1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <asm/byteorder.h>
29 
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 	if (t->is_split_transaction)
42 		return del_timer(&t->split_timeout_timer);
43 	else
44 		return 1;
45 }
46 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 			     u32 response_tstamp)
49 {
50 	struct fw_transaction *t = NULL, *iter;
51 
52 	scoped_guard(spinlock_irqsave, &card->lock) {
53 		list_for_each_entry(iter, &card->transaction_list, link) {
54 			if (iter == transaction) {
55 				if (try_cancel_split_timeout(iter)) {
56 					list_del_init(&iter->link);
57 					card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 					t = iter;
59 				}
60 				break;
61 			}
62 		}
63 	}
64 
65 	if (!t)
66 		return -ENOENT;
67 
68 	if (!t->with_tstamp) {
69 		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 	} else {
71 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 					t->callback_data);
73 	}
74 
75 	return 0;
76 }
77 
78 /*
79  * Only valid for transactions that are potentially pending (ie have
80  * been sent).
81  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)82 int fw_cancel_transaction(struct fw_card *card,
83 			  struct fw_transaction *transaction)
84 {
85 	u32 tstamp;
86 
87 	/*
88 	 * Cancel the packet transmission if it's still queued.  That
89 	 * will call the packet transmission callback which cancels
90 	 * the transaction.
91 	 */
92 
93 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 		return 0;
95 
96 	/*
97 	 * If the request packet has already been sent, we need to see
98 	 * if the transaction is still pending and remove it in that case.
99 	 */
100 
101 	if (transaction->packet.ack == 0) {
102 		// The timestamp is reused since it was just read now.
103 		tstamp = transaction->packet.timestamp;
104 	} else {
105 		u32 curr_cycle_time = 0;
106 
107 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 	}
110 
111 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112 }
113 EXPORT_SYMBOL(fw_cancel_transaction);
114 
split_transaction_timeout_callback(struct timer_list * timer)115 static void split_transaction_timeout_callback(struct timer_list *timer)
116 {
117 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
118 	struct fw_card *card = t->card;
119 
120 	scoped_guard(spinlock_irqsave, &card->lock) {
121 		if (list_empty(&t->link))
122 			return;
123 		list_del(&t->link);
124 		card->tlabel_mask &= ~(1ULL << t->tlabel);
125 	}
126 
127 	if (!t->with_tstamp) {
128 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 	} else {
130 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 					t->split_timeout_cycle, NULL, 0, t->callback_data);
132 	}
133 }
134 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)135 static void start_split_transaction_timeout(struct fw_transaction *t,
136 					    struct fw_card *card)
137 {
138 	guard(spinlock_irqsave)(&card->lock);
139 
140 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 		return;
142 
143 	t->is_split_transaction = true;
144 	mod_timer(&t->split_timeout_timer,
145 		  jiffies + card->split_timeout_jiffies);
146 }
147 
148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)150 static void transmit_complete_callback(struct fw_packet *packet,
151 				       struct fw_card *card, int status)
152 {
153 	struct fw_transaction *t =
154 	    container_of(packet, struct fw_transaction, packet);
155 
156 	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 					      packet->speed, status, packet->timestamp);
158 
159 	switch (status) {
160 	case ACK_COMPLETE:
161 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 		break;
163 	case ACK_PENDING:
164 	{
165 		t->split_timeout_cycle =
166 			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 		start_split_transaction_timeout(t, card);
168 		break;
169 	}
170 	case ACK_BUSY_X:
171 	case ACK_BUSY_A:
172 	case ACK_BUSY_B:
173 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 		break;
175 	case ACK_DATA_ERROR:
176 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 		break;
178 	case ACK_TYPE_ERROR:
179 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 		break;
181 	default:
182 		/*
183 		 * In this case the ack is really a juju specific
184 		 * rcode, so just forward that to the callback.
185 		 */
186 		close_transaction(t, card, status, packet->timestamp);
187 		break;
188 	}
189 }
190 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 		int destination_id, int source_id, int generation, int speed,
193 		unsigned long long offset, void *payload, size_t length)
194 {
195 	int ext_tcode;
196 
197 	if (tcode == TCODE_STREAM_DATA) {
198 		// The value of destination_id argument should include tag, channel, and sy fields
199 		// as isochronous packet header has.
200 		packet->header[0] = destination_id;
201 		isoc_header_set_data_length(packet->header, length);
202 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 		packet->header_length = 4;
204 		packet->payload = payload;
205 		packet->payload_length = length;
206 
207 		goto common;
208 	}
209 
210 	if (tcode > 0x10) {
211 		ext_tcode = tcode & ~0x10;
212 		tcode = TCODE_LOCK_REQUEST;
213 	} else
214 		ext_tcode = 0;
215 
216 	async_header_set_retry(packet->header, RETRY_X);
217 	async_header_set_tlabel(packet->header, tlabel);
218 	async_header_set_tcode(packet->header, tcode);
219 	async_header_set_destination(packet->header, destination_id);
220 	async_header_set_source(packet->header, source_id);
221 	async_header_set_offset(packet->header, offset);
222 
223 	switch (tcode) {
224 	case TCODE_WRITE_QUADLET_REQUEST:
225 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 		packet->header_length = 16;
227 		packet->payload_length = 0;
228 		break;
229 
230 	case TCODE_LOCK_REQUEST:
231 	case TCODE_WRITE_BLOCK_REQUEST:
232 		async_header_set_data_length(packet->header, length);
233 		async_header_set_extended_tcode(packet->header, ext_tcode);
234 		packet->header_length = 16;
235 		packet->payload = payload;
236 		packet->payload_length = length;
237 		break;
238 
239 	case TCODE_READ_QUADLET_REQUEST:
240 		packet->header_length = 12;
241 		packet->payload_length = 0;
242 		break;
243 
244 	case TCODE_READ_BLOCK_REQUEST:
245 		async_header_set_data_length(packet->header, length);
246 		async_header_set_extended_tcode(packet->header, ext_tcode);
247 		packet->header_length = 16;
248 		packet->payload_length = 0;
249 		break;
250 
251 	default:
252 		WARN(1, "wrong tcode %d\n", tcode);
253 	}
254  common:
255 	packet->speed = speed;
256 	packet->generation = generation;
257 	packet->ack = 0;
258 	packet->payload_mapped = false;
259 }
260 
allocate_tlabel(struct fw_card * card)261 static int allocate_tlabel(struct fw_card *card)
262 {
263 	int tlabel;
264 
265 	tlabel = card->current_tlabel;
266 	while (card->tlabel_mask & (1ULL << tlabel)) {
267 		tlabel = (tlabel + 1) & 0x3f;
268 		if (tlabel == card->current_tlabel)
269 			return -EBUSY;
270 	}
271 
272 	card->current_tlabel = (tlabel + 1) & 0x3f;
273 	card->tlabel_mask |= 1ULL << tlabel;
274 
275 	return tlabel;
276 }
277 
278 /**
279  * __fw_send_request() - submit a request packet for transmission to generate callback for response
280  *			 subaction with or without time stamp.
281  * @card:		interface to send the request at
282  * @t:			transaction instance to which the request belongs
283  * @tcode:		transaction code
284  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
285  * @generation:		bus generation in which request and response are valid
286  * @speed:		transmission speed
287  * @offset:		48bit wide offset into destination's address space
288  * @payload:		data payload for the request subaction
289  * @length:		length of the payload, in bytes
290  * @callback:		union of two functions whether to receive time stamp or not for response
291  *			subaction.
292  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
293  * @callback_data:	data to be passed to the transaction completion callback
294  *
295  * Submit a request packet into the asynchronous request transmission queue.
296  * Can be called from atomic context.  If you prefer a blocking API, use
297  * fw_run_transaction() in a context that can sleep.
298  *
299  * In case of lock requests, specify one of the firewire-core specific %TCODE_
300  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301  *
302  * Make sure that the value in @destination_id is not older than the one in
303  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
304  *
305  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307  * It will contain tag, channel, and sy data instead of a node ID then.
308  *
309  * The payload buffer at @data is going to be DMA-mapped except in case of
310  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
311  * buffer complies with the restrictions of the streaming DMA mapping API.
312  * @payload must not be freed before the @callback is called.
313  *
314  * In case of request types without payload, @data is NULL and @length is 0.
315  *
316  * After the transaction is completed successfully or unsuccessfully, the
317  * @callback will be called.  Among its parameters is the response code which
318  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
320  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322  * generation, or missing ACK respectively.
323  *
324  * Note some timing corner cases:  fw_send_request() may complete much earlier
325  * than when the request packet actually hits the wire.  On the other hand,
326  * transaction completion and hence execution of @callback may happen even
327  * before fw_send_request() returns.
328  */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 		int destination_id, int generation, int speed, unsigned long long offset,
331 		void *payload, size_t length, union fw_transaction_callback callback,
332 		bool with_tstamp, void *callback_data)
333 {
334 	unsigned long flags;
335 	int tlabel;
336 
337 	/*
338 	 * Allocate tlabel from the bitmap and put the transaction on
339 	 * the list while holding the card spinlock.
340 	 */
341 
342 	spin_lock_irqsave(&card->lock, flags);
343 
344 	tlabel = allocate_tlabel(card);
345 	if (tlabel < 0) {
346 		spin_unlock_irqrestore(&card->lock, flags);
347 		if (!with_tstamp) {
348 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 		} else {
350 			// Timestamping on behalf of hardware.
351 			u32 curr_cycle_time = 0;
352 			u32 tstamp;
353 
354 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356 
357 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 					     callback_data);
359 		}
360 		return;
361 	}
362 
363 	t->node_id = destination_id;
364 	t->tlabel = tlabel;
365 	t->card = card;
366 	t->is_split_transaction = false;
367 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 	t->callback = callback;
369 	t->with_tstamp = with_tstamp;
370 	t->callback_data = callback_data;
371 
372 	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 			speed, offset, payload, length);
374 	t->packet.callback = transmit_complete_callback;
375 
376 	list_add_tail(&t->link, &card->transaction_list);
377 
378 	spin_unlock_irqrestore(&card->lock, flags);
379 
380 	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 					      t->packet.header, payload,
382 					      tcode_is_read_request(tcode) ? 0 : length / 4);
383 
384 	card->driver->send_request(card, &t->packet);
385 }
386 EXPORT_SYMBOL_GPL(__fw_send_request);
387 
388 struct transaction_callback_data {
389 	struct completion done;
390 	void *payload;
391 	int rcode;
392 };
393 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)394 static void transaction_callback(struct fw_card *card, int rcode,
395 				 void *payload, size_t length, void *data)
396 {
397 	struct transaction_callback_data *d = data;
398 
399 	if (rcode == RCODE_COMPLETE)
400 		memcpy(d->payload, payload, length);
401 	d->rcode = rcode;
402 	complete(&d->done);
403 }
404 
405 /**
406  * fw_run_transaction() - send request and sleep until transaction is completed
407  * @card:		card interface for this request
408  * @tcode:		transaction code
409  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
410  * @generation:		bus generation in which request and response are valid
411  * @speed:		transmission speed
412  * @offset:		48bit wide offset into destination's address space
413  * @payload:		data payload for the request subaction
414  * @length:		length of the payload, in bytes
415  *
416  * Returns the RCODE.  See fw_send_request() for parameter documentation.
417  * Unlike fw_send_request(), @data points to the payload of the request or/and
418  * to the payload of the response.  DMA mapping restrictions apply to outbound
419  * request payloads of >= 8 bytes but not to inbound response payloads.
420  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 		       int generation, int speed, unsigned long long offset,
423 		       void *payload, size_t length)
424 {
425 	struct transaction_callback_data d;
426 	struct fw_transaction t;
427 
428 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 	init_completion(&d.done);
430 	d.payload = payload;
431 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 			offset, payload, length, transaction_callback, &d);
433 	wait_for_completion(&d.done);
434 	destroy_timer_on_stack(&t.split_timeout_timer);
435 
436 	return d.rcode;
437 }
438 EXPORT_SYMBOL(fw_run_transaction);
439 
440 static DEFINE_MUTEX(phy_config_mutex);
441 static DECLARE_COMPLETION(phy_config_done);
442 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)443 static void transmit_phy_packet_callback(struct fw_packet *packet,
444 					 struct fw_card *card, int status)
445 {
446 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 					  packet->timestamp);
448 	complete(&phy_config_done);
449 }
450 
451 static struct fw_packet phy_config_packet = {
452 	.header_length	= 12,
453 	.payload_length	= 0,
454 	.speed		= SCODE_100,
455 	.callback	= transmit_phy_packet_callback,
456 };
457 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)458 void fw_send_phy_config(struct fw_card *card,
459 			int node_id, int generation, int gap_count)
460 {
461 	long timeout = DIV_ROUND_UP(HZ, 10);
462 	u32 data = 0;
463 
464 	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465 
466 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 		phy_packet_phy_config_set_root_id(&data, node_id);
468 		phy_packet_phy_config_set_force_root_node(&data, true);
469 	}
470 
471 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 		gap_count = card->driver->read_phy_reg(card, 1);
473 		if (gap_count < 0)
474 			return;
475 
476 		gap_count &= 63;
477 		if (gap_count == 63)
478 			return;
479 	}
480 	phy_packet_phy_config_set_gap_count(&data, gap_count);
481 	phy_packet_phy_config_set_gap_count_optimization(&data, true);
482 
483 	guard(mutex)(&phy_config_mutex);
484 
485 	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 	phy_config_packet.header[1] = data;
487 	phy_config_packet.header[2] = ~data;
488 	phy_config_packet.generation = generation;
489 	reinit_completion(&phy_config_done);
490 
491 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 					  phy_config_packet.generation, phy_config_packet.header[1],
493 					  phy_config_packet.header[2]);
494 
495 	card->driver->send_request(card, &phy_config_packet);
496 	wait_for_completion_timeout(&phy_config_done, timeout);
497 }
498 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)499 static struct fw_address_handler *lookup_overlapping_address_handler(
500 	struct list_head *list, unsigned long long offset, size_t length)
501 {
502 	struct fw_address_handler *handler;
503 
504 	list_for_each_entry_rcu(handler, list, link) {
505 		if (handler->offset < offset + length &&
506 		    offset < handler->offset + handler->length)
507 			return handler;
508 	}
509 
510 	return NULL;
511 }
512 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)513 static bool is_enclosing_handler(struct fw_address_handler *handler,
514 				 unsigned long long offset, size_t length)
515 {
516 	return handler->offset <= offset &&
517 		offset + length <= handler->offset + handler->length;
518 }
519 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)520 static struct fw_address_handler *lookup_enclosing_address_handler(
521 	struct list_head *list, unsigned long long offset, size_t length)
522 {
523 	struct fw_address_handler *handler;
524 
525 	list_for_each_entry_rcu(handler, list, link) {
526 		if (is_enclosing_handler(handler, offset, length))
527 			return handler;
528 	}
529 
530 	return NULL;
531 }
532 
533 static DEFINE_SPINLOCK(address_handler_list_lock);
534 static LIST_HEAD(address_handler_list);
535 
536 const struct fw_address_region fw_high_memory_region =
537 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538 EXPORT_SYMBOL(fw_high_memory_region);
539 
540 static const struct fw_address_region low_memory_region =
541 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542 
543 #if 0
544 const struct fw_address_region fw_private_region =
545 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
546 const struct fw_address_region fw_csr_region =
547 	{ .start = CSR_REGISTER_BASE,
548 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
549 const struct fw_address_region fw_unit_space_region =
550 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551 #endif  /*  0  */
552 
553 /**
554  * fw_core_add_address_handler() - register for incoming requests
555  * @handler:	callback
556  * @region:	region in the IEEE 1212 node space address range
557  *
558  * region->start, ->end, and handler->length have to be quadlet-aligned.
559  *
560  * When a request is received that falls within the specified address range,
561  * the specified callback is invoked.  The parameters passed to the callback
562  * give the details of the particular request.
563  *
564  * To be called in process context.
565  * Return value:  0 on success, non-zero otherwise.
566  *
567  * The start offset of the handler's address region is determined by
568  * fw_core_add_address_handler() and is returned in handler->offset.
569  *
570  * Address allocations are exclusive, except for the FCP registers.
571  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)572 int fw_core_add_address_handler(struct fw_address_handler *handler,
573 				const struct fw_address_region *region)
574 {
575 	struct fw_address_handler *other;
576 	int ret = -EBUSY;
577 
578 	if (region->start & 0xffff000000000003ULL ||
579 	    region->start >= region->end ||
580 	    region->end   > 0x0001000000000000ULL ||
581 	    handler->length & 3 ||
582 	    handler->length == 0)
583 		return -EINVAL;
584 
585 	guard(spinlock)(&address_handler_list_lock);
586 
587 	handler->offset = region->start;
588 	while (handler->offset + handler->length <= region->end) {
589 		if (is_in_fcp_region(handler->offset, handler->length))
590 			other = NULL;
591 		else
592 			other = lookup_overlapping_address_handler
593 					(&address_handler_list,
594 					 handler->offset, handler->length);
595 		if (other != NULL) {
596 			handler->offset += other->length;
597 		} else {
598 			list_add_tail_rcu(&handler->link, &address_handler_list);
599 			ret = 0;
600 			break;
601 		}
602 	}
603 
604 	return ret;
605 }
606 EXPORT_SYMBOL(fw_core_add_address_handler);
607 
608 /**
609  * fw_core_remove_address_handler() - unregister an address handler
610  * @handler: callback
611  *
612  * To be called in process context.
613  *
614  * When fw_core_remove_address_handler() returns, @handler->callback() is
615  * guaranteed to not run on any CPU anymore.
616  */
fw_core_remove_address_handler(struct fw_address_handler * handler)617 void fw_core_remove_address_handler(struct fw_address_handler *handler)
618 {
619 	scoped_guard(spinlock, &address_handler_list_lock)
620 		list_del_rcu(&handler->link);
621 
622 	synchronize_rcu();
623 }
624 EXPORT_SYMBOL(fw_core_remove_address_handler);
625 
626 struct fw_request {
627 	struct kref kref;
628 	struct fw_packet response;
629 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
630 	int ack;
631 	u32 timestamp;
632 	u32 length;
633 	u32 data[];
634 };
635 
fw_request_get(struct fw_request * request)636 void fw_request_get(struct fw_request *request)
637 {
638 	kref_get(&request->kref);
639 }
640 
release_request(struct kref * kref)641 static void release_request(struct kref *kref)
642 {
643 	struct fw_request *request = container_of(kref, struct fw_request, kref);
644 
645 	kfree(request);
646 }
647 
fw_request_put(struct fw_request * request)648 void fw_request_put(struct fw_request *request)
649 {
650 	kref_put(&request->kref, release_request);
651 }
652 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)653 static void free_response_callback(struct fw_packet *packet,
654 				   struct fw_card *card, int status)
655 {
656 	struct fw_request *request = container_of(packet, struct fw_request, response);
657 
658 	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
659 					       packet->speed, status, packet->timestamp);
660 
661 	// Decrease the reference count since not at in-flight.
662 	fw_request_put(request);
663 
664 	// Decrease the reference count to release the object.
665 	fw_request_put(request);
666 }
667 
fw_get_response_length(struct fw_request * r)668 int fw_get_response_length(struct fw_request *r)
669 {
670 	int tcode, ext_tcode, data_length;
671 
672 	tcode = async_header_get_tcode(r->request_header);
673 
674 	switch (tcode) {
675 	case TCODE_WRITE_QUADLET_REQUEST:
676 	case TCODE_WRITE_BLOCK_REQUEST:
677 		return 0;
678 
679 	case TCODE_READ_QUADLET_REQUEST:
680 		return 4;
681 
682 	case TCODE_READ_BLOCK_REQUEST:
683 		data_length = async_header_get_data_length(r->request_header);
684 		return data_length;
685 
686 	case TCODE_LOCK_REQUEST:
687 		ext_tcode = async_header_get_extended_tcode(r->request_header);
688 		data_length = async_header_get_data_length(r->request_header);
689 		switch (ext_tcode) {
690 		case EXTCODE_FETCH_ADD:
691 		case EXTCODE_LITTLE_ADD:
692 			return data_length;
693 		default:
694 			return data_length / 2;
695 		}
696 
697 	default:
698 		WARN(1, "wrong tcode %d\n", tcode);
699 		return 0;
700 	}
701 }
702 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)703 void fw_fill_response(struct fw_packet *response, u32 *request_header,
704 		      int rcode, void *payload, size_t length)
705 {
706 	int tcode, tlabel, extended_tcode, source, destination;
707 
708 	tcode = async_header_get_tcode(request_header);
709 	tlabel = async_header_get_tlabel(request_header);
710 	source = async_header_get_destination(request_header); // Exchange.
711 	destination = async_header_get_source(request_header); // Exchange.
712 	extended_tcode = async_header_get_extended_tcode(request_header);
713 
714 	async_header_set_retry(response->header, RETRY_1);
715 	async_header_set_tlabel(response->header, tlabel);
716 	async_header_set_destination(response->header, destination);
717 	async_header_set_source(response->header, source);
718 	async_header_set_rcode(response->header, rcode);
719 	response->header[2] = 0;	// The field is reserved.
720 
721 	switch (tcode) {
722 	case TCODE_WRITE_QUADLET_REQUEST:
723 	case TCODE_WRITE_BLOCK_REQUEST:
724 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
725 		response->header_length = 12;
726 		response->payload_length = 0;
727 		break;
728 
729 	case TCODE_READ_QUADLET_REQUEST:
730 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
731 		if (payload != NULL)
732 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
733 		else
734 			async_header_set_quadlet_data(response->header, 0);
735 		response->header_length = 16;
736 		response->payload_length = 0;
737 		break;
738 
739 	case TCODE_READ_BLOCK_REQUEST:
740 	case TCODE_LOCK_REQUEST:
741 		async_header_set_tcode(response->header, tcode + 2);
742 		async_header_set_data_length(response->header, length);
743 		async_header_set_extended_tcode(response->header, extended_tcode);
744 		response->header_length = 16;
745 		response->payload = payload;
746 		response->payload_length = length;
747 		break;
748 
749 	default:
750 		WARN(1, "wrong tcode %d\n", tcode);
751 	}
752 
753 	response->payload_mapped = false;
754 }
755 EXPORT_SYMBOL(fw_fill_response);
756 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)757 static u32 compute_split_timeout_timestamp(struct fw_card *card,
758 					   u32 request_timestamp)
759 {
760 	unsigned int cycles;
761 	u32 timestamp;
762 
763 	cycles = card->split_timeout_cycles;
764 	cycles += request_timestamp & 0x1fff;
765 
766 	timestamp = request_timestamp & ~0x1fff;
767 	timestamp += (cycles / 8000) << 13;
768 	timestamp |= cycles % 8000;
769 
770 	return timestamp;
771 }
772 
allocate_request(struct fw_card * card,struct fw_packet * p)773 static struct fw_request *allocate_request(struct fw_card *card,
774 					   struct fw_packet *p)
775 {
776 	struct fw_request *request;
777 	u32 *data, length;
778 	int request_tcode;
779 
780 	request_tcode = async_header_get_tcode(p->header);
781 	switch (request_tcode) {
782 	case TCODE_WRITE_QUADLET_REQUEST:
783 		data = &p->header[3];
784 		length = 4;
785 		break;
786 
787 	case TCODE_WRITE_BLOCK_REQUEST:
788 	case TCODE_LOCK_REQUEST:
789 		data = p->payload;
790 		length = async_header_get_data_length(p->header);
791 		break;
792 
793 	case TCODE_READ_QUADLET_REQUEST:
794 		data = NULL;
795 		length = 4;
796 		break;
797 
798 	case TCODE_READ_BLOCK_REQUEST:
799 		data = NULL;
800 		length = async_header_get_data_length(p->header);
801 		break;
802 
803 	default:
804 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
805 			 p->header[0], p->header[1], p->header[2]);
806 		return NULL;
807 	}
808 
809 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
810 	if (request == NULL)
811 		return NULL;
812 	kref_init(&request->kref);
813 
814 	request->response.speed = p->speed;
815 	request->response.timestamp =
816 			compute_split_timeout_timestamp(card, p->timestamp);
817 	request->response.generation = p->generation;
818 	request->response.ack = 0;
819 	request->response.callback = free_response_callback;
820 	request->ack = p->ack;
821 	request->timestamp = p->timestamp;
822 	request->length = length;
823 	if (data)
824 		memcpy(request->data, data, length);
825 
826 	memcpy(request->request_header, p->header, sizeof(p->header));
827 
828 	return request;
829 }
830 
831 /**
832  * fw_send_response: - send response packet for asynchronous transaction.
833  * @card:	interface to send the response at.
834  * @request:	firewire request data for the transaction.
835  * @rcode:	response code to send.
836  *
837  * Submit a response packet into the asynchronous response transmission queue. The @request
838  * is going to be released when the transmission successfully finishes later.
839  */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)840 void fw_send_response(struct fw_card *card,
841 		      struct fw_request *request, int rcode)
842 {
843 	u32 *data = NULL;
844 	unsigned int data_length = 0;
845 
846 	/* unified transaction or broadcast transaction: don't respond */
847 	if (request->ack != ACK_PENDING ||
848 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
849 		fw_request_put(request);
850 		return;
851 	}
852 
853 	if (rcode == RCODE_COMPLETE) {
854 		data = request->data;
855 		data_length = fw_get_response_length(request);
856 	}
857 
858 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
859 
860 	// Increase the reference count so that the object is kept during in-flight.
861 	fw_request_get(request);
862 
863 	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
864 					       request->response.generation, request->response.speed,
865 					       request->response.header, data,
866 					       data ? data_length / 4 : 0);
867 
868 	card->driver->send_response(card, &request->response);
869 }
870 EXPORT_SYMBOL(fw_send_response);
871 
872 /**
873  * fw_get_request_speed() - returns speed at which the @request was received
874  * @request: firewire request data
875  */
fw_get_request_speed(struct fw_request * request)876 int fw_get_request_speed(struct fw_request *request)
877 {
878 	return request->response.speed;
879 }
880 EXPORT_SYMBOL(fw_get_request_speed);
881 
882 /**
883  * fw_request_get_timestamp: Get timestamp of the request.
884  * @request: The opaque pointer to request structure.
885  *
886  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
887  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
888  * field of isochronous cycle time register.
889  *
890  * Returns: timestamp of the request.
891  */
fw_request_get_timestamp(const struct fw_request * request)892 u32 fw_request_get_timestamp(const struct fw_request *request)
893 {
894 	return request->timestamp;
895 }
896 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
897 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)898 static void handle_exclusive_region_request(struct fw_card *card,
899 					    struct fw_packet *p,
900 					    struct fw_request *request,
901 					    unsigned long long offset)
902 {
903 	struct fw_address_handler *handler;
904 	int tcode, destination, source;
905 
906 	destination = async_header_get_destination(p->header);
907 	source = async_header_get_source(p->header);
908 	tcode = async_header_get_tcode(p->header);
909 	if (tcode == TCODE_LOCK_REQUEST)
910 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
911 
912 	scoped_guard(rcu) {
913 		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
914 							   request->length);
915 		if (handler)
916 			handler->address_callback(card, request, tcode, destination, source,
917 						  p->generation, offset, request->data,
918 						  request->length, handler->callback_data);
919 	}
920 
921 	if (!handler)
922 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
923 }
924 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)925 static void handle_fcp_region_request(struct fw_card *card,
926 				      struct fw_packet *p,
927 				      struct fw_request *request,
928 				      unsigned long long offset)
929 {
930 	struct fw_address_handler *handler;
931 	int tcode, destination, source;
932 
933 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
934 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
935 	    request->length > 0x200) {
936 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
937 
938 		return;
939 	}
940 
941 	tcode = async_header_get_tcode(p->header);
942 	destination = async_header_get_destination(p->header);
943 	source = async_header_get_source(p->header);
944 
945 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
946 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
947 		fw_send_response(card, request, RCODE_TYPE_ERROR);
948 
949 		return;
950 	}
951 
952 	scoped_guard(rcu) {
953 		list_for_each_entry_rcu(handler, &address_handler_list, link) {
954 			if (is_enclosing_handler(handler, offset, request->length))
955 				handler->address_callback(card, request, tcode, destination, source,
956 							  p->generation, offset, request->data,
957 							  request->length, handler->callback_data);
958 		}
959 	}
960 
961 	fw_send_response(card, request, RCODE_COMPLETE);
962 }
963 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)964 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
965 {
966 	struct fw_request *request;
967 	unsigned long long offset;
968 	unsigned int tcode;
969 
970 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
971 		return;
972 
973 	tcode = async_header_get_tcode(p->header);
974 	if (tcode_is_link_internal(tcode)) {
975 		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
976 					 p->header[1], p->header[2]);
977 		fw_cdev_handle_phy_packet(card, p);
978 		return;
979 	}
980 
981 	request = allocate_request(card, p);
982 	if (request == NULL) {
983 		/* FIXME: send statically allocated busy packet. */
984 		return;
985 	}
986 
987 	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
988 				    p->ack, p->timestamp, p->header, request->data,
989 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
990 
991 	offset = async_header_get_offset(p->header);
992 
993 	if (!is_in_fcp_region(offset, request->length))
994 		handle_exclusive_region_request(card, p, request, offset);
995 	else
996 		handle_fcp_region_request(card, p, request, offset);
997 
998 }
999 EXPORT_SYMBOL(fw_core_handle_request);
1000 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1001 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002 {
1003 	struct fw_transaction *t = NULL, *iter;
1004 	u32 *data;
1005 	size_t data_length;
1006 	int tcode, tlabel, source, rcode;
1007 
1008 	tcode = async_header_get_tcode(p->header);
1009 	tlabel = async_header_get_tlabel(p->header);
1010 	source = async_header_get_source(p->header);
1011 	rcode = async_header_get_rcode(p->header);
1012 
1013 	// FIXME: sanity check packet, is length correct, does tcodes
1014 	// and addresses match to the transaction request queried later.
1015 	//
1016 	// For the tracepoints event, let us decode the header here against the concern.
1017 
1018 	switch (tcode) {
1019 	case TCODE_READ_QUADLET_RESPONSE:
1020 		data = (u32 *) &p->header[3];
1021 		data_length = 4;
1022 		break;
1023 
1024 	case TCODE_WRITE_RESPONSE:
1025 		data = NULL;
1026 		data_length = 0;
1027 		break;
1028 
1029 	case TCODE_READ_BLOCK_RESPONSE:
1030 	case TCODE_LOCK_RESPONSE:
1031 		data = p->payload;
1032 		data_length = async_header_get_data_length(p->header);
1033 		break;
1034 
1035 	default:
1036 		/* Should never happen, this is just to shut up gcc. */
1037 		data = NULL;
1038 		data_length = 0;
1039 		break;
1040 	}
1041 
1042 	scoped_guard(spinlock_irqsave, &card->lock) {
1043 		list_for_each_entry(iter, &card->transaction_list, link) {
1044 			if (iter->node_id == source && iter->tlabel == tlabel) {
1045 				if (try_cancel_split_timeout(iter)) {
1046 					list_del_init(&iter->link);
1047 					card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048 					t = iter;
1049 				}
1050 				break;
1051 			}
1052 		}
1053 	}
1054 
1055 	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056 				     p->timestamp, p->header, data, data_length / 4);
1057 
1058 	if (!t) {
1059 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060 			  source, tlabel);
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * The response handler may be executed while the request handler
1066 	 * is still pending.  Cancel the request handler.
1067 	 */
1068 	card->driver->cancel_packet(card, &t->packet);
1069 
1070 	if (!t->with_tstamp) {
1071 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072 	} else {
1073 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074 					data_length, t->callback_data);
1075 	}
1076 }
1077 EXPORT_SYMBOL(fw_core_handle_response);
1078 
1079 /**
1080  * fw_rcode_string - convert a firewire result code to an error description
1081  * @rcode: the result code
1082  */
fw_rcode_string(int rcode)1083 const char *fw_rcode_string(int rcode)
1084 {
1085 	static const char *const names[] = {
1086 		[RCODE_COMPLETE]       = "no error",
1087 		[RCODE_CONFLICT_ERROR] = "conflict error",
1088 		[RCODE_DATA_ERROR]     = "data error",
1089 		[RCODE_TYPE_ERROR]     = "type error",
1090 		[RCODE_ADDRESS_ERROR]  = "address error",
1091 		[RCODE_SEND_ERROR]     = "send error",
1092 		[RCODE_CANCELLED]      = "timeout",
1093 		[RCODE_BUSY]           = "busy",
1094 		[RCODE_GENERATION]     = "bus reset",
1095 		[RCODE_NO_ACK]         = "no ack",
1096 	};
1097 
1098 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099 		return names[rcode];
1100 	else
1101 		return "unknown";
1102 }
1103 EXPORT_SYMBOL(fw_rcode_string);
1104 
1105 static const struct fw_address_region topology_map_region =
1106 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1109 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110 		int tcode, int destination, int source, int generation,
1111 		unsigned long long offset, void *payload, size_t length,
1112 		void *callback_data)
1113 {
1114 	int start;
1115 
1116 	if (!tcode_is_read_request(tcode)) {
1117 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1118 		return;
1119 	}
1120 
1121 	if ((offset & 3) > 0 || (length & 3) > 0) {
1122 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123 		return;
1124 	}
1125 
1126 	start = (offset - topology_map_region.start) / 4;
1127 	memcpy(payload, &card->topology_map[start], length);
1128 
1129 	fw_send_response(card, request, RCODE_COMPLETE);
1130 }
1131 
1132 static struct fw_address_handler topology_map = {
1133 	.length			= 0x400,
1134 	.address_callback	= handle_topology_map,
1135 };
1136 
1137 static const struct fw_address_region registers_region =
1138 	{ .start = CSR_REGISTER_BASE,
1139 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140 
update_split_timeout(struct fw_card * card)1141 static void update_split_timeout(struct fw_card *card)
1142 {
1143 	unsigned int cycles;
1144 
1145 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146 
1147 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148 	cycles = clamp(cycles, 800u, 3u * 8000u);
1149 
1150 	card->split_timeout_cycles = cycles;
1151 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152 }
1153 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1154 static void handle_registers(struct fw_card *card, struct fw_request *request,
1155 		int tcode, int destination, int source, int generation,
1156 		unsigned long long offset, void *payload, size_t length,
1157 		void *callback_data)
1158 {
1159 	int reg = offset & ~CSR_REGISTER_BASE;
1160 	__be32 *data = payload;
1161 	int rcode = RCODE_COMPLETE;
1162 
1163 	switch (reg) {
1164 	case CSR_PRIORITY_BUDGET:
1165 		if (!card->priority_budget_implemented) {
1166 			rcode = RCODE_ADDRESS_ERROR;
1167 			break;
1168 		}
1169 		fallthrough;
1170 
1171 	case CSR_NODE_IDS:
1172 		/*
1173 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175 		 */
1176 		fallthrough;
1177 
1178 	case CSR_STATE_CLEAR:
1179 	case CSR_STATE_SET:
1180 	case CSR_CYCLE_TIME:
1181 	case CSR_BUS_TIME:
1182 	case CSR_BUSY_TIMEOUT:
1183 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1184 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1185 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187 		else
1188 			rcode = RCODE_TYPE_ERROR;
1189 		break;
1190 
1191 	case CSR_RESET_START:
1192 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1194 						CSR_STATE_BIT_ABDICATE);
1195 		else
1196 			rcode = RCODE_TYPE_ERROR;
1197 		break;
1198 
1199 	case CSR_SPLIT_TIMEOUT_HI:
1200 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201 			*data = cpu_to_be32(card->split_timeout_hi);
1202 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203 			guard(spinlock_irqsave)(&card->lock);
1204 
1205 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206 			update_split_timeout(card);
1207 		} else {
1208 			rcode = RCODE_TYPE_ERROR;
1209 		}
1210 		break;
1211 
1212 	case CSR_SPLIT_TIMEOUT_LO:
1213 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214 			*data = cpu_to_be32(card->split_timeout_lo);
1215 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216 			guard(spinlock_irqsave)(&card->lock);
1217 
1218 			card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219 			update_split_timeout(card);
1220 		} else {
1221 			rcode = RCODE_TYPE_ERROR;
1222 		}
1223 		break;
1224 
1225 	case CSR_MAINT_UTILITY:
1226 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1227 			*data = card->maint_utility_register;
1228 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229 			card->maint_utility_register = *data;
1230 		else
1231 			rcode = RCODE_TYPE_ERROR;
1232 		break;
1233 
1234 	case CSR_BROADCAST_CHANNEL:
1235 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1236 			*data = cpu_to_be32(card->broadcast_channel);
1237 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238 			card->broadcast_channel =
1239 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240 			    BROADCAST_CHANNEL_INITIAL;
1241 		else
1242 			rcode = RCODE_TYPE_ERROR;
1243 		break;
1244 
1245 	case CSR_BUS_MANAGER_ID:
1246 	case CSR_BANDWIDTH_AVAILABLE:
1247 	case CSR_CHANNELS_AVAILABLE_HI:
1248 	case CSR_CHANNELS_AVAILABLE_LO:
1249 		/*
1250 		 * FIXME: these are handled by the OHCI hardware and
1251 		 * the stack never sees these request. If we add
1252 		 * support for a new type of controller that doesn't
1253 		 * handle this in hardware we need to deal with these
1254 		 * transactions.
1255 		 */
1256 		BUG();
1257 		break;
1258 
1259 	default:
1260 		rcode = RCODE_ADDRESS_ERROR;
1261 		break;
1262 	}
1263 
1264 	fw_send_response(card, request, rcode);
1265 }
1266 
1267 static struct fw_address_handler registers = {
1268 	.length			= 0x400,
1269 	.address_callback	= handle_registers,
1270 };
1271 
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1272 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273 		int tcode, int destination, int source, int generation,
1274 		unsigned long long offset, void *payload, size_t length,
1275 		void *callback_data)
1276 {
1277 	/*
1278 	 * This catches requests not handled by the physical DMA unit,
1279 	 * i.e., wrong transaction types or unauthorized source nodes.
1280 	 */
1281 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1282 }
1283 
1284 static struct fw_address_handler low_memory = {
1285 	.length			= FW_MAX_PHYSICAL_RANGE,
1286 	.address_callback	= handle_low_memory,
1287 };
1288 
1289 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291 MODULE_LICENSE("GPL");
1292 
1293 static const u32 vendor_textual_descriptor[] = {
1294 	/* textual descriptor leaf () */
1295 	0x00060000,
1296 	0x00000000,
1297 	0x00000000,
1298 	0x4c696e75,		/* L i n u */
1299 	0x78204669,		/* x   F i */
1300 	0x72657769,		/* r e w i */
1301 	0x72650000,		/* r e     */
1302 };
1303 
1304 static const u32 model_textual_descriptor[] = {
1305 	/* model descriptor leaf () */
1306 	0x00030000,
1307 	0x00000000,
1308 	0x00000000,
1309 	0x4a756a75,		/* J u j u */
1310 };
1311 
1312 static struct fw_descriptor vendor_id_descriptor = {
1313 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1314 	.immediate = 0x03001f11,
1315 	.key = 0x81000000,
1316 	.data = vendor_textual_descriptor,
1317 };
1318 
1319 static struct fw_descriptor model_id_descriptor = {
1320 	.length = ARRAY_SIZE(model_textual_descriptor),
1321 	.immediate = 0x17023901,
1322 	.key = 0x81000000,
1323 	.data = model_textual_descriptor,
1324 };
1325 
fw_core_init(void)1326 static int __init fw_core_init(void)
1327 {
1328 	int ret;
1329 
1330 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331 	if (!fw_workqueue)
1332 		return -ENOMEM;
1333 
1334 	ret = bus_register(&fw_bus_type);
1335 	if (ret < 0) {
1336 		destroy_workqueue(fw_workqueue);
1337 		return ret;
1338 	}
1339 
1340 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341 	if (fw_cdev_major < 0) {
1342 		bus_unregister(&fw_bus_type);
1343 		destroy_workqueue(fw_workqueue);
1344 		return fw_cdev_major;
1345 	}
1346 
1347 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1348 	fw_core_add_address_handler(&registers, &registers_region);
1349 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1350 	fw_core_add_descriptor(&vendor_id_descriptor);
1351 	fw_core_add_descriptor(&model_id_descriptor);
1352 
1353 	return 0;
1354 }
1355 
fw_core_cleanup(void)1356 static void __exit fw_core_cleanup(void)
1357 {
1358 	unregister_chrdev(fw_cdev_major, "firewire");
1359 	bus_unregister(&fw_bus_type);
1360 	destroy_workqueue(fw_workqueue);
1361 	xa_destroy(&fw_device_xa);
1362 }
1363 
1364 module_init(fw_core_init);
1365 module_exit(fw_core_cleanup);
1366