1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Driver for NXP FXAS21002C Gyroscope - Core
4   *
5   * Copyright (C) 2019 Linaro Ltd.
6   */
7  
8  #include <linux/interrupt.h>
9  #include <linux/module.h>
10  #include <linux/pm.h>
11  #include <linux/pm_runtime.h>
12  #include <linux/property.h>
13  #include <linux/regmap.h>
14  #include <linux/regulator/consumer.h>
15  
16  #include <linux/iio/events.h>
17  #include <linux/iio/iio.h>
18  #include <linux/iio/buffer.h>
19  #include <linux/iio/sysfs.h>
20  #include <linux/iio/trigger.h>
21  #include <linux/iio/trigger_consumer.h>
22  #include <linux/iio/triggered_buffer.h>
23  
24  #include "fxas21002c.h"
25  
26  #define FXAS21002C_CHIP_ID_1	0xD6
27  #define FXAS21002C_CHIP_ID_2	0xD7
28  
29  enum fxas21002c_mode_state {
30  	FXAS21002C_MODE_STANDBY,
31  	FXAS21002C_MODE_READY,
32  	FXAS21002C_MODE_ACTIVE,
33  };
34  
35  #define FXAS21002C_STANDBY_ACTIVE_TIME_MS	62
36  #define FXAS21002C_READY_ACTIVE_TIME_MS		7
37  
38  #define FXAS21002C_ODR_LIST_MAX		10
39  
40  #define FXAS21002C_SCALE_FRACTIONAL	32
41  #define FXAS21002C_RANGE_LIMIT_DOUBLE	2000
42  
43  #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
44  
45  static const struct reg_field fxas21002c_reg_fields[] = {
46  	[F_DR_STATUS]		= REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
47  	[F_OUT_X_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
48  	[F_OUT_X_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
49  	[F_OUT_Y_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
50  	[F_OUT_Y_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
51  	[F_OUT_Z_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
52  	[F_OUT_Z_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
53  	[F_ZYX_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
54  	[F_Z_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
55  	[F_Y_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
56  	[F_X_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
57  	[F_ZYX_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
58  	[F_Z_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
59  	[F_Y_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
60  	[F_X_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
61  	[F_OVF]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
62  	[F_WMKF]		= REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
63  	[F_CNT]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
64  	[F_MODE]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
65  	[F_WMRK]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
66  	[F_EVENT]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
67  	[FE_TIME]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
68  	[F_BOOTEND]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
69  	[F_SRC_FIFO]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
70  	[F_SRC_RT]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
71  	[F_SRC_DRDY]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
72  	[F_WHO_AM_I]		= REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
73  	[F_BW]			= REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
74  	[F_SPIW]		= REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
75  	[F_SEL]			= REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
76  	[F_HPF_EN]		= REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
77  	[F_FS]			= REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
78  	[F_ELE]			= REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
79  	[F_ZTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
80  	[F_YTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
81  	[F_XTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
82  	[F_EA]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
83  	[F_ZRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
84  	[F_ZRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
85  	[F_YRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
86  	[F_YRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
87  	[F_XRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
88  	[F_XRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
89  	[F_DBCNTM]		= REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
90  	[F_THS]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
91  	[F_RT_COUNT]		= REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
92  	[F_TEMP]		= REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
93  	[F_RST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
94  	[F_ST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
95  	[F_DR]			= REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
96  	[F_ACTIVE]		= REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
97  	[F_READY]		= REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
98  	[F_INT_CFG_FIFO]	= REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
99  	[F_INT_EN_FIFO]		= REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
100  	[F_INT_CFG_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
101  	[F_INT_EN_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
102  	[F_INT_CFG_DRDY]	= REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
103  	[F_INT_EN_DRDY]		= REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
104  	[F_IPOL]		= REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
105  	[F_PP_OD]		= REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
106  	[F_WRAPTOONE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
107  	[F_EXTCTRLEN]		= REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
108  	[F_FS_DOUBLE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
109  };
110  
111  static const int fxas21002c_odr_values[] = {
112  	800, 400, 200, 100, 50, 25, 12, 12
113  };
114  
115  /*
116   * These values are taken from the low-pass filter cutoff frequency calculated
117   * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
118   * => LPF cutoff frequency = 800 * 0.32 = 256 Hz
119   */
120  static const int fxas21002c_lpf_values[] = {
121  	32, 16, 8
122  };
123  
124  /*
125   * These values are taken from the high-pass filter cutoff frequency calculated
126   * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
127   * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
128   */
129  static const int fxas21002c_hpf_values[] = {
130  	18750, 9625, 4875, 2475
131  };
132  
133  static const int fxas21002c_range_values[] = {
134  	4000, 2000, 1000, 500, 250
135  };
136  
137  struct fxas21002c_data {
138  	u8 chip_id;
139  	enum fxas21002c_mode_state mode;
140  	enum fxas21002c_mode_state prev_mode;
141  
142  	struct mutex lock;		/* serialize data access */
143  	struct regmap *regmap;
144  	struct regmap_field *regmap_fields[F_MAX_FIELDS];
145  	struct iio_trigger *dready_trig;
146  	s64 timestamp;
147  	int irq;
148  
149  	struct regulator *vdd;
150  	struct regulator *vddio;
151  
152  	/*
153  	 * DMA (thus cache coherency maintenance) may require the
154  	 * transfer buffers live in their own cache lines.
155  	 */
156  	s16 buffer[8] __aligned(IIO_DMA_MINALIGN);
157  };
158  
159  enum fxas21002c_channel_index {
160  	CHANNEL_SCAN_INDEX_X,
161  	CHANNEL_SCAN_INDEX_Y,
162  	CHANNEL_SCAN_INDEX_Z,
163  	CHANNEL_SCAN_MAX,
164  };
165  
fxas21002c_odr_hz_from_value(struct fxas21002c_data * data,u8 value)166  static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
167  {
168  	int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
169  
170  	value = min_t(u8, value, odr_value_max);
171  
172  	return fxas21002c_odr_values[value];
173  }
174  
fxas21002c_odr_value_from_hz(struct fxas21002c_data * data,unsigned int hz)175  static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
176  					unsigned int hz)
177  {
178  	int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
179  	int i;
180  
181  	for (i = 0; i < odr_table_size; i++)
182  		if (fxas21002c_odr_values[i] == hz)
183  			return i;
184  
185  	return -EINVAL;
186  }
187  
fxas21002c_lpf_bw_from_value(struct fxas21002c_data * data,u8 value)188  static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
189  {
190  	int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
191  
192  	value = min_t(u8, value, lpf_value_max);
193  
194  	return fxas21002c_lpf_values[value];
195  }
196  
fxas21002c_lpf_value_from_bw(struct fxas21002c_data * data,unsigned int hz)197  static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
198  					unsigned int hz)
199  {
200  	int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
201  	int i;
202  
203  	for (i = 0; i < lpf_table_size; i++)
204  		if (fxas21002c_lpf_values[i] == hz)
205  			return i;
206  
207  	return -EINVAL;
208  }
209  
fxas21002c_hpf_sel_from_value(struct fxas21002c_data * data,u8 value)210  static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
211  {
212  	int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
213  
214  	value = min_t(u8, value, hpf_value_max);
215  
216  	return fxas21002c_hpf_values[value];
217  }
218  
fxas21002c_hpf_value_from_sel(struct fxas21002c_data * data,unsigned int hz)219  static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
220  					 unsigned int hz)
221  {
222  	int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
223  	int i;
224  
225  	for (i = 0; i < hpf_table_size; i++)
226  		if (fxas21002c_hpf_values[i] == hz)
227  			return i;
228  
229  	return -EINVAL;
230  }
231  
fxas21002c_range_fs_from_value(struct fxas21002c_data * data,u8 value)232  static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
233  					  u8 value)
234  {
235  	int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
236  	unsigned int fs_double;
237  	int ret;
238  
239  	/* We need to check if FS_DOUBLE is enabled to offset the value */
240  	ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
241  	if (ret < 0)
242  		return ret;
243  
244  	if (!fs_double)
245  		value += 1;
246  
247  	value = min_t(u8, value, range_value_max);
248  
249  	return fxas21002c_range_values[value];
250  }
251  
fxas21002c_range_value_from_fs(struct fxas21002c_data * data,unsigned int range)252  static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
253  					  unsigned int range)
254  {
255  	int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
256  	bool found = false;
257  	int fs_double = 0;
258  	int ret;
259  	int i;
260  
261  	for (i = 0; i < range_table_size; i++)
262  		if (fxas21002c_range_values[i] == range) {
263  			found = true;
264  			break;
265  		}
266  
267  	if (!found)
268  		return -EINVAL;
269  
270  	if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
271  		fs_double = 1;
272  
273  	ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
274  	if (ret < 0)
275  		return ret;
276  
277  	return i;
278  }
279  
fxas21002c_mode_get(struct fxas21002c_data * data)280  static int fxas21002c_mode_get(struct fxas21002c_data *data)
281  {
282  	unsigned int active;
283  	unsigned int ready;
284  	int ret;
285  
286  	ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
287  	if (ret < 0)
288  		return ret;
289  	if (active)
290  		return FXAS21002C_MODE_ACTIVE;
291  
292  	ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
293  	if (ret < 0)
294  		return ret;
295  	if (ready)
296  		return FXAS21002C_MODE_READY;
297  
298  	return FXAS21002C_MODE_STANDBY;
299  }
300  
fxas21002c_mode_set(struct fxas21002c_data * data,enum fxas21002c_mode_state mode)301  static int fxas21002c_mode_set(struct fxas21002c_data *data,
302  			       enum fxas21002c_mode_state mode)
303  {
304  	int ret;
305  
306  	if (mode == data->mode)
307  		return 0;
308  
309  	if (mode == FXAS21002C_MODE_READY)
310  		ret = regmap_field_write(data->regmap_fields[F_READY], 1);
311  	else
312  		ret = regmap_field_write(data->regmap_fields[F_READY], 0);
313  	if (ret < 0)
314  		return ret;
315  
316  	if (mode == FXAS21002C_MODE_ACTIVE)
317  		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
318  	else
319  		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
320  	if (ret < 0)
321  		return ret;
322  
323  	/* if going to active wait the setup times */
324  	if (mode == FXAS21002C_MODE_ACTIVE &&
325  	    data->mode == FXAS21002C_MODE_STANDBY)
326  		msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
327  
328  	if (data->mode == FXAS21002C_MODE_READY)
329  		msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
330  
331  	data->prev_mode = data->mode;
332  	data->mode = mode;
333  
334  	return ret;
335  }
336  
fxas21002c_write(struct fxas21002c_data * data,enum fxas21002c_fields field,int bits)337  static int fxas21002c_write(struct fxas21002c_data *data,
338  			    enum fxas21002c_fields field, int bits)
339  {
340  	int actual_mode;
341  	int ret;
342  
343  	mutex_lock(&data->lock);
344  
345  	actual_mode = fxas21002c_mode_get(data);
346  	if (actual_mode < 0) {
347  		ret = actual_mode;
348  		goto out_unlock;
349  	}
350  
351  	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
352  	if (ret < 0)
353  		goto out_unlock;
354  
355  	ret = regmap_field_write(data->regmap_fields[field], bits);
356  	if (ret < 0)
357  		goto out_unlock;
358  
359  	ret = fxas21002c_mode_set(data, data->prev_mode);
360  
361  out_unlock:
362  	mutex_unlock(&data->lock);
363  
364  	return ret;
365  }
366  
fxas21002c_pm_get(struct fxas21002c_data * data)367  static int  fxas21002c_pm_get(struct fxas21002c_data *data)
368  {
369  	return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
370  }
371  
fxas21002c_pm_put(struct fxas21002c_data * data)372  static int  fxas21002c_pm_put(struct fxas21002c_data *data)
373  {
374  	struct device *dev = regmap_get_device(data->regmap);
375  
376  	pm_runtime_mark_last_busy(dev);
377  
378  	return pm_runtime_put_autosuspend(dev);
379  }
380  
fxas21002c_temp_get(struct fxas21002c_data * data,int * val)381  static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
382  {
383  	struct device *dev = regmap_get_device(data->regmap);
384  	unsigned int temp;
385  	int ret;
386  
387  	mutex_lock(&data->lock);
388  	ret = fxas21002c_pm_get(data);
389  	if (ret < 0)
390  		goto data_unlock;
391  
392  	ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
393  	if (ret < 0) {
394  		dev_err(dev, "failed to read temp: %d\n", ret);
395  		fxas21002c_pm_put(data);
396  		goto data_unlock;
397  	}
398  
399  	*val = sign_extend32(temp, 7);
400  
401  	ret = fxas21002c_pm_put(data);
402  	if (ret < 0)
403  		goto data_unlock;
404  
405  	ret = IIO_VAL_INT;
406  
407  data_unlock:
408  	mutex_unlock(&data->lock);
409  
410  	return ret;
411  }
412  
fxas21002c_axis_get(struct fxas21002c_data * data,int index,int * val)413  static int fxas21002c_axis_get(struct fxas21002c_data *data,
414  			       int index, int *val)
415  {
416  	struct device *dev = regmap_get_device(data->regmap);
417  	__be16 axis_be;
418  	int ret;
419  
420  	mutex_lock(&data->lock);
421  	ret = fxas21002c_pm_get(data);
422  	if (ret < 0)
423  		goto data_unlock;
424  
425  	ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
426  			       &axis_be, sizeof(axis_be));
427  	if (ret < 0) {
428  		dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
429  		fxas21002c_pm_put(data);
430  		goto data_unlock;
431  	}
432  
433  	*val = sign_extend32(be16_to_cpu(axis_be), 15);
434  
435  	ret = fxas21002c_pm_put(data);
436  	if (ret < 0)
437  		goto data_unlock;
438  
439  	ret = IIO_VAL_INT;
440  
441  data_unlock:
442  	mutex_unlock(&data->lock);
443  
444  	return ret;
445  }
446  
fxas21002c_odr_get(struct fxas21002c_data * data,int * odr)447  static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
448  {
449  	unsigned int odr_bits;
450  	int ret;
451  
452  	mutex_lock(&data->lock);
453  	ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
454  	if (ret < 0)
455  		goto data_unlock;
456  
457  	*odr = fxas21002c_odr_hz_from_value(data, odr_bits);
458  
459  	ret = IIO_VAL_INT;
460  
461  data_unlock:
462  	mutex_unlock(&data->lock);
463  
464  	return ret;
465  }
466  
fxas21002c_odr_set(struct fxas21002c_data * data,int odr)467  static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
468  {
469  	int odr_bits;
470  
471  	odr_bits = fxas21002c_odr_value_from_hz(data, odr);
472  	if (odr_bits < 0)
473  		return odr_bits;
474  
475  	return fxas21002c_write(data, F_DR, odr_bits);
476  }
477  
fxas21002c_lpf_get(struct fxas21002c_data * data,int * val2)478  static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
479  {
480  	unsigned int bw_bits;
481  	int ret;
482  
483  	mutex_lock(&data->lock);
484  	ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
485  	if (ret < 0)
486  		goto data_unlock;
487  
488  	*val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
489  
490  	ret = IIO_VAL_INT_PLUS_MICRO;
491  
492  data_unlock:
493  	mutex_unlock(&data->lock);
494  
495  	return ret;
496  }
497  
fxas21002c_lpf_set(struct fxas21002c_data * data,int bw)498  static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
499  {
500  	int bw_bits;
501  	int odr;
502  	int ret;
503  
504  	bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
505  	if (bw_bits < 0)
506  		return bw_bits;
507  
508  	/*
509  	 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
510  	 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed
511  	 */
512  	ret = fxas21002c_odr_get(data, &odr);
513  	if (ret < 0)
514  		return -EINVAL;
515  
516  	if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
517  		return -EINVAL;
518  
519  	return fxas21002c_write(data, F_BW, bw_bits);
520  }
521  
fxas21002c_hpf_get(struct fxas21002c_data * data,int * val2)522  static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
523  {
524  	unsigned int sel_bits;
525  	int ret;
526  
527  	mutex_lock(&data->lock);
528  	ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
529  	if (ret < 0)
530  		goto data_unlock;
531  
532  	*val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
533  
534  	ret = IIO_VAL_INT_PLUS_MICRO;
535  
536  data_unlock:
537  	mutex_unlock(&data->lock);
538  
539  	return ret;
540  }
541  
fxas21002c_hpf_set(struct fxas21002c_data * data,int sel)542  static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
543  {
544  	int sel_bits;
545  
546  	sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
547  	if (sel_bits < 0)
548  		return sel_bits;
549  
550  	return fxas21002c_write(data, F_SEL, sel_bits);
551  }
552  
fxas21002c_scale_get(struct fxas21002c_data * data,int * val)553  static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
554  {
555  	int fs_bits;
556  	int scale;
557  	int ret;
558  
559  	mutex_lock(&data->lock);
560  	ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
561  	if (ret < 0)
562  		goto data_unlock;
563  
564  	scale = fxas21002c_range_fs_from_value(data, fs_bits);
565  	if (scale < 0) {
566  		ret = scale;
567  		goto data_unlock;
568  	}
569  
570  	*val = scale;
571  
572  data_unlock:
573  	mutex_unlock(&data->lock);
574  
575  	return ret;
576  }
577  
fxas21002c_scale_set(struct fxas21002c_data * data,int range)578  static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
579  {
580  	int fs_bits;
581  
582  	fs_bits = fxas21002c_range_value_from_fs(data, range);
583  	if (fs_bits < 0)
584  		return fs_bits;
585  
586  	return fxas21002c_write(data, F_FS, fs_bits);
587  }
588  
fxas21002c_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)589  static int fxas21002c_read_raw(struct iio_dev *indio_dev,
590  			       struct iio_chan_spec const *chan, int *val,
591  			       int *val2, long mask)
592  {
593  	struct fxas21002c_data *data = iio_priv(indio_dev);
594  	int ret;
595  
596  	switch (mask) {
597  	case IIO_CHAN_INFO_RAW:
598  		switch (chan->type) {
599  		case IIO_TEMP:
600  			return fxas21002c_temp_get(data, val);
601  		case IIO_ANGL_VEL:
602  			return fxas21002c_axis_get(data, chan->scan_index, val);
603  		default:
604  			return -EINVAL;
605  		}
606  	case IIO_CHAN_INFO_SCALE:
607  		switch (chan->type) {
608  		case IIO_ANGL_VEL:
609  			*val2 = FXAS21002C_SCALE_FRACTIONAL;
610  			ret = fxas21002c_scale_get(data, val);
611  			if (ret < 0)
612  				return ret;
613  
614  			return IIO_VAL_FRACTIONAL;
615  		default:
616  			return -EINVAL;
617  		}
618  	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
619  		*val = 0;
620  		return fxas21002c_lpf_get(data, val2);
621  	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
622  		*val = 0;
623  		return fxas21002c_hpf_get(data, val2);
624  	case IIO_CHAN_INFO_SAMP_FREQ:
625  		*val2 = 0;
626  		return fxas21002c_odr_get(data, val);
627  	default:
628  		return -EINVAL;
629  	}
630  }
631  
fxas21002c_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)632  static int fxas21002c_write_raw(struct iio_dev *indio_dev,
633  				struct iio_chan_spec const *chan, int val,
634  				int val2, long mask)
635  {
636  	struct fxas21002c_data *data = iio_priv(indio_dev);
637  	int range;
638  
639  	switch (mask) {
640  	case IIO_CHAN_INFO_SAMP_FREQ:
641  		if (val2)
642  			return -EINVAL;
643  
644  		return fxas21002c_odr_set(data, val);
645  	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
646  		if (val)
647  			return -EINVAL;
648  
649  		val2 = val2 / 10000;
650  		return fxas21002c_lpf_set(data, val2);
651  	case IIO_CHAN_INFO_SCALE:
652  		switch (chan->type) {
653  		case IIO_ANGL_VEL:
654  			range = (((val * 1000 + val2 / 1000) *
655  				  FXAS21002C_SCALE_FRACTIONAL) / 1000);
656  			return fxas21002c_scale_set(data, range);
657  		default:
658  			return -EINVAL;
659  		}
660  	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
661  		return fxas21002c_hpf_set(data, val2);
662  	default:
663  		return -EINVAL;
664  	}
665  }
666  
667  static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
668  
669  static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
670  		      "0.32 0.16 0.08");
671  
672  static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
673  		      "0.018750 0.009625 0.004875 0.002475");
674  
675  static IIO_CONST_ATTR(in_anglvel_scale_available,
676  		      "125.0 62.5 31.25 15.625 7.8125");
677  
678  static struct attribute *fxas21002c_attributes[] = {
679  	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
680  	&iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
681  	&iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
682  	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
683  	NULL,
684  };
685  
686  static const struct attribute_group fxas21002c_attrs_group = {
687  	.attrs = fxas21002c_attributes,
688  };
689  
690  #define FXAS21002C_CHANNEL(_axis) {					\
691  	.type = IIO_ANGL_VEL,						\
692  	.modified = 1,							\
693  	.channel2 = IIO_MOD_##_axis,					\
694  	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
695  	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
696  		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |	\
697  		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) |	\
698  		BIT(IIO_CHAN_INFO_SAMP_FREQ),				\
699  	.scan_index = CHANNEL_SCAN_INDEX_##_axis,			\
700  	.scan_type = {							\
701  		.sign = 's',						\
702  		.realbits = 16,						\
703  		.storagebits = 16,					\
704  		.endianness = IIO_BE,					\
705  	},								\
706  }
707  
708  static const struct iio_chan_spec fxas21002c_channels[] = {
709  	{
710  		.type = IIO_TEMP,
711  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
712  		.scan_index = -1,
713  	},
714  	FXAS21002C_CHANNEL(X),
715  	FXAS21002C_CHANNEL(Y),
716  	FXAS21002C_CHANNEL(Z),
717  };
718  
719  static const struct iio_info fxas21002c_info = {
720  	.attrs			= &fxas21002c_attrs_group,
721  	.read_raw		= &fxas21002c_read_raw,
722  	.write_raw		= &fxas21002c_write_raw,
723  };
724  
fxas21002c_trigger_handler(int irq,void * p)725  static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
726  {
727  	struct iio_poll_func *pf = p;
728  	struct iio_dev *indio_dev = pf->indio_dev;
729  	struct fxas21002c_data *data = iio_priv(indio_dev);
730  	int ret;
731  
732  	mutex_lock(&data->lock);
733  	ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
734  			       data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
735  	if (ret < 0)
736  		goto out_unlock;
737  
738  	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
739  					   data->timestamp);
740  
741  out_unlock:
742  	mutex_unlock(&data->lock);
743  
744  	iio_trigger_notify_done(indio_dev->trig);
745  
746  	return IRQ_HANDLED;
747  }
748  
fxas21002c_chip_init(struct fxas21002c_data * data)749  static int fxas21002c_chip_init(struct fxas21002c_data *data)
750  {
751  	struct device *dev = regmap_get_device(data->regmap);
752  	unsigned int chip_id;
753  	int ret;
754  
755  	ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
756  	if (ret < 0)
757  		return ret;
758  
759  	if (chip_id != FXAS21002C_CHIP_ID_1 &&
760  	    chip_id != FXAS21002C_CHIP_ID_2) {
761  		dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
762  		return -EINVAL;
763  	}
764  
765  	data->chip_id = chip_id;
766  
767  	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
768  	if (ret < 0)
769  		return ret;
770  
771  	/* Set ODR to 200HZ as default */
772  	ret = fxas21002c_odr_set(data, 200);
773  	if (ret < 0)
774  		dev_err(dev, "failed to set ODR: %d\n", ret);
775  
776  	return ret;
777  }
778  
fxas21002c_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)779  static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
780  						 bool state)
781  {
782  	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
783  	struct fxas21002c_data *data = iio_priv(indio_dev);
784  
785  	return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
786  }
787  
788  static const struct iio_trigger_ops fxas21002c_trigger_ops = {
789  	.set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
790  };
791  
fxas21002c_data_rdy_handler(int irq,void * private)792  static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
793  {
794  	struct iio_dev *indio_dev = private;
795  	struct fxas21002c_data *data = iio_priv(indio_dev);
796  
797  	data->timestamp = iio_get_time_ns(indio_dev);
798  
799  	return IRQ_WAKE_THREAD;
800  }
801  
fxas21002c_data_rdy_thread(int irq,void * private)802  static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
803  {
804  	struct iio_dev *indio_dev = private;
805  	struct fxas21002c_data *data = iio_priv(indio_dev);
806  	unsigned int data_ready;
807  	int ret;
808  
809  	ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
810  	if (ret < 0)
811  		return IRQ_NONE;
812  
813  	if (!data_ready)
814  		return IRQ_NONE;
815  
816  	iio_trigger_poll_nested(data->dready_trig);
817  
818  	return IRQ_HANDLED;
819  }
820  
fxas21002c_trigger_probe(struct fxas21002c_data * data)821  static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
822  {
823  	struct device *dev = regmap_get_device(data->regmap);
824  	struct iio_dev *indio_dev = dev_get_drvdata(dev);
825  	unsigned long irq_trig;
826  	bool irq_open_drain;
827  	int irq1;
828  	int ret;
829  
830  	if (!data->irq)
831  		return 0;
832  
833  	irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
834  	if (irq1 == data->irq) {
835  		dev_info(dev, "using interrupt line INT1\n");
836  		ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
837  					 1);
838  		if (ret < 0)
839  			return ret;
840  	}
841  
842  	dev_info(dev, "using interrupt line INT2\n");
843  
844  	irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
845  
846  	data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
847  						   indio_dev->name,
848  						   iio_device_id(indio_dev));
849  	if (!data->dready_trig)
850  		return -ENOMEM;
851  
852  	irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
853  
854  	if (irq_trig == IRQF_TRIGGER_RISING) {
855  		ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
856  		if (ret < 0)
857  			return ret;
858  	}
859  
860  	if (irq_open_drain)
861  		irq_trig |= IRQF_SHARED;
862  
863  	ret = devm_request_threaded_irq(dev, data->irq,
864  					fxas21002c_data_rdy_handler,
865  					fxas21002c_data_rdy_thread,
866  					irq_trig, "fxas21002c_data_ready",
867  					indio_dev);
868  	if (ret < 0)
869  		return ret;
870  
871  	data->dready_trig->ops = &fxas21002c_trigger_ops;
872  	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
873  
874  	return devm_iio_trigger_register(dev, data->dready_trig);
875  }
876  
fxas21002c_power_enable(struct fxas21002c_data * data)877  static int fxas21002c_power_enable(struct fxas21002c_data *data)
878  {
879  	int ret;
880  
881  	ret = regulator_enable(data->vdd);
882  	if (ret < 0)
883  		return ret;
884  
885  	ret = regulator_enable(data->vddio);
886  	if (ret < 0) {
887  		regulator_disable(data->vdd);
888  		return ret;
889  	}
890  
891  	return 0;
892  }
893  
fxas21002c_power_disable(struct fxas21002c_data * data)894  static void fxas21002c_power_disable(struct fxas21002c_data *data)
895  {
896  	regulator_disable(data->vdd);
897  	regulator_disable(data->vddio);
898  }
899  
fxas21002c_power_disable_action(void * _data)900  static void fxas21002c_power_disable_action(void *_data)
901  {
902  	struct fxas21002c_data *data = _data;
903  
904  	fxas21002c_power_disable(data);
905  }
906  
fxas21002c_regulators_get(struct fxas21002c_data * data)907  static int fxas21002c_regulators_get(struct fxas21002c_data *data)
908  {
909  	struct device *dev = regmap_get_device(data->regmap);
910  
911  	data->vdd = devm_regulator_get(dev->parent, "vdd");
912  	if (IS_ERR(data->vdd))
913  		return PTR_ERR(data->vdd);
914  
915  	data->vddio = devm_regulator_get(dev->parent, "vddio");
916  
917  	return PTR_ERR_OR_ZERO(data->vddio);
918  }
919  
fxas21002c_core_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)920  int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
921  			  const char *name)
922  {
923  	struct fxas21002c_data *data;
924  	struct iio_dev *indio_dev;
925  	struct regmap_field *f;
926  	int i;
927  	int ret;
928  
929  	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
930  	if (!indio_dev)
931  		return -ENOMEM;
932  
933  	data = iio_priv(indio_dev);
934  	dev_set_drvdata(dev, indio_dev);
935  	data->irq = irq;
936  	data->regmap = regmap;
937  
938  	for (i = 0; i < F_MAX_FIELDS; i++) {
939  		f = devm_regmap_field_alloc(dev, data->regmap,
940  					    fxas21002c_reg_fields[i]);
941  		if (IS_ERR(f))
942  			return PTR_ERR(f);
943  
944  		data->regmap_fields[i] = f;
945  	}
946  
947  	mutex_init(&data->lock);
948  
949  	ret = fxas21002c_regulators_get(data);
950  	if (ret < 0)
951  		return ret;
952  
953  	ret = fxas21002c_power_enable(data);
954  	if (ret < 0)
955  		return ret;
956  
957  	ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
958  				       data);
959  	if (ret < 0)
960  		return ret;
961  
962  	ret = fxas21002c_chip_init(data);
963  	if (ret < 0)
964  		return ret;
965  
966  	indio_dev->channels = fxas21002c_channels;
967  	indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
968  	indio_dev->name = name;
969  	indio_dev->modes = INDIO_DIRECT_MODE;
970  	indio_dev->info = &fxas21002c_info;
971  
972  	ret = fxas21002c_trigger_probe(data);
973  	if (ret < 0)
974  		return ret;
975  
976  	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
977  					      fxas21002c_trigger_handler, NULL);
978  	if (ret < 0)
979  		return ret;
980  
981  	ret = pm_runtime_set_active(dev);
982  	if (ret)
983  		return ret;
984  
985  	pm_runtime_enable(dev);
986  	pm_runtime_set_autosuspend_delay(dev, 2000);
987  	pm_runtime_use_autosuspend(dev);
988  
989  	ret = iio_device_register(indio_dev);
990  	if (ret < 0)
991  		goto pm_disable;
992  
993  	return 0;
994  
995  pm_disable:
996  	pm_runtime_disable(dev);
997  	pm_runtime_set_suspended(dev);
998  
999  	return ret;
1000  }
1001  EXPORT_SYMBOL_NS_GPL(fxas21002c_core_probe, IIO_FXAS21002C);
1002  
fxas21002c_core_remove(struct device * dev)1003  void fxas21002c_core_remove(struct device *dev)
1004  {
1005  	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1006  
1007  	iio_device_unregister(indio_dev);
1008  
1009  	pm_runtime_disable(dev);
1010  	pm_runtime_set_suspended(dev);
1011  }
1012  EXPORT_SYMBOL_NS_GPL(fxas21002c_core_remove, IIO_FXAS21002C);
1013  
fxas21002c_suspend(struct device * dev)1014  static int fxas21002c_suspend(struct device *dev)
1015  {
1016  	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1017  
1018  	fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
1019  	fxas21002c_power_disable(data);
1020  
1021  	return 0;
1022  }
1023  
fxas21002c_resume(struct device * dev)1024  static int fxas21002c_resume(struct device *dev)
1025  {
1026  	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1027  	int ret;
1028  
1029  	ret = fxas21002c_power_enable(data);
1030  	if (ret < 0)
1031  		return ret;
1032  
1033  	return fxas21002c_mode_set(data, data->prev_mode);
1034  }
1035  
fxas21002c_runtime_suspend(struct device * dev)1036  static int fxas21002c_runtime_suspend(struct device *dev)
1037  {
1038  	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1039  
1040  	return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
1041  }
1042  
fxas21002c_runtime_resume(struct device * dev)1043  static int fxas21002c_runtime_resume(struct device *dev)
1044  {
1045  	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1046  
1047  	return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
1048  }
1049  
1050  EXPORT_NS_GPL_DEV_PM_OPS(fxas21002c_pm_ops, IIO_FXAS21002C) = {
1051  	SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
1052  	RUNTIME_PM_OPS(fxas21002c_runtime_suspend, fxas21002c_runtime_resume,
1053  		       NULL)
1054  };
1055  
1056  MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
1057  MODULE_LICENSE("GPL v2");
1058  MODULE_DESCRIPTION("FXAS21002C Gyro driver");
1059