1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gen8_engine_cs.h"
7 #include "intel_engine_regs.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_lrc.h"
11 #include "intel_ring.h"
12 
gen8_emit_flush_rcs(struct i915_request * rq,u32 mode)13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
14 {
15 	bool vf_flush_wa = false, dc_flush_wa = false;
16 	u32 *cs, flags = 0;
17 	int len;
18 
19 	flags |= PIPE_CONTROL_CS_STALL;
20 
21 	if (mode & EMIT_FLUSH) {
22 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
23 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
24 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
25 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
26 	}
27 
28 	if (mode & EMIT_INVALIDATE) {
29 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
30 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
31 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
32 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
33 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
34 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
35 		flags |= PIPE_CONTROL_QW_WRITE;
36 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
37 
38 		/*
39 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
40 		 * pipe control.
41 		 */
42 		if (GRAPHICS_VER(rq->i915) == 9)
43 			vf_flush_wa = true;
44 
45 		/* WaForGAMHang:kbl */
46 		if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0))
47 			dc_flush_wa = true;
48 	}
49 
50 	len = 6;
51 
52 	if (vf_flush_wa)
53 		len += 6;
54 
55 	if (dc_flush_wa)
56 		len += 12;
57 
58 	cs = intel_ring_begin(rq, len);
59 	if (IS_ERR(cs))
60 		return PTR_ERR(cs);
61 
62 	if (vf_flush_wa)
63 		cs = gen8_emit_pipe_control(cs, 0, 0);
64 
65 	if (dc_flush_wa)
66 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
67 					    0);
68 
69 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
70 
71 	if (dc_flush_wa)
72 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
73 
74 	intel_ring_advance(rq, cs);
75 
76 	return 0;
77 }
78 
gen8_emit_flush_xcs(struct i915_request * rq,u32 mode)79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
80 {
81 	u32 cmd, *cs;
82 
83 	cs = intel_ring_begin(rq, 4);
84 	if (IS_ERR(cs))
85 		return PTR_ERR(cs);
86 
87 	cmd = MI_FLUSH_DW + 1;
88 
89 	/*
90 	 * We always require a command barrier so that subsequent
91 	 * commands, such as breadcrumb interrupts, are strictly ordered
92 	 * wrt the contents of the write cache being flushed to memory
93 	 * (and thus being coherent from the CPU).
94 	 */
95 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
96 
97 	if (mode & EMIT_INVALIDATE) {
98 		cmd |= MI_INVALIDATE_TLB;
99 		if (rq->engine->class == VIDEO_DECODE_CLASS)
100 			cmd |= MI_INVALIDATE_BSD;
101 	}
102 
103 	*cs++ = cmd;
104 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
105 	*cs++ = 0; /* upper addr */
106 	*cs++ = 0; /* value */
107 	intel_ring_advance(rq, cs);
108 
109 	return 0;
110 }
111 
gen11_emit_flush_rcs(struct i915_request * rq,u32 mode)112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
113 {
114 	if (mode & EMIT_FLUSH) {
115 		u32 *cs;
116 		u32 flags = 0;
117 
118 		flags |= PIPE_CONTROL_CS_STALL;
119 
120 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
121 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
122 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
123 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
124 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
125 		flags |= PIPE_CONTROL_QW_WRITE;
126 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
127 
128 		cs = intel_ring_begin(rq, 6);
129 		if (IS_ERR(cs))
130 			return PTR_ERR(cs);
131 
132 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
133 		intel_ring_advance(rq, cs);
134 	}
135 
136 	if (mode & EMIT_INVALIDATE) {
137 		u32 *cs;
138 		u32 flags = 0;
139 
140 		flags |= PIPE_CONTROL_CS_STALL;
141 
142 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
143 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
144 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
145 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
146 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
147 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
148 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
149 		flags |= PIPE_CONTROL_QW_WRITE;
150 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
151 
152 		cs = intel_ring_begin(rq, 6);
153 		if (IS_ERR(cs))
154 			return PTR_ERR(cs);
155 
156 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
157 		intel_ring_advance(rq, cs);
158 	}
159 
160 	return 0;
161 }
162 
preparser_disable(bool state)163 static u32 preparser_disable(bool state)
164 {
165 	return MI_ARB_CHECK | 1 << 8 | state;
166 }
167 
gen12_get_aux_inv_reg(struct intel_engine_cs * engine)168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
169 {
170 	switch (engine->id) {
171 	case RCS0:
172 		return GEN12_CCS_AUX_INV;
173 	case BCS0:
174 		return GEN12_BCS0_AUX_INV;
175 	case VCS0:
176 		return GEN12_VD0_AUX_INV;
177 	case VCS2:
178 		return GEN12_VD2_AUX_INV;
179 	case VECS0:
180 		return GEN12_VE0_AUX_INV;
181 	case CCS0:
182 		return GEN12_CCS0_AUX_INV;
183 	default:
184 		return INVALID_MMIO_REG;
185 	}
186 }
187 
gen12_needs_ccs_aux_inv(struct intel_engine_cs * engine)188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
189 {
190 	i915_reg_t reg = gen12_get_aux_inv_reg(engine);
191 
192 	/*
193 	 * So far platforms supported by i915 having flat ccs do not require
194 	 * AUX invalidation. Check also whether the engine requires it.
195 	 */
196 	return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
197 }
198 
gen12_emit_aux_table_inv(struct intel_engine_cs * engine,u32 * cs)199 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
200 {
201 	i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
202 	u32 gsi_offset = engine->gt->uncore->gsi_offset;
203 
204 	if (!gen12_needs_ccs_aux_inv(engine))
205 		return cs;
206 
207 	*cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
208 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
209 	*cs++ = AUX_INV;
210 
211 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
212 		MI_SEMAPHORE_REGISTER_POLL |
213 		MI_SEMAPHORE_POLL |
214 		MI_SEMAPHORE_SAD_EQ_SDD;
215 	*cs++ = 0;
216 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
217 	*cs++ = 0;
218 	*cs++ = 0;
219 
220 	return cs;
221 }
222 
mtl_dummy_pipe_control(struct i915_request * rq)223 static int mtl_dummy_pipe_control(struct i915_request *rq)
224 {
225 	/* Wa_14016712196 */
226 	if (IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
227 	    IS_DG2(rq->i915)) {
228 		u32 *cs;
229 
230 		/* dummy PIPE_CONTROL + depth flush */
231 		cs = intel_ring_begin(rq, 6);
232 		if (IS_ERR(cs))
233 			return PTR_ERR(cs);
234 		cs = gen12_emit_pipe_control(cs,
235 					     0,
236 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH,
237 					     LRC_PPHWSP_SCRATCH_ADDR);
238 		intel_ring_advance(rq, cs);
239 	}
240 
241 	return 0;
242 }
243 
gen12_emit_flush_rcs(struct i915_request * rq,u32 mode)244 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
245 {
246 	struct intel_engine_cs *engine = rq->engine;
247 
248 	/*
249 	 * On Aux CCS platforms the invalidation of the Aux
250 	 * table requires quiescing memory traffic beforehand
251 	 */
252 	if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
253 		u32 bit_group_0 = 0;
254 		u32 bit_group_1 = 0;
255 		int err;
256 		u32 *cs;
257 
258 		err = mtl_dummy_pipe_control(rq);
259 		if (err)
260 			return err;
261 
262 		bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
263 
264 		/*
265 		 * When required, in MTL and beyond platforms we
266 		 * need to set the CCS_FLUSH bit in the pipe control
267 		 */
268 		if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
269 			bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
270 
271 		/*
272 		 * L3 fabric flush is needed for AUX CCS invalidation
273 		 * which happens as part of pipe-control so we can
274 		 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3
275 		 * deals with Protected Memory which is not needed for
276 		 * AUX CCS invalidation and lead to unwanted side effects.
277 		 */
278 		if ((mode & EMIT_FLUSH) &&
279 		    GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
280 			bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
281 
282 		bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
283 		bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
284 		bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
285 		/* Wa_1409600907:tgl,adl-p */
286 		bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
287 		bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
288 		bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
289 
290 		bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
291 		bit_group_1 |= PIPE_CONTROL_QW_WRITE;
292 
293 		bit_group_1 |= PIPE_CONTROL_CS_STALL;
294 
295 		if (!HAS_3D_PIPELINE(engine->i915))
296 			bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
297 		else if (engine->class == COMPUTE_CLASS)
298 			bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
299 
300 		cs = intel_ring_begin(rq, 6);
301 		if (IS_ERR(cs))
302 			return PTR_ERR(cs);
303 
304 		cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
305 					     LRC_PPHWSP_SCRATCH_ADDR);
306 		intel_ring_advance(rq, cs);
307 	}
308 
309 	if (mode & EMIT_INVALIDATE) {
310 		u32 flags = 0;
311 		u32 *cs, count;
312 		int err;
313 
314 		err = mtl_dummy_pipe_control(rq);
315 		if (err)
316 			return err;
317 
318 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
319 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
320 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
321 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
322 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
323 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
324 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
325 
326 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
327 		flags |= PIPE_CONTROL_QW_WRITE;
328 
329 		flags |= PIPE_CONTROL_CS_STALL;
330 
331 		if (!HAS_3D_PIPELINE(engine->i915))
332 			flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
333 		else if (engine->class == COMPUTE_CLASS)
334 			flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
335 
336 		count = 8;
337 		if (gen12_needs_ccs_aux_inv(rq->engine))
338 			count += 8;
339 
340 		cs = intel_ring_begin(rq, count);
341 		if (IS_ERR(cs))
342 			return PTR_ERR(cs);
343 
344 		/*
345 		 * Prevent the pre-parser from skipping past the TLB
346 		 * invalidate and loading a stale page for the batch
347 		 * buffer / request payload.
348 		 */
349 		*cs++ = preparser_disable(true);
350 
351 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
352 
353 		cs = gen12_emit_aux_table_inv(engine, cs);
354 
355 		*cs++ = preparser_disable(false);
356 		intel_ring_advance(rq, cs);
357 	}
358 
359 	return 0;
360 }
361 
gen12_emit_flush_xcs(struct i915_request * rq,u32 mode)362 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
363 {
364 	u32 cmd = 4;
365 	u32 *cs;
366 
367 	if (mode & EMIT_INVALIDATE) {
368 		cmd += 2;
369 
370 		if (gen12_needs_ccs_aux_inv(rq->engine))
371 			cmd += 8;
372 	}
373 
374 	cs = intel_ring_begin(rq, cmd);
375 	if (IS_ERR(cs))
376 		return PTR_ERR(cs);
377 
378 	if (mode & EMIT_INVALIDATE)
379 		*cs++ = preparser_disable(true);
380 
381 	cmd = MI_FLUSH_DW + 1;
382 
383 	/*
384 	 * We always require a command barrier so that subsequent
385 	 * commands, such as breadcrumb interrupts, are strictly ordered
386 	 * wrt the contents of the write cache being flushed to memory
387 	 * (and thus being coherent from the CPU).
388 	 */
389 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
390 
391 	if (mode & EMIT_INVALIDATE) {
392 		cmd |= MI_INVALIDATE_TLB;
393 		if (rq->engine->class == VIDEO_DECODE_CLASS)
394 			cmd |= MI_INVALIDATE_BSD;
395 
396 		if (gen12_needs_ccs_aux_inv(rq->engine) &&
397 		    rq->engine->class == COPY_ENGINE_CLASS)
398 			cmd |= MI_FLUSH_DW_CCS;
399 	}
400 
401 	*cs++ = cmd;
402 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
403 	*cs++ = 0; /* upper addr */
404 	*cs++ = 0; /* value */
405 
406 	cs = gen12_emit_aux_table_inv(rq->engine, cs);
407 
408 	if (mode & EMIT_INVALIDATE)
409 		*cs++ = preparser_disable(false);
410 
411 	intel_ring_advance(rq, cs);
412 
413 	return 0;
414 }
415 
preempt_address(struct intel_engine_cs * engine)416 static u32 preempt_address(struct intel_engine_cs *engine)
417 {
418 	return (i915_ggtt_offset(engine->status_page.vma) +
419 		I915_GEM_HWS_PREEMPT_ADDR);
420 }
421 
hwsp_offset(const struct i915_request * rq)422 static u32 hwsp_offset(const struct i915_request *rq)
423 {
424 	const struct intel_timeline *tl;
425 
426 	/* Before the request is executed, the timeline is fixed */
427 	tl = rcu_dereference_protected(rq->timeline,
428 				       !i915_request_signaled(rq));
429 
430 	/* See the comment in i915_request_active_seqno(). */
431 	return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
432 }
433 
gen8_emit_init_breadcrumb(struct i915_request * rq)434 int gen8_emit_init_breadcrumb(struct i915_request *rq)
435 {
436 	u32 *cs;
437 
438 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
439 	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
440 		return 0;
441 
442 	cs = intel_ring_begin(rq, 6);
443 	if (IS_ERR(cs))
444 		return PTR_ERR(cs);
445 
446 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
447 	*cs++ = hwsp_offset(rq);
448 	*cs++ = 0;
449 	*cs++ = rq->fence.seqno - 1;
450 
451 	/*
452 	 * Check if we have been preempted before we even get started.
453 	 *
454 	 * After this point i915_request_started() reports true, even if
455 	 * we get preempted and so are no longer running.
456 	 *
457 	 * i915_request_started() is used during preemption processing
458 	 * to decide if the request is currently inside the user payload
459 	 * or spinning on a kernel semaphore (or earlier). For no-preemption
460 	 * requests, we do allow preemption on the semaphore before the user
461 	 * payload, but do not allow preemption once the request is started.
462 	 *
463 	 * i915_request_started() is similarly used during GPU hangs to
464 	 * determine if the user's payload was guilty, and if so, the
465 	 * request is banned. Before the request is started, it is assumed
466 	 * to be unharmed and an innocent victim of another's hang.
467 	 */
468 	*cs++ = MI_NOOP;
469 	*cs++ = MI_ARB_CHECK;
470 
471 	intel_ring_advance(rq, cs);
472 
473 	/* Record the updated position of the request's payload */
474 	rq->infix = intel_ring_offset(rq, cs);
475 
476 	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
477 
478 	return 0;
479 }
480 
__xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags,u32 arb)481 static int __xehp_emit_bb_start(struct i915_request *rq,
482 				u64 offset, u32 len,
483 				const unsigned int flags,
484 				u32 arb)
485 {
486 	struct intel_context *ce = rq->context;
487 	u32 wa_offset = lrc_indirect_bb(ce);
488 	u32 *cs;
489 
490 	GEM_BUG_ON(!ce->wa_bb_page);
491 
492 	cs = intel_ring_begin(rq, 12);
493 	if (IS_ERR(cs))
494 		return PTR_ERR(cs);
495 
496 	*cs++ = MI_ARB_ON_OFF | arb;
497 
498 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
499 		MI_SRM_LRM_GLOBAL_GTT |
500 		MI_LRI_LRM_CS_MMIO;
501 	*cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
502 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
503 	*cs++ = 0;
504 
505 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
506 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
507 	*cs++ = lower_32_bits(offset);
508 	*cs++ = upper_32_bits(offset);
509 
510 	/* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
511 	*cs++ = MI_BATCH_BUFFER_START_GEN8;
512 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
513 	*cs++ = 0;
514 
515 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
516 
517 	intel_ring_advance(rq, cs);
518 
519 	return 0;
520 }
521 
xehp_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)522 int xehp_emit_bb_start_noarb(struct i915_request *rq,
523 			     u64 offset, u32 len,
524 			     const unsigned int flags)
525 {
526 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
527 }
528 
xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)529 int xehp_emit_bb_start(struct i915_request *rq,
530 		       u64 offset, u32 len,
531 		       const unsigned int flags)
532 {
533 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
534 }
535 
gen8_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)536 int gen8_emit_bb_start_noarb(struct i915_request *rq,
537 			     u64 offset, u32 len,
538 			     const unsigned int flags)
539 {
540 	u32 *cs;
541 
542 	cs = intel_ring_begin(rq, 4);
543 	if (IS_ERR(cs))
544 		return PTR_ERR(cs);
545 
546 	/*
547 	 * WaDisableCtxRestoreArbitration:bdw,chv
548 	 *
549 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
550 	 * particular all the gen that do not need the w/a at all!), if we
551 	 * took care to make sure that on every switch into this context
552 	 * (both ordinary and for preemption) that arbitrartion was enabled
553 	 * we would be fine.  However, for gen8 there is another w/a that
554 	 * requires us to not preempt inside GPGPU execution, so we keep
555 	 * arbitration disabled for gen8 batches. Arbitration will be
556 	 * re-enabled before we close the request
557 	 * (engine->emit_fini_breadcrumb).
558 	 */
559 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
560 
561 	/* FIXME(BDW+): Address space and security selectors. */
562 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
563 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
564 	*cs++ = lower_32_bits(offset);
565 	*cs++ = upper_32_bits(offset);
566 
567 	intel_ring_advance(rq, cs);
568 
569 	return 0;
570 }
571 
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)572 int gen8_emit_bb_start(struct i915_request *rq,
573 		       u64 offset, u32 len,
574 		       const unsigned int flags)
575 {
576 	u32 *cs;
577 
578 	if (unlikely(i915_request_has_nopreempt(rq)))
579 		return gen8_emit_bb_start_noarb(rq, offset, len, flags);
580 
581 	cs = intel_ring_begin(rq, 6);
582 	if (IS_ERR(cs))
583 		return PTR_ERR(cs);
584 
585 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
586 
587 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
588 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
589 	*cs++ = lower_32_bits(offset);
590 	*cs++ = upper_32_bits(offset);
591 
592 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
593 	*cs++ = MI_NOOP;
594 
595 	intel_ring_advance(rq, cs);
596 
597 	return 0;
598 }
599 
assert_request_valid(struct i915_request * rq)600 static void assert_request_valid(struct i915_request *rq)
601 {
602 	struct intel_ring *ring __maybe_unused = rq->ring;
603 
604 	/* Can we unwind this request without appearing to go forwards? */
605 	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
606 }
607 
608 /*
609  * Reserve space for 2 NOOPs at the end of each request to be
610  * used as a workaround for not being allowed to do lite
611  * restore with HEAD==TAIL (WaIdleLiteRestore).
612  */
gen8_emit_wa_tail(struct i915_request * rq,u32 * cs)613 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
614 {
615 	/* Ensure there's always at least one preemption point per-request. */
616 	*cs++ = MI_ARB_CHECK;
617 	*cs++ = MI_NOOP;
618 	rq->wa_tail = intel_ring_offset(rq, cs);
619 
620 	/* Check that entire request is less than half the ring */
621 	assert_request_valid(rq);
622 
623 	return cs;
624 }
625 
emit_preempt_busywait(struct i915_request * rq,u32 * cs)626 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
627 {
628 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
629 	*cs++ = MI_SEMAPHORE_WAIT |
630 		MI_SEMAPHORE_GLOBAL_GTT |
631 		MI_SEMAPHORE_POLL |
632 		MI_SEMAPHORE_SAD_EQ_SDD;
633 	*cs++ = 0;
634 	*cs++ = preempt_address(rq->engine);
635 	*cs++ = 0;
636 	*cs++ = MI_NOOP;
637 
638 	return cs;
639 }
640 
641 static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)642 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
643 {
644 	*cs++ = MI_USER_INTERRUPT;
645 
646 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
647 	if (intel_engine_has_semaphores(rq->engine) &&
648 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
649 		cs = emit_preempt_busywait(rq, cs);
650 
651 	rq->tail = intel_ring_offset(rq, cs);
652 	assert_ring_tail_valid(rq->ring, rq->tail);
653 
654 	return gen8_emit_wa_tail(rq, cs);
655 }
656 
emit_xcs_breadcrumb(struct i915_request * rq,u32 * cs)657 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
658 {
659 	return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
660 }
661 
gen8_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)662 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
663 {
664 	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
665 }
666 
gen8_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)667 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
668 {
669 	cs = gen8_emit_pipe_control(cs,
670 				    PIPE_CONTROL_CS_STALL |
671 				    PIPE_CONTROL_TLB_INVALIDATE |
672 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
673 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
674 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
675 				    0);
676 
677 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
678 	cs = gen8_emit_ggtt_write_rcs(cs,
679 				      rq->fence.seqno,
680 				      hwsp_offset(rq),
681 				      PIPE_CONTROL_FLUSH_ENABLE |
682 				      PIPE_CONTROL_CS_STALL);
683 
684 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
685 }
686 
gen11_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)687 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
688 {
689 	cs = gen8_emit_pipe_control(cs,
690 				    PIPE_CONTROL_CS_STALL |
691 				    PIPE_CONTROL_TLB_INVALIDATE |
692 				    PIPE_CONTROL_TILE_CACHE_FLUSH |
693 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
694 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
695 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
696 				    0);
697 
698 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
699 	cs = gen8_emit_ggtt_write_rcs(cs,
700 				      rq->fence.seqno,
701 				      hwsp_offset(rq),
702 				      PIPE_CONTROL_FLUSH_ENABLE |
703 				      PIPE_CONTROL_CS_STALL);
704 
705 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
706 }
707 
708 /*
709  * Note that the CS instruction pre-parser will not stall on the breadcrumb
710  * flush and will continue pre-fetching the instructions after it before the
711  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
712  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
713  * of the next request before the memory has been flushed, we're guaranteed that
714  * we won't access the batch itself too early.
715  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
716  * so, if the current request is modifying an instruction in the next request on
717  * the same intel_context, we might pre-fetch and then execute the pre-update
718  * instruction. To avoid this, the users of self-modifying code should either
719  * disable the parser around the code emitting the memory writes, via a new flag
720  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
721  * the in-kernel use-cases we've opted to use a separate context, see
722  * reloc_gpu() as an example.
723  * All the above applies only to the instructions themselves. Non-inline data
724  * used by the instructions is not pre-fetched.
725  */
726 
gen12_emit_preempt_busywait(struct i915_request * rq,u32 * cs)727 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
728 {
729 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
730 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
731 		MI_SEMAPHORE_GLOBAL_GTT |
732 		MI_SEMAPHORE_POLL |
733 		MI_SEMAPHORE_SAD_EQ_SDD;
734 	*cs++ = 0;
735 	*cs++ = preempt_address(rq->engine);
736 	*cs++ = 0;
737 	*cs++ = 0;
738 
739 	return cs;
740 }
741 
742 /* Wa_14014475959:dg2 */
743 /* Wa_16019325821 */
744 /* Wa_14019159160 */
745 #define HOLD_SWITCHOUT_SEMAPHORE_PPHWSP_OFFSET	0x540
hold_switchout_semaphore_offset(struct i915_request * rq)746 static u32 hold_switchout_semaphore_offset(struct i915_request *rq)
747 {
748 	return i915_ggtt_offset(rq->context->state) +
749 		(LRC_PPHWSP_PN * PAGE_SIZE) + HOLD_SWITCHOUT_SEMAPHORE_PPHWSP_OFFSET;
750 }
751 
752 /* Wa_14014475959:dg2 */
753 /* Wa_16019325821 */
754 /* Wa_14019159160 */
hold_switchout_emit_wa_busywait(struct i915_request * rq,u32 * cs)755 static u32 *hold_switchout_emit_wa_busywait(struct i915_request *rq, u32 *cs)
756 {
757 	int i;
758 
759 	*cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
760 		MI_ATOMIC_MOVE;
761 	*cs++ = hold_switchout_semaphore_offset(rq);
762 	*cs++ = 0;
763 	*cs++ = 1;
764 
765 	/*
766 	 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
767 	 * to align. 4 DWs above + 8 filler DWs here.
768 	 */
769 	for (i = 0; i < 8; ++i)
770 		*cs++ = 0;
771 
772 	*cs++ = MI_SEMAPHORE_WAIT |
773 		MI_SEMAPHORE_GLOBAL_GTT |
774 		MI_SEMAPHORE_POLL |
775 		MI_SEMAPHORE_SAD_EQ_SDD;
776 	*cs++ = 0;
777 	*cs++ = hold_switchout_semaphore_offset(rq);
778 	*cs++ = 0;
779 
780 	return cs;
781 }
782 
783 static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)784 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
785 {
786 	*cs++ = MI_USER_INTERRUPT;
787 
788 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
789 	if (intel_engine_has_semaphores(rq->engine) &&
790 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
791 		cs = gen12_emit_preempt_busywait(rq, cs);
792 
793 	/* Wa_14014475959:dg2 */
794 	/* Wa_16019325821 */
795 	/* Wa_14019159160 */
796 	if (intel_engine_uses_wa_hold_switchout(rq->engine))
797 		cs = hold_switchout_emit_wa_busywait(rq, cs);
798 
799 	rq->tail = intel_ring_offset(rq, cs);
800 	assert_ring_tail_valid(rq->ring, rq->tail);
801 
802 	return gen8_emit_wa_tail(rq, cs);
803 }
804 
gen12_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)805 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
806 {
807 	/* XXX Stalling flush before seqno write; post-sync not */
808 	cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
809 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
810 }
811 
gen12_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)812 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
813 {
814 	struct drm_i915_private *i915 = rq->i915;
815 	struct intel_gt *gt = rq->engine->gt;
816 	u32 flags = (PIPE_CONTROL_CS_STALL |
817 		     PIPE_CONTROL_TLB_INVALIDATE |
818 		     PIPE_CONTROL_TILE_CACHE_FLUSH |
819 		     PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
820 		     PIPE_CONTROL_DEPTH_CACHE_FLUSH |
821 		     PIPE_CONTROL_DC_FLUSH_ENABLE |
822 		     PIPE_CONTROL_FLUSH_ENABLE);
823 
824 	if (GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
825 		flags |= PIPE_CONTROL_FLUSH_L3;
826 
827 	/* Wa_14016712196 */
828 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
829 		/* dummy PIPE_CONTROL + depth flush */
830 		cs = gen12_emit_pipe_control(cs, 0,
831 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
832 
833 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
834 		/* Wa_1409600907 */
835 		flags |= PIPE_CONTROL_DEPTH_STALL;
836 
837 	if (!HAS_3D_PIPELINE(rq->i915))
838 		flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
839 	else if (rq->engine->class == COMPUTE_CLASS)
840 		flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
841 
842 	cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
843 
844 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
845 	cs = gen12_emit_ggtt_write_rcs(cs,
846 				       rq->fence.seqno,
847 				       hwsp_offset(rq),
848 				       0,
849 				       PIPE_CONTROL_FLUSH_ENABLE |
850 				       PIPE_CONTROL_CS_STALL);
851 
852 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
853 }
854