe_inc_iversion);
2029  
2030  /**
2031   * inode_query_iversion - read i_version for later use
2032   * @inode: inode from which i_version should be read
2033   *
2034   * Read the inode i_version counter. This should be used by callers that wish
2035   * to store the returned i_version for later comparison. This will guarantee
2036   * that a later query of the i_version will result in a different value if
2037   * anything has changed.
2038   *
2039   * In this implementation, we fetch the current value, set the QUERIED flag and
2040   * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2041   * that fails, we try again with the newly fetched value from the cmpxchg.
2042   */
inode_query_iversion(struct inode * inode)2043  u64 inode_query_iversion(struct inode *inode)
2044  {
2045  	u64 cur, new;
2046  	bool fenced = false;
2047  
2048  	/*
2049  	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2050  	 * inode_maybe_inc_iversion(), see that routine for more details.
2051  	 */
2052  	cur = inode_peek_iversion_raw(inode);
2053  	do {
2054  		/* If flag is already set, then no need to swap */
2055  		if (cur & I_VERSION_QUERIED) {
2056  			if (!fenced)
2057  				smp_mb();
2058  			break;
2059  		}
2060  
2061  		fenced = true;
2062  		new = cur | I_VERSION_QUERIED;
2063  	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2064  	return cur >> I_VERSION_QUERIED_SHIFT;
2065  }
2066  EXPORT_SYMBOL(inode_query_iversion);
2067  
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2068  ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2069  		ssize_t direct_written, ssize_t buffered_written)
2070  {
2071  	struct address_space *mapping = iocb->ki_filp->f_mapping;
2072  	loff_t pos = iocb->ki_pos - buffered_written;
2073  	loff_t end = iocb->ki_pos - 1;
2074  	int err;
2075  
2076  	/*
2077  	 * If the buffered write fallback returned an error, we want to return
2078  	 * the number of bytes which were written by direct I/O, or the error
2079  	 * code if that was zero.
2080  	 *
2081  	 * Note that this differs from normal direct-io semantics, which will
2082  	 * return -EFOO even if some bytes were written.
2083  	 */
2084  	if (unlikely(buffered_written < 0)) {
2085  		if (direct_written)
2086  			return direct_written;
2087  		return buffered_written;
2088  	}
2089  
2090  	/*
2091  	 * We need to ensure that the page cache pages are written to disk and
2092  	 * invalidated to preserve the expected O_DIRECT semantics.
2093  	 */
2094  	err = filemap_write_and_wait_range(mapping, pos, end);
2095  	if (err < 0) {
2096  		/*
2097  		 * We don't know how much we wrote, so just return the number of
2098  		 * bytes which were direct-written
2099  		 */
2100  		iocb->ki_pos -= buffered_written;
2101  		if (direct_written)
2102  			return direct_written;
2103  		return err;
2104  	}
2105  	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2106  	return direct_written + buffered_written;
2107  }
2108  EXPORT_SYMBOL_GPL(direct_write_fallback);
2109  
2110  /**
2111   * simple_inode_init_ts - initialize the timestamps for a new inode
2112   * @inode: inode to be initialized
2113   *
2114   * When a new inode is created, most filesystems set the timestamps to the
2115   * current time. Add a helper to do this.
2116   */
simple_inode_init_ts(struct inode * inode)2117  struct timespec64 simple_inode_init_ts(struct inode *inode)
2118  {
2119  	struct timespec64 ts = inode_set_ctime_current(inode);
2120  
2121  	inode_set_atime_to_ts(inode, ts);
2122  	inode_set_mtime_to_ts(inode, ts);
2123  	return ts;
2124  }
2125  EXPORT_SYMBOL(simple_inode_init_ts);
2126  
get_stashed_dentry(struct dentry ** stashed)2127  static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2128  {
2129  	struct dentry *dentry;
2130  
2131  	guard(rcu)();
2132  	dentry = rcu_dereference(*stashed);
2133  	if (!dentry)
2134  		return NULL;
2135  	if (!lockref_get_not_dead(&dentry->d_lockref))
2136  		return NULL;
2137  	return dentry;
2138  }
2139  
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2140  static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2141  					  struct super_block *sb,
2142  					  void *data)
2143  {
2144  	struct dentry *dentry;
2145  	struct inode *inode;
2146  	const struct stashed_operations *sops = sb->s_fs_info;
2147  	int ret;
2148  
2149  	inode = new_inode_pseudo(sb);
2150  	if (!inode) {
2151  		sops->put_data(data);
2152  		return ERR_PTR(-ENOMEM);
2153  	}
2154  
2155  	inode->i_flags |= S_IMMUTABLE;
2156  	inode->i_mode = S_IFREG;
2157  	simple_inode_init_ts(inode);
2158  
2159  	ret = sops->init_inode(inode, data);
2160  	if (ret < 0) {
2161  		iput(inode);
2162  		return ERR_PTR(ret);
2163  	}
2164  
2165  	/* Notice when this is changed. */
2166  	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2167  	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2168  
2169  	dentry = d_alloc_anon(sb);
2170  	if (!dentry) {
2171  		iput(inode);
2172  		return ERR_PTR(-ENOMEM);
2173  	}
2174  
2175  	/* Store address of location where dentry's supposed to be stashed. */
2176  	dentry->d_fsdata = stashed;
2177  
2178  	/* @data is now owned by the fs */
2179  	d_instantiate(dentry, inode);
2180  	return dentry;
2181  }
2182  
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2183  static struct dentry *stash_dentry(struct dentry **stashed,
2184  				   struct dentry *dentry)
2185  {
2186  	guard(rcu)();
2187  	for (;;) {
2188  		struct dentry *old;
2189  
2190  		/* Assume any old dentry was cleared out. */
2191  		old = cmpxchg(stashed, NULL, dentry);
2192  		if (likely(!old))
2193  			return dentry;
2194  
2195  		/* Check if somebody else installed a reusable dentry. */
2196  		if (lockref_get_not_dead(&old->d_lockref))
2197  			return old;
2198  
2199  		/* There's an old dead dentry there, try to take it over. */
2200  		if (likely(try_cmpxchg(stashed, &old, dentry)))
2201  			return dentry;
2202  	}
2203  }
2204  
2205  /**
2206   * path_from_stashed - create path from stashed or new dentry
2207   * @stashed:    where to retrieve or stash dentry
2208   * @mnt:        mnt of the filesystems to use
2209   * @data:       data to store in inode->i_private
2210   * @path:       path to create
2211   *
2212   * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2213   * is still valid then it will be reused. If the dentry isn't able the function
2214   * will allocate a new dentry and inode. It will then check again whether it
2215   * can reuse an existing dentry in case one has been added in the meantime or
2216   * update @stashed with the newly added dentry.
2217   *
2218   * Special-purpose helper for nsfs and pidfs.
2219   *
2220   * Return: On success zero and on failure a negative error is returned.
2221   */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2222  int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2223  		      struct path *path)
2224  {
2225  	struct dentry *dentry;
2226  	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2227  
2228  	/* See if dentry can be reused. */
2229  	path->dentry = get_stashed_dentry(stashed);
2230  	if (path->dentry) {
2231  		sops->put_data(data);
2232  		goto out_path;
2233  	}
2234  
2235  	/* Allocate a new dentry. */
2236  	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2237  	if (IS_ERR(dentry))
2238  		return PTR_ERR(dentry);
2239  
2240  	/* Added a new dentry. @data is now owned by the filesystem. */
2241  	path->dentry = stash_dentry(stashed, dentry);
2242  	if (path->dentry != dentry)
2243  		dput(dentry);
2244  
2245  out_path:
2246  	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2247  	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2248  	path->mnt = mntget(mnt);
2249  	return 0;
2250  }
2251  
stashed_dentry_prune(struct dentry * dentry)2252  void stashed_dentry_prune(struct dentry *dentry)
2253  {
2254  	struct dentry **stashed = dentry->d_fsdata;
2255  	struct inode *inode = d_inode(dentry);
2256  
2257  	if (WARN_ON_ONCE(!stashed))
2258  		return;
2259  
2260  	if (!inode)
2261  		return;
2262  
2263  	/*
2264  	 * Only replace our own @dentry as someone else might've
2265  	 * already cleared out @dentry and stashed their own
2266  	 * dentry in there.
2267  	 */
2268  	cmpxchg(stashed, dentry, NULL);
2269  }
2270