1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/kernel/sys.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  #include <linux/export.h>
9  #include <linux/mm.h>
10  #include <linux/mm_inline.h>
11  #include <linux/utsname.h>
12  #include <linux/mman.h>
13  #include <linux/reboot.h>
14  #include <linux/prctl.h>
15  #include <linux/highuid.h>
16  #include <linux/fs.h>
17  #include <linux/kmod.h>
18  #include <linux/ksm.h>
19  #include <linux/perf_event.h>
20  #include <linux/resource.h>
21  #include <linux/kernel.h>
22  #include <linux/workqueue.h>
23  #include <linux/capability.h>
24  #include <linux/device.h>
25  #include <linux/key.h>
26  #include <linux/times.h>
27  #include <linux/posix-timers.h>
28  #include <linux/security.h>
29  #include <linux/random.h>
30  #include <linux/suspend.h>
31  #include <linux/tty.h>
32  #include <linux/signal.h>
33  #include <linux/cn_proc.h>
34  #include <linux/getcpu.h>
35  #include <linux/task_io_accounting_ops.h>
36  #include <linux/seccomp.h>
37  #include <linux/cpu.h>
38  #include <linux/personality.h>
39  #include <linux/ptrace.h>
40  #include <linux/fs_struct.h>
41  #include <linux/file.h>
42  #include <linux/mount.h>
43  #include <linux/gfp.h>
44  #include <linux/syscore_ops.h>
45  #include <linux/version.h>
46  #include <linux/ctype.h>
47  #include <linux/syscall_user_dispatch.h>
48  
49  #include <linux/compat.h>
50  #include <linux/syscalls.h>
51  #include <linux/kprobes.h>
52  #include <linux/user_namespace.h>
53  #include <linux/time_namespace.h>
54  #include <linux/binfmts.h>
55  
56  #include <linux/sched.h>
57  #include <linux/sched/autogroup.h>
58  #include <linux/sched/loadavg.h>
59  #include <linux/sched/stat.h>
60  #include <linux/sched/mm.h>
61  #include <linux/sched/coredump.h>
62  #include <linux/sched/task.h>
63  #include <linux/sched/cputime.h>
64  #include <linux/rcupdate.h>
65  #include <linux/uidgid.h>
66  #include <linux/cred.h>
67  
68  #include <linux/nospec.h>
69  
70  #include <linux/kmsg_dump.h>
71  /* Move somewhere else to avoid recompiling? */
72  #include <generated/utsrelease.h>
73  
74  #include <linux/uaccess.h>
75  #include <asm/io.h>
76  #include <asm/unistd.h>
77  
78  #include "uid16.h"
79  
80  #ifndef SET_UNALIGN_CTL
81  # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82  #endif
83  #ifndef GET_UNALIGN_CTL
84  # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85  #endif
86  #ifndef SET_FPEMU_CTL
87  # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88  #endif
89  #ifndef GET_FPEMU_CTL
90  # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91  #endif
92  #ifndef SET_FPEXC_CTL
93  # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94  #endif
95  #ifndef GET_FPEXC_CTL
96  # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97  #endif
98  #ifndef GET_ENDIAN
99  # define GET_ENDIAN(a, b)	(-EINVAL)
100  #endif
101  #ifndef SET_ENDIAN
102  # define SET_ENDIAN(a, b)	(-EINVAL)
103  #endif
104  #ifndef GET_TSC_CTL
105  # define GET_TSC_CTL(a)		(-EINVAL)
106  #endif
107  #ifndef SET_TSC_CTL
108  # define SET_TSC_CTL(a)		(-EINVAL)
109  #endif
110  #ifndef GET_FP_MODE
111  # define GET_FP_MODE(a)		(-EINVAL)
112  #endif
113  #ifndef SET_FP_MODE
114  # define SET_FP_MODE(a,b)	(-EINVAL)
115  #endif
116  #ifndef SVE_SET_VL
117  # define SVE_SET_VL(a)		(-EINVAL)
118  #endif
119  #ifndef SVE_GET_VL
120  # define SVE_GET_VL()		(-EINVAL)
121  #endif
122  #ifndef SME_SET_VL
123  # define SME_SET_VL(a)		(-EINVAL)
124  #endif
125  #ifndef SME_GET_VL
126  # define SME_GET_VL()		(-EINVAL)
127  #endif
128  #ifndef PAC_RESET_KEYS
129  # define PAC_RESET_KEYS(a, b)	(-EINVAL)
130  #endif
131  #ifndef PAC_SET_ENABLED_KEYS
132  # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133  #endif
134  #ifndef PAC_GET_ENABLED_KEYS
135  # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136  #endif
137  #ifndef SET_TAGGED_ADDR_CTRL
138  # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139  #endif
140  #ifndef GET_TAGGED_ADDR_CTRL
141  # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142  #endif
143  #ifndef RISCV_V_SET_CONTROL
144  # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145  #endif
146  #ifndef RISCV_V_GET_CONTROL
147  # define RISCV_V_GET_CONTROL()		(-EINVAL)
148  #endif
149  #ifndef RISCV_SET_ICACHE_FLUSH_CTX
150  # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
151  #endif
152  #ifndef PPC_GET_DEXCR_ASPECT
153  # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
154  #endif
155  #ifndef PPC_SET_DEXCR_ASPECT
156  # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
157  #endif
158  
159  /*
160   * this is where the system-wide overflow UID and GID are defined, for
161   * architectures that now have 32-bit UID/GID but didn't in the past
162   */
163  
164  int overflowuid = DEFAULT_OVERFLOWUID;
165  int overflowgid = DEFAULT_OVERFLOWGID;
166  
167  EXPORT_SYMBOL(overflowuid);
168  EXPORT_SYMBOL(overflowgid);
169  
170  /*
171   * the same as above, but for filesystems which can only store a 16-bit
172   * UID and GID. as such, this is needed on all architectures
173   */
174  
175  int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
176  int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
177  
178  EXPORT_SYMBOL(fs_overflowuid);
179  EXPORT_SYMBOL(fs_overflowgid);
180  
181  /*
182   * Returns true if current's euid is same as p's uid or euid,
183   * or has CAP_SYS_NICE to p's user_ns.
184   *
185   * Called with rcu_read_lock, creds are safe
186   */
set_one_prio_perm(struct task_struct * p)187  static bool set_one_prio_perm(struct task_struct *p)
188  {
189  	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
190  
191  	if (uid_eq(pcred->uid,  cred->euid) ||
192  	    uid_eq(pcred->euid, cred->euid))
193  		return true;
194  	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
195  		return true;
196  	return false;
197  }
198  
199  /*
200   * set the priority of a task
201   * - the caller must hold the RCU read lock
202   */
set_one_prio(struct task_struct * p,int niceval,int error)203  static int set_one_prio(struct task_struct *p, int niceval, int error)
204  {
205  	int no_nice;
206  
207  	if (!set_one_prio_perm(p)) {
208  		error = -EPERM;
209  		goto out;
210  	}
211  	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
212  		error = -EACCES;
213  		goto out;
214  	}
215  	no_nice = security_task_setnice(p, niceval);
216  	if (no_nice) {
217  		error = no_nice;
218  		goto out;
219  	}
220  	if (error == -ESRCH)
221  		error = 0;
222  	set_user_nice(p, niceval);
223  out:
224  	return error;
225  }
226  
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)227  SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
228  {
229  	struct task_struct *g, *p;
230  	struct user_struct *user;
231  	const struct cred *cred = current_cred();
232  	int error = -EINVAL;
233  	struct pid *pgrp;
234  	kuid_t uid;
235  
236  	if (which > PRIO_USER || which < PRIO_PROCESS)
237  		goto out;
238  
239  	/* normalize: avoid signed division (rounding problems) */
240  	error = -ESRCH;
241  	if (niceval < MIN_NICE)
242  		niceval = MIN_NICE;
243  	if (niceval > MAX_NICE)
244  		niceval = MAX_NICE;
245  
246  	rcu_read_lock();
247  	switch (which) {
248  	case PRIO_PROCESS:
249  		if (who)
250  			p = find_task_by_vpid(who);
251  		else
252  			p = current;
253  		if (p)
254  			error = set_one_prio(p, niceval, error);
255  		break;
256  	case PRIO_PGRP:
257  		if (who)
258  			pgrp = find_vpid(who);
259  		else
260  			pgrp = task_pgrp(current);
261  		read_lock(&tasklist_lock);
262  		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
263  			error = set_one_prio(p, niceval, error);
264  		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
265  		read_unlock(&tasklist_lock);
266  		break;
267  	case PRIO_USER:
268  		uid = make_kuid(cred->user_ns, who);
269  		user = cred->user;
270  		if (!who)
271  			uid = cred->uid;
272  		else if (!uid_eq(uid, cred->uid)) {
273  			user = find_user(uid);
274  			if (!user)
275  				goto out_unlock;	/* No processes for this user */
276  		}
277  		for_each_process_thread(g, p) {
278  			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
279  				error = set_one_prio(p, niceval, error);
280  		}
281  		if (!uid_eq(uid, cred->uid))
282  			free_uid(user);		/* For find_user() */
283  		break;
284  	}
285  out_unlock:
286  	rcu_read_unlock();
287  out:
288  	return error;
289  }
290  
291  /*
292   * Ugh. To avoid negative return values, "getpriority()" will
293   * not return the normal nice-value, but a negated value that
294   * has been offset by 20 (ie it returns 40..1 instead of -20..19)
295   * to stay compatible.
296   */
SYSCALL_DEFINE2(getpriority,int,which,int,who)297  SYSCALL_DEFINE2(getpriority, int, which, int, who)
298  {
299  	struct task_struct *g, *p;
300  	struct user_struct *user;
301  	const struct cred *cred = current_cred();
302  	long niceval, retval = -ESRCH;
303  	struct pid *pgrp;
304  	kuid_t uid;
305  
306  	if (which > PRIO_USER || which < PRIO_PROCESS)
307  		return -EINVAL;
308  
309  	rcu_read_lock();
310  	switch (which) {
311  	case PRIO_PROCESS:
312  		if (who)
313  			p = find_task_by_vpid(who);
314  		else
315  			p = current;
316  		if (p) {
317  			niceval = nice_to_rlimit(task_nice(p));
318  			if (niceval > retval)
319  				retval = niceval;
320  		}
321  		break;
322  	case PRIO_PGRP:
323  		if (who)
324  			pgrp = find_vpid(who);
325  		else
326  			pgrp = task_pgrp(current);
327  		read_lock(&tasklist_lock);
328  		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
329  			niceval = nice_to_rlimit(task_nice(p));
330  			if (niceval > retval)
331  				retval = niceval;
332  		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
333  		read_unlock(&tasklist_lock);
334  		break;
335  	case PRIO_USER:
336  		uid = make_kuid(cred->user_ns, who);
337  		user = cred->user;
338  		if (!who)
339  			uid = cred->uid;
340  		else if (!uid_eq(uid, cred->uid)) {
341  			user = find_user(uid);
342  			if (!user)
343  				goto out_unlock;	/* No processes for this user */
344  		}
345  		for_each_process_thread(g, p) {
346  			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
347  				niceval = nice_to_rlimit(task_nice(p));
348  				if (niceval > retval)
349  					retval = niceval;
350  			}
351  		}
352  		if (!uid_eq(uid, cred->uid))
353  			free_uid(user);		/* for find_user() */
354  		break;
355  	}
356  out_unlock:
357  	rcu_read_unlock();
358  
359  	return retval;
360  }
361  
362  /*
363   * Unprivileged users may change the real gid to the effective gid
364   * or vice versa.  (BSD-style)
365   *
366   * If you set the real gid at all, or set the effective gid to a value not
367   * equal to the real gid, then the saved gid is set to the new effective gid.
368   *
369   * This makes it possible for a setgid program to completely drop its
370   * privileges, which is often a useful assertion to make when you are doing
371   * a security audit over a program.
372   *
373   * The general idea is that a program which uses just setregid() will be
374   * 100% compatible with BSD.  A program which uses just setgid() will be
375   * 100% compatible with POSIX with saved IDs.
376   *
377   * SMP: There are not races, the GIDs are checked only by filesystem
378   *      operations (as far as semantic preservation is concerned).
379   */
380  #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)381  long __sys_setregid(gid_t rgid, gid_t egid)
382  {
383  	struct user_namespace *ns = current_user_ns();
384  	const struct cred *old;
385  	struct cred *new;
386  	int retval;
387  	kgid_t krgid, kegid;
388  
389  	krgid = make_kgid(ns, rgid);
390  	kegid = make_kgid(ns, egid);
391  
392  	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
393  		return -EINVAL;
394  	if ((egid != (gid_t) -1) && !gid_valid(kegid))
395  		return -EINVAL;
396  
397  	new = prepare_creds();
398  	if (!new)
399  		return -ENOMEM;
400  	old = current_cred();
401  
402  	retval = -EPERM;
403  	if (rgid != (gid_t) -1) {
404  		if (gid_eq(old->gid, krgid) ||
405  		    gid_eq(old->egid, krgid) ||
406  		    ns_capable_setid(old->user_ns, CAP_SETGID))
407  			new->gid = krgid;
408  		else
409  			goto error;
410  	}
411  	if (egid != (gid_t) -1) {
412  		if (gid_eq(old->gid, kegid) ||
413  		    gid_eq(old->egid, kegid) ||
414  		    gid_eq(old->sgid, kegid) ||
415  		    ns_capable_setid(old->user_ns, CAP_SETGID))
416  			new->egid = kegid;
417  		else
418  			goto error;
419  	}
420  
421  	if (rgid != (gid_t) -1 ||
422  	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
423  		new->sgid = new->egid;
424  	new->fsgid = new->egid;
425  
426  	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
427  	if (retval < 0)
428  		goto error;
429  
430  	return commit_creds(new);
431  
432  error:
433  	abort_creds(new);
434  	return retval;
435  }
436  
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)437  SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
438  {
439  	return __sys_setregid(rgid, egid);
440  }
441  
442  /*
443   * setgid() is implemented like SysV w/ SAVED_IDS
444   *
445   * SMP: Same implicit races as above.
446   */
__sys_setgid(gid_t gid)447  long __sys_setgid(gid_t gid)
448  {
449  	struct user_namespace *ns = current_user_ns();
450  	const struct cred *old;
451  	struct cred *new;
452  	int retval;
453  	kgid_t kgid;
454  
455  	kgid = make_kgid(ns, gid);
456  	if (!gid_valid(kgid))
457  		return -EINVAL;
458  
459  	new = prepare_creds();
460  	if (!new)
461  		return -ENOMEM;
462  	old = current_cred();
463  
464  	retval = -EPERM;
465  	if (ns_capable_setid(old->user_ns, CAP_SETGID))
466  		new->gid = new->egid = new->sgid = new->fsgid = kgid;
467  	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
468  		new->egid = new->fsgid = kgid;
469  	else
470  		goto error;
471  
472  	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
473  	if (retval < 0)
474  		goto error;
475  
476  	return commit_creds(new);
477  
478  error:
479  	abort_creds(new);
480  	return retval;
481  }
482  
SYSCALL_DEFINE1(setgid,gid_t,gid)483  SYSCALL_DEFINE1(setgid, gid_t, gid)
484  {
485  	return __sys_setgid(gid);
486  }
487  
488  /*
489   * change the user struct in a credentials set to match the new UID
490   */
set_user(struct cred * new)491  static int set_user(struct cred *new)
492  {
493  	struct user_struct *new_user;
494  
495  	new_user = alloc_uid(new->uid);
496  	if (!new_user)
497  		return -EAGAIN;
498  
499  	free_uid(new->user);
500  	new->user = new_user;
501  	return 0;
502  }
503  
flag_nproc_exceeded(struct cred * new)504  static void flag_nproc_exceeded(struct cred *new)
505  {
506  	if (new->ucounts == current_ucounts())
507  		return;
508  
509  	/*
510  	 * We don't fail in case of NPROC limit excess here because too many
511  	 * poorly written programs don't check set*uid() return code, assuming
512  	 * it never fails if called by root.  We may still enforce NPROC limit
513  	 * for programs doing set*uid()+execve() by harmlessly deferring the
514  	 * failure to the execve() stage.
515  	 */
516  	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
517  			new->user != INIT_USER)
518  		current->flags |= PF_NPROC_EXCEEDED;
519  	else
520  		current->flags &= ~PF_NPROC_EXCEEDED;
521  }
522  
523  /*
524   * Unprivileged users may change the real uid to the effective uid
525   * or vice versa.  (BSD-style)
526   *
527   * If you set the real uid at all, or set the effective uid to a value not
528   * equal to the real uid, then the saved uid is set to the new effective uid.
529   *
530   * This makes it possible for a setuid program to completely drop its
531   * privileges, which is often a useful assertion to make when you are doing
532   * a security audit over a program.
533   *
534   * The general idea is that a program which uses just setreuid() will be
535   * 100% compatible with BSD.  A program which uses just setuid() will be
536   * 100% compatible with POSIX with saved IDs.
537   */
__sys_setreuid(uid_t ruid,uid_t euid)538  long __sys_setreuid(uid_t ruid, uid_t euid)
539  {
540  	struct user_namespace *ns = current_user_ns();
541  	const struct cred *old;
542  	struct cred *new;
543  	int retval;
544  	kuid_t kruid, keuid;
545  
546  	kruid = make_kuid(ns, ruid);
547  	keuid = make_kuid(ns, euid);
548  
549  	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
550  		return -EINVAL;
551  	if ((euid != (uid_t) -1) && !uid_valid(keuid))
552  		return -EINVAL;
553  
554  	new = prepare_creds();
555  	if (!new)
556  		return -ENOMEM;
557  	old = current_cred();
558  
559  	retval = -EPERM;
560  	if (ruid != (uid_t) -1) {
561  		new->uid = kruid;
562  		if (!uid_eq(old->uid, kruid) &&
563  		    !uid_eq(old->euid, kruid) &&
564  		    !ns_capable_setid(old->user_ns, CAP_SETUID))
565  			goto error;
566  	}
567  
568  	if (euid != (uid_t) -1) {
569  		new->euid = keuid;
570  		if (!uid_eq(old->uid, keuid) &&
571  		    !uid_eq(old->euid, keuid) &&
572  		    !uid_eq(old->suid, keuid) &&
573  		    !ns_capable_setid(old->user_ns, CAP_SETUID))
574  			goto error;
575  	}
576  
577  	if (!uid_eq(new->uid, old->uid)) {
578  		retval = set_user(new);
579  		if (retval < 0)
580  			goto error;
581  	}
582  	if (ruid != (uid_t) -1 ||
583  	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
584  		new->suid = new->euid;
585  	new->fsuid = new->euid;
586  
587  	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
588  	if (retval < 0)
589  		goto error;
590  
591  	retval = set_cred_ucounts(new);
592  	if (retval < 0)
593  		goto error;
594  
595  	flag_nproc_exceeded(new);
596  	return commit_creds(new);
597  
598  error:
599  	abort_creds(new);
600  	return retval;
601  }
602  
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)603  SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
604  {
605  	return __sys_setreuid(ruid, euid);
606  }
607  
608  /*
609   * setuid() is implemented like SysV with SAVED_IDS
610   *
611   * Note that SAVED_ID's is deficient in that a setuid root program
612   * like sendmail, for example, cannot set its uid to be a normal
613   * user and then switch back, because if you're root, setuid() sets
614   * the saved uid too.  If you don't like this, blame the bright people
615   * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
616   * will allow a root program to temporarily drop privileges and be able to
617   * regain them by swapping the real and effective uid.
618   */
__sys_setuid(uid_t uid)619  long __sys_setuid(uid_t uid)
620  {
621  	struct user_namespace *ns = current_user_ns();
622  	const struct cred *old;
623  	struct cred *new;
624  	int retval;
625  	kuid_t kuid;
626  
627  	kuid = make_kuid(ns, uid);
628  	if (!uid_valid(kuid))
629  		return -EINVAL;
630  
631  	new = prepare_creds();
632  	if (!new)
633  		return -ENOMEM;
634  	old = current_cred();
635  
636  	retval = -EPERM;
637  	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
638  		new->suid = new->uid = kuid;
639  		if (!uid_eq(kuid, old->uid)) {
640  			retval = set_user(new);
641  			if (retval < 0)
642  				goto error;
643  		}
644  	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
645  		goto error;
646  	}
647  
648  	new->fsuid = new->euid = kuid;
649  
650  	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
651  	if (retval < 0)
652  		goto error;
653  
654  	retval = set_cred_ucounts(new);
655  	if (retval < 0)
656  		goto error;
657  
658  	flag_nproc_exceeded(new);
659  	return commit_creds(new);
660  
661  error:
662  	abort_creds(new);
663  	return retval;
664  }
665  
SYSCALL_DEFINE1(setuid,uid_t,uid)666  SYSCALL_DEFINE1(setuid, uid_t, uid)
667  {
668  	return __sys_setuid(uid);
669  }
670  
671  
672  /*
673   * This function implements a generic ability to update ruid, euid,
674   * and suid.  This allows you to implement the 4.4 compatible seteuid().
675   */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)676  long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
677  {
678  	struct user_namespace *ns = current_user_ns();
679  	const struct cred *old;
680  	struct cred *new;
681  	int retval;
682  	kuid_t kruid, keuid, ksuid;
683  	bool ruid_new, euid_new, suid_new;
684  
685  	kruid = make_kuid(ns, ruid);
686  	keuid = make_kuid(ns, euid);
687  	ksuid = make_kuid(ns, suid);
688  
689  	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
690  		return -EINVAL;
691  
692  	if ((euid != (uid_t) -1) && !uid_valid(keuid))
693  		return -EINVAL;
694  
695  	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
696  		return -EINVAL;
697  
698  	old = current_cred();
699  
700  	/* check for no-op */
701  	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
702  	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
703  				    uid_eq(keuid, old->fsuid))) &&
704  	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
705  		return 0;
706  
707  	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
708  		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
709  	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
710  		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
711  	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
712  		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
713  	if ((ruid_new || euid_new || suid_new) &&
714  	    !ns_capable_setid(old->user_ns, CAP_SETUID))
715  		return -EPERM;
716  
717  	new = prepare_creds();
718  	if (!new)
719  		return -ENOMEM;
720  
721  	if (ruid != (uid_t) -1) {
722  		new->uid = kruid;
723  		if (!uid_eq(kruid, old->uid)) {
724  			retval = set_user(new);
725  			if (retval < 0)
726  				goto error;
727  		}
728  	}
729  	if (euid != (uid_t) -1)
730  		new->euid = keuid;
731  	if (suid != (uid_t) -1)
732  		new->suid = ksuid;
733  	new->fsuid = new->euid;
734  
735  	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736  	if (retval < 0)
737  		goto error;
738  
739  	retval = set_cred_ucounts(new);
740  	if (retval < 0)
741  		goto error;
742  
743  	flag_nproc_exceeded(new);
744  	return commit_creds(new);
745  
746  error:
747  	abort_creds(new);
748  	return retval;
749  }
750  
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)751  SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
752  {
753  	return __sys_setresuid(ruid, euid, suid);
754  }
755  
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)756  SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
757  {
758  	const struct cred *cred = current_cred();
759  	int retval;
760  	uid_t ruid, euid, suid;
761  
762  	ruid = from_kuid_munged(cred->user_ns, cred->uid);
763  	euid = from_kuid_munged(cred->user_ns, cred->euid);
764  	suid = from_kuid_munged(cred->user_ns, cred->suid);
765  
766  	retval = put_user(ruid, ruidp);
767  	if (!retval) {
768  		retval = put_user(euid, euidp);
769  		if (!retval)
770  			return put_user(suid, suidp);
771  	}
772  	return retval;
773  }
774  
775  /*
776   * Same as above, but for rgid, egid, sgid.
777   */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)778  long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
779  {
780  	struct user_namespace *ns = current_user_ns();
781  	const struct cred *old;
782  	struct cred *new;
783  	int retval;
784  	kgid_t krgid, kegid, ksgid;
785  	bool rgid_new, egid_new, sgid_new;
786  
787  	krgid = make_kgid(ns, rgid);
788  	kegid = make_kgid(ns, egid);
789  	ksgid = make_kgid(ns, sgid);
790  
791  	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
792  		return -EINVAL;
793  	if ((egid != (gid_t) -1) && !gid_valid(kegid))
794  		return -EINVAL;
795  	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
796  		return -EINVAL;
797  
798  	old = current_cred();
799  
800  	/* check for no-op */
801  	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
802  	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
803  				    gid_eq(kegid, old->fsgid))) &&
804  	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
805  		return 0;
806  
807  	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
808  		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
809  	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
810  		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
811  	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
812  		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
813  	if ((rgid_new || egid_new || sgid_new) &&
814  	    !ns_capable_setid(old->user_ns, CAP_SETGID))
815  		return -EPERM;
816  
817  	new = prepare_creds();
818  	if (!new)
819  		return -ENOMEM;
820  
821  	if (rgid != (gid_t) -1)
822  		new->gid = krgid;
823  	if (egid != (gid_t) -1)
824  		new->egid = kegid;
825  	if (sgid != (gid_t) -1)
826  		new->sgid = ksgid;
827  	new->fsgid = new->egid;
828  
829  	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
830  	if (retval < 0)
831  		goto error;
832  
833  	return commit_creds(new);
834  
835  error:
836  	abort_creds(new);
837  	return retval;
838  }
839  
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)840  SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
841  {
842  	return __sys_setresgid(rgid, egid, sgid);
843  }
844  
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)845  SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
846  {
847  	const struct cred *cred = current_cred();
848  	int retval;
849  	gid_t rgid, egid, sgid;
850  
851  	rgid = from_kgid_munged(cred->user_ns, cred->gid);
852  	egid = from_kgid_munged(cred->user_ns, cred->egid);
853  	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
854  
855  	retval = put_user(rgid, rgidp);
856  	if (!retval) {
857  		retval = put_user(egid, egidp);
858  		if (!retval)
859  			retval = put_user(sgid, sgidp);
860  	}
861  
862  	return retval;
863  }
864  
865  
866  /*
867   * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
868   * is used for "access()" and for the NFS daemon (letting nfsd stay at
869   * whatever uid it wants to). It normally shadows "euid", except when
870   * explicitly set by setfsuid() or for access..
871   */
__sys_setfsuid(uid_t uid)872  long __sys_setfsuid(uid_t uid)
873  {
874  	const struct cred *old;
875  	struct cred *new;
876  	uid_t old_fsuid;
877  	kuid_t kuid;
878  
879  	old = current_cred();
880  	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
881  
882  	kuid = make_kuid(old->user_ns, uid);
883  	if (!uid_valid(kuid))
884  		return old_fsuid;
885  
886  	new = prepare_creds();
887  	if (!new)
888  		return old_fsuid;
889  
890  	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
891  	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
892  	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
893  		if (!uid_eq(kuid, old->fsuid)) {
894  			new->fsuid = kuid;
895  			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
896  				goto change_okay;
897  		}
898  	}
899  
900  	abort_creds(new);
901  	return old_fsuid;
902  
903  change_okay:
904  	commit_creds(new);
905  	return old_fsuid;
906  }
907  
SYSCALL_DEFINE1(setfsuid,uid_t,uid)908  SYSCALL_DEFINE1(setfsuid, uid_t, uid)
909  {
910  	return __sys_setfsuid(uid);
911  }
912  
913  /*
914   * Samma pÃ¥ svenska..
915   */
__sys_setfsgid(gid_t gid)916  long __sys_setfsgid(gid_t gid)
917  {
918  	const struct cred *old;
919  	struct cred *new;
920  	gid_t old_fsgid;
921  	kgid_t kgid;
922  
923  	old = current_cred();
924  	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
925  
926  	kgid = make_kgid(old->user_ns, gid);
927  	if (!gid_valid(kgid))
928  		return old_fsgid;
929  
930  	new = prepare_creds();
931  	if (!new)
932  		return old_fsgid;
933  
934  	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
935  	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
936  	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
937  		if (!gid_eq(kgid, old->fsgid)) {
938  			new->fsgid = kgid;
939  			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
940  				goto change_okay;
941  		}
942  	}
943  
944  	abort_creds(new);
945  	return old_fsgid;
946  
947  change_okay:
948  	commit_creds(new);
949  	return old_fsgid;
950  }
951  
SYSCALL_DEFINE1(setfsgid,gid_t,gid)952  SYSCALL_DEFINE1(setfsgid, gid_t, gid)
953  {
954  	return __sys_setfsgid(gid);
955  }
956  #endif /* CONFIG_MULTIUSER */
957  
958  /**
959   * sys_getpid - return the thread group id of the current process
960   *
961   * Note, despite the name, this returns the tgid not the pid.  The tgid and
962   * the pid are identical unless CLONE_THREAD was specified on clone() in
963   * which case the tgid is the same in all threads of the same group.
964   *
965   * This is SMP safe as current->tgid does not change.
966   */
SYSCALL_DEFINE0(getpid)967  SYSCALL_DEFINE0(getpid)
968  {
969  	return task_tgid_vnr(current);
970  }
971  
972  /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)973  SYSCALL_DEFINE0(gettid)
974  {
975  	return task_pid_vnr(current);
976  }
977  
978  /*
979   * Accessing ->real_parent is not SMP-safe, it could
980   * change from under us. However, we can use a stale
981   * value of ->real_parent under rcu_read_lock(), see
982   * release_task()->call_rcu(delayed_put_task_struct).
983   */
SYSCALL_DEFINE0(getppid)984  SYSCALL_DEFINE0(getppid)
985  {
986  	int pid;
987  
988  	rcu_read_lock();
989  	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
990  	rcu_read_unlock();
991  
992  	return pid;
993  }
994  
SYSCALL_DEFINE0(getuid)995  SYSCALL_DEFINE0(getuid)
996  {
997  	/* Only we change this so SMP safe */
998  	return from_kuid_munged(current_user_ns(), current_uid());
999  }
1000  
SYSCALL_DEFINE0(geteuid)1001  SYSCALL_DEFINE0(geteuid)
1002  {
1003  	/* Only we change this so SMP safe */
1004  	return from_kuid_munged(current_user_ns(), current_euid());
1005  }
1006  
SYSCALL_DEFINE0(getgid)1007  SYSCALL_DEFINE0(getgid)
1008  {
1009  	/* Only we change this so SMP safe */
1010  	return from_kgid_munged(current_user_ns(), current_gid());
1011  }
1012  
SYSCALL_DEFINE0(getegid)1013  SYSCALL_DEFINE0(getegid)
1014  {
1015  	/* Only we change this so SMP safe */
1016  	return from_kgid_munged(current_user_ns(), current_egid());
1017  }
1018  
do_sys_times(struct tms * tms)1019  static void do_sys_times(struct tms *tms)
1020  {
1021  	u64 tgutime, tgstime, cutime, cstime;
1022  
1023  	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1024  	cutime = current->signal->cutime;
1025  	cstime = current->signal->cstime;
1026  	tms->tms_utime = nsec_to_clock_t(tgutime);
1027  	tms->tms_stime = nsec_to_clock_t(tgstime);
1028  	tms->tms_cutime = nsec_to_clock_t(cutime);
1029  	tms->tms_cstime = nsec_to_clock_t(cstime);
1030  }
1031  
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1032  SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1033  {
1034  	if (tbuf) {
1035  		struct tms tmp;
1036  
1037  		do_sys_times(&tmp);
1038  		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1039  			return -EFAULT;
1040  	}
1041  	force_successful_syscall_return();
1042  	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1043  }
1044  
1045  #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1046  static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1047  {
1048  	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1049  }
1050  
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1051  COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1052  {
1053  	if (tbuf) {
1054  		struct tms tms;
1055  		struct compat_tms tmp;
1056  
1057  		do_sys_times(&tms);
1058  		/* Convert our struct tms to the compat version. */
1059  		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1060  		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1061  		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1062  		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1063  		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1064  			return -EFAULT;
1065  	}
1066  	force_successful_syscall_return();
1067  	return compat_jiffies_to_clock_t(jiffies);
1068  }
1069  #endif
1070  
1071  /*
1072   * This needs some heavy checking ...
1073   * I just haven't the stomach for it. I also don't fully
1074   * understand sessions/pgrp etc. Let somebody who does explain it.
1075   *
1076   * OK, I think I have the protection semantics right.... this is really
1077   * only important on a multi-user system anyway, to make sure one user
1078   * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079   *
1080   * !PF_FORKNOEXEC check to conform completely to POSIX.
1081   */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1082  SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1083  {
1084  	struct task_struct *p;
1085  	struct task_struct *group_leader = current->group_leader;
1086  	struct pid *pgrp;
1087  	int err;
1088  
1089  	if (!pid)
1090  		pid = task_pid_vnr(group_leader);
1091  	if (!pgid)
1092  		pgid = pid;
1093  	if (pgid < 0)
1094  		return -EINVAL;
1095  	rcu_read_lock();
1096  
1097  	/* From this point forward we keep holding onto the tasklist lock
1098  	 * so that our parent does not change from under us. -DaveM
1099  	 */
1100  	write_lock_irq(&tasklist_lock);
1101  
1102  	err = -ESRCH;
1103  	p = find_task_by_vpid(pid);
1104  	if (!p)
1105  		goto out;
1106  
1107  	err = -EINVAL;
1108  	if (!thread_group_leader(p))
1109  		goto out;
1110  
1111  	if (same_thread_group(p->real_parent, group_leader)) {
1112  		err = -EPERM;
1113  		if (task_session(p) != task_session(group_leader))
1114  			goto out;
1115  		err = -EACCES;
1116  		if (!(p->flags & PF_FORKNOEXEC))
1117  			goto out;
1118  	} else {
1119  		err = -ESRCH;
1120  		if (p != group_leader)
1121  			goto out;
1122  	}
1123  
1124  	err = -EPERM;
1125  	if (p->signal->leader)
1126  		goto out;
1127  
1128  	pgrp = task_pid(p);
1129  	if (pgid != pid) {
1130  		struct task_struct *g;
1131  
1132  		pgrp = find_vpid(pgid);
1133  		g = pid_task(pgrp, PIDTYPE_PGID);
1134  		if (!g || task_session(g) != task_session(group_leader))
1135  			goto out;
1136  	}
1137  
1138  	err = security_task_setpgid(p, pgid);
1139  	if (err)
1140  		goto out;
1141  
1142  	if (task_pgrp(p) != pgrp)
1143  		change_pid(p, PIDTYPE_PGID, pgrp);
1144  
1145  	err = 0;
1146  out:
1147  	/* All paths lead to here, thus we are safe. -DaveM */
1148  	write_unlock_irq(&tasklist_lock);
1149  	rcu_read_unlock();
1150  	return err;
1151  }
1152  
do_getpgid(pid_t pid)1153  static int do_getpgid(pid_t pid)
1154  {
1155  	struct task_struct *p;
1156  	struct pid *grp;
1157  	int retval;
1158  
1159  	rcu_read_lock();
1160  	if (!pid)
1161  		grp = task_pgrp(current);
1162  	else {
1163  		retval = -ESRCH;
1164  		p = find_task_by_vpid(pid);
1165  		if (!p)
1166  			goto out;
1167  		grp = task_pgrp(p);
1168  		if (!grp)
1169  			goto out;
1170  
1171  		retval = security_task_getpgid(p);
1172  		if (retval)
1173  			goto out;
1174  	}
1175  	retval = pid_vnr(grp);
1176  out:
1177  	rcu_read_unlock();
1178  	return retval;
1179  }
1180  
SYSCALL_DEFINE1(getpgid,pid_t,pid)1181  SYSCALL_DEFINE1(getpgid, pid_t, pid)
1182  {
1183  	return do_getpgid(pid);
1184  }
1185  
1186  #ifdef __ARCH_WANT_SYS_GETPGRP
1187  
SYSCALL_DEFINE0(getpgrp)1188  SYSCALL_DEFINE0(getpgrp)
1189  {
1190  	return do_getpgid(0);
1191  }
1192  
1193  #endif
1194  
SYSCALL_DEFINE1(getsid,pid_t,pid)1195  SYSCALL_DEFINE1(getsid, pid_t, pid)
1196  {
1197  	struct task_struct *p;
1198  	struct pid *sid;
1199  	int retval;
1200  
1201  	rcu_read_lock();
1202  	if (!pid)
1203  		sid = task_session(current);
1204  	else {
1205  		retval = -ESRCH;
1206  		p = find_task_by_vpid(pid);
1207  		if (!p)
1208  			goto out;
1209  		sid = task_session(p);
1210  		if (!sid)
1211  			goto out;
1212  
1213  		retval = security_task_getsid(p);
1214  		if (retval)
1215  			goto out;
1216  	}
1217  	retval = pid_vnr(sid);
1218  out:
1219  	rcu_read_unlock();
1220  	return retval;
1221  }
1222  
set_special_pids(struct pid * pid)1223  static void set_special_pids(struct pid *pid)
1224  {
1225  	struct task_struct *curr = current->group_leader;
1226  
1227  	if (task_session(curr) != pid)
1228  		change_pid(curr, PIDTYPE_SID, pid);
1229  
1230  	if (task_pgrp(curr) != pid)
1231  		change_pid(curr, PIDTYPE_PGID, pid);
1232  }
1233  
ksys_setsid(void)1234  int ksys_setsid(void)
1235  {
1236  	struct task_struct *group_leader = current->group_leader;
1237  	struct pid *sid = task_pid(group_leader);
1238  	pid_t session = pid_vnr(sid);
1239  	int err = -EPERM;
1240  
1241  	write_lock_irq(&tasklist_lock);
1242  	/* Fail if I am already a session leader */
1243  	if (group_leader->signal->leader)
1244  		goto out;
1245  
1246  	/* Fail if a process group id already exists that equals the
1247  	 * proposed session id.
1248  	 */
1249  	if (pid_task(sid, PIDTYPE_PGID))
1250  		goto out;
1251  
1252  	group_leader->signal->leader = 1;
1253  	set_special_pids(sid);
1254  
1255  	proc_clear_tty(group_leader);
1256  
1257  	err = session;
1258  out:
1259  	write_unlock_irq(&tasklist_lock);
1260  	if (err > 0) {
1261  		proc_sid_connector(group_leader);
1262  		sched_autogroup_create_attach(group_leader);
1263  	}
1264  	return err;
1265  }
1266  
SYSCALL_DEFINE0(setsid)1267  SYSCALL_DEFINE0(setsid)
1268  {
1269  	return ksys_setsid();
1270  }
1271  
1272  DECLARE_RWSEM(uts_sem);
1273  
1274  #ifdef COMPAT_UTS_MACHINE
1275  #define override_architecture(name) \
1276  	(personality(current->personality) == PER_LINUX32 && \
1277  	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1278  		      sizeof(COMPAT_UTS_MACHINE)))
1279  #else
1280  #define override_architecture(name)	0
1281  #endif
1282  
1283  /*
1284   * Work around broken programs that cannot handle "Linux 3.0".
1285   * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1286   * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1287   * 2.6.60.
1288   */
override_release(char __user * release,size_t len)1289  static int override_release(char __user *release, size_t len)
1290  {
1291  	int ret = 0;
1292  
1293  	if (current->personality & UNAME26) {
1294  		const char *rest = UTS_RELEASE;
1295  		char buf[65] = { 0 };
1296  		int ndots = 0;
1297  		unsigned v;
1298  		size_t copy;
1299  
1300  		while (*rest) {
1301  			if (*rest == '.' && ++ndots >= 3)
1302  				break;
1303  			if (!isdigit(*rest) && *rest != '.')
1304  				break;
1305  			rest++;
1306  		}
1307  		v = LINUX_VERSION_PATCHLEVEL + 60;
1308  		copy = clamp_t(size_t, len, 1, sizeof(buf));
1309  		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1310  		ret = copy_to_user(release, buf, copy + 1);
1311  	}
1312  	return ret;
1313  }
1314  
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1315  SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1316  {
1317  	struct new_utsname tmp;
1318  
1319  	down_read(&uts_sem);
1320  	memcpy(&tmp, utsname(), sizeof(tmp));
1321  	up_read(&uts_sem);
1322  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1323  		return -EFAULT;
1324  
1325  	if (override_release(name->release, sizeof(name->release)))
1326  		return -EFAULT;
1327  	if (override_architecture(name))
1328  		return -EFAULT;
1329  	return 0;
1330  }
1331  
1332  #ifdef __ARCH_WANT_SYS_OLD_UNAME
1333  /*
1334   * Old cruft
1335   */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1336  SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1337  {
1338  	struct old_utsname tmp;
1339  
1340  	if (!name)
1341  		return -EFAULT;
1342  
1343  	down_read(&uts_sem);
1344  	memcpy(&tmp, utsname(), sizeof(tmp));
1345  	up_read(&uts_sem);
1346  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1347  		return -EFAULT;
1348  
1349  	if (override_release(name->release, sizeof(name->release)))
1350  		return -EFAULT;
1351  	if (override_architecture(name))
1352  		return -EFAULT;
1353  	return 0;
1354  }
1355  
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1356  SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1357  {
1358  	struct oldold_utsname tmp;
1359  
1360  	if (!name)
1361  		return -EFAULT;
1362  
1363  	memset(&tmp, 0, sizeof(tmp));
1364  
1365  	down_read(&uts_sem);
1366  	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1367  	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1368  	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1369  	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1370  	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1371  	up_read(&uts_sem);
1372  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1373  		return -EFAULT;
1374  
1375  	if (override_architecture(name))
1376  		return -EFAULT;
1377  	if (override_release(name->release, sizeof(name->release)))
1378  		return -EFAULT;
1379  	return 0;
1380  }
1381  #endif
1382  
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1383  SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1384  {
1385  	int errno;
1386  	char tmp[__NEW_UTS_LEN];
1387  
1388  	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1389  		return -EPERM;
1390  
1391  	if (len < 0 || len > __NEW_UTS_LEN)
1392  		return -EINVAL;
1393  	errno = -EFAULT;
1394  	if (!copy_from_user(tmp, name, len)) {
1395  		struct new_utsname *u;
1396  
1397  		add_device_randomness(tmp, len);
1398  		down_write(&uts_sem);
1399  		u = utsname();
1400  		memcpy(u->nodename, tmp, len);
1401  		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1402  		errno = 0;
1403  		uts_proc_notify(UTS_PROC_HOSTNAME);
1404  		up_write(&uts_sem);
1405  	}
1406  	return errno;
1407  }
1408  
1409  #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1410  
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1411  SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1412  {
1413  	int i;
1414  	struct new_utsname *u;
1415  	char tmp[__NEW_UTS_LEN + 1];
1416  
1417  	if (len < 0)
1418  		return -EINVAL;
1419  	down_read(&uts_sem);
1420  	u = utsname();
1421  	i = 1 + strlen(u->nodename);
1422  	if (i > len)
1423  		i = len;
1424  	memcpy(tmp, u->nodename, i);
1425  	up_read(&uts_sem);
1426  	if (copy_to_user(name, tmp, i))
1427  		return -EFAULT;
1428  	return 0;
1429  }
1430  
1431  #endif
1432  
1433  /*
1434   * Only setdomainname; getdomainname can be implemented by calling
1435   * uname()
1436   */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1437  SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1438  {
1439  	int errno;
1440  	char tmp[__NEW_UTS_LEN];
1441  
1442  	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1443  		return -EPERM;
1444  	if (len < 0 || len > __NEW_UTS_LEN)
1445  		return -EINVAL;
1446  
1447  	errno = -EFAULT;
1448  	if (!copy_from_user(tmp, name, len)) {
1449  		struct new_utsname *u;
1450  
1451  		add_device_randomness(tmp, len);
1452  		down_write(&uts_sem);
1453  		u = utsname();
1454  		memcpy(u->domainname, tmp, len);
1455  		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1456  		errno = 0;
1457  		uts_proc_notify(UTS_PROC_DOMAINNAME);
1458  		up_write(&uts_sem);
1459  	}
1460  	return errno;
1461  }
1462  
1463  /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1464  static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1465  		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1466  {
1467  	struct rlimit *rlim;
1468  	int retval = 0;
1469  
1470  	if (resource >= RLIM_NLIMITS)
1471  		return -EINVAL;
1472  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1473  
1474  	if (new_rlim) {
1475  		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1476  			return -EINVAL;
1477  		if (resource == RLIMIT_NOFILE &&
1478  				new_rlim->rlim_max > sysctl_nr_open)
1479  			return -EPERM;
1480  	}
1481  
1482  	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1483  	rlim = tsk->signal->rlim + resource;
1484  	task_lock(tsk->group_leader);
1485  	if (new_rlim) {
1486  		/*
1487  		 * Keep the capable check against init_user_ns until cgroups can
1488  		 * contain all limits.
1489  		 */
1490  		if (new_rlim->rlim_max > rlim->rlim_max &&
1491  				!capable(CAP_SYS_RESOURCE))
1492  			retval = -EPERM;
1493  		if (!retval)
1494  			retval = security_task_setrlimit(tsk, resource, new_rlim);
1495  	}
1496  	if (!retval) {
1497  		if (old_rlim)
1498  			*old_rlim = *rlim;
1499  		if (new_rlim)
1500  			*rlim = *new_rlim;
1501  	}
1502  	task_unlock(tsk->group_leader);
1503  
1504  	/*
1505  	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1506  	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1507  	 * ignores the rlimit.
1508  	 */
1509  	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1510  	    new_rlim->rlim_cur != RLIM_INFINITY &&
1511  	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1512  		/*
1513  		 * update_rlimit_cpu can fail if the task is exiting, but there
1514  		 * may be other tasks in the thread group that are not exiting,
1515  		 * and they need their cpu timers adjusted.
1516  		 *
1517  		 * The group_leader is the last task to be released, so if we
1518  		 * cannot update_rlimit_cpu on it, then the entire process is
1519  		 * exiting and we do not need to update at all.
1520  		 */
1521  		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1522  	}
1523  
1524  	return retval;
1525  }
1526  
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1527  SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1528  {
1529  	struct rlimit value;
1530  	int ret;
1531  
1532  	ret = do_prlimit(current, resource, NULL, &value);
1533  	if (!ret)
1534  		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1535  
1536  	return ret;
1537  }
1538  
1539  #ifdef CONFIG_COMPAT
1540  
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1541  COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1542  		       struct compat_rlimit __user *, rlim)
1543  {
1544  	struct rlimit r;
1545  	struct compat_rlimit r32;
1546  
1547  	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1548  		return -EFAULT;
1549  
1550  	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1551  		r.rlim_cur = RLIM_INFINITY;
1552  	else
1553  		r.rlim_cur = r32.rlim_cur;
1554  	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1555  		r.rlim_max = RLIM_INFINITY;
1556  	else
1557  		r.rlim_max = r32.rlim_max;
1558  	return do_prlimit(current, resource, &r, NULL);
1559  }
1560  
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1561  COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1562  		       struct compat_rlimit __user *, rlim)
1563  {
1564  	struct rlimit r;
1565  	int ret;
1566  
1567  	ret = do_prlimit(current, resource, NULL, &r);
1568  	if (!ret) {
1569  		struct compat_rlimit r32;
1570  		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1571  			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1572  		else
1573  			r32.rlim_cur = r.rlim_cur;
1574  		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1575  			r32.rlim_max = COMPAT_RLIM_INFINITY;
1576  		else
1577  			r32.rlim_max = r.rlim_max;
1578  
1579  		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1580  			return -EFAULT;
1581  	}
1582  	return ret;
1583  }
1584  
1585  #endif
1586  
1587  #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1588  
1589  /*
1590   *	Back compatibility for getrlimit. Needed for some apps.
1591   */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1592  SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1593  		struct rlimit __user *, rlim)
1594  {
1595  	struct rlimit x;
1596  	if (resource >= RLIM_NLIMITS)
1597  		return -EINVAL;
1598  
1599  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1600  	task_lock(current->group_leader);
1601  	x = current->signal->rlim[resource];
1602  	task_unlock(current->group_leader);
1603  	if (x.rlim_cur > 0x7FFFFFFF)
1604  		x.rlim_cur = 0x7FFFFFFF;
1605  	if (x.rlim_max > 0x7FFFFFFF)
1606  		x.rlim_max = 0x7FFFFFFF;
1607  	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1608  }
1609  
1610  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1611  COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1612  		       struct compat_rlimit __user *, rlim)
1613  {
1614  	struct rlimit r;
1615  
1616  	if (resource >= RLIM_NLIMITS)
1617  		return -EINVAL;
1618  
1619  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1620  	task_lock(current->group_leader);
1621  	r = current->signal->rlim[resource];
1622  	task_unlock(current->group_leader);
1623  	if (r.rlim_cur > 0x7FFFFFFF)
1624  		r.rlim_cur = 0x7FFFFFFF;
1625  	if (r.rlim_max > 0x7FFFFFFF)
1626  		r.rlim_max = 0x7FFFFFFF;
1627  
1628  	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1629  	    put_user(r.rlim_max, &rlim->rlim_max))
1630  		return -EFAULT;
1631  	return 0;
1632  }
1633  #endif
1634  
1635  #endif
1636  
rlim64_is_infinity(__u64 rlim64)1637  static inline bool rlim64_is_infinity(__u64 rlim64)
1638  {
1639  #if BITS_PER_LONG < 64
1640  	return rlim64 >= ULONG_MAX;
1641  #else
1642  	return rlim64 == RLIM64_INFINITY;
1643  #endif
1644  }
1645  
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1646  static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1647  {
1648  	if (rlim->rlim_cur == RLIM_INFINITY)
1649  		rlim64->rlim_cur = RLIM64_INFINITY;
1650  	else
1651  		rlim64->rlim_cur = rlim->rlim_cur;
1652  	if (rlim->rlim_max == RLIM_INFINITY)
1653  		rlim64->rlim_max = RLIM64_INFINITY;
1654  	else
1655  		rlim64->rlim_max = rlim->rlim_max;
1656  }
1657  
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1658  static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1659  {
1660  	if (rlim64_is_infinity(rlim64->rlim_cur))
1661  		rlim->rlim_cur = RLIM_INFINITY;
1662  	else
1663  		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1664  	if (rlim64_is_infinity(rlim64->rlim_max))
1665  		rlim->rlim_max = RLIM_INFINITY;
1666  	else
1667  		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1668  }
1669  
1670  /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1671  static int check_prlimit_permission(struct task_struct *task,
1672  				    unsigned int flags)
1673  {
1674  	const struct cred *cred = current_cred(), *tcred;
1675  	bool id_match;
1676  
1677  	if (current == task)
1678  		return 0;
1679  
1680  	tcred = __task_cred(task);
1681  	id_match = (uid_eq(cred->uid, tcred->euid) &&
1682  		    uid_eq(cred->uid, tcred->suid) &&
1683  		    uid_eq(cred->uid, tcred->uid)  &&
1684  		    gid_eq(cred->gid, tcred->egid) &&
1685  		    gid_eq(cred->gid, tcred->sgid) &&
1686  		    gid_eq(cred->gid, tcred->gid));
1687  	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1688  		return -EPERM;
1689  
1690  	return security_task_prlimit(cred, tcred, flags);
1691  }
1692  
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1693  SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1694  		const struct rlimit64 __user *, new_rlim,
1695  		struct rlimit64 __user *, old_rlim)
1696  {
1697  	struct rlimit64 old64, new64;
1698  	struct rlimit old, new;
1699  	struct task_struct *tsk;
1700  	unsigned int checkflags = 0;
1701  	int ret;
1702  
1703  	if (old_rlim)
1704  		checkflags |= LSM_PRLIMIT_READ;
1705  
1706  	if (new_rlim) {
1707  		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1708  			return -EFAULT;
1709  		rlim64_to_rlim(&new64, &new);
1710  		checkflags |= LSM_PRLIMIT_WRITE;
1711  	}
1712  
1713  	rcu_read_lock();
1714  	tsk = pid ? find_task_by_vpid(pid) : current;
1715  	if (!tsk) {
1716  		rcu_read_unlock();
1717  		return -ESRCH;
1718  	}
1719  	ret = check_prlimit_permission(tsk, checkflags);
1720  	if (ret) {
1721  		rcu_read_unlock();
1722  		return ret;
1723  	}
1724  	get_task_struct(tsk);
1725  	rcu_read_unlock();
1726  
1727  	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1728  			old_rlim ? &old : NULL);
1729  
1730  	if (!ret && old_rlim) {
1731  		rlim_to_rlim64(&old, &old64);
1732  		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1733  			ret = -EFAULT;
1734  	}
1735  
1736  	put_task_struct(tsk);
1737  	return ret;
1738  }
1739  
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1740  SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1741  {
1742  	struct rlimit new_rlim;
1743  
1744  	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1745  		return -EFAULT;
1746  	return do_prlimit(current, resource, &new_rlim, NULL);
1747  }
1748  
1749  /*
1750   * It would make sense to put struct rusage in the task_struct,
1751   * except that would make the task_struct be *really big*.  After
1752   * task_struct gets moved into malloc'ed memory, it would
1753   * make sense to do this.  It will make moving the rest of the information
1754   * a lot simpler!  (Which we're not doing right now because we're not
1755   * measuring them yet).
1756   *
1757   * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1758   * races with threads incrementing their own counters.  But since word
1759   * reads are atomic, we either get new values or old values and we don't
1760   * care which for the sums.  We always take the siglock to protect reading
1761   * the c* fields from p->signal from races with exit.c updating those
1762   * fields when reaping, so a sample either gets all the additions of a
1763   * given child after it's reaped, or none so this sample is before reaping.
1764   *
1765   * Locking:
1766   * We need to take the siglock for CHILDEREN, SELF and BOTH
1767   * for  the cases current multithreaded, non-current single threaded
1768   * non-current multithreaded.  Thread traversal is now safe with
1769   * the siglock held.
1770   * Strictly speaking, we donot need to take the siglock if we are current and
1771   * single threaded,  as no one else can take our signal_struct away, no one
1772   * else can  reap the  children to update signal->c* counters, and no one else
1773   * can race with the signal-> fields. If we do not take any lock, the
1774   * signal-> fields could be read out of order while another thread was just
1775   * exiting. So we should  place a read memory barrier when we avoid the lock.
1776   * On the writer side,  write memory barrier is implied in  __exit_signal
1777   * as __exit_signal releases  the siglock spinlock after updating the signal->
1778   * fields. But we don't do this yet to keep things simple.
1779   *
1780   */
1781  
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1782  static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1783  {
1784  	r->ru_nvcsw += t->nvcsw;
1785  	r->ru_nivcsw += t->nivcsw;
1786  	r->ru_minflt += t->min_flt;
1787  	r->ru_majflt += t->maj_flt;
1788  	r->ru_inblock += task_io_get_inblock(t);
1789  	r->ru_oublock += task_io_get_oublock(t);
1790  }
1791  
getrusage(struct task_struct * p,int who,struct rusage * r)1792  void getrusage(struct task_struct *p, int who, struct rusage *r)
1793  {
1794  	struct task_struct *t;
1795  	unsigned long flags;
1796  	u64 tgutime, tgstime, utime, stime;
1797  	unsigned long maxrss;
1798  	struct mm_struct *mm;
1799  	struct signal_struct *sig = p->signal;
1800  	unsigned int seq = 0;
1801  
1802  retry:
1803  	memset(r, 0, sizeof(*r));
1804  	utime = stime = 0;
1805  	maxrss = 0;
1806  
1807  	if (who == RUSAGE_THREAD) {
1808  		task_cputime_adjusted(current, &utime, &stime);
1809  		accumulate_thread_rusage(p, r);
1810  		maxrss = sig->maxrss;
1811  		goto out_thread;
1812  	}
1813  
1814  	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1815  
1816  	switch (who) {
1817  	case RUSAGE_BOTH:
1818  	case RUSAGE_CHILDREN:
1819  		utime = sig->cutime;
1820  		stime = sig->cstime;
1821  		r->ru_nvcsw = sig->cnvcsw;
1822  		r->ru_nivcsw = sig->cnivcsw;
1823  		r->ru_minflt = sig->cmin_flt;
1824  		r->ru_majflt = sig->cmaj_flt;
1825  		r->ru_inblock = sig->cinblock;
1826  		r->ru_oublock = sig->coublock;
1827  		maxrss = sig->cmaxrss;
1828  
1829  		if (who == RUSAGE_CHILDREN)
1830  			break;
1831  		fallthrough;
1832  
1833  	case RUSAGE_SELF:
1834  		r->ru_nvcsw += sig->nvcsw;
1835  		r->ru_nivcsw += sig->nivcsw;
1836  		r->ru_minflt += sig->min_flt;
1837  		r->ru_majflt += sig->maj_flt;
1838  		r->ru_inblock += sig->inblock;
1839  		r->ru_oublock += sig->oublock;
1840  		if (maxrss < sig->maxrss)
1841  			maxrss = sig->maxrss;
1842  
1843  		rcu_read_lock();
1844  		__for_each_thread(sig, t)
1845  			accumulate_thread_rusage(t, r);
1846  		rcu_read_unlock();
1847  
1848  		break;
1849  
1850  	default:
1851  		BUG();
1852  	}
1853  
1854  	if (need_seqretry(&sig->stats_lock, seq)) {
1855  		seq = 1;
1856  		goto retry;
1857  	}
1858  	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1859  
1860  	if (who == RUSAGE_CHILDREN)
1861  		goto out_children;
1862  
1863  	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1864  	utime += tgutime;
1865  	stime += tgstime;
1866  
1867  out_thread:
1868  	mm = get_task_mm(p);
1869  	if (mm) {
1870  		setmax_mm_hiwater_rss(&maxrss, mm);
1871  		mmput(mm);
1872  	}
1873  
1874  out_children:
1875  	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1876  	r->ru_utime = ns_to_kernel_old_timeval(utime);
1877  	r->ru_stime = ns_to_kernel_old_timeval(stime);
1878  }
1879  
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1880  SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1881  {
1882  	struct rusage r;
1883  
1884  	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1885  	    who != RUSAGE_THREAD)
1886  		return -EINVAL;
1887  
1888  	getrusage(current, who, &r);
1889  	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1890  }
1891  
1892  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1893  COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1894  {
1895  	struct rusage r;
1896  
1897  	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1898  	    who != RUSAGE_THREAD)
1899  		return -EINVAL;
1900  
1901  	getrusage(current, who, &r);
1902  	return put_compat_rusage(&r, ru);
1903  }
1904  #endif
1905  
SYSCALL_DEFINE1(umask,int,mask)1906  SYSCALL_DEFINE1(umask, int, mask)
1907  {
1908  	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1909  	return mask;
1910  }
1911  
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1912  static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1913  {
1914  	struct fd exe;
1915  	struct inode *inode;
1916  	int err;
1917  
1918  	exe = fdget(fd);
1919  	if (!fd_file(exe))
1920  		return -EBADF;
1921  
1922  	inode = file_inode(fd_file(exe));
1923  
1924  	/*
1925  	 * Because the original mm->exe_file points to executable file, make
1926  	 * sure that this one is executable as well, to avoid breaking an
1927  	 * overall picture.
1928  	 */
1929  	err = -EACCES;
1930  	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1931  		goto exit;
1932  
1933  	err = file_permission(fd_file(exe), MAY_EXEC);
1934  	if (err)
1935  		goto exit;
1936  
1937  	err = replace_mm_exe_file(mm, fd_file(exe));
1938  exit:
1939  	fdput(exe);
1940  	return err;
1941  }
1942  
1943  /*
1944   * Check arithmetic relations of passed addresses.
1945   *
1946   * WARNING: we don't require any capability here so be very careful
1947   * in what is allowed for modification from userspace.
1948   */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1949  static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1950  {
1951  	unsigned long mmap_max_addr = TASK_SIZE;
1952  	int error = -EINVAL, i;
1953  
1954  	static const unsigned char offsets[] = {
1955  		offsetof(struct prctl_mm_map, start_code),
1956  		offsetof(struct prctl_mm_map, end_code),
1957  		offsetof(struct prctl_mm_map, start_data),
1958  		offsetof(struct prctl_mm_map, end_data),
1959  		offsetof(struct prctl_mm_map, start_brk),
1960  		offsetof(struct prctl_mm_map, brk),
1961  		offsetof(struct prctl_mm_map, start_stack),
1962  		offsetof(struct prctl_mm_map, arg_start),
1963  		offsetof(struct prctl_mm_map, arg_end),
1964  		offsetof(struct prctl_mm_map, env_start),
1965  		offsetof(struct prctl_mm_map, env_end),
1966  	};
1967  
1968  	/*
1969  	 * Make sure the members are not somewhere outside
1970  	 * of allowed address space.
1971  	 */
1972  	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1973  		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1974  
1975  		if ((unsigned long)val >= mmap_max_addr ||
1976  		    (unsigned long)val < mmap_min_addr)
1977  			goto out;
1978  	}
1979  
1980  	/*
1981  	 * Make sure the pairs are ordered.
1982  	 */
1983  #define __prctl_check_order(__m1, __op, __m2)				\
1984  	((unsigned long)prctl_map->__m1 __op				\
1985  	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1986  	error  = __prctl_check_order(start_code, <, end_code);
1987  	error |= __prctl_check_order(start_data,<=, end_data);
1988  	error |= __prctl_check_order(start_brk, <=, brk);
1989  	error |= __prctl_check_order(arg_start, <=, arg_end);
1990  	error |= __prctl_check_order(env_start, <=, env_end);
1991  	if (error)
1992  		goto out;
1993  #undef __prctl_check_order
1994  
1995  	error = -EINVAL;
1996  
1997  	/*
1998  	 * Neither we should allow to override limits if they set.
1999  	 */
2000  	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2001  			      prctl_map->start_brk, prctl_map->end_data,
2002  			      prctl_map->start_data))
2003  			goto out;
2004  
2005  	error = 0;
2006  out:
2007  	return error;
2008  }
2009  
2010  #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)2011  static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2012  {
2013  	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2014  	unsigned long user_auxv[AT_VECTOR_SIZE];
2015  	struct mm_struct *mm = current->mm;
2016  	int error;
2017  
2018  	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2019  	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2020  
2021  	if (opt == PR_SET_MM_MAP_SIZE)
2022  		return put_user((unsigned int)sizeof(prctl_map),
2023  				(unsigned int __user *)addr);
2024  
2025  	if (data_size != sizeof(prctl_map))
2026  		return -EINVAL;
2027  
2028  	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2029  		return -EFAULT;
2030  
2031  	error = validate_prctl_map_addr(&prctl_map);
2032  	if (error)
2033  		return error;
2034  
2035  	if (prctl_map.auxv_size) {
2036  		/*
2037  		 * Someone is trying to cheat the auxv vector.
2038  		 */
2039  		if (!prctl_map.auxv ||
2040  				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2041  			return -EINVAL;
2042  
2043  		memset(user_auxv, 0, sizeof(user_auxv));
2044  		if (copy_from_user(user_auxv,
2045  				   (const void __user *)prctl_map.auxv,
2046  				   prctl_map.auxv_size))
2047  			return -EFAULT;
2048  
2049  		/* Last entry must be AT_NULL as specification requires */
2050  		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2051  		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2052  	}
2053  
2054  	if (prctl_map.exe_fd != (u32)-1) {
2055  		/*
2056  		 * Check if the current user is checkpoint/restore capable.
2057  		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2058  		 * or CAP_CHECKPOINT_RESTORE.
2059  		 * Note that a user with access to ptrace can masquerade an
2060  		 * arbitrary program as any executable, even setuid ones.
2061  		 * This may have implications in the tomoyo subsystem.
2062  		 */
2063  		if (!checkpoint_restore_ns_capable(current_user_ns()))
2064  			return -EPERM;
2065  
2066  		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2067  		if (error)
2068  			return error;
2069  	}
2070  
2071  	/*
2072  	 * arg_lock protects concurrent updates but we still need mmap_lock for
2073  	 * read to exclude races with sys_brk.
2074  	 */
2075  	mmap_read_lock(mm);
2076  
2077  	/*
2078  	 * We don't validate if these members are pointing to
2079  	 * real present VMAs because application may have correspond
2080  	 * VMAs already unmapped and kernel uses these members for statistics
2081  	 * output in procfs mostly, except
2082  	 *
2083  	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2084  	 *    for VMAs when updating these members so anything wrong written
2085  	 *    here cause kernel to swear at userspace program but won't lead
2086  	 *    to any problem in kernel itself
2087  	 */
2088  
2089  	spin_lock(&mm->arg_lock);
2090  	mm->start_code	= prctl_map.start_code;
2091  	mm->end_code	= prctl_map.end_code;
2092  	mm->start_data	= prctl_map.start_data;
2093  	mm->end_data	= prctl_map.end_data;
2094  	mm->start_brk	= prctl_map.start_brk;
2095  	mm->brk		= prctl_map.brk;
2096  	mm->start_stack	= prctl_map.start_stack;
2097  	mm->arg_start	= prctl_map.arg_start;
2098  	mm->arg_end	= prctl_map.arg_end;
2099  	mm->env_start	= prctl_map.env_start;
2100  	mm->env_end	= prctl_map.env_end;
2101  	spin_unlock(&mm->arg_lock);
2102  
2103  	/*
2104  	 * Note this update of @saved_auxv is lockless thus
2105  	 * if someone reads this member in procfs while we're
2106  	 * updating -- it may get partly updated results. It's
2107  	 * known and acceptable trade off: we leave it as is to
2108  	 * not introduce additional locks here making the kernel
2109  	 * more complex.
2110  	 */
2111  	if (prctl_map.auxv_size)
2112  		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2113  
2114  	mmap_read_unlock(mm);
2115  	return 0;
2116  }
2117  #endif /* CONFIG_CHECKPOINT_RESTORE */
2118  
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2119  static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2120  			  unsigned long len)
2121  {
2122  	/*
2123  	 * This doesn't move the auxiliary vector itself since it's pinned to
2124  	 * mm_struct, but it permits filling the vector with new values.  It's
2125  	 * up to the caller to provide sane values here, otherwise userspace
2126  	 * tools which use this vector might be unhappy.
2127  	 */
2128  	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2129  
2130  	if (len > sizeof(user_auxv))
2131  		return -EINVAL;
2132  
2133  	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2134  		return -EFAULT;
2135  
2136  	/* Make sure the last entry is always AT_NULL */
2137  	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2138  	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2139  
2140  	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2141  
2142  	task_lock(current);
2143  	memcpy(mm->saved_auxv, user_auxv, len);
2144  	task_unlock(current);
2145  
2146  	return 0;
2147  }
2148  
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2149  static int prctl_set_mm(int opt, unsigned long addr,
2150  			unsigned long arg4, unsigned long arg5)
2151  {
2152  	struct mm_struct *mm = current->mm;
2153  	struct prctl_mm_map prctl_map = {
2154  		.auxv = NULL,
2155  		.auxv_size = 0,
2156  		.exe_fd = -1,
2157  	};
2158  	struct vm_area_struct *vma;
2159  	int error;
2160  
2161  	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2162  			      opt != PR_SET_MM_MAP &&
2163  			      opt != PR_SET_MM_MAP_SIZE)))
2164  		return -EINVAL;
2165  
2166  #ifdef CONFIG_CHECKPOINT_RESTORE
2167  	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2168  		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2169  #endif
2170  
2171  	if (!capable(CAP_SYS_RESOURCE))
2172  		return -EPERM;
2173  
2174  	if (opt == PR_SET_MM_EXE_FILE)
2175  		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2176  
2177  	if (opt == PR_SET_MM_AUXV)
2178  		return prctl_set_auxv(mm, addr, arg4);
2179  
2180  	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2181  		return -EINVAL;
2182  
2183  	error = -EINVAL;
2184  
2185  	/*
2186  	 * arg_lock protects concurrent updates of arg boundaries, we need
2187  	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2188  	 * validation.
2189  	 */
2190  	mmap_read_lock(mm);
2191  	vma = find_vma(mm, addr);
2192  
2193  	spin_lock(&mm->arg_lock);
2194  	prctl_map.start_code	= mm->start_code;
2195  	prctl_map.end_code	= mm->end_code;
2196  	prctl_map.start_data	= mm->start_data;
2197  	prctl_map.end_data	= mm->end_data;
2198  	prctl_map.start_brk	= mm->start_brk;
2199  	prctl_map.brk		= mm->brk;
2200  	prctl_map.start_stack	= mm->start_stack;
2201  	prctl_map.arg_start	= mm->arg_start;
2202  	prctl_map.arg_end	= mm->arg_end;
2203  	prctl_map.env_start	= mm->env_start;
2204  	prctl_map.env_end	= mm->env_end;
2205  
2206  	switch (opt) {
2207  	case PR_SET_MM_START_CODE:
2208  		prctl_map.start_code = addr;
2209  		break;
2210  	case PR_SET_MM_END_CODE:
2211  		prctl_map.end_code = addr;
2212  		break;
2213  	case PR_SET_MM_START_DATA:
2214  		prctl_map.start_data = addr;
2215  		break;
2216  	case PR_SET_MM_END_DATA:
2217  		prctl_map.end_data = addr;
2218  		break;
2219  	case PR_SET_MM_START_STACK:
2220  		prctl_map.start_stack = addr;
2221  		break;
2222  	case PR_SET_MM_START_BRK:
2223  		prctl_map.start_brk = addr;
2224  		break;
2225  	case PR_SET_MM_BRK:
2226  		prctl_map.brk = addr;
2227  		break;
2228  	case PR_SET_MM_ARG_START:
2229  		prctl_map.arg_start = addr;
2230  		break;
2231  	case PR_SET_MM_ARG_END:
2232  		prctl_map.arg_end = addr;
2233  		break;
2234  	case PR_SET_MM_ENV_START:
2235  		prctl_map.env_start = addr;
2236  		break;
2237  	case PR_SET_MM_ENV_END:
2238  		prctl_map.env_end = addr;
2239  		break;
2240  	default:
2241  		goto out;
2242  	}
2243  
2244  	error = validate_prctl_map_addr(&prctl_map);
2245  	if (error)
2246  		goto out;
2247  
2248  	switch (opt) {
2249  	/*
2250  	 * If command line arguments and environment
2251  	 * are placed somewhere else on stack, we can
2252  	 * set them up here, ARG_START/END to setup
2253  	 * command line arguments and ENV_START/END
2254  	 * for environment.
2255  	 */
2256  	case PR_SET_MM_START_STACK:
2257  	case PR_SET_MM_ARG_START:
2258  	case PR_SET_MM_ARG_END:
2259  	case PR_SET_MM_ENV_START:
2260  	case PR_SET_MM_ENV_END:
2261  		if (!vma) {
2262  			error = -EFAULT;
2263  			goto out;
2264  		}
2265  	}
2266  
2267  	mm->start_code	= prctl_map.start_code;
2268  	mm->end_code	= prctl_map.end_code;
2269  	mm->start_data	= prctl_map.start_data;
2270  	mm->end_data	= prctl_map.end_data;
2271  	mm->start_brk	= prctl_map.start_brk;
2272  	mm->brk		= prctl_map.brk;
2273  	mm->start_stack	= prctl_map.start_stack;
2274  	mm->arg_start	= prctl_map.arg_start;
2275  	mm->arg_end	= prctl_map.arg_end;
2276  	mm->env_start	= prctl_map.env_start;
2277  	mm->env_end	= prctl_map.env_end;
2278  
2279  	error = 0;
2280  out:
2281  	spin_unlock(&mm->arg_lock);
2282  	mmap_read_unlock(mm);
2283  	return error;
2284  }
2285  
2286  #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2287  static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2288  {
2289  	return put_user(me->clear_child_tid, tid_addr);
2290  }
2291  #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2292  static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2293  {
2294  	return -EINVAL;
2295  }
2296  #endif
2297  
propagate_has_child_subreaper(struct task_struct * p,void * data)2298  static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2299  {
2300  	/*
2301  	 * If task has has_child_subreaper - all its descendants
2302  	 * already have these flag too and new descendants will
2303  	 * inherit it on fork, skip them.
2304  	 *
2305  	 * If we've found child_reaper - skip descendants in
2306  	 * it's subtree as they will never get out pidns.
2307  	 */
2308  	if (p->signal->has_child_subreaper ||
2309  	    is_child_reaper(task_pid(p)))
2310  		return 0;
2311  
2312  	p->signal->has_child_subreaper = 1;
2313  	return 1;
2314  }
2315  
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2316  int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2317  {
2318  	return -EINVAL;
2319  }
2320  
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2321  int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2322  				    unsigned long ctrl)
2323  {
2324  	return -EINVAL;
2325  }
2326  
2327  #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2328  
2329  #ifdef CONFIG_ANON_VMA_NAME
2330  
2331  #define ANON_VMA_NAME_MAX_LEN		80
2332  #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2333  
is_valid_name_char(char ch)2334  static inline bool is_valid_name_char(char ch)
2335  {
2336  	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2337  	return ch > 0x1f && ch < 0x7f &&
2338  		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2339  }
2340  
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2341  static int prctl_set_vma(unsigned long opt, unsigned long addr,
2342  			 unsigned long size, unsigned long arg)
2343  {
2344  	struct mm_struct *mm = current->mm;
2345  	const char __user *uname;
2346  	struct anon_vma_name *anon_name = NULL;
2347  	int error;
2348  
2349  	switch (opt) {
2350  	case PR_SET_VMA_ANON_NAME:
2351  		uname = (const char __user *)arg;
2352  		if (uname) {
2353  			char *name, *pch;
2354  
2355  			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2356  			if (IS_ERR(name))
2357  				return PTR_ERR(name);
2358  
2359  			for (pch = name; *pch != '\0'; pch++) {
2360  				if (!is_valid_name_char(*pch)) {
2361  					kfree(name);
2362  					return -EINVAL;
2363  				}
2364  			}
2365  			/* anon_vma has its own copy */
2366  			anon_name = anon_vma_name_alloc(name);
2367  			kfree(name);
2368  			if (!anon_name)
2369  				return -ENOMEM;
2370  
2371  		}
2372  
2373  		mmap_write_lock(mm);
2374  		error = madvise_set_anon_name(mm, addr, size, anon_name);
2375  		mmap_write_unlock(mm);
2376  		anon_vma_name_put(anon_name);
2377  		break;
2378  	default:
2379  		error = -EINVAL;
2380  	}
2381  
2382  	return error;
2383  }
2384  
2385  #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2386  static int prctl_set_vma(unsigned long opt, unsigned long start,
2387  			 unsigned long size, unsigned long arg)
2388  {
2389  	return -EINVAL;
2390  }
2391  #endif /* CONFIG_ANON_VMA_NAME */
2392  
get_current_mdwe(void)2393  static inline unsigned long get_current_mdwe(void)
2394  {
2395  	unsigned long ret = 0;
2396  
2397  	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2398  		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2399  	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2400  		ret |= PR_MDWE_NO_INHERIT;
2401  
2402  	return ret;
2403  }
2404  
prctl_set_mdwe(unsigned long bits,unsigned long arg3,unsigned long arg4,unsigned long arg5)2405  static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2406  				 unsigned long arg4, unsigned long arg5)
2407  {
2408  	unsigned long current_bits;
2409  
2410  	if (arg3 || arg4 || arg5)
2411  		return -EINVAL;
2412  
2413  	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2414  		return -EINVAL;
2415  
2416  	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2417  	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2418  		return -EINVAL;
2419  
2420  	/*
2421  	 * EOPNOTSUPP might be more appropriate here in principle, but
2422  	 * existing userspace depends on EINVAL specifically.
2423  	 */
2424  	if (!arch_memory_deny_write_exec_supported())
2425  		return -EINVAL;
2426  
2427  	current_bits = get_current_mdwe();
2428  	if (current_bits && current_bits != bits)
2429  		return -EPERM; /* Cannot unset the flags */
2430  
2431  	if (bits & PR_MDWE_NO_INHERIT)
2432  		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2433  	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2434  		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2435  
2436  	return 0;
2437  }
2438  
prctl_get_mdwe(unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)2439  static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2440  				 unsigned long arg4, unsigned long arg5)
2441  {
2442  	if (arg2 || arg3 || arg4 || arg5)
2443  		return -EINVAL;
2444  	return get_current_mdwe();
2445  }
2446  
prctl_get_auxv(void __user * addr,unsigned long len)2447  static int prctl_get_auxv(void __user *addr, unsigned long len)
2448  {
2449  	struct mm_struct *mm = current->mm;
2450  	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2451  
2452  	if (size && copy_to_user(addr, mm->saved_auxv, size))
2453  		return -EFAULT;
2454  	return sizeof(mm->saved_auxv);
2455  }
2456  
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2457  SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2458  		unsigned long, arg4, unsigned long, arg5)
2459  {
2460  	struct task_struct *me = current;
2461  	unsigned char comm[sizeof(me->comm)];
2462  	long error;
2463  
2464  	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2465  	if (error != -ENOSYS)
2466  		return error;
2467  
2468  	error = 0;
2469  	switch (option) {
2470  	case PR_SET_PDEATHSIG:
2471  		if (!valid_signal(arg2)) {
2472  			error = -EINVAL;
2473  			break;
2474  		}
2475  		me->pdeath_signal = arg2;
2476  		break;
2477  	case PR_GET_PDEATHSIG:
2478  		error = put_user(me->pdeath_signal, (int __user *)arg2);
2479  		break;
2480  	case PR_GET_DUMPABLE:
2481  		error = get_dumpable(me->mm);
2482  		break;
2483  	case PR_SET_DUMPABLE:
2484  		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2485  			error = -EINVAL;
2486  			break;
2487  		}
2488  		set_dumpable(me->mm, arg2);
2489  		break;
2490  
2491  	case PR_SET_UNALIGN:
2492  		error = SET_UNALIGN_CTL(me, arg2);
2493  		break;
2494  	case PR_GET_UNALIGN:
2495  		error = GET_UNALIGN_CTL(me, arg2);
2496  		break;
2497  	case PR_SET_FPEMU:
2498  		error = SET_FPEMU_CTL(me, arg2);
2499  		break;
2500  	case PR_GET_FPEMU:
2501  		error = GET_FPEMU_CTL(me, arg2);
2502  		break;
2503  	case PR_SET_FPEXC:
2504  		error = SET_FPEXC_CTL(me, arg2);
2505  		break;
2506  	case PR_GET_FPEXC:
2507  		error = GET_FPEXC_CTL(me, arg2);
2508  		break;
2509  	case PR_GET_TIMING:
2510  		error = PR_TIMING_STATISTICAL;
2511  		break;
2512  	case PR_SET_TIMING:
2513  		if (arg2 != PR_TIMING_STATISTICAL)
2514  			error = -EINVAL;
2515  		break;
2516  	case PR_SET_NAME:
2517  		comm[sizeof(me->comm) - 1] = 0;
2518  		if (strncpy_from_user(comm, (char __user *)arg2,
2519  				      sizeof(me->comm) - 1) < 0)
2520  			return -EFAULT;
2521  		set_task_comm(me, comm);
2522  		proc_comm_connector(me);
2523  		break;
2524  	case PR_GET_NAME:
2525  		get_task_comm(comm, me);
2526  		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2527  			return -EFAULT;
2528  		break;
2529  	case PR_GET_ENDIAN:
2530  		error = GET_ENDIAN(me, arg2);
2531  		break;
2532  	case PR_SET_ENDIAN:
2533  		error = SET_ENDIAN(me, arg2);
2534  		break;
2535  	case PR_GET_SECCOMP:
2536  		error = prctl_get_seccomp();
2537  		break;
2538  	case PR_SET_SECCOMP:
2539  		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2540  		break;
2541  	case PR_GET_TSC:
2542  		error = GET_TSC_CTL(arg2);
2543  		break;
2544  	case PR_SET_TSC:
2545  		error = SET_TSC_CTL(arg2);
2546  		break;
2547  	case PR_TASK_PERF_EVENTS_DISABLE:
2548  		error = perf_event_task_disable();
2549  		break;
2550  	case PR_TASK_PERF_EVENTS_ENABLE:
2551  		error = perf_event_task_enable();
2552  		break;
2553  	case PR_GET_TIMERSLACK:
2554  		if (current->timer_slack_ns > ULONG_MAX)
2555  			error = ULONG_MAX;
2556  		else
2557  			error = current->timer_slack_ns;
2558  		break;
2559  	case PR_SET_TIMERSLACK:
2560  		if (rt_or_dl_task_policy(current))
2561  			break;
2562  		if (arg2 <= 0)
2563  			current->timer_slack_ns =
2564  					current->default_timer_slack_ns;
2565  		else
2566  			current->timer_slack_ns = arg2;
2567  		break;
2568  	case PR_MCE_KILL:
2569  		if (arg4 | arg5)
2570  			return -EINVAL;
2571  		switch (arg2) {
2572  		case PR_MCE_KILL_CLEAR:
2573  			if (arg3 != 0)
2574  				return -EINVAL;
2575  			current->flags &= ~PF_MCE_PROCESS;
2576  			break;
2577  		case PR_MCE_KILL_SET:
2578  			current->flags |= PF_MCE_PROCESS;
2579  			if (arg3 == PR_MCE_KILL_EARLY)
2580  				current->flags |= PF_MCE_EARLY;
2581  			else if (arg3 == PR_MCE_KILL_LATE)
2582  				current->flags &= ~PF_MCE_EARLY;
2583  			else if (arg3 == PR_MCE_KILL_DEFAULT)
2584  				current->flags &=
2585  						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2586  			else
2587  				return -EINVAL;
2588  			break;
2589  		default:
2590  			return -EINVAL;
2591  		}
2592  		break;
2593  	case PR_MCE_KILL_GET:
2594  		if (arg2 | arg3 | arg4 | arg5)
2595  			return -EINVAL;
2596  		if (current->flags & PF_MCE_PROCESS)
2597  			error = (current->flags & PF_MCE_EARLY) ?
2598  				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2599  		else
2600  			error = PR_MCE_KILL_DEFAULT;
2601  		break;
2602  	case PR_SET_MM:
2603  		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2604  		break;
2605  	case PR_GET_TID_ADDRESS:
2606  		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2607  		break;
2608  	case PR_SET_CHILD_SUBREAPER:
2609  		me->signal->is_child_subreaper = !!arg2;
2610  		if (!arg2)
2611  			break;
2612  
2613  		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2614  		break;
2615  	case PR_GET_CHILD_SUBREAPER:
2616  		error = put_user(me->signal->is_child_subreaper,
2617  				 (int __user *)arg2);
2618  		break;
2619  	case PR_SET_NO_NEW_PRIVS:
2620  		if (arg2 != 1 || arg3 || arg4 || arg5)
2621  			return -EINVAL;
2622  
2623  		task_set_no_new_privs(current);
2624  		break;
2625  	case PR_GET_NO_NEW_PRIVS:
2626  		if (arg2 || arg3 || arg4 || arg5)
2627  			return -EINVAL;
2628  		return task_no_new_privs(current) ? 1 : 0;
2629  	case PR_GET_THP_DISABLE:
2630  		if (arg2 || arg3 || arg4 || arg5)
2631  			return -EINVAL;
2632  		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2633  		break;
2634  	case PR_SET_THP_DISABLE:
2635  		if (arg3 || arg4 || arg5)
2636  			return -EINVAL;
2637  		if (mmap_write_lock_killable(me->mm))
2638  			return -EINTR;
2639  		if (arg2)
2640  			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2641  		else
2642  			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2643  		mmap_write_unlock(me->mm);
2644  		break;
2645  	case PR_MPX_ENABLE_MANAGEMENT:
2646  	case PR_MPX_DISABLE_MANAGEMENT:
2647  		/* No longer implemented: */
2648  		return -EINVAL;
2649  	case PR_SET_FP_MODE:
2650  		error = SET_FP_MODE(me, arg2);
2651  		break;
2652  	case PR_GET_FP_MODE:
2653  		error = GET_FP_MODE(me);
2654  		break;
2655  	case PR_SVE_SET_VL:
2656  		error = SVE_SET_VL(arg2);
2657  		break;
2658  	case PR_SVE_GET_VL:
2659  		error = SVE_GET_VL();
2660  		break;
2661  	case PR_SME_SET_VL:
2662  		error = SME_SET_VL(arg2);
2663  		break;
2664  	case PR_SME_GET_VL:
2665  		error = SME_GET_VL();
2666  		break;
2667  	case PR_GET_SPECULATION_CTRL:
2668  		if (arg3 || arg4 || arg5)
2669  			return -EINVAL;
2670  		error = arch_prctl_spec_ctrl_get(me, arg2);
2671  		break;
2672  	case PR_SET_SPECULATION_CTRL:
2673  		if (arg4 || arg5)
2674  			return -EINVAL;
2675  		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2676  		break;
2677  	case PR_PAC_RESET_KEYS:
2678  		if (arg3 || arg4 || arg5)
2679  			return -EINVAL;
2680  		error = PAC_RESET_KEYS(me, arg2);
2681  		break;
2682  	case PR_PAC_SET_ENABLED_KEYS:
2683  		if (arg4 || arg5)
2684  			return -EINVAL;
2685  		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2686  		break;
2687  	case PR_PAC_GET_ENABLED_KEYS:
2688  		if (arg2 || arg3 || arg4 || arg5)
2689  			return -EINVAL;
2690  		error = PAC_GET_ENABLED_KEYS(me);
2691  		break;
2692  	case PR_SET_TAGGED_ADDR_CTRL:
2693  		if (arg3 || arg4 || arg5)
2694  			return -EINVAL;
2695  		error = SET_TAGGED_ADDR_CTRL(arg2);
2696  		break;
2697  	case PR_GET_TAGGED_ADDR_CTRL:
2698  		if (arg2 || arg3 || arg4 || arg5)
2699  			return -EINVAL;
2700  		error = GET_TAGGED_ADDR_CTRL();
2701  		break;
2702  	case PR_SET_IO_FLUSHER:
2703  		if (!capable(CAP_SYS_RESOURCE))
2704  			return -EPERM;
2705  
2706  		if (arg3 || arg4 || arg5)
2707  			return -EINVAL;
2708  
2709  		if (arg2 == 1)
2710  			current->flags |= PR_IO_FLUSHER;
2711  		else if (!arg2)
2712  			current->flags &= ~PR_IO_FLUSHER;
2713  		else
2714  			return -EINVAL;
2715  		break;
2716  	case PR_GET_IO_FLUSHER:
2717  		if (!capable(CAP_SYS_RESOURCE))
2718  			return -EPERM;
2719  
2720  		if (arg2 || arg3 || arg4 || arg5)
2721  			return -EINVAL;
2722  
2723  		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2724  		break;
2725  	case PR_SET_SYSCALL_USER_DISPATCH:
2726  		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2727  						  (char __user *) arg5);
2728  		break;
2729  #ifdef CONFIG_SCHED_CORE
2730  	case PR_SCHED_CORE:
2731  		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2732  		break;
2733  #endif
2734  	case PR_SET_MDWE:
2735  		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2736  		break;
2737  	case PR_GET_MDWE:
2738  		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2739  		break;
2740  	case PR_PPC_GET_DEXCR:
2741  		if (arg3 || arg4 || arg5)
2742  			return -EINVAL;
2743  		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2744  		break;
2745  	case PR_PPC_SET_DEXCR:
2746  		if (arg4 || arg5)
2747  			return -EINVAL;
2748  		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2749  		break;
2750  	case PR_SET_VMA:
2751  		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2752  		break;
2753  	case PR_GET_AUXV:
2754  		if (arg4 || arg5)
2755  			return -EINVAL;
2756  		error = prctl_get_auxv((void __user *)arg2, arg3);
2757  		break;
2758  #ifdef CONFIG_KSM
2759  	case PR_SET_MEMORY_MERGE:
2760  		if (arg3 || arg4 || arg5)
2761  			return -EINVAL;
2762  		if (mmap_write_lock_killable(me->mm))
2763  			return -EINTR;
2764  
2765  		if (arg2)
2766  			error = ksm_enable_merge_any(me->mm);
2767  		else
2768  			error = ksm_disable_merge_any(me->mm);
2769  		mmap_write_unlock(me->mm);
2770  		break;
2771  	case PR_GET_MEMORY_MERGE:
2772  		if (arg2 || arg3 || arg4 || arg5)
2773  			return -EINVAL;
2774  
2775  		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2776  		break;
2777  #endif
2778  	case PR_RISCV_V_SET_CONTROL:
2779  		error = RISCV_V_SET_CONTROL(arg2);
2780  		break;
2781  	case PR_RISCV_V_GET_CONTROL:
2782  		error = RISCV_V_GET_CONTROL();
2783  		break;
2784  	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2785  		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2786  		break;
2787  	default:
2788  		error = -EINVAL;
2789  		break;
2790  	}
2791  	return error;
2792  }
2793  
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2794  SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2795  		struct getcpu_cache __user *, unused)
2796  {
2797  	int err = 0;
2798  	int cpu = raw_smp_processor_id();
2799  
2800  	if (cpup)
2801  		err |= put_user(cpu, cpup);
2802  	if (nodep)
2803  		err |= put_user(cpu_to_node(cpu), nodep);
2804  	return err ? -EFAULT : 0;
2805  }
2806  
2807  /**
2808   * do_sysinfo - fill in sysinfo struct
2809   * @info: pointer to buffer to fill
2810   */
do_sysinfo(struct sysinfo * info)2811  static int do_sysinfo(struct sysinfo *info)
2812  {
2813  	unsigned long mem_total, sav_total;
2814  	unsigned int mem_unit, bitcount;
2815  	struct timespec64 tp;
2816  
2817  	memset(info, 0, sizeof(struct sysinfo));
2818  
2819  	ktime_get_boottime_ts64(&tp);
2820  	timens_add_boottime(&tp);
2821  	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2822  
2823  	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2824  
2825  	info->procs = nr_threads;
2826  
2827  	si_meminfo(info);
2828  	si_swapinfo(info);
2829  
2830  	/*
2831  	 * If the sum of all the available memory (i.e. ram + swap)
2832  	 * is less than can be stored in a 32 bit unsigned long then
2833  	 * we can be binary compatible with 2.2.x kernels.  If not,
2834  	 * well, in that case 2.2.x was broken anyways...
2835  	 *
2836  	 *  -Erik Andersen <andersee@debian.org>
2837  	 */
2838  
2839  	mem_total = info->totalram + info->totalswap;
2840  	if (mem_total < info->totalram || mem_total < info->totalswap)
2841  		goto out;
2842  	bitcount = 0;
2843  	mem_unit = info->mem_unit;
2844  	while (mem_unit > 1) {
2845  		bitcount++;
2846  		mem_unit >>= 1;
2847  		sav_total = mem_total;
2848  		mem_total <<= 1;
2849  		if (mem_total < sav_total)
2850  			goto out;
2851  	}
2852  
2853  	/*
2854  	 * If mem_total did not overflow, multiply all memory values by
2855  	 * info->mem_unit and set it to 1.  This leaves things compatible
2856  	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2857  	 * kernels...
2858  	 */
2859  
2860  	info->mem_unit = 1;
2861  	info->totalram <<= bitcount;
2862  	info->freeram <<= bitcount;
2863  	info->sharedram <<= bitcount;
2864  	info->bufferram <<= bitcount;
2865  	info->totalswap <<= bitcount;
2866  	info->freeswap <<= bitcount;
2867  	info->totalhigh <<= bitcount;
2868  	info->freehigh <<= bitcount;
2869  
2870  out:
2871  	return 0;
2872  }
2873  
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2874  SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2875  {
2876  	struct sysinfo val;
2877  
2878  	do_sysinfo(&val);
2879  
2880  	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2881  		return -EFAULT;
2882  
2883  	return 0;
2884  }
2885  
2886  #ifdef CONFIG_COMPAT
2887  struct compat_sysinfo {
2888  	s32 uptime;
2889  	u32 loads[3];
2890  	u32 totalram;
2891  	u32 freeram;
2892  	u32 sharedram;
2893  	u32 bufferram;
2894  	u32 totalswap;
2895  	u32 freeswap;
2896  	u16 procs;
2897  	u16 pad;
2898  	u32 totalhigh;
2899  	u32 freehigh;
2900  	u32 mem_unit;
2901  	char _f[20-2*sizeof(u32)-sizeof(int)];
2902  };
2903  
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2904  COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2905  {
2906  	struct sysinfo s;
2907  	struct compat_sysinfo s_32;
2908  
2909  	do_sysinfo(&s);
2910  
2911  	/* Check to see if any memory value is too large for 32-bit and scale
2912  	 *  down if needed
2913  	 */
2914  	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2915  		int bitcount = 0;
2916  
2917  		while (s.mem_unit < PAGE_SIZE) {
2918  			s.mem_unit <<= 1;
2919  			bitcount++;
2920  		}
2921  
2922  		s.totalram >>= bitcount;
2923  		s.freeram >>= bitcount;
2924  		s.sharedram >>= bitcount;
2925  		s.bufferram >>= bitcount;
2926  		s.totalswap >>= bitcount;
2927  		s.freeswap >>= bitcount;
2928  		s.totalhigh >>= bitcount;
2929  		s.freehigh >>= bitcount;
2930  	}
2931  
2932  	memset(&s_32, 0, sizeof(s_32));
2933  	s_32.uptime = s.uptime;
2934  	s_32.loads[0] = s.loads[0];
2935  	s_32.loads[1] = s.loads[1];
2936  	s_32.loads[2] = s.loads[2];
2937  	s_32.totalram = s.totalram;
2938  	s_32.freeram = s.freeram;
2939  	s_32.sharedram = s.sharedram;
2940  	s_32.bufferram = s.bufferram;
2941  	s_32.totalswap = s.totalswap;
2942  	s_32.freeswap = s.freeswap;
2943  	s_32.procs = s.procs;
2944  	s_32.totalhigh = s.totalhigh;
2945  	s_32.freehigh = s.freehigh;
2946  	s_32.mem_unit = s.mem_unit;
2947  	if (copy_to_user(info, &s_32, sizeof(s_32)))
2948  		return -EFAULT;
2949  	return 0;
2950  }
2951  #endif /* CONFIG_COMPAT */
2952