1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Device probing and sysfs code.
4   *
5   * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6   */
7  
8  #include <linux/bug.h>
9  #include <linux/ctype.h>
10  #include <linux/delay.h>
11  #include <linux/device.h>
12  #include <linux/errno.h>
13  #include <linux/firewire.h>
14  #include <linux/firewire-constants.h>
15  #include <linux/jiffies.h>
16  #include <linux/kobject.h>
17  #include <linux/list.h>
18  #include <linux/mod_devicetable.h>
19  #include <linux/module.h>
20  #include <linux/mutex.h>
21  #include <linux/random.h>
22  #include <linux/rwsem.h>
23  #include <linux/slab.h>
24  #include <linux/spinlock.h>
25  #include <linux/string.h>
26  #include <linux/workqueue.h>
27  
28  #include <linux/atomic.h>
29  #include <asm/byteorder.h>
30  
31  #include "core.h"
32  
33  #define ROOT_DIR_OFFSET	5
34  
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)35  void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36  {
37  	ci->p = p + 1;
38  	ci->end = ci->p + (p[0] >> 16);
39  }
40  EXPORT_SYMBOL(fw_csr_iterator_init);
41  
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)42  int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43  {
44  	*key = *ci->p >> 24;
45  	*value = *ci->p & 0xffffff;
46  
47  	return ci->p++ < ci->end;
48  }
49  EXPORT_SYMBOL(fw_csr_iterator_next);
50  
search_directory(const u32 * directory,int search_key)51  static const u32 *search_directory(const u32 *directory, int search_key)
52  {
53  	struct fw_csr_iterator ci;
54  	int key, value;
55  
56  	search_key |= CSR_DIRECTORY;
57  
58  	fw_csr_iterator_init(&ci, directory);
59  	while (fw_csr_iterator_next(&ci, &key, &value)) {
60  		if (key == search_key)
61  			return ci.p - 1 + value;
62  	}
63  
64  	return NULL;
65  }
66  
search_leaf(const u32 * directory,int search_key)67  static const u32 *search_leaf(const u32 *directory, int search_key)
68  {
69  	struct fw_csr_iterator ci;
70  	int last_key = 0, key, value;
71  
72  	fw_csr_iterator_init(&ci, directory);
73  	while (fw_csr_iterator_next(&ci, &key, &value)) {
74  		if (last_key == search_key &&
75  		    key == (CSR_DESCRIPTOR | CSR_LEAF))
76  			return ci.p - 1 + value;
77  
78  		last_key = key;
79  	}
80  
81  	return NULL;
82  }
83  
textual_leaf_to_string(const u32 * block,char * buf,size_t size)84  static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85  {
86  	unsigned int quadlets, i;
87  	char c;
88  
89  	if (!size || !buf)
90  		return -EINVAL;
91  
92  	quadlets = min(block[0] >> 16, 256U);
93  	if (quadlets < 2)
94  		return -ENODATA;
95  
96  	if (block[1] != 0 || block[2] != 0)
97  		/* unknown language/character set */
98  		return -ENODATA;
99  
100  	block += 3;
101  	quadlets -= 2;
102  	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103  		c = block[i / 4] >> (24 - 8 * (i % 4));
104  		if (c == '\0')
105  			break;
106  		buf[i] = c;
107  	}
108  	buf[i] = '\0';
109  
110  	return i;
111  }
112  
113  /**
114   * fw_csr_string() - reads a string from the configuration ROM
115   * @directory:	e.g. root directory or unit directory
116   * @key:	the key of the preceding directory entry
117   * @buf:	where to put the string
118   * @size:	size of @buf, in bytes
119   *
120   * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121   * @key. The string is zero-terminated. An overlong string is silently truncated such that it
122   * and the zero byte fit into @size.
123   *
124   * Returns strlen(buf) or a negative error code.
125   */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)126  int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127  {
128  	const u32 *leaf = search_leaf(directory, key);
129  	if (!leaf)
130  		return -ENOENT;
131  
132  	return textual_leaf_to_string(leaf, buf, size);
133  }
134  EXPORT_SYMBOL(fw_csr_string);
135  
get_ids(const u32 * directory,int * id)136  static void get_ids(const u32 *directory, int *id)
137  {
138  	struct fw_csr_iterator ci;
139  	int key, value;
140  
141  	fw_csr_iterator_init(&ci, directory);
142  	while (fw_csr_iterator_next(&ci, &key, &value)) {
143  		switch (key) {
144  		case CSR_VENDOR:	id[0] = value; break;
145  		case CSR_MODEL:		id[1] = value; break;
146  		case CSR_SPECIFIER_ID:	id[2] = value; break;
147  		case CSR_VERSION:	id[3] = value; break;
148  		}
149  	}
150  }
151  
get_modalias_ids(const struct fw_unit * unit,int * id)152  static void get_modalias_ids(const struct fw_unit *unit, int *id)
153  {
154  	const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155  	const u32 *directories[] = {NULL, NULL, NULL};
156  	const u32 *vendor_directory;
157  	int i;
158  
159  	directories[0] = root_directory;
160  
161  	// Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162  	// Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163  	vendor_directory = search_directory(root_directory, CSR_VENDOR);
164  	if (!vendor_directory) {
165  		directories[1] = unit->directory;
166  	} else {
167  		directories[1] = vendor_directory;
168  		directories[2] = unit->directory;
169  	}
170  
171  	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172  		get_ids(directories[i], id);
173  }
174  
match_ids(const struct ieee1394_device_id * id_table,int * id)175  static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176  {
177  	int match = 0;
178  
179  	if (id[0] == id_table->vendor_id)
180  		match |= IEEE1394_MATCH_VENDOR_ID;
181  	if (id[1] == id_table->model_id)
182  		match |= IEEE1394_MATCH_MODEL_ID;
183  	if (id[2] == id_table->specifier_id)
184  		match |= IEEE1394_MATCH_SPECIFIER_ID;
185  	if (id[3] == id_table->version)
186  		match |= IEEE1394_MATCH_VERSION;
187  
188  	return (match & id_table->match_flags) == id_table->match_flags;
189  }
190  
unit_match(struct device * dev,const struct device_driver * drv)191  static const struct ieee1394_device_id *unit_match(struct device *dev,
192  						   const struct device_driver *drv)
193  {
194  	const struct ieee1394_device_id *id_table =
195  			container_of_const(drv, struct fw_driver, driver)->id_table;
196  	int id[] = {0, 0, 0, 0};
197  
198  	get_modalias_ids(fw_unit(dev), id);
199  
200  	for (; id_table->match_flags != 0; id_table++)
201  		if (match_ids(id_table, id))
202  			return id_table;
203  
204  	return NULL;
205  }
206  
207  static bool is_fw_unit(const struct device *dev);
208  
fw_unit_match(struct device * dev,const struct device_driver * drv)209  static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210  {
211  	/* We only allow binding to fw_units. */
212  	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213  }
214  
fw_unit_probe(struct device * dev)215  static int fw_unit_probe(struct device *dev)
216  {
217  	struct fw_driver *driver =
218  			container_of(dev->driver, struct fw_driver, driver);
219  
220  	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221  }
222  
fw_unit_remove(struct device * dev)223  static void fw_unit_remove(struct device *dev)
224  {
225  	struct fw_driver *driver =
226  			container_of(dev->driver, struct fw_driver, driver);
227  
228  	driver->remove(fw_unit(dev));
229  }
230  
get_modalias(const struct fw_unit * unit,char * buffer,size_t buffer_size)231  static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232  {
233  	int id[] = {0, 0, 0, 0};
234  
235  	get_modalias_ids(unit, id);
236  
237  	return snprintf(buffer, buffer_size,
238  			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239  			id[0], id[1], id[2], id[3]);
240  }
241  
fw_unit_uevent(const struct device * dev,struct kobj_uevent_env * env)242  static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243  {
244  	const struct fw_unit *unit = fw_unit(dev);
245  	char modalias[64];
246  
247  	get_modalias(unit, modalias, sizeof(modalias));
248  
249  	if (add_uevent_var(env, "MODALIAS=%s", modalias))
250  		return -ENOMEM;
251  
252  	return 0;
253  }
254  
255  const struct bus_type fw_bus_type = {
256  	.name = "firewire",
257  	.match = fw_unit_match,
258  	.probe = fw_unit_probe,
259  	.remove = fw_unit_remove,
260  };
261  EXPORT_SYMBOL(fw_bus_type);
262  
fw_device_enable_phys_dma(struct fw_device * device)263  int fw_device_enable_phys_dma(struct fw_device *device)
264  {
265  	int generation = device->generation;
266  
267  	/* device->node_id, accessed below, must not be older than generation */
268  	smp_rmb();
269  
270  	return device->card->driver->enable_phys_dma(device->card,
271  						     device->node_id,
272  						     generation);
273  }
274  EXPORT_SYMBOL(fw_device_enable_phys_dma);
275  
276  struct config_rom_attribute {
277  	struct device_attribute attr;
278  	u32 key;
279  };
280  
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)281  static ssize_t show_immediate(struct device *dev,
282  			      struct device_attribute *dattr, char *buf)
283  {
284  	struct config_rom_attribute *attr =
285  		container_of(dattr, struct config_rom_attribute, attr);
286  	struct fw_csr_iterator ci;
287  	const u32 *directories[] = {NULL, NULL};
288  	int i, value = -1;
289  
290  	guard(rwsem_read)(&fw_device_rwsem);
291  
292  	if (is_fw_unit(dev)) {
293  		directories[0] = fw_unit(dev)->directory;
294  	} else {
295  		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296  		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297  
298  		if (!vendor_directory) {
299  			directories[0] = root_directory;
300  		} else {
301  			// Legacy layout of configuration ROM described in Annex 1 of
302  			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303  			// Association, TA Document 1999027)'.
304  			directories[0] = vendor_directory;
305  			directories[1] = root_directory;
306  		}
307  	}
308  
309  	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310  		int key, val;
311  
312  		fw_csr_iterator_init(&ci, directories[i]);
313  		while (fw_csr_iterator_next(&ci, &key, &val)) {
314  			if (attr->key == key)
315  				value = val;
316  		}
317  	}
318  
319  	if (value < 0)
320  		return -ENOENT;
321  
322  	// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323  	return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324  }
325  
326  #define IMMEDIATE_ATTR(name, key)				\
327  	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328  
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)329  static ssize_t show_text_leaf(struct device *dev,
330  			      struct device_attribute *dattr, char *buf)
331  {
332  	struct config_rom_attribute *attr =
333  		container_of(dattr, struct config_rom_attribute, attr);
334  	const u32 *directories[] = {NULL, NULL};
335  	size_t bufsize;
336  	char dummy_buf[2];
337  	int i, ret = -ENOENT;
338  
339  	guard(rwsem_read)(&fw_device_rwsem);
340  
341  	if (is_fw_unit(dev)) {
342  		directories[0] = fw_unit(dev)->directory;
343  	} else {
344  		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345  		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346  
347  		if (!vendor_directory) {
348  			directories[0] = root_directory;
349  		} else {
350  			// Legacy layout of configuration ROM described in Annex 1 of
351  			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352  			// Trading Association, TA Document 1999027)'.
353  			directories[0] = root_directory;
354  			directories[1] = vendor_directory;
355  		}
356  	}
357  
358  	// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359  	if (buf) {
360  		bufsize = PAGE_SIZE - 1;
361  	} else {
362  		buf = dummy_buf;
363  		bufsize = 1;
364  	}
365  
366  	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367  		int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368  		// Detected.
369  		if (result >= 0) {
370  			ret = result;
371  		} else if (i == 0 && attr->key == CSR_VENDOR) {
372  			// Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373  			// in the root directory follows to the directory entry for vendor ID
374  			// instead of the immediate value for vendor ID.
375  			result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376  					       bufsize);
377  			if (result >= 0)
378  				ret = result;
379  		}
380  	}
381  
382  	if (ret < 0)
383  		return ret;
384  
385  	// Strip trailing whitespace and add newline.
386  	while (ret > 0 && isspace(buf[ret - 1]))
387  		ret--;
388  	strcpy(buf + ret, "\n");
389  	ret++;
390  
391  	return ret;
392  }
393  
394  #define TEXT_LEAF_ATTR(name, key)				\
395  	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396  
397  static struct config_rom_attribute config_rom_attributes[] = {
398  	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399  	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400  	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401  	IMMEDIATE_ATTR(version, CSR_VERSION),
402  	IMMEDIATE_ATTR(model, CSR_MODEL),
403  	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404  	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405  	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406  };
407  
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)408  static void init_fw_attribute_group(struct device *dev,
409  				    struct device_attribute *attrs,
410  				    struct fw_attribute_group *group)
411  {
412  	struct device_attribute *attr;
413  	int i, j;
414  
415  	for (j = 0; attrs[j].attr.name != NULL; j++)
416  		group->attrs[j] = &attrs[j].attr;
417  
418  	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419  		attr = &config_rom_attributes[i].attr;
420  		if (attr->show(dev, attr, NULL) < 0)
421  			continue;
422  		group->attrs[j++] = &attr->attr;
423  	}
424  
425  	group->attrs[j] = NULL;
426  	group->groups[0] = &group->group;
427  	group->groups[1] = NULL;
428  	group->group.attrs = group->attrs;
429  	dev->groups = (const struct attribute_group **) group->groups;
430  }
431  
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)432  static ssize_t modalias_show(struct device *dev,
433  			     struct device_attribute *attr, char *buf)
434  {
435  	struct fw_unit *unit = fw_unit(dev);
436  	int length;
437  
438  	length = get_modalias(unit, buf, PAGE_SIZE);
439  	strcpy(buf + length, "\n");
440  
441  	return length + 1;
442  }
443  
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)444  static ssize_t rom_index_show(struct device *dev,
445  			      struct device_attribute *attr, char *buf)
446  {
447  	struct fw_device *device = fw_device(dev->parent);
448  	struct fw_unit *unit = fw_unit(dev);
449  
450  	return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451  }
452  
453  static struct device_attribute fw_unit_attributes[] = {
454  	__ATTR_RO(modalias),
455  	__ATTR_RO(rom_index),
456  	__ATTR_NULL,
457  };
458  
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)459  static ssize_t config_rom_show(struct device *dev,
460  			       struct device_attribute *attr, char *buf)
461  {
462  	struct fw_device *device = fw_device(dev);
463  	size_t length;
464  
465  	guard(rwsem_read)(&fw_device_rwsem);
466  
467  	length = device->config_rom_length * 4;
468  	memcpy(buf, device->config_rom, length);
469  
470  	return length;
471  }
472  
guid_show(struct device * dev,struct device_attribute * attr,char * buf)473  static ssize_t guid_show(struct device *dev,
474  			 struct device_attribute *attr, char *buf)
475  {
476  	struct fw_device *device = fw_device(dev);
477  
478  	guard(rwsem_read)(&fw_device_rwsem);
479  
480  	return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481  }
482  
is_local_show(struct device * dev,struct device_attribute * attr,char * buf)483  static ssize_t is_local_show(struct device *dev,
484  			     struct device_attribute *attr, char *buf)
485  {
486  	struct fw_device *device = fw_device(dev);
487  
488  	return sysfs_emit(buf, "%u\n", device->is_local);
489  }
490  
units_sprintf(char * buf,const u32 * directory)491  static int units_sprintf(char *buf, const u32 *directory)
492  {
493  	struct fw_csr_iterator ci;
494  	int key, value;
495  	int specifier_id = 0;
496  	int version = 0;
497  
498  	fw_csr_iterator_init(&ci, directory);
499  	while (fw_csr_iterator_next(&ci, &key, &value)) {
500  		switch (key) {
501  		case CSR_SPECIFIER_ID:
502  			specifier_id = value;
503  			break;
504  		case CSR_VERSION:
505  			version = value;
506  			break;
507  		}
508  	}
509  
510  	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511  }
512  
units_show(struct device * dev,struct device_attribute * attr,char * buf)513  static ssize_t units_show(struct device *dev,
514  			  struct device_attribute *attr, char *buf)
515  {
516  	struct fw_device *device = fw_device(dev);
517  	struct fw_csr_iterator ci;
518  	int key, value, i = 0;
519  
520  	guard(rwsem_read)(&fw_device_rwsem);
521  
522  	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523  	while (fw_csr_iterator_next(&ci, &key, &value)) {
524  		if (key != (CSR_UNIT | CSR_DIRECTORY))
525  			continue;
526  		i += units_sprintf(&buf[i], ci.p + value - 1);
527  		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528  			break;
529  	}
530  
531  	if (i)
532  		buf[i - 1] = '\n';
533  
534  	return i;
535  }
536  
537  static struct device_attribute fw_device_attributes[] = {
538  	__ATTR_RO(config_rom),
539  	__ATTR_RO(guid),
540  	__ATTR_RO(is_local),
541  	__ATTR_RO(units),
542  	__ATTR_NULL,
543  };
544  
read_rom(struct fw_device * device,int generation,int index,u32 * data)545  static int read_rom(struct fw_device *device,
546  		    int generation, int index, u32 *data)
547  {
548  	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
549  	int i, rcode;
550  
551  	/* device->node_id, accessed below, must not be older than generation */
552  	smp_rmb();
553  
554  	for (i = 10; i < 100; i += 10) {
555  		rcode = fw_run_transaction(device->card,
556  				TCODE_READ_QUADLET_REQUEST, device->node_id,
557  				generation, device->max_speed, offset, data, 4);
558  		if (rcode != RCODE_BUSY)
559  			break;
560  		msleep(i);
561  	}
562  	be32_to_cpus(data);
563  
564  	return rcode;
565  }
566  
567  // By quadlet unit.
568  #define MAX_CONFIG_ROM_SIZE	((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
569  
570  /*
571   * Read the bus info block, perform a speed probe, and read all of the rest of
572   * the config ROM.  We do all this with a cached bus generation.  If the bus
573   * generation changes under us, read_config_rom will fail and get retried.
574   * It's better to start all over in this case because the node from which we
575   * are reading the ROM may have changed the ROM during the reset.
576   * Returns either a result code or a negative error code.
577   */
read_config_rom(struct fw_device * device,int generation)578  static int read_config_rom(struct fw_device *device, int generation)
579  {
580  	struct fw_card *card = device->card;
581  	const u32 *old_rom, *new_rom;
582  	u32 *rom, *stack;
583  	u32 sp, key;
584  	int i, end, length, ret;
585  
586  	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
587  		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
588  	if (rom == NULL)
589  		return -ENOMEM;
590  
591  	stack = &rom[MAX_CONFIG_ROM_SIZE];
592  	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
593  
594  	device->max_speed = SCODE_100;
595  
596  	/* First read the bus info block. */
597  	for (i = 0; i < 5; i++) {
598  		ret = read_rom(device, generation, i, &rom[i]);
599  		if (ret != RCODE_COMPLETE)
600  			goto out;
601  		/*
602  		 * As per IEEE1212 7.2, during initialization, devices can
603  		 * reply with a 0 for the first quadlet of the config
604  		 * rom to indicate that they are booting (for example,
605  		 * if the firmware is on the disk of a external
606  		 * harddisk).  In that case we just fail, and the
607  		 * retry mechanism will try again later.
608  		 */
609  		if (i == 0 && rom[i] == 0) {
610  			ret = RCODE_BUSY;
611  			goto out;
612  		}
613  	}
614  
615  	device->max_speed = device->node->max_speed;
616  
617  	/*
618  	 * Determine the speed of
619  	 *   - devices with link speed less than PHY speed,
620  	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
621  	 *   - all devices if there are 1394b repeaters.
622  	 * Note, we cannot use the bus info block's link_spd as starting point
623  	 * because some buggy firmwares set it lower than necessary and because
624  	 * 1394-1995 nodes do not have the field.
625  	 */
626  	if ((rom[2] & 0x7) < device->max_speed ||
627  	    device->max_speed == SCODE_BETA ||
628  	    card->beta_repeaters_present) {
629  		u32 dummy;
630  
631  		/* for S1600 and S3200 */
632  		if (device->max_speed == SCODE_BETA)
633  			device->max_speed = card->link_speed;
634  
635  		while (device->max_speed > SCODE_100) {
636  			if (read_rom(device, generation, 0, &dummy) ==
637  			    RCODE_COMPLETE)
638  				break;
639  			device->max_speed--;
640  		}
641  	}
642  
643  	/*
644  	 * Now parse the config rom.  The config rom is a recursive
645  	 * directory structure so we parse it using a stack of
646  	 * references to the blocks that make up the structure.  We
647  	 * push a reference to the root directory on the stack to
648  	 * start things off.
649  	 */
650  	length = i;
651  	sp = 0;
652  	stack[sp++] = 0xc0000005;
653  	while (sp > 0) {
654  		/*
655  		 * Pop the next block reference of the stack.  The
656  		 * lower 24 bits is the offset into the config rom,
657  		 * the upper 8 bits are the type of the reference the
658  		 * block.
659  		 */
660  		key = stack[--sp];
661  		i = key & 0xffffff;
662  		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
663  			ret = -ENXIO;
664  			goto out;
665  		}
666  
667  		/* Read header quadlet for the block to get the length. */
668  		ret = read_rom(device, generation, i, &rom[i]);
669  		if (ret != RCODE_COMPLETE)
670  			goto out;
671  		end = i + (rom[i] >> 16) + 1;
672  		if (end > MAX_CONFIG_ROM_SIZE) {
673  			/*
674  			 * This block extends outside the config ROM which is
675  			 * a firmware bug.  Ignore this whole block, i.e.
676  			 * simply set a fake block length of 0.
677  			 */
678  			fw_err(card, "skipped invalid ROM block %x at %llx\n",
679  			       rom[i],
680  			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
681  			rom[i] = 0;
682  			end = i;
683  		}
684  		i++;
685  
686  		/*
687  		 * Now read in the block.  If this is a directory
688  		 * block, check the entries as we read them to see if
689  		 * it references another block, and push it in that case.
690  		 */
691  		for (; i < end; i++) {
692  			ret = read_rom(device, generation, i, &rom[i]);
693  			if (ret != RCODE_COMPLETE)
694  				goto out;
695  
696  			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
697  				continue;
698  			/*
699  			 * Offset points outside the ROM.  May be a firmware
700  			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
701  			 * 7.7.18).  Simply overwrite this pointer here by a
702  			 * fake immediate entry so that later iterators over
703  			 * the ROM don't have to check offsets all the time.
704  			 */
705  			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
706  				fw_err(card,
707  				       "skipped unsupported ROM entry %x at %llx\n",
708  				       rom[i],
709  				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
710  				rom[i] = 0;
711  				continue;
712  			}
713  			stack[sp++] = i + rom[i];
714  		}
715  		if (length < i)
716  			length = i;
717  	}
718  
719  	old_rom = device->config_rom;
720  	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
721  	if (new_rom == NULL) {
722  		ret = -ENOMEM;
723  		goto out;
724  	}
725  
726  	scoped_guard(rwsem_write, &fw_device_rwsem) {
727  		device->config_rom = new_rom;
728  		device->config_rom_length = length;
729  	}
730  
731  	kfree(old_rom);
732  	ret = RCODE_COMPLETE;
733  	device->max_rec	= rom[2] >> 12 & 0xf;
734  	device->cmc	= rom[2] >> 30 & 1;
735  	device->irmc	= rom[2] >> 31 & 1;
736   out:
737  	kfree(rom);
738  
739  	return ret;
740  }
741  
fw_unit_release(struct device * dev)742  static void fw_unit_release(struct device *dev)
743  {
744  	struct fw_unit *unit = fw_unit(dev);
745  
746  	fw_device_put(fw_parent_device(unit));
747  	kfree(unit);
748  }
749  
750  static struct device_type fw_unit_type = {
751  	.uevent		= fw_unit_uevent,
752  	.release	= fw_unit_release,
753  };
754  
is_fw_unit(const struct device * dev)755  static bool is_fw_unit(const struct device *dev)
756  {
757  	return dev->type == &fw_unit_type;
758  }
759  
create_units(struct fw_device * device)760  static void create_units(struct fw_device *device)
761  {
762  	struct fw_csr_iterator ci;
763  	struct fw_unit *unit;
764  	int key, value, i;
765  
766  	i = 0;
767  	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
768  	while (fw_csr_iterator_next(&ci, &key, &value)) {
769  		if (key != (CSR_UNIT | CSR_DIRECTORY))
770  			continue;
771  
772  		/*
773  		 * Get the address of the unit directory and try to
774  		 * match the drivers id_tables against it.
775  		 */
776  		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
777  		if (unit == NULL)
778  			continue;
779  
780  		unit->directory = ci.p + value - 1;
781  		unit->device.bus = &fw_bus_type;
782  		unit->device.type = &fw_unit_type;
783  		unit->device.parent = &device->device;
784  		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
785  
786  		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
787  				ARRAY_SIZE(fw_unit_attributes) +
788  				ARRAY_SIZE(config_rom_attributes));
789  		init_fw_attribute_group(&unit->device,
790  					fw_unit_attributes,
791  					&unit->attribute_group);
792  
793  		fw_device_get(device);
794  		if (device_register(&unit->device) < 0) {
795  			put_device(&unit->device);
796  			continue;
797  		}
798  	}
799  }
800  
shutdown_unit(struct device * device,void * data)801  static int shutdown_unit(struct device *device, void *data)
802  {
803  	device_unregister(device);
804  
805  	return 0;
806  }
807  
808  /*
809   * fw_device_rwsem acts as dual purpose mutex:
810   *   - serializes accesses to fw_device.config_rom/.config_rom_length and
811   *     fw_unit.directory, unless those accesses happen at safe occasions
812   */
813  DECLARE_RWSEM(fw_device_rwsem);
814  
815  DEFINE_XARRAY_ALLOC(fw_device_xa);
816  int fw_cdev_major;
817  
fw_device_get_by_devt(dev_t devt)818  struct fw_device *fw_device_get_by_devt(dev_t devt)
819  {
820  	struct fw_device *device;
821  
822  	device = xa_load(&fw_device_xa, MINOR(devt));
823  	if (device)
824  		fw_device_get(device);
825  
826  	return device;
827  }
828  
829  struct workqueue_struct *fw_workqueue;
830  EXPORT_SYMBOL(fw_workqueue);
831  
fw_schedule_device_work(struct fw_device * device,unsigned long delay)832  static void fw_schedule_device_work(struct fw_device *device,
833  				    unsigned long delay)
834  {
835  	queue_delayed_work(fw_workqueue, &device->work, delay);
836  }
837  
838  /*
839   * These defines control the retry behavior for reading the config
840   * rom.  It shouldn't be necessary to tweak these; if the device
841   * doesn't respond to a config rom read within 10 seconds, it's not
842   * going to respond at all.  As for the initial delay, a lot of
843   * devices will be able to respond within half a second after bus
844   * reset.  On the other hand, it's not really worth being more
845   * aggressive than that, since it scales pretty well; if 10 devices
846   * are plugged in, they're all getting read within one second.
847   */
848  
849  #define MAX_RETRIES	10
850  #define RETRY_DELAY	(3 * HZ)
851  #define INITIAL_DELAY	(HZ / 2)
852  #define SHUTDOWN_DELAY	(2 * HZ)
853  
fw_device_shutdown(struct work_struct * work)854  static void fw_device_shutdown(struct work_struct *work)
855  {
856  	struct fw_device *device =
857  		container_of(work, struct fw_device, work.work);
858  
859  	if (time_before64(get_jiffies_64(),
860  			  device->card->reset_jiffies + SHUTDOWN_DELAY)
861  	    && !list_empty(&device->card->link)) {
862  		fw_schedule_device_work(device, SHUTDOWN_DELAY);
863  		return;
864  	}
865  
866  	if (atomic_cmpxchg(&device->state,
867  			   FW_DEVICE_GONE,
868  			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
869  		return;
870  
871  	fw_device_cdev_remove(device);
872  	device_for_each_child(&device->device, NULL, shutdown_unit);
873  	device_unregister(&device->device);
874  
875  	xa_erase(&fw_device_xa, MINOR(device->device.devt));
876  
877  	fw_device_put(device);
878  }
879  
fw_device_release(struct device * dev)880  static void fw_device_release(struct device *dev)
881  {
882  	struct fw_device *device = fw_device(dev);
883  	struct fw_card *card = device->card;
884  
885  	/*
886  	 * Take the card lock so we don't set this to NULL while a
887  	 * FW_NODE_UPDATED callback is being handled or while the
888  	 * bus manager work looks at this node.
889  	 */
890  	scoped_guard(spinlock_irqsave, &card->lock)
891  		device->node->data = NULL;
892  
893  	fw_node_put(device->node);
894  	kfree(device->config_rom);
895  	kfree(device);
896  	fw_card_put(card);
897  }
898  
899  static struct device_type fw_device_type = {
900  	.release = fw_device_release,
901  };
902  
is_fw_device(const struct device * dev)903  static bool is_fw_device(const struct device *dev)
904  {
905  	return dev->type == &fw_device_type;
906  }
907  
update_unit(struct device * dev,void * data)908  static int update_unit(struct device *dev, void *data)
909  {
910  	struct fw_unit *unit = fw_unit(dev);
911  	struct fw_driver *driver = (struct fw_driver *)dev->driver;
912  
913  	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
914  		device_lock(dev);
915  		driver->update(unit);
916  		device_unlock(dev);
917  	}
918  
919  	return 0;
920  }
921  
fw_device_update(struct work_struct * work)922  static void fw_device_update(struct work_struct *work)
923  {
924  	struct fw_device *device =
925  		container_of(work, struct fw_device, work.work);
926  
927  	fw_device_cdev_update(device);
928  	device_for_each_child(&device->device, NULL, update_unit);
929  }
930  
931  enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
932  
set_broadcast_channel(struct fw_device * device,int generation)933  static void set_broadcast_channel(struct fw_device *device, int generation)
934  {
935  	struct fw_card *card = device->card;
936  	__be32 data;
937  	int rcode;
938  
939  	if (!card->broadcast_channel_allocated)
940  		return;
941  
942  	/*
943  	 * The Broadcast_Channel Valid bit is required by nodes which want to
944  	 * transmit on this channel.  Such transmissions are practically
945  	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
946  	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
947  	 * to narrow down to which nodes we send Broadcast_Channel updates.
948  	 */
949  	if (!device->irmc || device->max_rec < 8)
950  		return;
951  
952  	/*
953  	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
954  	 * Perform a read test first.
955  	 */
956  	if (device->bc_implemented == BC_UNKNOWN) {
957  		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
958  				device->node_id, generation, device->max_speed,
959  				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
960  				&data, 4);
961  		switch (rcode) {
962  		case RCODE_COMPLETE:
963  			if (data & cpu_to_be32(1 << 31)) {
964  				device->bc_implemented = BC_IMPLEMENTED;
965  				break;
966  			}
967  			fallthrough;	/* to case address error */
968  		case RCODE_ADDRESS_ERROR:
969  			device->bc_implemented = BC_UNIMPLEMENTED;
970  		}
971  	}
972  
973  	if (device->bc_implemented == BC_IMPLEMENTED) {
974  		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
975  				   BROADCAST_CHANNEL_VALID);
976  		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
977  				device->node_id, generation, device->max_speed,
978  				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
979  				&data, 4);
980  	}
981  }
982  
fw_device_set_broadcast_channel(struct device * dev,void * gen)983  int fw_device_set_broadcast_channel(struct device *dev, void *gen)
984  {
985  	if (is_fw_device(dev))
986  		set_broadcast_channel(fw_device(dev), (long)gen);
987  
988  	return 0;
989  }
990  
compare_configuration_rom(struct device * dev,void * data)991  static int compare_configuration_rom(struct device *dev, void *data)
992  {
993  	const struct fw_device *old = fw_device(dev);
994  	const u32 *config_rom = data;
995  
996  	if (!is_fw_device(dev))
997  		return 0;
998  
999  	// Compare the bus information block and root_length/root_crc.
1000  	return !memcmp(old->config_rom, config_rom, 6 * 4);
1001  }
1002  
fw_device_init(struct work_struct * work)1003  static void fw_device_init(struct work_struct *work)
1004  {
1005  	struct fw_device *device =
1006  		container_of(work, struct fw_device, work.work);
1007  	struct fw_card *card = device->card;
1008  	struct device *found;
1009  	u32 minor;
1010  	int ret;
1011  
1012  	/*
1013  	 * All failure paths here set node->data to NULL, so that we
1014  	 * don't try to do device_for_each_child() on a kfree()'d
1015  	 * device.
1016  	 */
1017  
1018  	ret = read_config_rom(device, device->generation);
1019  	if (ret != RCODE_COMPLETE) {
1020  		if (device->config_rom_retries < MAX_RETRIES &&
1021  		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1022  			device->config_rom_retries++;
1023  			fw_schedule_device_work(device, RETRY_DELAY);
1024  		} else {
1025  			if (device->node->link_on)
1026  				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1027  					  device->node_id,
1028  					  fw_rcode_string(ret));
1029  			if (device->node == card->root_node)
1030  				fw_schedule_bm_work(card, 0);
1031  			fw_device_release(&device->device);
1032  		}
1033  		return;
1034  	}
1035  
1036  	// If a device was pending for deletion because its node went away but its bus info block
1037  	// and root directory header matches that of a newly discovered device, revive the
1038  	// existing fw_device. The newly allocated fw_device becomes obsolete instead.
1039  	//
1040  	// serialize config_rom access.
1041  	scoped_guard(rwsem_read, &fw_device_rwsem) {
1042  		found = device_find_child(card->device, (void *)device->config_rom,
1043  					  compare_configuration_rom);
1044  	}
1045  	if (found) {
1046  		struct fw_device *reused = fw_device(found);
1047  
1048  		if (atomic_cmpxchg(&reused->state,
1049  				   FW_DEVICE_GONE,
1050  				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1051  			// serialize node access
1052  			scoped_guard(spinlock_irq, &card->lock) {
1053  				struct fw_node *current_node = device->node;
1054  				struct fw_node *obsolete_node = reused->node;
1055  
1056  				device->node = obsolete_node;
1057  				device->node->data = device;
1058  				reused->node = current_node;
1059  				reused->node->data = reused;
1060  
1061  				reused->max_speed = device->max_speed;
1062  				reused->node_id = current_node->node_id;
1063  				smp_wmb();  /* update node_id before generation */
1064  				reused->generation = card->generation;
1065  				reused->config_rom_retries = 0;
1066  				fw_notice(card, "rediscovered device %s\n",
1067  					  dev_name(found));
1068  
1069  				reused->workfn = fw_device_update;
1070  				fw_schedule_device_work(reused, 0);
1071  
1072  				if (current_node == card->root_node)
1073  					fw_schedule_bm_work(card, 0);
1074  			}
1075  
1076  			put_device(found);
1077  			fw_device_release(&device->device);
1078  
1079  			return;
1080  		}
1081  
1082  		put_device(found);
1083  	}
1084  
1085  	device_initialize(&device->device);
1086  
1087  	fw_device_get(device);
1088  
1089  	// The index of allocated entry is used for minor identifier of device node.
1090  	ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1091  	if (ret < 0)
1092  		goto error;
1093  
1094  	device->device.bus = &fw_bus_type;
1095  	device->device.type = &fw_device_type;
1096  	device->device.parent = card->device;
1097  	device->device.devt = MKDEV(fw_cdev_major, minor);
1098  	dev_set_name(&device->device, "fw%d", minor);
1099  
1100  	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1101  			ARRAY_SIZE(fw_device_attributes) +
1102  			ARRAY_SIZE(config_rom_attributes));
1103  	init_fw_attribute_group(&device->device,
1104  				fw_device_attributes,
1105  				&device->attribute_group);
1106  
1107  	if (device_add(&device->device)) {
1108  		fw_err(card, "failed to add device\n");
1109  		goto error_with_cdev;
1110  	}
1111  
1112  	create_units(device);
1113  
1114  	/*
1115  	 * Transition the device to running state.  If it got pulled
1116  	 * out from under us while we did the initialization work, we
1117  	 * have to shut down the device again here.  Normally, though,
1118  	 * fw_node_event will be responsible for shutting it down when
1119  	 * necessary.  We have to use the atomic cmpxchg here to avoid
1120  	 * racing with the FW_NODE_DESTROYED case in
1121  	 * fw_node_event().
1122  	 */
1123  	if (atomic_cmpxchg(&device->state,
1124  			   FW_DEVICE_INITIALIZING,
1125  			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1126  		device->workfn = fw_device_shutdown;
1127  		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1128  	} else {
1129  		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1130  			  dev_name(&device->device),
1131  			  device->config_rom[3], device->config_rom[4],
1132  			  1 << device->max_speed);
1133  		device->config_rom_retries = 0;
1134  
1135  		set_broadcast_channel(device, device->generation);
1136  
1137  		add_device_randomness(&device->config_rom[3], 8);
1138  	}
1139  
1140  	/*
1141  	 * Reschedule the IRM work if we just finished reading the
1142  	 * root node config rom.  If this races with a bus reset we
1143  	 * just end up running the IRM work a couple of extra times -
1144  	 * pretty harmless.
1145  	 */
1146  	if (device->node == card->root_node)
1147  		fw_schedule_bm_work(card, 0);
1148  
1149  	return;
1150  
1151   error_with_cdev:
1152  	xa_erase(&fw_device_xa, minor);
1153   error:
1154  	fw_device_put(device);		// fw_device_xa's reference.
1155  
1156  	put_device(&device->device);	/* our reference */
1157  }
1158  
1159  /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation,bool * changed)1160  static int reread_config_rom(struct fw_device *device, int generation,
1161  			     bool *changed)
1162  {
1163  	u32 q;
1164  	int i, rcode;
1165  
1166  	for (i = 0; i < 6; i++) {
1167  		rcode = read_rom(device, generation, i, &q);
1168  		if (rcode != RCODE_COMPLETE)
1169  			return rcode;
1170  
1171  		if (i == 0 && q == 0)
1172  			/* inaccessible (see read_config_rom); retry later */
1173  			return RCODE_BUSY;
1174  
1175  		if (q != device->config_rom[i]) {
1176  			*changed = true;
1177  			return RCODE_COMPLETE;
1178  		}
1179  	}
1180  
1181  	*changed = false;
1182  	return RCODE_COMPLETE;
1183  }
1184  
fw_device_refresh(struct work_struct * work)1185  static void fw_device_refresh(struct work_struct *work)
1186  {
1187  	struct fw_device *device =
1188  		container_of(work, struct fw_device, work.work);
1189  	struct fw_card *card = device->card;
1190  	int ret, node_id = device->node_id;
1191  	bool changed;
1192  
1193  	ret = reread_config_rom(device, device->generation, &changed);
1194  	if (ret != RCODE_COMPLETE)
1195  		goto failed_config_rom;
1196  
1197  	if (!changed) {
1198  		if (atomic_cmpxchg(&device->state,
1199  				   FW_DEVICE_INITIALIZING,
1200  				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1201  			goto gone;
1202  
1203  		fw_device_update(work);
1204  		device->config_rom_retries = 0;
1205  		goto out;
1206  	}
1207  
1208  	/*
1209  	 * Something changed.  We keep things simple and don't investigate
1210  	 * further.  We just destroy all previous units and create new ones.
1211  	 */
1212  	device_for_each_child(&device->device, NULL, shutdown_unit);
1213  
1214  	ret = read_config_rom(device, device->generation);
1215  	if (ret != RCODE_COMPLETE)
1216  		goto failed_config_rom;
1217  
1218  	fw_device_cdev_update(device);
1219  	create_units(device);
1220  
1221  	/* Userspace may want to re-read attributes. */
1222  	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1223  
1224  	if (atomic_cmpxchg(&device->state,
1225  			   FW_DEVICE_INITIALIZING,
1226  			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1227  		goto gone;
1228  
1229  	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1230  	device->config_rom_retries = 0;
1231  	goto out;
1232  
1233   failed_config_rom:
1234  	if (device->config_rom_retries < MAX_RETRIES &&
1235  	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1236  		device->config_rom_retries++;
1237  		fw_schedule_device_work(device, RETRY_DELAY);
1238  		return;
1239  	}
1240  
1241  	fw_notice(card, "giving up on refresh of device %s: %s\n",
1242  		  dev_name(&device->device), fw_rcode_string(ret));
1243   gone:
1244  	atomic_set(&device->state, FW_DEVICE_GONE);
1245  	device->workfn = fw_device_shutdown;
1246  	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1247   out:
1248  	if (node_id == card->root_node->node_id)
1249  		fw_schedule_bm_work(card, 0);
1250  }
1251  
fw_device_workfn(struct work_struct * work)1252  static void fw_device_workfn(struct work_struct *work)
1253  {
1254  	struct fw_device *device = container_of(to_delayed_work(work),
1255  						struct fw_device, work);
1256  	device->workfn(work);
1257  }
1258  
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1259  void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1260  {
1261  	struct fw_device *device;
1262  
1263  	switch (event) {
1264  	case FW_NODE_CREATED:
1265  		/*
1266  		 * Attempt to scan the node, regardless whether its self ID has
1267  		 * the L (link active) flag set or not.  Some broken devices
1268  		 * send L=0 but have an up-and-running link; others send L=1
1269  		 * without actually having a link.
1270  		 */
1271   create:
1272  		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1273  		if (device == NULL)
1274  			break;
1275  
1276  		/*
1277  		 * Do minimal initialization of the device here, the
1278  		 * rest will happen in fw_device_init().
1279  		 *
1280  		 * Attention:  A lot of things, even fw_device_get(),
1281  		 * cannot be done before fw_device_init() finished!
1282  		 * You can basically just check device->state and
1283  		 * schedule work until then, but only while holding
1284  		 * card->lock.
1285  		 */
1286  		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1287  		device->card = fw_card_get(card);
1288  		device->node = fw_node_get(node);
1289  		device->node_id = node->node_id;
1290  		device->generation = card->generation;
1291  		device->is_local = node == card->local_node;
1292  		mutex_init(&device->client_list_mutex);
1293  		INIT_LIST_HEAD(&device->client_list);
1294  
1295  		/*
1296  		 * Set the node data to point back to this device so
1297  		 * FW_NODE_UPDATED callbacks can update the node_id
1298  		 * and generation for the device.
1299  		 */
1300  		node->data = device;
1301  
1302  		/*
1303  		 * Many devices are slow to respond after bus resets,
1304  		 * especially if they are bus powered and go through
1305  		 * power-up after getting plugged in.  We schedule the
1306  		 * first config rom scan half a second after bus reset.
1307  		 */
1308  		device->workfn = fw_device_init;
1309  		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1310  		fw_schedule_device_work(device, INITIAL_DELAY);
1311  		break;
1312  
1313  	case FW_NODE_INITIATED_RESET:
1314  	case FW_NODE_LINK_ON:
1315  		device = node->data;
1316  		if (device == NULL)
1317  			goto create;
1318  
1319  		device->node_id = node->node_id;
1320  		smp_wmb();  /* update node_id before generation */
1321  		device->generation = card->generation;
1322  		if (atomic_cmpxchg(&device->state,
1323  			    FW_DEVICE_RUNNING,
1324  			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1325  			device->workfn = fw_device_refresh;
1326  			fw_schedule_device_work(device,
1327  				device->is_local ? 0 : INITIAL_DELAY);
1328  		}
1329  		break;
1330  
1331  	case FW_NODE_UPDATED:
1332  		device = node->data;
1333  		if (device == NULL)
1334  			break;
1335  
1336  		device->node_id = node->node_id;
1337  		smp_wmb();  /* update node_id before generation */
1338  		device->generation = card->generation;
1339  		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1340  			device->workfn = fw_device_update;
1341  			fw_schedule_device_work(device, 0);
1342  		}
1343  		break;
1344  
1345  	case FW_NODE_DESTROYED:
1346  	case FW_NODE_LINK_OFF:
1347  		if (!node->data)
1348  			break;
1349  
1350  		/*
1351  		 * Destroy the device associated with the node.  There
1352  		 * are two cases here: either the device is fully
1353  		 * initialized (FW_DEVICE_RUNNING) or we're in the
1354  		 * process of reading its config rom
1355  		 * (FW_DEVICE_INITIALIZING).  If it is fully
1356  		 * initialized we can reuse device->work to schedule a
1357  		 * full fw_device_shutdown().  If not, there's work
1358  		 * scheduled to read it's config rom, and we just put
1359  		 * the device in shutdown state to have that code fail
1360  		 * to create the device.
1361  		 */
1362  		device = node->data;
1363  		if (atomic_xchg(&device->state,
1364  				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1365  			device->workfn = fw_device_shutdown;
1366  			fw_schedule_device_work(device,
1367  				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1368  		}
1369  		break;
1370  	}
1371  }
1372  
1373  #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1374  #include "device-attribute-test.c"
1375  #endif
1376