1  // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2  /* QLogic qed NIC Driver
3   * Copyright (c) 2015-2017  QLogic Corporation
4   * Copyright (c) 2019-2021 Marvell International Ltd.
5   */
6  
7  #include <linux/types.h>
8  #include <linux/crc8.h>
9  #include <linux/delay.h>
10  #include <linux/kernel.h>
11  #include <linux/slab.h>
12  #include <linux/string.h>
13  #include "qed_hsi.h"
14  #include "qed_hw.h"
15  #include "qed_init_ops.h"
16  #include "qed_iro_hsi.h"
17  #include "qed_reg_addr.h"
18  
19  #define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
20  
21  static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
22  	{400, 336, 352, 368, 304, 384, 416, 352},	/* region 3 offsets */
23  	{528, 496, 416, 512, 448, 512, 544, 480},	/* region 4 offsets */
24  	{608, 544, 496, 576, 576, 592, 624, 560}	/* region 5 offsets */
25  };
26  
27  static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
28  	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
29  };
30  
31  /* General constants */
32  #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
33  							QM_PQ_ELEMENT_SIZE, \
34  							0x1000) : 0)
35  #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
36  								0x100) - 1 : 0)
37  #define QM_INVALID_PQ_ID		0xffff
38  
39  /* Max link speed (in Mbps) */
40  #define QM_MAX_LINK_SPEED               100000
41  
42  /* Feature enable */
43  #define QM_BYPASS_EN	1
44  #define QM_BYTE_CRD_EN	1
45  
46  /* Initial VOQ byte credit */
47  #define QM_INITIAL_VOQ_BYTE_CRD         98304
48  /* Other PQ constants */
49  #define QM_OTHER_PQS_PER_PF	4
50  
51  /* VOQ constants */
52  #define MAX_NUM_VOQS	(MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
53  #define VOQS_BIT_MASK	(BIT(MAX_NUM_VOQS) - 1)
54  
55  /* WFQ constants */
56  
57  /* PF WFQ increment value, 0x9000 = 4*9*1024 */
58  #define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
59  
60  /* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
61  #define QM_PF_WFQ_UPPER_BOUND           62500000
62  
63  /* PF WFQ max increment value, 0.7 * upper bound */
64  #define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
65  
66  /* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
67  #define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
68  
69  /* VP WFQ increment value */
70  #define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
71  
72  /* VP WFQ min increment value */
73  #define QM_VP_WFQ_MIN_INC_VAL           10800
74  
75  /* VP WFQ max increment value, 2^30 */
76  #define QM_VP_WFQ_MAX_INC_VAL           0x40000000
77  
78  /* VP WFQ bypass threshold */
79  #define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
80  
81  /* VP RL credit task cost */
82  #define QM_VP_RL_CRD_TASK_COST          9700
83  
84  /* Bit of VOQ in VP WFQ PQ map */
85  #define QM_VP_WFQ_PQ_VOQ_SHIFT          0
86  
87  /* Bit of PF in VP WFQ PQ map */
88  #define QM_VP_WFQ_PQ_PF_SHIFT   5
89  
90  /* RL constants */
91  
92  /* Period in us */
93  #define QM_RL_PERIOD	5
94  
95  /* Period in 25MHz cycles */
96  #define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
97  
98  /* RL increment value - rate is specified in mbps */
99  #define QM_RL_INC_VAL(rate)                     ({	\
100  						typeof(rate) __rate = (rate); \
101  						max_t(u32,		\
102  						(u32)(((__rate ? __rate : \
103  						100000) *		\
104  						QM_RL_PERIOD *		\
105  						101) / (8 * 100)), 1); })
106  
107  /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
108  #define QM_PF_RL_UPPER_BOUND	62500000
109  
110  /* Max PF RL increment value is 0.7 * upper bound */
111  #define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
112  
113  /* QCN RL Upper bound, speed is in Mpbs */
114  #define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
115  		u32,					    \
116  		(u32)(((speed) *			    \
117  		       QM_RL_PERIOD * 101) / (8 * 100)),    \
118  		QM_VP_RL_CRD_TASK_COST			    \
119  		+ 1000))
120  
121  /* AFullOprtnstcCrdMask constants */
122  #define QM_OPPOR_LINE_VOQ_DEF	1
123  #define QM_OPPOR_FW_STOP_DEF	0
124  #define QM_OPPOR_PQ_EMPTY_DEF	1
125  
126  /* Command Queue constants */
127  
128  /* Pure LB CmdQ lines (+spare) */
129  #define PBF_CMDQ_PURE_LB_LINES	150
130  
131  #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
132  	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
133  	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
134  		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
135  
136  #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
137  	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
138  	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
139  		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140  
141  /* Returns the VOQ line credit for the specified number of PBF command lines.
142   * PBF lines are specified in 256b units.
143   */
144  #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
145  	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
146  
147  /* BTB: blocks constants (block size = 256B) */
148  
149  /* 256B blocks in 9700B packet */
150  #define BTB_JUMBO_PKT_BLOCKS	38
151  
152  /* Headroom per-port */
153  #define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
154  #define BTB_PURE_LB_FACTOR	10
155  
156  /* Factored (hence really 0.7) */
157  #define BTB_PURE_LB_RATIO	7
158  
159  /* QM stop command constants */
160  #define QM_STOP_PQ_MASK_WIDTH		32
161  #define QM_STOP_CMD_ADDR		2
162  #define QM_STOP_CMD_STRUCT_SIZE		2
163  #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
164  #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
165  #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
166  #define QM_STOP_CMD_GROUP_ID_OFFSET	1
167  #define QM_STOP_CMD_GROUP_ID_SHIFT	16
168  #define QM_STOP_CMD_GROUP_ID_MASK	15
169  #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
170  #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
171  #define QM_STOP_CMD_PQ_TYPE_MASK	1
172  #define QM_STOP_CMD_MAX_POLL_COUNT	100
173  #define QM_STOP_CMD_POLL_PERIOD_US	500
174  
175  /* QM command macros */
176  #define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
177  #define QM_CMD_SET_FIELD(var, cmd, field, value) \
178  	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
179  		  cmd ## _ ## field, \
180  		  value)
181  
182  #define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,	      \
183  			  rl_id, ext_voq, wrr)				      \
184  	do {								      \
185  		u32 __reg = 0;						      \
186  									      \
187  		BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));	      \
188  		memset(&(map), 0, sizeof(map));				      \
189  		SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);	      \
190  		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,	      \
191  			  !!(rl_valid));				      \
192  		SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
193  		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));	      \
194  		SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));	      \
195  		SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
196  			  (wrr));					      \
197  									      \
198  		STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
199  			     __reg);					      \
200  		(map).reg = cpu_to_le32(__reg);				      \
201  	} while (0)
202  
203  #define WRITE_PQ_INFO_TO_RAM	1
204  #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
205  	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
206  	((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
207  	(((rl) >> 8) << 9))
208  
209  #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
210  	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
211  	XSTORM_PQ_INFO_OFFSET(pq_id))
212  
213  static const char * const s_protocol_types[] = {
214  	"PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
215  	"PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
216  	"PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
217  	"PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
218  };
219  
220  static const char *s_ramrod_cmd_ids[][28] = {
221  	{
222  	"ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
223  	 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
224  	 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
225  	 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
226  	 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
227  	 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
228  	 "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
229  	{ "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
230  	 "FCOE_RAMROD_CMD_ID_STAT_FUNC",
231  	 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
232  	 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
233  	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
234  	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
235  	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
236  	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
237  	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
238  	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
239  	 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
240  	 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
241  	 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
242  	 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
243  	 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
244  	 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
245  	 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
246  	 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
247  	{ "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
248  	 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
249  	 "CORE_RAMROD_TX_QUEUE_STOP",
250  	 "CORE_RAMROD_RX_QUEUE_FLUSH",
251  	 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
252  	{ "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
253  	 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
254  	 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
255  	 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
256  	 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
257  	 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
258  	 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
259  	 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
260  	 "ETH_RAMROD_RX_ADD_UDP_FILTER",
261  	 "ETH_RAMROD_RX_DELETE_UDP_FILTER",
262  	 "ETH_RAMROD_RX_CREATE_GFT_ACTION",
263  	 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
264  	 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
265  	 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
266  	 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
267  	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
268  	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
269  	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
270  	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
271  	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
272  	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
273  	 "RDMA_RAMROD_STOP_NS_TRACKING",
274  	 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
275  	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
276  	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
277  	 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
278  	 "IWARP_RAMROD_CMD_ID_MODIFY_QP",
279  	 "IWARP_RAMROD_CMD_ID_DESTROY_QP",
280  	 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
281  	{ NULL }, /*TOE*/
282  	{ NULL }, /*PREROCE*/
283  	{ "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
284  	     "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
285  	     "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
286  	     "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
287  };
288  
289  /******************** INTERNAL IMPLEMENTATION *********************/
290  
291  /* Returns the external VOQ number */
qed_get_ext_voq(struct qed_hwfn * p_hwfn,u8 port_id,u8 tc,u8 max_phys_tcs_per_port)292  static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
293  			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
294  {
295  	if (tc == PURE_LB_TC)
296  		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
297  	else
298  		return port_id * max_phys_tcs_per_port + tc;
299  }
300  
301  /* Prepare PF RL enable/disable runtime init values */
qed_enable_pf_rl(struct qed_hwfn * p_hwfn,bool pf_rl_en)302  static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
303  {
304  	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
305  	if (pf_rl_en) {
306  		u8 num_ext_voqs = MAX_NUM_VOQS;
307  		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
308  
309  		/* Enable RLs for all VOQs */
310  		STORE_RT_REG(p_hwfn,
311  			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
312  			     (u32)voq_bit_mask);
313  
314  		/* Write RL period */
315  		STORE_RT_REG(p_hwfn,
316  			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
317  		STORE_RT_REG(p_hwfn,
318  			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
319  			     QM_RL_PERIOD_CLK_25M);
320  
321  		/* Set credit threshold for QM bypass flow */
322  		if (QM_BYPASS_EN)
323  			STORE_RT_REG(p_hwfn,
324  				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
325  				     QM_PF_RL_UPPER_BOUND);
326  	}
327  }
328  
329  /* Prepare PF WFQ enable/disable runtime init values */
qed_enable_pf_wfq(struct qed_hwfn * p_hwfn,bool pf_wfq_en)330  static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
331  {
332  	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
333  
334  	/* Set credit threshold for QM bypass flow */
335  	if (pf_wfq_en && QM_BYPASS_EN)
336  		STORE_RT_REG(p_hwfn,
337  			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
338  			     QM_PF_WFQ_UPPER_BOUND);
339  }
340  
341  /* Prepare global RL enable/disable runtime init values */
qed_enable_global_rl(struct qed_hwfn * p_hwfn,bool global_rl_en)342  static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
343  {
344  	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
345  		     global_rl_en ? 1 : 0);
346  	if (global_rl_en) {
347  		/* Write RL period (use timer 0 only) */
348  		STORE_RT_REG(p_hwfn,
349  			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
350  			     QM_RL_PERIOD_CLK_25M);
351  		STORE_RT_REG(p_hwfn,
352  			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
353  			     QM_RL_PERIOD_CLK_25M);
354  
355  		/* Set credit threshold for QM bypass flow */
356  		if (QM_BYPASS_EN)
357  			STORE_RT_REG(p_hwfn,
358  				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
359  				     QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
360  	}
361  }
362  
363  /* Prepare VPORT WFQ enable/disable runtime init values */
qed_enable_vport_wfq(struct qed_hwfn * p_hwfn,bool vport_wfq_en)364  static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
365  {
366  	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
367  		     vport_wfq_en ? 1 : 0);
368  
369  	/* Set credit threshold for QM bypass flow */
370  	if (vport_wfq_en && QM_BYPASS_EN)
371  		STORE_RT_REG(p_hwfn,
372  			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
373  			     QM_VP_WFQ_BYPASS_THRESH);
374  }
375  
376  /* Prepare runtime init values to allocate PBF command queue lines for
377   * the specified VOQ.
378   */
qed_cmdq_lines_voq_rt_init(struct qed_hwfn * p_hwfn,u8 ext_voq,u16 cmdq_lines)379  static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
380  				       u8 ext_voq, u16 cmdq_lines)
381  {
382  	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
383  
384  	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
385  			 (u32)cmdq_lines);
386  	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
387  		     qm_line_crd);
388  	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
389  		     qm_line_crd);
390  }
391  
392  /* Prepare runtime init values to allocate PBF command queue lines. */
393  static void
qed_cmdq_lines_rt_init(struct qed_hwfn * p_hwfn,u8 max_ports_per_engine,u8 max_phys_tcs_per_port,struct init_qm_port_params port_params[MAX_NUM_PORTS])394  qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
395  		       u8 max_ports_per_engine,
396  		       u8 max_phys_tcs_per_port,
397  		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
398  {
399  	u8 tc, ext_voq, port_id, num_tcs_in_port;
400  	u8 num_ext_voqs = MAX_NUM_VOQS;
401  
402  	/* Clear PBF lines of all VOQs */
403  	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
404  		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
405  
406  	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
407  		u16 phys_lines, phys_lines_per_tc;
408  
409  		if (!port_params[port_id].active)
410  			continue;
411  
412  		/* Find number of command queue lines to divide between the
413  		 * active physical TCs.
414  		 */
415  		phys_lines = port_params[port_id].num_pbf_cmd_lines;
416  		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
417  
418  		/* Find #lines per active physical TC */
419  		num_tcs_in_port = 0;
420  		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
421  			if (((port_params[port_id].active_phys_tcs >>
422  			      tc) & 0x1) == 1)
423  				num_tcs_in_port++;
424  		phys_lines_per_tc = phys_lines / num_tcs_in_port;
425  
426  		/* Init registers per active TC */
427  		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
428  			ext_voq = qed_get_ext_voq(p_hwfn,
429  						  port_id,
430  						  tc, max_phys_tcs_per_port);
431  			if (((port_params[port_id].active_phys_tcs >>
432  			      tc) & 0x1) == 1)
433  				qed_cmdq_lines_voq_rt_init(p_hwfn,
434  							   ext_voq,
435  							   phys_lines_per_tc);
436  		}
437  
438  		/* Init registers for pure LB TC */
439  		ext_voq = qed_get_ext_voq(p_hwfn,
440  					  port_id,
441  					  PURE_LB_TC, max_phys_tcs_per_port);
442  		qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
443  					   PBF_CMDQ_PURE_LB_LINES);
444  	}
445  }
446  
447  /* Prepare runtime init values to allocate guaranteed BTB blocks for the
448   * specified port. The guaranteed BTB space is divided between the TCs as
449   * follows (shared space Is currently not used):
450   * 1. Parameters:
451   *    B - BTB blocks for this port
452   *    C - Number of physical TCs for this port
453   * 2. Calculation:
454   *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
455   *	 headroom.
456   *    b. B = B - 38 (remainder after global headroom allocation).
457   *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
458   *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
459   *    e. B/C blocks are allocated for each physical TC.
460   * Assumptions:
461   * - MTU is up to 9700 bytes (38 blocks)
462   * - All TCs are considered symmetrical (same rate and packet size)
463   * - No optimization for lossy TC (all are considered lossless). Shared space
464   *   is not enabled and allocated for each TC.
465   */
466  static void
qed_btb_blocks_rt_init(struct qed_hwfn * p_hwfn,u8 max_ports_per_engine,u8 max_phys_tcs_per_port,struct init_qm_port_params port_params[MAX_NUM_PORTS])467  qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
468  		       u8 max_ports_per_engine,
469  		       u8 max_phys_tcs_per_port,
470  		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
471  {
472  	u32 usable_blocks, pure_lb_blocks, phys_blocks;
473  	u8 tc, ext_voq, port_id, num_tcs_in_port;
474  
475  	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
476  		if (!port_params[port_id].active)
477  			continue;
478  
479  		/* Subtract headroom blocks */
480  		usable_blocks = port_params[port_id].num_btb_blocks -
481  				BTB_HEADROOM_BLOCKS;
482  
483  		/* Find blocks per physical TC. Use factor to avoid floating
484  		 * arithmethic.
485  		 */
486  		num_tcs_in_port = 0;
487  		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
488  			if (((port_params[port_id].active_phys_tcs >>
489  			      tc) & 0x1) == 1)
490  				num_tcs_in_port++;
491  
492  		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
493  				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
494  				  BTB_PURE_LB_RATIO);
495  		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
496  				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
497  		phys_blocks = (usable_blocks - pure_lb_blocks) /
498  			      num_tcs_in_port;
499  
500  		/* Init physical TCs */
501  		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
502  			if (((port_params[port_id].active_phys_tcs >>
503  			      tc) & 0x1) == 1) {
504  				ext_voq =
505  					qed_get_ext_voq(p_hwfn,
506  							port_id,
507  							tc,
508  							max_phys_tcs_per_port);
509  				STORE_RT_REG(p_hwfn,
510  					     PBF_BTB_GUARANTEED_RT_OFFSET
511  					     (ext_voq), phys_blocks);
512  			}
513  		}
514  
515  		/* Init pure LB TC */
516  		ext_voq = qed_get_ext_voq(p_hwfn,
517  					  port_id,
518  					  PURE_LB_TC, max_phys_tcs_per_port);
519  		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
520  			     pure_lb_blocks);
521  	}
522  }
523  
524  /* Prepare runtime init values for the specified RL.
525   * Set max link speed (100Gbps) per rate limiter.
526   * Return -1 on error.
527   */
qed_global_rl_rt_init(struct qed_hwfn * p_hwfn)528  static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
529  {
530  	u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
531  			  (u32)QM_RL_CRD_REG_SIGN_BIT;
532  	u32 inc_val;
533  	u16 rl_id;
534  
535  	/* Go over all global RLs */
536  	for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
537  		inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
538  
539  		STORE_RT_REG(p_hwfn,
540  			     QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
541  			     (u32)QM_RL_CRD_REG_SIGN_BIT);
542  		STORE_RT_REG(p_hwfn,
543  			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
544  			     upper_bound);
545  		STORE_RT_REG(p_hwfn,
546  			     QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
547  	}
548  
549  	return 0;
550  }
551  
552  /* Returns the upper bound for the specified Vport RL parameters.
553   * link_speed is in Mbps.
554   * Returns 0 in case of error.
555   */
qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,u32 link_speed)556  static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
557  					u32 link_speed)
558  {
559  	switch (vport_rl_type) {
560  	case QM_RL_TYPE_NORMAL:
561  		return QM_INITIAL_VOQ_BYTE_CRD;
562  	case QM_RL_TYPE_QCN:
563  		return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
564  	default:
565  		return 0;
566  	}
567  }
568  
569  /* Prepare VPORT RL runtime init values.
570   * Return -1 on error.
571   */
qed_vport_rl_rt_init(struct qed_hwfn * p_hwfn,u16 start_rl,u16 num_rls,u32 link_speed,struct init_qm_rl_params * rl_params)572  static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573  				u16 start_rl,
574  				u16 num_rls,
575  				u32 link_speed,
576  				struct init_qm_rl_params *rl_params)
577  {
578  	u16 i, rl_id;
579  
580  	if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
581  		DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
582  		return -1;
583  	}
584  
585  	/* Go over all PF VPORTs */
586  	for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
587  		u32 upper_bound, inc_val;
588  
589  		upper_bound =
590  		    qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
591  						 rl_params[i].vport_rl_type,
592  						 link_speed);
593  
594  		inc_val =
595  		    QM_RL_INC_VAL(rl_params[i].vport_rl ?
596  				  rl_params[i].vport_rl : link_speed);
597  		if (inc_val > upper_bound) {
598  			DP_NOTICE(p_hwfn,
599  				  "Invalid RL rate - limit configuration\n");
600  			return -1;
601  		}
602  
603  		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
604  			     (u32)QM_RL_CRD_REG_SIGN_BIT);
605  		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
606  			     upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
607  		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
608  			     inc_val);
609  	}
610  
611  	return 0;
612  }
613  
614  /* Prepare Tx PQ mapping runtime init values for the specified PF */
qed_tx_pq_map_rt_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_qm_pf_rt_init_params * p_params,u32 base_mem_addr_4kb)615  static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
616  				 struct qed_ptt *p_ptt,
617  				 struct qed_qm_pf_rt_init_params *p_params,
618  				 u32 base_mem_addr_4kb)
619  {
620  	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
621  	struct init_qm_vport_params *vport_params = p_params->vport_params;
622  	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
623  	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
624  	struct init_qm_pq_params *pq_params = p_params->pq_params;
625  	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
626  
627  	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
628  
629  	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
630  	last_pq_group = (p_params->start_pq + num_pqs - 1) /
631  			QM_PF_QUEUE_GROUP_SIZE;
632  
633  	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
634  	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
635  	mem_addr_4kb = base_mem_addr_4kb;
636  
637  	/* Set mapping from PQ group to PF */
638  	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
639  		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
640  			     (u32)(p_params->pf_id));
641  
642  	/* Set PQ sizes */
643  	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
644  		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
645  	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
646  		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
647  
648  	/* Go over all Tx PQs */
649  	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
650  		u16 *p_first_tx_pq_id, vport_id_in_pf;
651  		struct qm_rf_pq_map tx_pq_map;
652  		u8 tc_id = pq_params[i].tc_id;
653  		bool is_vf_pq;
654  		u8 ext_voq;
655  
656  		ext_voq = qed_get_ext_voq(p_hwfn,
657  					  pq_params[i].port_id,
658  					  tc_id,
659  					  p_params->max_phys_tcs_per_port);
660  		is_vf_pq = (i >= p_params->num_pf_pqs);
661  
662  		/* Update first Tx PQ of VPORT/TC */
663  		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
664  		p_first_tx_pq_id =
665  		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
666  		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
667  			u32 map_val =
668  				(ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
669  				(p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
670  
671  			/* Create new VP PQ */
672  			*p_first_tx_pq_id = pq_id;
673  
674  			/* Map VP PQ to VOQ and PF */
675  			STORE_RT_REG(p_hwfn,
676  				     QM_REG_WFQVPMAP_RT_OFFSET +
677  				     *p_first_tx_pq_id,
678  				     map_val);
679  		}
680  
681  		/* Prepare PQ map entry */
682  		QM_INIT_TX_PQ_MAP(p_hwfn,
683  				  tx_pq_map,
684  				  pq_id,
685  				  *p_first_tx_pq_id,
686  				  pq_params[i].rl_valid,
687  				  pq_params[i].rl_id,
688  				  ext_voq, pq_params[i].wrr_group);
689  
690  		/* Set PQ base address */
691  		STORE_RT_REG(p_hwfn,
692  			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
693  			     mem_addr_4kb);
694  
695  		/* Clear PQ pointer table entry (64 bit) */
696  		if (p_params->is_pf_loading)
697  			for (j = 0; j < 2; j++)
698  				STORE_RT_REG(p_hwfn,
699  					     QM_REG_PTRTBLTX_RT_OFFSET +
700  					     (pq_id * 2) + j, 0);
701  
702  		/* Write PQ info to RAM */
703  		if (WRITE_PQ_INFO_TO_RAM != 0) {
704  			u32 pq_info = 0;
705  
706  			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
707  						  p_params->pf_id,
708  						  tc_id,
709  						  pq_params[i].port_id,
710  						  pq_params[i].rl_valid,
711  						  pq_params[i].rl_id);
712  			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
713  			       pq_info);
714  		}
715  
716  		/* If VF PQ, add indication to PQ VF mask */
717  		if (is_vf_pq) {
718  			tx_pq_vf_mask[pq_id /
719  				      QM_PF_QUEUE_GROUP_SIZE] |=
720  			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
721  			mem_addr_4kb += vport_pq_mem_4kb;
722  		} else {
723  			mem_addr_4kb += pq_mem_4kb;
724  		}
725  	}
726  
727  	/* Store Tx PQ VF mask to size select register */
728  	for (i = 0; i < num_tx_pq_vf_masks; i++)
729  		if (tx_pq_vf_mask[i])
730  			STORE_RT_REG(p_hwfn,
731  				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
732  				     tx_pq_vf_mask[i]);
733  
734  	return 0;
735  }
736  
737  /* Prepare Other PQ mapping runtime init values for the specified PF */
qed_other_pq_map_rt_init(struct qed_hwfn * p_hwfn,u8 pf_id,bool is_pf_loading,u32 num_pf_cids,u32 num_tids,u32 base_mem_addr_4kb)738  static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
739  				     u8 pf_id,
740  				     bool is_pf_loading,
741  				     u32 num_pf_cids,
742  				     u32 num_tids, u32 base_mem_addr_4kb)
743  {
744  	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
745  	u16 i, j, pq_id, pq_group;
746  
747  	/* A single other PQ group is used in each PF, where PQ group i is used
748  	 * in PF i.
749  	 */
750  	pq_group = pf_id;
751  	pq_size = num_pf_cids + num_tids;
752  	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
753  	mem_addr_4kb = base_mem_addr_4kb;
754  
755  	/* Map PQ group to PF */
756  	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
757  		     (u32)(pf_id));
758  
759  	/* Set PQ sizes */
760  	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
761  		     QM_PQ_SIZE_256B(pq_size));
762  
763  	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
764  	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
765  		/* Set PQ base address */
766  		STORE_RT_REG(p_hwfn,
767  			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
768  			     mem_addr_4kb);
769  
770  		/* Clear PQ pointer table entry */
771  		if (is_pf_loading)
772  			for (j = 0; j < 2; j++)
773  				STORE_RT_REG(p_hwfn,
774  					     QM_REG_PTRTBLOTHER_RT_OFFSET +
775  					     (pq_id * 2) + j, 0);
776  
777  		mem_addr_4kb += pq_mem_4kb;
778  	}
779  }
780  
781  /* Prepare PF WFQ runtime init values for the specified PF.
782   * Return -1 on error.
783   */
qed_pf_wfq_rt_init(struct qed_hwfn * p_hwfn,struct qed_qm_pf_rt_init_params * p_params)784  static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
785  			      struct qed_qm_pf_rt_init_params *p_params)
786  {
787  	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
788  	struct init_qm_pq_params *pq_params = p_params->pq_params;
789  	u32 inc_val, crd_reg_offset;
790  	u8 ext_voq;
791  	u16 i;
792  
793  	inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
794  	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
795  		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
796  		return -1;
797  	}
798  
799  	for (i = 0; i < num_tx_pqs; i++) {
800  		ext_voq = qed_get_ext_voq(p_hwfn,
801  					  pq_params[i].port_id,
802  					  pq_params[i].tc_id,
803  					  p_params->max_phys_tcs_per_port);
804  		crd_reg_offset =
805  			(p_params->pf_id < MAX_NUM_PFS_BB ?
806  			 QM_REG_WFQPFCRD_RT_OFFSET :
807  			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
808  			ext_voq * MAX_NUM_PFS_BB +
809  			(p_params->pf_id % MAX_NUM_PFS_BB);
810  		OVERWRITE_RT_REG(p_hwfn,
811  				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
812  	}
813  
814  	STORE_RT_REG(p_hwfn,
815  		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
816  		     QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
817  	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
818  		     inc_val);
819  
820  	return 0;
821  }
822  
823  /* Prepare PF RL runtime init values for the specified PF.
824   * Return -1 on error.
825   */
qed_pf_rl_rt_init(struct qed_hwfn * p_hwfn,u8 pf_id,u32 pf_rl)826  static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
827  {
828  	u32 inc_val = QM_RL_INC_VAL(pf_rl);
829  
830  	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
831  		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
832  		return -1;
833  	}
834  
835  	STORE_RT_REG(p_hwfn,
836  		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
837  		     (u32)QM_RL_CRD_REG_SIGN_BIT);
838  	STORE_RT_REG(p_hwfn,
839  		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
840  		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
841  	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
842  
843  	return 0;
844  }
845  
846  /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
847   * Return -1 on error.
848   */
qed_vp_wfq_rt_init(struct qed_hwfn * p_hwfn,u16 num_vports,struct init_qm_vport_params * vport_params)849  static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
850  			      u16 num_vports,
851  			      struct init_qm_vport_params *vport_params)
852  {
853  	u16 vport_pq_id, wfq, i;
854  	u32 inc_val;
855  	u8 tc;
856  
857  	/* Go over all PF VPORTs */
858  	for (i = 0; i < num_vports; i++) {
859  		/* Each VPORT can have several VPORT PQ IDs for various TCs */
860  		for (tc = 0; tc < NUM_OF_TCS; tc++) {
861  			/* Check if VPORT/TC is valid */
862  			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
863  			if (vport_pq_id == QM_INVALID_PQ_ID)
864  				continue;
865  
866  			/* Find WFQ weight (per VPORT or per VPORT+TC) */
867  			wfq = vport_params[i].wfq;
868  			wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
869  			inc_val = QM_VP_WFQ_INC_VAL(wfq);
870  			if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
871  				DP_NOTICE(p_hwfn,
872  					  "Invalid VPORT WFQ weight configuration\n");
873  				return -1;
874  			}
875  
876  			/* Config registers */
877  			STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
878  				     vport_pq_id,
879  				     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
880  			STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
881  				     vport_pq_id,
882  				     inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
883  			STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
884  				     vport_pq_id, inc_val);
885  		}
886  	}
887  
888  	return 0;
889  }
890  
qed_poll_on_qm_cmd_ready(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)891  static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
892  				     struct qed_ptt *p_ptt)
893  {
894  	u32 reg_val, i;
895  
896  	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
897  	     i++) {
898  		udelay(QM_STOP_CMD_POLL_PERIOD_US);
899  		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
900  	}
901  
902  	/* Check if timeout while waiting for SDM command ready */
903  	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
904  		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
905  			   "Timeout when waiting for QM SDM command ready signal\n");
906  		return false;
907  	}
908  
909  	return true;
910  }
911  
qed_send_qm_cmd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 cmd_addr,u32 cmd_data_lsb,u32 cmd_data_msb)912  static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
913  			    struct qed_ptt *p_ptt,
914  			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
915  {
916  	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
917  		return false;
918  
919  	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
920  	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
921  	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
922  	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
923  	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
924  
925  	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
926  }
927  
928  /******************** INTERFACE IMPLEMENTATION *********************/
929  
qed_qm_pf_mem_size(u32 num_pf_cids,u32 num_vf_cids,u32 num_tids,u16 num_pf_pqs,u16 num_vf_pqs)930  u32 qed_qm_pf_mem_size(u32 num_pf_cids,
931  		       u32 num_vf_cids,
932  		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
933  {
934  	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
935  	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
936  	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
937  }
938  
qed_qm_common_rt_init(struct qed_hwfn * p_hwfn,struct qed_qm_common_rt_init_params * p_params)939  int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
940  			  struct qed_qm_common_rt_init_params *p_params)
941  {
942  	u32 mask = 0;
943  
944  	/* Init AFullOprtnstcCrdMask */
945  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
946  		  QM_OPPOR_LINE_VOQ_DEF);
947  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
948  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
949  		  p_params->pf_wfq_en ? 1 : 0);
950  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
951  		  p_params->vport_wfq_en ? 1 : 0);
952  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
953  		  p_params->pf_rl_en ? 1 : 0);
954  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
955  		  p_params->global_rl_en ? 1 : 0);
956  	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
957  	SET_FIELD(mask,
958  		  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
959  	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
960  
961  	/* Enable/disable PF RL */
962  	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
963  
964  	/* Enable/disable PF WFQ */
965  	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
966  
967  	/* Enable/disable global RL */
968  	qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
969  
970  	/* Enable/disable VPORT WFQ */
971  	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
972  
973  	/* Init PBF CMDQ line credit */
974  	qed_cmdq_lines_rt_init(p_hwfn,
975  			       p_params->max_ports_per_engine,
976  			       p_params->max_phys_tcs_per_port,
977  			       p_params->port_params);
978  
979  	/* Init BTB blocks in PBF */
980  	qed_btb_blocks_rt_init(p_hwfn,
981  			       p_params->max_ports_per_engine,
982  			       p_params->max_phys_tcs_per_port,
983  			       p_params->port_params);
984  
985  	qed_global_rl_rt_init(p_hwfn);
986  
987  	return 0;
988  }
989  
qed_qm_pf_rt_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_qm_pf_rt_init_params * p_params)990  int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
991  		      struct qed_ptt *p_ptt,
992  		      struct qed_qm_pf_rt_init_params *p_params)
993  {
994  	struct init_qm_vport_params *vport_params = p_params->vport_params;
995  	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
996  					       p_params->num_tids) *
997  				 QM_OTHER_PQS_PER_PF;
998  	u16 i;
999  	u8 tc;
1000  
1001  	/* Clear first Tx PQ ID array for each VPORT */
1002  	for (i = 0; i < p_params->num_vports; i++)
1003  		for (tc = 0; tc < NUM_OF_TCS; tc++)
1004  			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
1005  
1006  	/* Map Other PQs (if any) */
1007  	qed_other_pq_map_rt_init(p_hwfn,
1008  				 p_params->pf_id,
1009  				 p_params->is_pf_loading, p_params->num_pf_cids,
1010  				 p_params->num_tids, 0);
1011  
1012  	/* Map Tx PQs */
1013  	if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1014  		return -1;
1015  
1016  	/* Init PF WFQ */
1017  	if (p_params->pf_wfq)
1018  		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1019  			return -1;
1020  
1021  	/* Init PF RL */
1022  	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1023  		return -1;
1024  
1025  	/* Init VPORT WFQ */
1026  	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1027  		return -1;
1028  
1029  	/* Set VPORT RL */
1030  	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1031  				 p_params->num_rls, p_params->link_speed,
1032  				 p_params->rl_params))
1033  		return -1;
1034  
1035  	return 0;
1036  }
1037  
qed_init_pf_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 pf_id,u16 pf_wfq)1038  int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1039  		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1040  {
1041  	u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1042  
1043  	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1044  		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1045  		return -1;
1046  	}
1047  
1048  	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1049  
1050  	return 0;
1051  }
1052  
qed_init_pf_rl(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 pf_id,u32 pf_rl)1053  int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1054  		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1055  {
1056  	u32 inc_val = QM_RL_INC_VAL(pf_rl);
1057  
1058  	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1059  		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1060  		return -1;
1061  	}
1062  
1063  	qed_wr(p_hwfn,
1064  	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1065  	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1066  
1067  	return 0;
1068  }
1069  
qed_init_vport_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 first_tx_pq_id[NUM_OF_TCS],u16 wfq)1070  int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1071  		       struct qed_ptt *p_ptt,
1072  		       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1073  {
1074  	int result = 0;
1075  	u16 vport_pq_id;
1076  	u8 tc;
1077  
1078  	for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1079  		vport_pq_id = first_tx_pq_id[tc];
1080  		if (vport_pq_id != QM_INVALID_PQ_ID)
1081  			result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1082  						       vport_pq_id, wfq);
1083  	}
1084  
1085  	return result;
1086  }
1087  
qed_init_vport_tc_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 first_tx_pq_id,u16 wfq)1088  int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1089  			  u16 first_tx_pq_id, u16 wfq)
1090  {
1091  	u32 inc_val;
1092  
1093  	if (first_tx_pq_id == QM_INVALID_PQ_ID)
1094  		return -1;
1095  
1096  	inc_val = QM_VP_WFQ_INC_VAL(wfq);
1097  	if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1098  		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1099  		return -1;
1100  	}
1101  
1102  	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1103  	       (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1104  	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1105  	       inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1106  	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1107  	       inc_val);
1108  
1109  	return 0;
1110  }
1111  
qed_init_global_rl(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 rl_id,u32 rate_limit,enum init_qm_rl_type vport_rl_type)1112  int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1113  		       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1114  		       enum init_qm_rl_type vport_rl_type)
1115  {
1116  	u32 inc_val, upper_bound;
1117  
1118  	upper_bound =
1119  	    (vport_rl_type ==
1120  	     QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1121  	    QM_INITIAL_VOQ_BYTE_CRD;
1122  	inc_val = QM_RL_INC_VAL(rate_limit);
1123  	if (inc_val > upper_bound) {
1124  		DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1125  		return -1;
1126  	}
1127  
1128  	qed_wr(p_hwfn, p_ptt,
1129  	       QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1130  	qed_wr(p_hwfn,
1131  	       p_ptt,
1132  	       QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1133  	       upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1134  	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1135  
1136  	return 0;
1137  }
1138  
qed_send_qm_stop_cmd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool is_release_cmd,bool is_tx_pq,u16 start_pq,u16 num_pqs)1139  bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1140  			  struct qed_ptt *p_ptt,
1141  			  bool is_release_cmd,
1142  			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
1143  {
1144  	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1145  	u32 pq_mask = 0, last_pq, pq_id;
1146  
1147  	last_pq = start_pq + num_pqs - 1;
1148  
1149  	/* Set command's PQ type */
1150  	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1151  
1152  	/* Go over requested PQs */
1153  	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1154  		/* Set PQ bit in mask (stop command only) */
1155  		if (!is_release_cmd)
1156  			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1157  
1158  		/* If last PQ or end of PQ mask, write command */
1159  		if ((pq_id == last_pq) ||
1160  		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1161  		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1162  			QM_CMD_SET_FIELD(cmd_arr,
1163  					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1164  			QM_CMD_SET_FIELD(cmd_arr,
1165  					 QM_STOP_CMD,
1166  					 GROUP_ID,
1167  					 pq_id / QM_STOP_PQ_MASK_WIDTH);
1168  			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1169  					     cmd_arr[0], cmd_arr[1]))
1170  				return false;
1171  			pq_mask = 0;
1172  		}
1173  	}
1174  
1175  	return true;
1176  }
1177  
1178  #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1179  	do { \
1180  		typeof(var) *__p_var = &(var); \
1181  		typeof(offset) __offset = offset; \
1182  		*__p_var = (*__p_var & ~BIT(__offset)) | \
1183  			   ((enable) ? BIT(__offset) : 0); \
1184  	} while (0)
1185  
1186  #define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
1187  #define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
1188  
1189  #define ARR_REG_WR(dev, ptt, addr, arr,	arr_size) \
1190  	do { \
1191  		u32 i; \
1192  		\
1193  		for (i = 0; i < (arr_size); i++) \
1194  			qed_wr(dev, ptt, \
1195  			       ((addr) + (4 * i)), \
1196  			       ((u32 *)&(arr))[i]); \
1197  	} while (0)
1198  
1199  /**
1200   * qed_dmae_to_grc() - Internal function for writing from host to
1201   * wide-bus registers (split registers are not supported yet).
1202   *
1203   * @p_hwfn: HW device data.
1204   * @p_ptt: PTT window used for writing the registers.
1205   * @p_data: Pointer to source data.
1206   * @addr: Destination register address.
1207   * @len_in_dwords: Data length in dwords (u32).
1208   *
1209   * Return: Length of the written data in dwords (u32) or -1 on invalid
1210   *         input.
1211   */
qed_dmae_to_grc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,__le32 * p_data,u32 addr,u32 len_in_dwords)1212  static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1213  			   __le32 *p_data, u32 addr, u32 len_in_dwords)
1214  {
1215  	struct qed_dmae_params params = { 0 };
1216  	u32 *data_cpu;
1217  	int rc;
1218  
1219  	if (!p_data)
1220  		return -1;
1221  
1222  	/* Set DMAE params */
1223  	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1224  
1225  	/* Execute DMAE command */
1226  	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1227  			       (u64)(uintptr_t)(p_data),
1228  			       addr, len_in_dwords, &params);
1229  
1230  	/* If not read using DMAE, read using GRC */
1231  	if (rc) {
1232  		DP_VERBOSE(p_hwfn,
1233  			   QED_MSG_DEBUG,
1234  			   "Failed writing to chip using DMAE, using GRC instead\n");
1235  
1236  		/* Swap to CPU byteorder and write to registers using GRC */
1237  		data_cpu = (__force u32 *)p_data;
1238  		le32_to_cpu_array(data_cpu, len_in_dwords);
1239  
1240  		ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1241  		cpu_to_le32_array(data_cpu, len_in_dwords);
1242  	}
1243  
1244  	return len_in_dwords;
1245  }
1246  
qed_set_vxlan_dest_port(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 dest_port)1247  void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1248  			     struct qed_ptt *p_ptt, u16 dest_port)
1249  {
1250  	/* Update PRS register */
1251  	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1252  
1253  	/* Update NIG register */
1254  	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1255  
1256  	/* Update PBF register */
1257  	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1258  }
1259  
qed_set_vxlan_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool vxlan_enable)1260  void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1261  			  struct qed_ptt *p_ptt, bool vxlan_enable)
1262  {
1263  	u32 reg_val;
1264  	u8 shift;
1265  
1266  	/* Update PRS register */
1267  	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1268  	SET_FIELD(reg_val,
1269  		  PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1270  	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1271  	if (reg_val) {
1272  		reg_val =
1273  		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1274  
1275  		/* Update output  only if tunnel blocks not included. */
1276  		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1277  			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1278  			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1279  	}
1280  
1281  	/* Update NIG register */
1282  	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1283  	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1284  	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1285  	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1286  
1287  	/* Update DORQ register */
1288  	qed_wr(p_hwfn,
1289  	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1290  }
1291  
qed_set_gre_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool eth_gre_enable,bool ip_gre_enable)1292  void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1293  			struct qed_ptt *p_ptt,
1294  			bool eth_gre_enable, bool ip_gre_enable)
1295  {
1296  	u32 reg_val;
1297  	u8 shift;
1298  
1299  	/* Update PRS register */
1300  	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1301  	SET_FIELD(reg_val,
1302  		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1303  		  eth_gre_enable);
1304  	SET_FIELD(reg_val,
1305  		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1306  		  ip_gre_enable);
1307  	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1308  	if (reg_val) {
1309  		reg_val =
1310  		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1311  
1312  		/* Update output  only if tunnel blocks not included. */
1313  		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1314  			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1315  			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1316  	}
1317  
1318  	/* Update NIG register */
1319  	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320  	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1321  	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1322  	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1323  	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1324  	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1325  
1326  	/* Update DORQ registers */
1327  	qed_wr(p_hwfn,
1328  	       p_ptt,
1329  	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1330  	qed_wr(p_hwfn,
1331  	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1332  }
1333  
qed_set_geneve_dest_port(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 dest_port)1334  void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1335  			      struct qed_ptt *p_ptt, u16 dest_port)
1336  {
1337  	/* Update PRS register */
1338  	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1339  
1340  	/* Update NIG register */
1341  	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1342  
1343  	/* Update PBF register */
1344  	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1345  }
1346  
qed_set_geneve_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool eth_geneve_enable,bool ip_geneve_enable)1347  void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1348  			   struct qed_ptt *p_ptt,
1349  			   bool eth_geneve_enable, bool ip_geneve_enable)
1350  {
1351  	u32 reg_val;
1352  
1353  	/* Update PRS register */
1354  	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1355  	SET_FIELD(reg_val,
1356  		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1357  		  eth_geneve_enable);
1358  	SET_FIELD(reg_val,
1359  		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1360  		  ip_geneve_enable);
1361  	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1362  	if (reg_val) {
1363  		reg_val =
1364  		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1365  
1366  		/* Update output  only if tunnel blocks not included. */
1367  		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1368  			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1369  			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1370  	}
1371  
1372  	/* Update NIG register */
1373  	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1374  	       eth_geneve_enable ? 1 : 0);
1375  	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1376  
1377  	/* EDPM with geneve tunnel not supported in BB */
1378  	if (QED_IS_BB_B0(p_hwfn->cdev))
1379  		return;
1380  
1381  	/* Update DORQ registers */
1382  	qed_wr(p_hwfn,
1383  	       p_ptt,
1384  	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1385  	       eth_geneve_enable ? 1 : 0);
1386  	qed_wr(p_hwfn,
1387  	       p_ptt,
1388  	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1389  	       ip_geneve_enable ? 1 : 0);
1390  }
1391  
1392  #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1393  #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
1394  
qed_set_vxlan_no_l2_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool enable)1395  void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1396  				struct qed_ptt *p_ptt, bool enable)
1397  {
1398  	u32 reg_val, cfg_mask;
1399  
1400  	/* read PRS config register */
1401  	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1402  
1403  	/* set VXLAN_NO_L2_ENABLE mask */
1404  	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1405  
1406  	if (enable) {
1407  		/* set VXLAN_NO_L2_ENABLE flag */
1408  		reg_val |= cfg_mask;
1409  
1410  		/* update PRS FIC  register */
1411  		qed_wr(p_hwfn,
1412  		       p_ptt,
1413  		       PRS_REG_OUTPUT_FORMAT_4_0,
1414  		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1415  	} else {
1416  		/* clear VXLAN_NO_L2_ENABLE flag */
1417  		reg_val &= ~cfg_mask;
1418  	}
1419  
1420  	/* write PRS config register */
1421  	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1422  }
1423  
1424  #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1425  #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1426  #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1427  #define PARSER_ETH_CONN_CM_HDR 0
1428  #define CAM_LINE_SIZE sizeof(u32)
1429  #define RAM_LINE_SIZE sizeof(u64)
1430  #define REG_SIZE sizeof(u32)
1431  
qed_gft_disable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 pf_id)1432  void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1433  {
1434  	struct regpair ram_line = { 0 };
1435  
1436  	/* Disable gft search for PF */
1437  	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1438  
1439  	/* Clean ram & cam for next gft session */
1440  
1441  	/* Zero camline */
1442  	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1443  
1444  	/* Zero ramline */
1445  	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1446  			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1447  			sizeof(ram_line) / REG_SIZE);
1448  }
1449  
qed_gft_config(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 pf_id,bool tcp,bool udp,bool ipv4,bool ipv6,enum gft_profile_type profile_type)1450  void qed_gft_config(struct qed_hwfn *p_hwfn,
1451  		    struct qed_ptt *p_ptt,
1452  		    u16 pf_id,
1453  		    bool tcp,
1454  		    bool udp,
1455  		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1456  {
1457  	struct regpair ram_line;
1458  	u32 search_non_ip_as_gft;
1459  	u32 reg_val, cam_line;
1460  	u32 lo = 0, hi = 0;
1461  
1462  	if (!ipv6 && !ipv4)
1463  		DP_NOTICE(p_hwfn,
1464  			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1465  	if (!tcp && !udp)
1466  		DP_NOTICE(p_hwfn,
1467  			  "gft_config: must accept at least on of - udp or tcp\n");
1468  	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1469  		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1470  
1471  	/* Set RFS event ID to be awakened i Tstorm By Prs */
1472  	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1473  		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1474  	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1475  	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1476  
1477  	/* Do not load context only cid in PRS on match. */
1478  	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1479  
1480  	/* Do not use tenant ID exist bit for gft search */
1481  	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1482  
1483  	/* Set Cam */
1484  	cam_line = 0;
1485  	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1486  
1487  	/* Filters are per PF!! */
1488  	SET_FIELD(cam_line,
1489  		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1490  		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1491  	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1492  
1493  	if (!(tcp && udp)) {
1494  		SET_FIELD(cam_line,
1495  			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1496  			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1497  		if (tcp)
1498  			SET_FIELD(cam_line,
1499  				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1500  				  GFT_PROFILE_TCP_PROTOCOL);
1501  		else
1502  			SET_FIELD(cam_line,
1503  				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1504  				  GFT_PROFILE_UDP_PROTOCOL);
1505  	}
1506  
1507  	if (!(ipv4 && ipv6)) {
1508  		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1509  		if (ipv4)
1510  			SET_FIELD(cam_line,
1511  				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1512  				  GFT_PROFILE_IPV4);
1513  		else
1514  			SET_FIELD(cam_line,
1515  				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1516  				  GFT_PROFILE_IPV6);
1517  	}
1518  
1519  	/* Write characteristics to cam */
1520  	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1521  	       cam_line);
1522  	cam_line =
1523  	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1524  
1525  	/* Write line to RAM - compare to filter 4 tuple */
1526  
1527  	/* Search no IP as GFT */
1528  	search_non_ip_as_gft = 0;
1529  
1530  	/* Tunnel type */
1531  	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1532  	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1533  
1534  	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1535  		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1536  		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1537  		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1538  		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1539  		SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1540  		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1541  	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1542  		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543  		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544  		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1545  	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1546  		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1547  		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1548  	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1549  		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1550  		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551  	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1552  		SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1553  
1554  		/* Allow tunneled traffic without inner IP */
1555  		search_non_ip_as_gft = 1;
1556  	}
1557  
1558  	ram_line.lo = cpu_to_le32(lo);
1559  	ram_line.hi = cpu_to_le32(hi);
1560  
1561  	qed_wr(p_hwfn,
1562  	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1563  	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1564  			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1565  			sizeof(ram_line) / REG_SIZE);
1566  
1567  	/* Set default profile so that no filter match will happen */
1568  	ram_line.lo = cpu_to_le32(0xffffffff);
1569  	ram_line.hi = cpu_to_le32(0x3ff);
1570  	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1571  			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1572  			PRS_GFT_CAM_LINES_NO_MATCH,
1573  			sizeof(ram_line) / REG_SIZE);
1574  
1575  	/* Enable gft search */
1576  	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577  }
1578  
1579  DECLARE_CRC8_TABLE(cdu_crc8_table);
1580  
1581  /* Calculate and return CDU validation byte per connection type/region/cid */
qed_calc_cdu_validation_byte(u8 conn_type,u8 region,u32 cid)1582  static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1583  {
1584  	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1585  	u8 crc, validation_byte = 0;
1586  	static u8 crc8_table_valid; /* automatically initialized to 0 */
1587  	u32 validation_string = 0;
1588  	__be32 data_to_crc;
1589  
1590  	if (!crc8_table_valid) {
1591  		crc8_populate_msb(cdu_crc8_table, 0x07);
1592  		crc8_table_valid = 1;
1593  	}
1594  
1595  	/* The CRC is calculated on the String-to-compress:
1596  	 * [31:8]  = {CID[31:20],CID[11:0]}
1597  	 * [7:4]   = Region
1598  	 * [3:0]   = Type
1599  	 */
1600  	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1601  		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1602  
1603  	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1604  		validation_string |= ((region & 0xF) << 4);
1605  
1606  	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1607  		validation_string |= (conn_type & 0xF);
1608  
1609  	/* Convert to big-endian and calculate CRC8 */
1610  	data_to_crc = cpu_to_be32(validation_string);
1611  	crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1612  		   CRC8_INIT_VALUE);
1613  
1614  	/* The validation byte [7:0] is composed:
1615  	 * for type A validation
1616  	 * [7]          = active configuration bit
1617  	 * [6:0]        = crc[6:0]
1618  	 *
1619  	 * for type B validation
1620  	 * [7]          = active configuration bit
1621  	 * [6:3]        = connection_type[3:0]
1622  	 * [2:0]        = crc[2:0]
1623  	 */
1624  	validation_byte |=
1625  	    ((validation_cfg >>
1626  	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1627  
1628  	if ((validation_cfg >>
1629  	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1630  		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1631  	else
1632  		validation_byte |= crc & 0x7F;
1633  
1634  	return validation_byte;
1635  }
1636  
1637  /* Calcualte and set validation bytes for session context */
qed_calc_session_ctx_validation(void * p_ctx_mem,u16 ctx_size,u8 ctx_type,u32 cid)1638  void qed_calc_session_ctx_validation(void *p_ctx_mem,
1639  				     u16 ctx_size, u8 ctx_type, u32 cid)
1640  {
1641  	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1642  
1643  	p_ctx = (u8 * const)p_ctx_mem;
1644  	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1645  	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1646  	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1647  
1648  	memset(p_ctx, 0, ctx_size);
1649  
1650  	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1651  	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1652  	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1653  }
1654  
1655  /* Calcualte and set validation bytes for task context */
qed_calc_task_ctx_validation(void * p_ctx_mem,u16 ctx_size,u8 ctx_type,u32 tid)1656  void qed_calc_task_ctx_validation(void *p_ctx_mem,
1657  				  u16 ctx_size, u8 ctx_type, u32 tid)
1658  {
1659  	u8 *p_ctx, *region1_val_ptr;
1660  
1661  	p_ctx = (u8 * const)p_ctx_mem;
1662  	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1663  
1664  	memset(p_ctx, 0, ctx_size);
1665  
1666  	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1667  }
1668  
1669  /* Memset session context to 0 while preserving validation bytes */
qed_memset_session_ctx(void * p_ctx_mem,u32 ctx_size,u8 ctx_type)1670  void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1671  {
1672  	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1673  	u8 x_val, t_val, u_val;
1674  
1675  	p_ctx = (u8 * const)p_ctx_mem;
1676  	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1677  	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1678  	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1679  
1680  	x_val = *x_val_ptr;
1681  	t_val = *t_val_ptr;
1682  	u_val = *u_val_ptr;
1683  
1684  	memset(p_ctx, 0, ctx_size);
1685  
1686  	*x_val_ptr = x_val;
1687  	*t_val_ptr = t_val;
1688  	*u_val_ptr = u_val;
1689  }
1690  
1691  /* Memset task context to 0 while preserving validation bytes */
qed_memset_task_ctx(void * p_ctx_mem,u32 ctx_size,u8 ctx_type)1692  void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1693  {
1694  	u8 *p_ctx, *region1_val_ptr;
1695  	u8 region1_val;
1696  
1697  	p_ctx = (u8 * const)p_ctx_mem;
1698  	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1699  
1700  	region1_val = *region1_val_ptr;
1701  
1702  	memset(p_ctx, 0, ctx_size);
1703  
1704  	*region1_val_ptr = region1_val;
1705  }
1706  
1707  /* Enable and configure context validation */
qed_enable_context_validation(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1708  void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1709  				   struct qed_ptt *p_ptt)
1710  {
1711  	u32 ctx_validation;
1712  
1713  	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1714  	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1715  	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1716  
1717  	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1718  	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1719  	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1720  
1721  	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1722  	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1723  	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1724  }
1725  
qed_get_protocol_type_str(u32 protocol_type)1726  const char *qed_get_protocol_type_str(u32 protocol_type)
1727  {
1728  	if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1729  		return "Invalid protocol type";
1730  
1731  	return s_protocol_types[protocol_type];
1732  }
1733  
qed_get_ramrod_cmd_id_str(u32 protocol_type,u32 ramrod_cmd_id)1734  const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1735  {
1736  	const char *ramrod_cmd_id_str;
1737  
1738  	if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1739  		return "Invalid protocol type";
1740  
1741  	if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1742  		return "Invalid Ramrod command ID";
1743  
1744  	ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1745  
1746  	if (!ramrod_cmd_id_str)
1747  		return "Invalid Ramrod command ID";
1748  
1749  	return ramrod_cmd_id_str;
1750  }
1751  
qed_get_rdma_assert_ram_addr(struct qed_hwfn * p_hwfn,u8 storm_id)1752  static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1753  {
1754  	switch (storm_id) {
1755  	case 0:
1756  		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1757  		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1758  	case 1:
1759  		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1760  		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1761  	case 2:
1762  		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1763  		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1764  	case 3:
1765  		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1766  		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1767  	case 4:
1768  		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1769  		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1770  	case 5:
1771  		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1772  		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1773  
1774  	default:
1775  		return 0;
1776  	}
1777  }
1778  
qed_set_rdma_error_level(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 assert_level[NUM_STORMS])1779  void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1780  			      struct qed_ptt *p_ptt,
1781  			      u8 assert_level[NUM_STORMS])
1782  {
1783  	u8 storm_id;
1784  
1785  	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1786  		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1787  
1788  		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1789  	}
1790  }
1791  
1792  #define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1793  #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1794  
qed_get_overlay_addr_ram_addr(struct qed_hwfn * p_hwfn,u8 storm_id)1795  static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1796  {
1797  	switch (storm_id) {
1798  	case 0:
1799  		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1800  		    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1801  	case 1:
1802  		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1803  		    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1804  	case 2:
1805  		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1806  		    USTORM_OVERLAY_BUF_ADDR_OFFSET;
1807  	case 3:
1808  		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1809  		    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1810  	case 4:
1811  		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1812  		    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1813  	case 5:
1814  		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1815  		    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1816  
1817  	default:
1818  		return 0;
1819  	}
1820  }
1821  
qed_fw_overlay_mem_alloc(struct qed_hwfn * p_hwfn,const u32 * const fw_overlay_in_buf,u32 buf_size_in_bytes)1822  struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1823  					       const u32 * const
1824  					       fw_overlay_in_buf,
1825  					       u32 buf_size_in_bytes)
1826  {
1827  	u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1828  	struct phys_mem_desc *allocated_mem;
1829  
1830  	if (!buf_size)
1831  		return NULL;
1832  
1833  	allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1834  				GFP_KERNEL);
1835  	if (!allocated_mem)
1836  		return NULL;
1837  
1838  	/* For each Storm, set physical address in RAM */
1839  	while (buf_offset < buf_size) {
1840  		struct phys_mem_desc *storm_mem_desc;
1841  		struct fw_overlay_buf_hdr *hdr;
1842  		u32 storm_buf_size;
1843  		u8 storm_id;
1844  
1845  		hdr =
1846  		    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1847  		storm_buf_size = GET_FIELD(hdr->data,
1848  					   FW_OVERLAY_BUF_HDR_BUF_SIZE);
1849  		storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1850  		if (storm_id >= NUM_STORMS)
1851  			break;
1852  		storm_mem_desc = allocated_mem + storm_id;
1853  		storm_mem_desc->size = storm_buf_size * sizeof(u32);
1854  
1855  		/* Allocate physical memory for Storm's overlays buffer */
1856  		storm_mem_desc->virt_addr =
1857  		    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1858  				       storm_mem_desc->size,
1859  				       &storm_mem_desc->phys_addr, GFP_KERNEL);
1860  		if (!storm_mem_desc->virt_addr)
1861  			break;
1862  
1863  		/* Skip overlays buffer header */
1864  		buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1865  
1866  		/* Copy Storm's overlays buffer to allocated memory */
1867  		memcpy(storm_mem_desc->virt_addr,
1868  		       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1869  
1870  		/* Advance to next Storm */
1871  		buf_offset += storm_buf_size;
1872  	}
1873  
1874  	/* If memory allocation has failed, free all allocated memory */
1875  	if (buf_offset < buf_size) {
1876  		qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1877  		return NULL;
1878  	}
1879  
1880  	return allocated_mem;
1881  }
1882  
qed_fw_overlay_init_ram(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct phys_mem_desc * fw_overlay_mem)1883  void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1884  			     struct qed_ptt *p_ptt,
1885  			     struct phys_mem_desc *fw_overlay_mem)
1886  {
1887  	u8 storm_id;
1888  
1889  	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1890  		struct phys_mem_desc *storm_mem_desc =
1891  		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1892  		u32 ram_addr, i;
1893  
1894  		/* Skip Storms with no FW overlays */
1895  		if (!storm_mem_desc->virt_addr)
1896  			continue;
1897  
1898  		/* Calculate overlay RAM GRC address of current PF */
1899  		ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1900  			   sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1901  
1902  		/* Write Storm's overlay physical address to RAM */
1903  		for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1904  			qed_wr(p_hwfn, p_ptt, ram_addr,
1905  			       ((u32 *)&storm_mem_desc->phys_addr)[i]);
1906  	}
1907  }
1908  
qed_fw_overlay_mem_free(struct qed_hwfn * p_hwfn,struct phys_mem_desc ** fw_overlay_mem)1909  void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1910  			     struct phys_mem_desc **fw_overlay_mem)
1911  {
1912  	u8 storm_id;
1913  
1914  	if (!fw_overlay_mem || !(*fw_overlay_mem))
1915  		return;
1916  
1917  	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1918  		struct phys_mem_desc *storm_mem_desc =
1919  		    (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1920  
1921  		/* Free Storm's physical memory */
1922  		if (storm_mem_desc->virt_addr)
1923  			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1924  					  storm_mem_desc->size,
1925  					  storm_mem_desc->virt_addr,
1926  					  storm_mem_desc->phys_addr);
1927  	}
1928  
1929  	/* Free allocated virtual memory */
1930  	kfree(*fw_overlay_mem);
1931  	*fw_overlay_mem = NULL;
1932  }
1933