1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35 phys_addr_t size)
36 {
37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39 return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46 return __stage2_range_addr_end(addr, end, size);
47 }
48
49 /*
50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53 * long will also starve other vCPUs. We have to also make sure that the page
54 * tables are not freed while we released the lock.
55 */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57 phys_addr_t end,
58 int (*fn)(struct kvm_pgtable *, u64, u64),
59 bool resched)
60 {
61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62 int ret;
63 u64 next;
64
65 do {
66 struct kvm_pgtable *pgt = mmu->pgt;
67 if (!pgt)
68 return -EINVAL;
69
70 next = stage2_range_addr_end(addr, end);
71 ret = fn(pgt, addr, next - addr);
72 if (ret)
73 break;
74
75 if (resched && next != end)
76 cond_resched_rwlock_write(&kvm->mmu_lock);
77 } while (addr = next, addr != end);
78
79 return ret;
80 }
81
82 #define stage2_apply_range_resched(mmu, addr, end, fn) \
83 stage2_apply_range(mmu, addr, end, fn, true)
84
85 /*
86 * Get the maximum number of page-tables pages needed to split a range
87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88 * mapped at level 2, or at level 1 if allowed.
89 */
kvm_mmu_split_nr_page_tables(u64 range)90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92 int n = 0;
93
94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95 n += DIV_ROUND_UP(range, PUD_SIZE);
96 n += DIV_ROUND_UP(range, PMD_SIZE);
97 return n;
98 }
99
need_split_memcache_topup_or_resched(struct kvm * kvm)100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102 struct kvm_mmu_memory_cache *cache;
103 u64 chunk_size, min;
104
105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106 return true;
107
108 chunk_size = kvm->arch.mmu.split_page_chunk_size;
109 min = kvm_mmu_split_nr_page_tables(chunk_size);
110 cache = &kvm->arch.mmu.split_page_cache;
111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115 phys_addr_t end)
116 {
117 struct kvm_mmu_memory_cache *cache;
118 struct kvm_pgtable *pgt;
119 int ret, cache_capacity;
120 u64 next, chunk_size;
121
122 lockdep_assert_held_write(&kvm->mmu_lock);
123
124 chunk_size = kvm->arch.mmu.split_page_chunk_size;
125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127 if (chunk_size == 0)
128 return 0;
129
130 cache = &kvm->arch.mmu.split_page_cache;
131
132 do {
133 if (need_split_memcache_topup_or_resched(kvm)) {
134 write_unlock(&kvm->mmu_lock);
135 cond_resched();
136 /* Eager page splitting is best-effort. */
137 ret = __kvm_mmu_topup_memory_cache(cache,
138 cache_capacity,
139 cache_capacity);
140 write_lock(&kvm->mmu_lock);
141 if (ret)
142 break;
143 }
144
145 pgt = kvm->arch.mmu.pgt;
146 if (!pgt)
147 return -EINVAL;
148
149 next = __stage2_range_addr_end(addr, end, chunk_size);
150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151 if (ret)
152 break;
153 } while (addr = next, addr != end);
154
155 return ret;
156 }
157
memslot_is_logging(struct kvm_memory_slot * memslot)158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162
163 /**
164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165 * @kvm: pointer to kvm structure.
166 *
167 * Interface to HYP function to flush all VM TLB entries
168 */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172 return 0;
173 }
174
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176 gfn_t gfn, u64 nr_pages)
177 {
178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180 return 0;
181 }
182
kvm_is_device_pfn(unsigned long pfn)183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185 return !pfn_is_map_memory(pfn);
186 }
187
stage2_memcache_zalloc_page(void * arg)188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190 struct kvm_mmu_memory_cache *mc = arg;
191 void *virt;
192
193 /* Allocated with __GFP_ZERO, so no need to zero */
194 virt = kvm_mmu_memory_cache_alloc(mc);
195 if (virt)
196 kvm_account_pgtable_pages(virt, 1);
197 return virt;
198 }
199
kvm_host_zalloc_pages_exact(size_t size)200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204
kvm_s2_zalloc_pages_exact(size_t size)205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207 void *virt = kvm_host_zalloc_pages_exact(size);
208
209 if (virt)
210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211 return virt;
212 }
213
kvm_s2_free_pages_exact(void * virt,size_t size)214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217 free_pages_exact(virt, size);
218 }
219
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224 struct page *page = container_of(head, struct page, rcu_head);
225 void *pgtable = page_to_virt(page);
226 s8 level = page_private(page);
227
228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230
stage2_free_unlinked_table(void * addr,s8 level)231 static void stage2_free_unlinked_table(void *addr, s8 level)
232 {
233 struct page *page = virt_to_page(addr);
234
235 set_page_private(page, (unsigned long)level);
236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238
kvm_host_get_page(void * addr)239 static void kvm_host_get_page(void *addr)
240 {
241 get_page(virt_to_page(addr));
242 }
243
kvm_host_put_page(void * addr)244 static void kvm_host_put_page(void *addr)
245 {
246 put_page(virt_to_page(addr));
247 }
248
kvm_s2_put_page(void * addr)249 static void kvm_s2_put_page(void *addr)
250 {
251 struct page *p = virt_to_page(addr);
252 /* Dropping last refcount, the page will be freed */
253 if (page_count(p) == 1)
254 kvm_account_pgtable_pages(addr, -1);
255 put_page(p);
256 }
257
kvm_host_page_count(void * addr)258 static int kvm_host_page_count(void *addr)
259 {
260 return page_count(virt_to_page(addr));
261 }
262
kvm_host_pa(void * addr)263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265 return __pa(addr);
266 }
267
kvm_host_va(phys_addr_t phys)268 static void *kvm_host_va(phys_addr_t phys)
269 {
270 return __va(phys);
271 }
272
clean_dcache_guest_page(void * va,size_t size)273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275 __clean_dcache_guest_page(va, size);
276 }
277
invalidate_icache_guest_page(void * va,size_t size)278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280 __invalidate_icache_guest_page(va, size);
281 }
282
283 /*
284 * Unmapping vs dcache management:
285 *
286 * If a guest maps certain memory pages as uncached, all writes will
287 * bypass the data cache and go directly to RAM. However, the CPUs
288 * can still speculate reads (not writes) and fill cache lines with
289 * data.
290 *
291 * Those cache lines will be *clean* cache lines though, so a
292 * clean+invalidate operation is equivalent to an invalidate
293 * operation, because no cache lines are marked dirty.
294 *
295 * Those clean cache lines could be filled prior to an uncached write
296 * by the guest, and the cache coherent IO subsystem would therefore
297 * end up writing old data to disk.
298 *
299 * This is why right after unmapping a page/section and invalidating
300 * the corresponding TLBs, we flush to make sure the IO subsystem will
301 * never hit in the cache.
302 *
303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304 * we then fully enforce cacheability of RAM, no matter what the guest
305 * does.
306 */
307 /**
308 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309 * @mmu: The KVM stage-2 MMU pointer
310 * @start: The intermediate physical base address of the range to unmap
311 * @size: The size of the area to unmap
312 * @may_block: Whether or not we are permitted to block
313 *
314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316 * destroying the VM), otherwise another faulting VCPU may come in and mess
317 * with things behind our backs.
318 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320 bool may_block)
321 {
322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323 phys_addr_t end = start + size;
324
325 lockdep_assert_held_write(&kvm->mmu_lock);
326 WARN_ON(size & ~PAGE_MASK);
327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328 may_block));
329 }
330
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)331 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
332 u64 size, bool may_block)
333 {
334 __unmap_stage2_range(mmu, start, size, may_block);
335 }
336
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)337 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
338 {
339 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush);
340 }
341
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)342 static void stage2_flush_memslot(struct kvm *kvm,
343 struct kvm_memory_slot *memslot)
344 {
345 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
346 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
347
348 kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
349 }
350
351 /**
352 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
353 * @kvm: The struct kvm pointer
354 *
355 * Go through the stage 2 page tables and invalidate any cache lines
356 * backing memory already mapped to the VM.
357 */
stage2_flush_vm(struct kvm * kvm)358 static void stage2_flush_vm(struct kvm *kvm)
359 {
360 struct kvm_memslots *slots;
361 struct kvm_memory_slot *memslot;
362 int idx, bkt;
363
364 idx = srcu_read_lock(&kvm->srcu);
365 write_lock(&kvm->mmu_lock);
366
367 slots = kvm_memslots(kvm);
368 kvm_for_each_memslot(memslot, bkt, slots)
369 stage2_flush_memslot(kvm, memslot);
370
371 kvm_nested_s2_flush(kvm);
372
373 write_unlock(&kvm->mmu_lock);
374 srcu_read_unlock(&kvm->srcu, idx);
375 }
376
377 /**
378 * free_hyp_pgds - free Hyp-mode page tables
379 */
free_hyp_pgds(void)380 void __init free_hyp_pgds(void)
381 {
382 mutex_lock(&kvm_hyp_pgd_mutex);
383 if (hyp_pgtable) {
384 kvm_pgtable_hyp_destroy(hyp_pgtable);
385 kfree(hyp_pgtable);
386 hyp_pgtable = NULL;
387 }
388 mutex_unlock(&kvm_hyp_pgd_mutex);
389 }
390
kvm_host_owns_hyp_mappings(void)391 static bool kvm_host_owns_hyp_mappings(void)
392 {
393 if (is_kernel_in_hyp_mode())
394 return false;
395
396 if (static_branch_likely(&kvm_protected_mode_initialized))
397 return false;
398
399 /*
400 * This can happen at boot time when __create_hyp_mappings() is called
401 * after the hyp protection has been enabled, but the static key has
402 * not been flipped yet.
403 */
404 if (!hyp_pgtable && is_protected_kvm_enabled())
405 return false;
406
407 WARN_ON(!hyp_pgtable);
408
409 return true;
410 }
411
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)412 int __create_hyp_mappings(unsigned long start, unsigned long size,
413 unsigned long phys, enum kvm_pgtable_prot prot)
414 {
415 int err;
416
417 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
418 return -EINVAL;
419
420 mutex_lock(&kvm_hyp_pgd_mutex);
421 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
422 mutex_unlock(&kvm_hyp_pgd_mutex);
423
424 return err;
425 }
426
kvm_kaddr_to_phys(void * kaddr)427 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
428 {
429 if (!is_vmalloc_addr(kaddr)) {
430 BUG_ON(!virt_addr_valid(kaddr));
431 return __pa(kaddr);
432 } else {
433 return page_to_phys(vmalloc_to_page(kaddr)) +
434 offset_in_page(kaddr);
435 }
436 }
437
438 struct hyp_shared_pfn {
439 u64 pfn;
440 int count;
441 struct rb_node node;
442 };
443
444 static DEFINE_MUTEX(hyp_shared_pfns_lock);
445 static struct rb_root hyp_shared_pfns = RB_ROOT;
446
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)447 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
448 struct rb_node **parent)
449 {
450 struct hyp_shared_pfn *this;
451
452 *node = &hyp_shared_pfns.rb_node;
453 *parent = NULL;
454 while (**node) {
455 this = container_of(**node, struct hyp_shared_pfn, node);
456 *parent = **node;
457 if (this->pfn < pfn)
458 *node = &((**node)->rb_left);
459 else if (this->pfn > pfn)
460 *node = &((**node)->rb_right);
461 else
462 return this;
463 }
464
465 return NULL;
466 }
467
share_pfn_hyp(u64 pfn)468 static int share_pfn_hyp(u64 pfn)
469 {
470 struct rb_node **node, *parent;
471 struct hyp_shared_pfn *this;
472 int ret = 0;
473
474 mutex_lock(&hyp_shared_pfns_lock);
475 this = find_shared_pfn(pfn, &node, &parent);
476 if (this) {
477 this->count++;
478 goto unlock;
479 }
480
481 this = kzalloc(sizeof(*this), GFP_KERNEL);
482 if (!this) {
483 ret = -ENOMEM;
484 goto unlock;
485 }
486
487 this->pfn = pfn;
488 this->count = 1;
489 rb_link_node(&this->node, parent, node);
490 rb_insert_color(&this->node, &hyp_shared_pfns);
491 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
492 unlock:
493 mutex_unlock(&hyp_shared_pfns_lock);
494
495 return ret;
496 }
497
unshare_pfn_hyp(u64 pfn)498 static int unshare_pfn_hyp(u64 pfn)
499 {
500 struct rb_node **node, *parent;
501 struct hyp_shared_pfn *this;
502 int ret = 0;
503
504 mutex_lock(&hyp_shared_pfns_lock);
505 this = find_shared_pfn(pfn, &node, &parent);
506 if (WARN_ON(!this)) {
507 ret = -ENOENT;
508 goto unlock;
509 }
510
511 this->count--;
512 if (this->count)
513 goto unlock;
514
515 rb_erase(&this->node, &hyp_shared_pfns);
516 kfree(this);
517 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
518 unlock:
519 mutex_unlock(&hyp_shared_pfns_lock);
520
521 return ret;
522 }
523
kvm_share_hyp(void * from,void * to)524 int kvm_share_hyp(void *from, void *to)
525 {
526 phys_addr_t start, end, cur;
527 u64 pfn;
528 int ret;
529
530 if (is_kernel_in_hyp_mode())
531 return 0;
532
533 /*
534 * The share hcall maps things in the 'fixed-offset' region of the hyp
535 * VA space, so we can only share physically contiguous data-structures
536 * for now.
537 */
538 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
539 return -EINVAL;
540
541 if (kvm_host_owns_hyp_mappings())
542 return create_hyp_mappings(from, to, PAGE_HYP);
543
544 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
545 end = PAGE_ALIGN(__pa(to));
546 for (cur = start; cur < end; cur += PAGE_SIZE) {
547 pfn = __phys_to_pfn(cur);
548 ret = share_pfn_hyp(pfn);
549 if (ret)
550 return ret;
551 }
552
553 return 0;
554 }
555
kvm_unshare_hyp(void * from,void * to)556 void kvm_unshare_hyp(void *from, void *to)
557 {
558 phys_addr_t start, end, cur;
559 u64 pfn;
560
561 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
562 return;
563
564 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
565 end = PAGE_ALIGN(__pa(to));
566 for (cur = start; cur < end; cur += PAGE_SIZE) {
567 pfn = __phys_to_pfn(cur);
568 WARN_ON(unshare_pfn_hyp(pfn));
569 }
570 }
571
572 /**
573 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
574 * @from: The virtual kernel start address of the range
575 * @to: The virtual kernel end address of the range (exclusive)
576 * @prot: The protection to be applied to this range
577 *
578 * The same virtual address as the kernel virtual address is also used
579 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
580 * physical pages.
581 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)582 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
583 {
584 phys_addr_t phys_addr;
585 unsigned long virt_addr;
586 unsigned long start = kern_hyp_va((unsigned long)from);
587 unsigned long end = kern_hyp_va((unsigned long)to);
588
589 if (is_kernel_in_hyp_mode())
590 return 0;
591
592 if (!kvm_host_owns_hyp_mappings())
593 return -EPERM;
594
595 start = start & PAGE_MASK;
596 end = PAGE_ALIGN(end);
597
598 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
599 int err;
600
601 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
602 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
603 prot);
604 if (err)
605 return err;
606 }
607
608 return 0;
609 }
610
__hyp_alloc_private_va_range(unsigned long base)611 static int __hyp_alloc_private_va_range(unsigned long base)
612 {
613 lockdep_assert_held(&kvm_hyp_pgd_mutex);
614
615 if (!PAGE_ALIGNED(base))
616 return -EINVAL;
617
618 /*
619 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
620 * allocating the new area, as it would indicate we've
621 * overflowed the idmap/IO address range.
622 */
623 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
624 return -ENOMEM;
625
626 io_map_base = base;
627
628 return 0;
629 }
630
631 /**
632 * hyp_alloc_private_va_range - Allocates a private VA range.
633 * @size: The size of the VA range to reserve.
634 * @haddr: The hypervisor virtual start address of the allocation.
635 *
636 * The private virtual address (VA) range is allocated below io_map_base
637 * and aligned based on the order of @size.
638 *
639 * Return: 0 on success or negative error code on failure.
640 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)641 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
642 {
643 unsigned long base;
644 int ret = 0;
645
646 mutex_lock(&kvm_hyp_pgd_mutex);
647
648 /*
649 * This assumes that we have enough space below the idmap
650 * page to allocate our VAs. If not, the check in
651 * __hyp_alloc_private_va_range() will kick. A potential
652 * alternative would be to detect that overflow and switch
653 * to an allocation above the idmap.
654 *
655 * The allocated size is always a multiple of PAGE_SIZE.
656 */
657 size = PAGE_ALIGN(size);
658 base = io_map_base - size;
659 ret = __hyp_alloc_private_va_range(base);
660
661 mutex_unlock(&kvm_hyp_pgd_mutex);
662
663 if (!ret)
664 *haddr = base;
665
666 return ret;
667 }
668
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)669 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
670 unsigned long *haddr,
671 enum kvm_pgtable_prot prot)
672 {
673 unsigned long addr;
674 int ret = 0;
675
676 if (!kvm_host_owns_hyp_mappings()) {
677 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
678 phys_addr, size, prot);
679 if (IS_ERR_VALUE(addr))
680 return addr;
681 *haddr = addr;
682
683 return 0;
684 }
685
686 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
687 ret = hyp_alloc_private_va_range(size, &addr);
688 if (ret)
689 return ret;
690
691 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
692 if (ret)
693 return ret;
694
695 *haddr = addr + offset_in_page(phys_addr);
696 return ret;
697 }
698
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)699 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
700 {
701 unsigned long base;
702 size_t size;
703 int ret;
704
705 mutex_lock(&kvm_hyp_pgd_mutex);
706 /*
707 * Efficient stack verification using the PAGE_SHIFT bit implies
708 * an alignment of our allocation on the order of the size.
709 */
710 size = PAGE_SIZE * 2;
711 base = ALIGN_DOWN(io_map_base - size, size);
712
713 ret = __hyp_alloc_private_va_range(base);
714
715 mutex_unlock(&kvm_hyp_pgd_mutex);
716
717 if (ret) {
718 kvm_err("Cannot allocate hyp stack guard page\n");
719 return ret;
720 }
721
722 /*
723 * Since the stack grows downwards, map the stack to the page
724 * at the higher address and leave the lower guard page
725 * unbacked.
726 *
727 * Any valid stack address now has the PAGE_SHIFT bit as 1
728 * and addresses corresponding to the guard page have the
729 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
730 */
731 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
732 PAGE_HYP);
733 if (ret)
734 kvm_err("Cannot map hyp stack\n");
735
736 *haddr = base + size;
737
738 return ret;
739 }
740
741 /**
742 * create_hyp_io_mappings - Map IO into both kernel and HYP
743 * @phys_addr: The physical start address which gets mapped
744 * @size: Size of the region being mapped
745 * @kaddr: Kernel VA for this mapping
746 * @haddr: HYP VA for this mapping
747 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)748 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
749 void __iomem **kaddr,
750 void __iomem **haddr)
751 {
752 unsigned long addr;
753 int ret;
754
755 if (is_protected_kvm_enabled())
756 return -EPERM;
757
758 *kaddr = ioremap(phys_addr, size);
759 if (!*kaddr)
760 return -ENOMEM;
761
762 if (is_kernel_in_hyp_mode()) {
763 *haddr = *kaddr;
764 return 0;
765 }
766
767 ret = __create_hyp_private_mapping(phys_addr, size,
768 &addr, PAGE_HYP_DEVICE);
769 if (ret) {
770 iounmap(*kaddr);
771 *kaddr = NULL;
772 *haddr = NULL;
773 return ret;
774 }
775
776 *haddr = (void __iomem *)addr;
777 return 0;
778 }
779
780 /**
781 * create_hyp_exec_mappings - Map an executable range into HYP
782 * @phys_addr: The physical start address which gets mapped
783 * @size: Size of the region being mapped
784 * @haddr: HYP VA for this mapping
785 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)786 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
787 void **haddr)
788 {
789 unsigned long addr;
790 int ret;
791
792 BUG_ON(is_kernel_in_hyp_mode());
793
794 ret = __create_hyp_private_mapping(phys_addr, size,
795 &addr, PAGE_HYP_EXEC);
796 if (ret) {
797 *haddr = NULL;
798 return ret;
799 }
800
801 *haddr = (void *)addr;
802 return 0;
803 }
804
805 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
806 /* We shouldn't need any other callback to walk the PT */
807 .phys_to_virt = kvm_host_va,
808 };
809
get_user_mapping_size(struct kvm * kvm,u64 addr)810 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
811 {
812 struct kvm_pgtable pgt = {
813 .pgd = (kvm_pteref_t)kvm->mm->pgd,
814 .ia_bits = vabits_actual,
815 .start_level = (KVM_PGTABLE_LAST_LEVEL -
816 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
817 .mm_ops = &kvm_user_mm_ops,
818 };
819 unsigned long flags;
820 kvm_pte_t pte = 0; /* Keep GCC quiet... */
821 s8 level = S8_MAX;
822 int ret;
823
824 /*
825 * Disable IRQs so that we hazard against a concurrent
826 * teardown of the userspace page tables (which relies on
827 * IPI-ing threads).
828 */
829 local_irq_save(flags);
830 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
831 local_irq_restore(flags);
832
833 if (ret)
834 return ret;
835
836 /*
837 * Not seeing an error, but not updating level? Something went
838 * deeply wrong...
839 */
840 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
841 return -EFAULT;
842 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
843 return -EFAULT;
844
845 /* Oops, the userspace PTs are gone... Replay the fault */
846 if (!kvm_pte_valid(pte))
847 return -EAGAIN;
848
849 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
850 }
851
852 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
853 .zalloc_page = stage2_memcache_zalloc_page,
854 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
855 .free_pages_exact = kvm_s2_free_pages_exact,
856 .free_unlinked_table = stage2_free_unlinked_table,
857 .get_page = kvm_host_get_page,
858 .put_page = kvm_s2_put_page,
859 .page_count = kvm_host_page_count,
860 .phys_to_virt = kvm_host_va,
861 .virt_to_phys = kvm_host_pa,
862 .dcache_clean_inval_poc = clean_dcache_guest_page,
863 .icache_inval_pou = invalidate_icache_guest_page,
864 };
865
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)866 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
867 {
868 u32 kvm_ipa_limit = get_kvm_ipa_limit();
869 u64 mmfr0, mmfr1;
870 u32 phys_shift;
871
872 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
873 return -EINVAL;
874
875 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
876 if (is_protected_kvm_enabled()) {
877 phys_shift = kvm_ipa_limit;
878 } else if (phys_shift) {
879 if (phys_shift > kvm_ipa_limit ||
880 phys_shift < ARM64_MIN_PARANGE_BITS)
881 return -EINVAL;
882 } else {
883 phys_shift = KVM_PHYS_SHIFT;
884 if (phys_shift > kvm_ipa_limit) {
885 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
886 current->comm);
887 return -EINVAL;
888 }
889 }
890
891 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
892 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
893 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
894
895 return 0;
896 }
897
898 /**
899 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
900 * @kvm: The pointer to the KVM structure
901 * @mmu: The pointer to the s2 MMU structure
902 * @type: The machine type of the virtual machine
903 *
904 * Allocates only the stage-2 HW PGD level table(s).
905 * Note we don't need locking here as this is only called in two cases:
906 *
907 * - when the VM is created, which can't race against anything
908 *
909 * - when secondary kvm_s2_mmu structures are initialised for NV
910 * guests, and the caller must hold kvm->lock as this is called on a
911 * per-vcpu basis.
912 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)913 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
914 {
915 int cpu, err;
916 struct kvm_pgtable *pgt;
917
918 /*
919 * If we already have our page tables in place, and that the
920 * MMU context is the canonical one, we have a bug somewhere,
921 * as this is only supposed to ever happen once per VM.
922 *
923 * Otherwise, we're building nested page tables, and that's
924 * probably because userspace called KVM_ARM_VCPU_INIT more
925 * than once on the same vcpu. Since that's actually legal,
926 * don't kick a fuss and leave gracefully.
927 */
928 if (mmu->pgt != NULL) {
929 if (kvm_is_nested_s2_mmu(kvm, mmu))
930 return 0;
931
932 kvm_err("kvm_arch already initialized?\n");
933 return -EINVAL;
934 }
935
936 err = kvm_init_ipa_range(mmu, type);
937 if (err)
938 return err;
939
940 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
941 if (!pgt)
942 return -ENOMEM;
943
944 mmu->arch = &kvm->arch;
945 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
946 if (err)
947 goto out_free_pgtable;
948
949 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
950 if (!mmu->last_vcpu_ran) {
951 err = -ENOMEM;
952 goto out_destroy_pgtable;
953 }
954
955 for_each_possible_cpu(cpu)
956 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
957
958 /* The eager page splitting is disabled by default */
959 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
960 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
961
962 mmu->pgt = pgt;
963 mmu->pgd_phys = __pa(pgt->pgd);
964
965 if (kvm_is_nested_s2_mmu(kvm, mmu))
966 kvm_init_nested_s2_mmu(mmu);
967
968 return 0;
969
970 out_destroy_pgtable:
971 kvm_pgtable_stage2_destroy(pgt);
972 out_free_pgtable:
973 kfree(pgt);
974 return err;
975 }
976
kvm_uninit_stage2_mmu(struct kvm * kvm)977 void kvm_uninit_stage2_mmu(struct kvm *kvm)
978 {
979 kvm_free_stage2_pgd(&kvm->arch.mmu);
980 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
981 }
982
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)983 static void stage2_unmap_memslot(struct kvm *kvm,
984 struct kvm_memory_slot *memslot)
985 {
986 hva_t hva = memslot->userspace_addr;
987 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
988 phys_addr_t size = PAGE_SIZE * memslot->npages;
989 hva_t reg_end = hva + size;
990
991 /*
992 * A memory region could potentially cover multiple VMAs, and any holes
993 * between them, so iterate over all of them to find out if we should
994 * unmap any of them.
995 *
996 * +--------------------------------------------+
997 * +---------------+----------------+ +----------------+
998 * | : VMA 1 | VMA 2 | | VMA 3 : |
999 * +---------------+----------------+ +----------------+
1000 * | memory region |
1001 * +--------------------------------------------+
1002 */
1003 do {
1004 struct vm_area_struct *vma;
1005 hva_t vm_start, vm_end;
1006
1007 vma = find_vma_intersection(current->mm, hva, reg_end);
1008 if (!vma)
1009 break;
1010
1011 /*
1012 * Take the intersection of this VMA with the memory region
1013 */
1014 vm_start = max(hva, vma->vm_start);
1015 vm_end = min(reg_end, vma->vm_end);
1016
1017 if (!(vma->vm_flags & VM_PFNMAP)) {
1018 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1019 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1020 }
1021 hva = vm_end;
1022 } while (hva < reg_end);
1023 }
1024
1025 /**
1026 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1027 * @kvm: The struct kvm pointer
1028 *
1029 * Go through the memregions and unmap any regular RAM
1030 * backing memory already mapped to the VM.
1031 */
stage2_unmap_vm(struct kvm * kvm)1032 void stage2_unmap_vm(struct kvm *kvm)
1033 {
1034 struct kvm_memslots *slots;
1035 struct kvm_memory_slot *memslot;
1036 int idx, bkt;
1037
1038 idx = srcu_read_lock(&kvm->srcu);
1039 mmap_read_lock(current->mm);
1040 write_lock(&kvm->mmu_lock);
1041
1042 slots = kvm_memslots(kvm);
1043 kvm_for_each_memslot(memslot, bkt, slots)
1044 stage2_unmap_memslot(kvm, memslot);
1045
1046 kvm_nested_s2_unmap(kvm, true);
1047
1048 write_unlock(&kvm->mmu_lock);
1049 mmap_read_unlock(current->mm);
1050 srcu_read_unlock(&kvm->srcu, idx);
1051 }
1052
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1053 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1054 {
1055 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1056 struct kvm_pgtable *pgt = NULL;
1057
1058 write_lock(&kvm->mmu_lock);
1059 pgt = mmu->pgt;
1060 if (pgt) {
1061 mmu->pgd_phys = 0;
1062 mmu->pgt = NULL;
1063 free_percpu(mmu->last_vcpu_ran);
1064 }
1065 write_unlock(&kvm->mmu_lock);
1066
1067 if (pgt) {
1068 kvm_pgtable_stage2_destroy(pgt);
1069 kfree(pgt);
1070 }
1071 }
1072
hyp_mc_free_fn(void * addr,void * unused)1073 static void hyp_mc_free_fn(void *addr, void *unused)
1074 {
1075 free_page((unsigned long)addr);
1076 }
1077
hyp_mc_alloc_fn(void * unused)1078 static void *hyp_mc_alloc_fn(void *unused)
1079 {
1080 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1081 }
1082
free_hyp_memcache(struct kvm_hyp_memcache * mc)1083 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1084 {
1085 if (is_protected_kvm_enabled())
1086 __free_hyp_memcache(mc, hyp_mc_free_fn,
1087 kvm_host_va, NULL);
1088 }
1089
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1090 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1091 {
1092 if (!is_protected_kvm_enabled())
1093 return 0;
1094
1095 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1096 kvm_host_pa, NULL);
1097 }
1098
1099 /**
1100 * kvm_phys_addr_ioremap - map a device range to guest IPA
1101 *
1102 * @kvm: The KVM pointer
1103 * @guest_ipa: The IPA at which to insert the mapping
1104 * @pa: The physical address of the device
1105 * @size: The size of the mapping
1106 * @writable: Whether or not to create a writable mapping
1107 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1108 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1109 phys_addr_t pa, unsigned long size, bool writable)
1110 {
1111 phys_addr_t addr;
1112 int ret = 0;
1113 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1114 struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1115 struct kvm_pgtable *pgt = mmu->pgt;
1116 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1117 KVM_PGTABLE_PROT_R |
1118 (writable ? KVM_PGTABLE_PROT_W : 0);
1119
1120 if (is_protected_kvm_enabled())
1121 return -EPERM;
1122
1123 size += offset_in_page(guest_ipa);
1124 guest_ipa &= PAGE_MASK;
1125
1126 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1127 ret = kvm_mmu_topup_memory_cache(&cache,
1128 kvm_mmu_cache_min_pages(mmu));
1129 if (ret)
1130 break;
1131
1132 write_lock(&kvm->mmu_lock);
1133 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1134 &cache, 0);
1135 write_unlock(&kvm->mmu_lock);
1136 if (ret)
1137 break;
1138
1139 pa += PAGE_SIZE;
1140 }
1141
1142 kvm_mmu_free_memory_cache(&cache);
1143 return ret;
1144 }
1145
1146 /**
1147 * kvm_stage2_wp_range() - write protect stage2 memory region range
1148 * @mmu: The KVM stage-2 MMU pointer
1149 * @addr: Start address of range
1150 * @end: End address of range
1151 */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1152 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1153 {
1154 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1155 }
1156
1157 /**
1158 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1159 * @kvm: The KVM pointer
1160 * @slot: The memory slot to write protect
1161 *
1162 * Called to start logging dirty pages after memory region
1163 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1164 * all present PUD, PMD and PTEs are write protected in the memory region.
1165 * Afterwards read of dirty page log can be called.
1166 *
1167 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1168 * serializing operations for VM memory regions.
1169 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1170 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1171 {
1172 struct kvm_memslots *slots = kvm_memslots(kvm);
1173 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1174 phys_addr_t start, end;
1175
1176 if (WARN_ON_ONCE(!memslot))
1177 return;
1178
1179 start = memslot->base_gfn << PAGE_SHIFT;
1180 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1181
1182 write_lock(&kvm->mmu_lock);
1183 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1184 kvm_nested_s2_wp(kvm);
1185 write_unlock(&kvm->mmu_lock);
1186 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1187 }
1188
1189 /**
1190 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1191 * pages for memory slot
1192 * @kvm: The KVM pointer
1193 * @slot: The memory slot to split
1194 *
1195 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1196 * serializing operations for VM memory regions.
1197 */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1198 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1199 {
1200 struct kvm_memslots *slots;
1201 struct kvm_memory_slot *memslot;
1202 phys_addr_t start, end;
1203
1204 lockdep_assert_held(&kvm->slots_lock);
1205
1206 slots = kvm_memslots(kvm);
1207 memslot = id_to_memslot(slots, slot);
1208
1209 start = memslot->base_gfn << PAGE_SHIFT;
1210 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1211
1212 write_lock(&kvm->mmu_lock);
1213 kvm_mmu_split_huge_pages(kvm, start, end);
1214 write_unlock(&kvm->mmu_lock);
1215 }
1216
1217 /*
1218 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1219 * @kvm: The KVM pointer
1220 * @slot: The memory slot associated with mask
1221 * @gfn_offset: The gfn offset in memory slot
1222 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1223 * slot to enable dirty logging on
1224 *
1225 * Writes protect selected pages to enable dirty logging, and then
1226 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1227 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1228 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1229 struct kvm_memory_slot *slot,
1230 gfn_t gfn_offset, unsigned long mask)
1231 {
1232 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1233 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1234 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1235
1236 lockdep_assert_held_write(&kvm->mmu_lock);
1237
1238 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1239
1240 /*
1241 * Eager-splitting is done when manual-protect is set. We
1242 * also check for initially-all-set because we can avoid
1243 * eager-splitting if initially-all-set is false.
1244 * Initially-all-set equal false implies that huge-pages were
1245 * already split when enabling dirty logging: no need to do it
1246 * again.
1247 */
1248 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1249 kvm_mmu_split_huge_pages(kvm, start, end);
1250
1251 kvm_nested_s2_wp(kvm);
1252 }
1253
kvm_send_hwpoison_signal(unsigned long address,short lsb)1254 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1255 {
1256 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1257 }
1258
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1259 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1260 unsigned long hva,
1261 unsigned long map_size)
1262 {
1263 gpa_t gpa_start;
1264 hva_t uaddr_start, uaddr_end;
1265 size_t size;
1266
1267 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1268 if (map_size == PAGE_SIZE)
1269 return true;
1270
1271 size = memslot->npages * PAGE_SIZE;
1272
1273 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1274
1275 uaddr_start = memslot->userspace_addr;
1276 uaddr_end = uaddr_start + size;
1277
1278 /*
1279 * Pages belonging to memslots that don't have the same alignment
1280 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1281 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1282 *
1283 * Consider a layout like the following:
1284 *
1285 * memslot->userspace_addr:
1286 * +-----+--------------------+--------------------+---+
1287 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1288 * +-----+--------------------+--------------------+---+
1289 *
1290 * memslot->base_gfn << PAGE_SHIFT:
1291 * +---+--------------------+--------------------+-----+
1292 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1293 * +---+--------------------+--------------------+-----+
1294 *
1295 * If we create those stage-2 blocks, we'll end up with this incorrect
1296 * mapping:
1297 * d -> f
1298 * e -> g
1299 * f -> h
1300 */
1301 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1302 return false;
1303
1304 /*
1305 * Next, let's make sure we're not trying to map anything not covered
1306 * by the memslot. This means we have to prohibit block size mappings
1307 * for the beginning and end of a non-block aligned and non-block sized
1308 * memory slot (illustrated by the head and tail parts of the
1309 * userspace view above containing pages 'abcde' and 'xyz',
1310 * respectively).
1311 *
1312 * Note that it doesn't matter if we do the check using the
1313 * userspace_addr or the base_gfn, as both are equally aligned (per
1314 * the check above) and equally sized.
1315 */
1316 return (hva & ~(map_size - 1)) >= uaddr_start &&
1317 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1318 }
1319
1320 /*
1321 * Check if the given hva is backed by a transparent huge page (THP) and
1322 * whether it can be mapped using block mapping in stage2. If so, adjust
1323 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1324 * supported. This will need to be updated to support other THP sizes.
1325 *
1326 * Returns the size of the mapping.
1327 */
1328 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1329 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1330 unsigned long hva, kvm_pfn_t *pfnp,
1331 phys_addr_t *ipap)
1332 {
1333 kvm_pfn_t pfn = *pfnp;
1334
1335 /*
1336 * Make sure the adjustment is done only for THP pages. Also make
1337 * sure that the HVA and IPA are sufficiently aligned and that the
1338 * block map is contained within the memslot.
1339 */
1340 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1341 int sz = get_user_mapping_size(kvm, hva);
1342
1343 if (sz < 0)
1344 return sz;
1345
1346 if (sz < PMD_SIZE)
1347 return PAGE_SIZE;
1348
1349 *ipap &= PMD_MASK;
1350 pfn &= ~(PTRS_PER_PMD - 1);
1351 *pfnp = pfn;
1352
1353 return PMD_SIZE;
1354 }
1355
1356 /* Use page mapping if we cannot use block mapping. */
1357 return PAGE_SIZE;
1358 }
1359
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1360 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1361 {
1362 unsigned long pa;
1363
1364 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1365 return huge_page_shift(hstate_vma(vma));
1366
1367 if (!(vma->vm_flags & VM_PFNMAP))
1368 return PAGE_SHIFT;
1369
1370 VM_BUG_ON(is_vm_hugetlb_page(vma));
1371
1372 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1373
1374 #ifndef __PAGETABLE_PMD_FOLDED
1375 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1376 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1377 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1378 return PUD_SHIFT;
1379 #endif
1380
1381 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1382 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1383 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1384 return PMD_SHIFT;
1385
1386 return PAGE_SHIFT;
1387 }
1388
1389 /*
1390 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1391 * able to see the page's tags and therefore they must be initialised first. If
1392 * PG_mte_tagged is set, tags have already been initialised.
1393 *
1394 * The race in the test/set of the PG_mte_tagged flag is handled by:
1395 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1396 * racing to santise the same page
1397 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1398 * an mprotect() to add VM_MTE
1399 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1400 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1401 unsigned long size)
1402 {
1403 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1404 struct page *page = pfn_to_page(pfn);
1405
1406 if (!kvm_has_mte(kvm))
1407 return;
1408
1409 for (i = 0; i < nr_pages; i++, page++) {
1410 if (try_page_mte_tagging(page)) {
1411 mte_clear_page_tags(page_address(page));
1412 set_page_mte_tagged(page);
1413 }
1414 }
1415 }
1416
kvm_vma_mte_allowed(struct vm_area_struct * vma)1417 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1418 {
1419 return vma->vm_flags & VM_MTE_ALLOWED;
1420 }
1421
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1422 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1423 struct kvm_s2_trans *nested,
1424 struct kvm_memory_slot *memslot, unsigned long hva,
1425 bool fault_is_perm)
1426 {
1427 int ret = 0;
1428 bool write_fault, writable, force_pte = false;
1429 bool exec_fault, mte_allowed;
1430 bool device = false, vfio_allow_any_uc = false;
1431 unsigned long mmu_seq;
1432 phys_addr_t ipa = fault_ipa;
1433 struct kvm *kvm = vcpu->kvm;
1434 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1435 struct vm_area_struct *vma;
1436 short vma_shift;
1437 gfn_t gfn;
1438 kvm_pfn_t pfn;
1439 bool logging_active = memslot_is_logging(memslot);
1440 long vma_pagesize, fault_granule;
1441 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1442 struct kvm_pgtable *pgt;
1443
1444 if (fault_is_perm)
1445 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1446 write_fault = kvm_is_write_fault(vcpu);
1447 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1448 VM_BUG_ON(write_fault && exec_fault);
1449
1450 if (fault_is_perm && !write_fault && !exec_fault) {
1451 kvm_err("Unexpected L2 read permission error\n");
1452 return -EFAULT;
1453 }
1454
1455 /*
1456 * Permission faults just need to update the existing leaf entry,
1457 * and so normally don't require allocations from the memcache. The
1458 * only exception to this is when dirty logging is enabled at runtime
1459 * and a write fault needs to collapse a block entry into a table.
1460 */
1461 if (!fault_is_perm || (logging_active && write_fault)) {
1462 ret = kvm_mmu_topup_memory_cache(memcache,
1463 kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1464 if (ret)
1465 return ret;
1466 }
1467
1468 /*
1469 * Let's check if we will get back a huge page backed by hugetlbfs, or
1470 * get block mapping for device MMIO region.
1471 */
1472 mmap_read_lock(current->mm);
1473 vma = vma_lookup(current->mm, hva);
1474 if (unlikely(!vma)) {
1475 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1476 mmap_read_unlock(current->mm);
1477 return -EFAULT;
1478 }
1479
1480 /*
1481 * logging_active is guaranteed to never be true for VM_PFNMAP
1482 * memslots.
1483 */
1484 if (logging_active) {
1485 force_pte = true;
1486 vma_shift = PAGE_SHIFT;
1487 } else {
1488 vma_shift = get_vma_page_shift(vma, hva);
1489 }
1490
1491 switch (vma_shift) {
1492 #ifndef __PAGETABLE_PMD_FOLDED
1493 case PUD_SHIFT:
1494 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1495 break;
1496 fallthrough;
1497 #endif
1498 case CONT_PMD_SHIFT:
1499 vma_shift = PMD_SHIFT;
1500 fallthrough;
1501 case PMD_SHIFT:
1502 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1503 break;
1504 fallthrough;
1505 case CONT_PTE_SHIFT:
1506 vma_shift = PAGE_SHIFT;
1507 force_pte = true;
1508 fallthrough;
1509 case PAGE_SHIFT:
1510 break;
1511 default:
1512 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1513 }
1514
1515 vma_pagesize = 1UL << vma_shift;
1516
1517 if (nested) {
1518 unsigned long max_map_size;
1519
1520 max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1521
1522 ipa = kvm_s2_trans_output(nested);
1523
1524 /*
1525 * If we're about to create a shadow stage 2 entry, then we
1526 * can only create a block mapping if the guest stage 2 page
1527 * table uses at least as big a mapping.
1528 */
1529 max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1530
1531 /*
1532 * Be careful that if the mapping size falls between
1533 * two host sizes, take the smallest of the two.
1534 */
1535 if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1536 max_map_size = PMD_SIZE;
1537 else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1538 max_map_size = PAGE_SIZE;
1539
1540 force_pte = (max_map_size == PAGE_SIZE);
1541 vma_pagesize = min(vma_pagesize, (long)max_map_size);
1542 }
1543
1544 /*
1545 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1546 * ensure we find the right PFN and lay down the mapping in the right
1547 * place.
1548 */
1549 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1550 fault_ipa &= ~(vma_pagesize - 1);
1551 ipa &= ~(vma_pagesize - 1);
1552 }
1553
1554 gfn = ipa >> PAGE_SHIFT;
1555 mte_allowed = kvm_vma_mte_allowed(vma);
1556
1557 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1558
1559 /* Don't use the VMA after the unlock -- it may have vanished */
1560 vma = NULL;
1561
1562 /*
1563 * Read mmu_invalidate_seq so that KVM can detect if the results of
1564 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1565 * acquiring kvm->mmu_lock.
1566 *
1567 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1568 * with the smp_wmb() in kvm_mmu_invalidate_end().
1569 */
1570 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1571 mmap_read_unlock(current->mm);
1572
1573 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1574 write_fault, &writable, NULL);
1575 if (pfn == KVM_PFN_ERR_HWPOISON) {
1576 kvm_send_hwpoison_signal(hva, vma_shift);
1577 return 0;
1578 }
1579 if (is_error_noslot_pfn(pfn))
1580 return -EFAULT;
1581
1582 if (kvm_is_device_pfn(pfn)) {
1583 /*
1584 * If the page was identified as device early by looking at
1585 * the VMA flags, vma_pagesize is already representing the
1586 * largest quantity we can map. If instead it was mapped
1587 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1588 * and must not be upgraded.
1589 *
1590 * In both cases, we don't let transparent_hugepage_adjust()
1591 * change things at the last minute.
1592 */
1593 device = true;
1594 } else if (logging_active && !write_fault) {
1595 /*
1596 * Only actually map the page as writable if this was a write
1597 * fault.
1598 */
1599 writable = false;
1600 }
1601
1602 if (exec_fault && device)
1603 return -ENOEXEC;
1604
1605 /*
1606 * Potentially reduce shadow S2 permissions to match the guest's own
1607 * S2. For exec faults, we'd only reach this point if the guest
1608 * actually allowed it (see kvm_s2_handle_perm_fault).
1609 *
1610 * Also encode the level of the original translation in the SW bits
1611 * of the leaf entry as a proxy for the span of that translation.
1612 * This will be retrieved on TLB invalidation from the guest and
1613 * used to limit the invalidation scope if a TTL hint or a range
1614 * isn't provided.
1615 */
1616 if (nested) {
1617 writable &= kvm_s2_trans_writable(nested);
1618 if (!kvm_s2_trans_readable(nested))
1619 prot &= ~KVM_PGTABLE_PROT_R;
1620
1621 prot |= kvm_encode_nested_level(nested);
1622 }
1623
1624 read_lock(&kvm->mmu_lock);
1625 pgt = vcpu->arch.hw_mmu->pgt;
1626 if (mmu_invalidate_retry(kvm, mmu_seq)) {
1627 ret = -EAGAIN;
1628 goto out_unlock;
1629 }
1630
1631 /*
1632 * If we are not forced to use page mapping, check if we are
1633 * backed by a THP and thus use block mapping if possible.
1634 */
1635 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1636 if (fault_is_perm && fault_granule > PAGE_SIZE)
1637 vma_pagesize = fault_granule;
1638 else
1639 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1640 hva, &pfn,
1641 &fault_ipa);
1642
1643 if (vma_pagesize < 0) {
1644 ret = vma_pagesize;
1645 goto out_unlock;
1646 }
1647 }
1648
1649 if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1650 /* Check the VMM hasn't introduced a new disallowed VMA */
1651 if (mte_allowed) {
1652 sanitise_mte_tags(kvm, pfn, vma_pagesize);
1653 } else {
1654 ret = -EFAULT;
1655 goto out_unlock;
1656 }
1657 }
1658
1659 if (writable)
1660 prot |= KVM_PGTABLE_PROT_W;
1661
1662 if (exec_fault)
1663 prot |= KVM_PGTABLE_PROT_X;
1664
1665 if (device) {
1666 if (vfio_allow_any_uc)
1667 prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1668 else
1669 prot |= KVM_PGTABLE_PROT_DEVICE;
1670 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1671 (!nested || kvm_s2_trans_executable(nested))) {
1672 prot |= KVM_PGTABLE_PROT_X;
1673 }
1674
1675 /*
1676 * Under the premise of getting a FSC_PERM fault, we just need to relax
1677 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1678 * kvm_pgtable_stage2_map() should be called to change block size.
1679 */
1680 if (fault_is_perm && vma_pagesize == fault_granule) {
1681 /*
1682 * Drop the SW bits in favour of those stored in the
1683 * PTE, which will be preserved.
1684 */
1685 prot &= ~KVM_NV_GUEST_MAP_SZ;
1686 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1687 } else {
1688 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1689 __pfn_to_phys(pfn), prot,
1690 memcache,
1691 KVM_PGTABLE_WALK_HANDLE_FAULT |
1692 KVM_PGTABLE_WALK_SHARED);
1693 }
1694
1695 out_unlock:
1696 read_unlock(&kvm->mmu_lock);
1697
1698 /* Mark the page dirty only if the fault is handled successfully */
1699 if (writable && !ret) {
1700 kvm_set_pfn_dirty(pfn);
1701 mark_page_dirty_in_slot(kvm, memslot, gfn);
1702 }
1703
1704 kvm_release_pfn_clean(pfn);
1705 return ret != -EAGAIN ? ret : 0;
1706 }
1707
1708 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1709 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1710 {
1711 kvm_pte_t pte;
1712 struct kvm_s2_mmu *mmu;
1713
1714 trace_kvm_access_fault(fault_ipa);
1715
1716 read_lock(&vcpu->kvm->mmu_lock);
1717 mmu = vcpu->arch.hw_mmu;
1718 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1719 read_unlock(&vcpu->kvm->mmu_lock);
1720
1721 if (kvm_pte_valid(pte))
1722 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1723 }
1724
1725 /**
1726 * kvm_handle_guest_abort - handles all 2nd stage aborts
1727 * @vcpu: the VCPU pointer
1728 *
1729 * Any abort that gets to the host is almost guaranteed to be caused by a
1730 * missing second stage translation table entry, which can mean that either the
1731 * guest simply needs more memory and we must allocate an appropriate page or it
1732 * can mean that the guest tried to access I/O memory, which is emulated by user
1733 * space. The distinction is based on the IPA causing the fault and whether this
1734 * memory region has been registered as standard RAM by user space.
1735 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1736 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1737 {
1738 struct kvm_s2_trans nested_trans, *nested = NULL;
1739 unsigned long esr;
1740 phys_addr_t fault_ipa; /* The address we faulted on */
1741 phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1742 struct kvm_memory_slot *memslot;
1743 unsigned long hva;
1744 bool is_iabt, write_fault, writable;
1745 gfn_t gfn;
1746 int ret, idx;
1747
1748 esr = kvm_vcpu_get_esr(vcpu);
1749
1750 ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1751 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1752
1753 if (esr_fsc_is_translation_fault(esr)) {
1754 /* Beyond sanitised PARange (which is the IPA limit) */
1755 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1756 kvm_inject_size_fault(vcpu);
1757 return 1;
1758 }
1759
1760 /* Falls between the IPA range and the PARange? */
1761 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1762 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1763
1764 if (is_iabt)
1765 kvm_inject_pabt(vcpu, fault_ipa);
1766 else
1767 kvm_inject_dabt(vcpu, fault_ipa);
1768 return 1;
1769 }
1770 }
1771
1772 /* Synchronous External Abort? */
1773 if (kvm_vcpu_abt_issea(vcpu)) {
1774 /*
1775 * For RAS the host kernel may handle this abort.
1776 * There is no need to pass the error into the guest.
1777 */
1778 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1779 kvm_inject_vabt(vcpu);
1780
1781 return 1;
1782 }
1783
1784 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1785 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1786
1787 /* Check the stage-2 fault is trans. fault or write fault */
1788 if (!esr_fsc_is_translation_fault(esr) &&
1789 !esr_fsc_is_permission_fault(esr) &&
1790 !esr_fsc_is_access_flag_fault(esr)) {
1791 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1792 kvm_vcpu_trap_get_class(vcpu),
1793 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1794 (unsigned long)kvm_vcpu_get_esr(vcpu));
1795 return -EFAULT;
1796 }
1797
1798 idx = srcu_read_lock(&vcpu->kvm->srcu);
1799
1800 /*
1801 * We may have faulted on a shadow stage 2 page table if we are
1802 * running a nested guest. In this case, we have to resolve the L2
1803 * IPA to the L1 IPA first, before knowing what kind of memory should
1804 * back the L1 IPA.
1805 *
1806 * If the shadow stage 2 page table walk faults, then we simply inject
1807 * this to the guest and carry on.
1808 *
1809 * If there are no shadow S2 PTs because S2 is disabled, there is
1810 * nothing to walk and we treat it as a 1:1 before going through the
1811 * canonical translation.
1812 */
1813 if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1814 vcpu->arch.hw_mmu->nested_stage2_enabled) {
1815 u32 esr;
1816
1817 ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1818 if (ret) {
1819 esr = kvm_s2_trans_esr(&nested_trans);
1820 kvm_inject_s2_fault(vcpu, esr);
1821 goto out_unlock;
1822 }
1823
1824 ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1825 if (ret) {
1826 esr = kvm_s2_trans_esr(&nested_trans);
1827 kvm_inject_s2_fault(vcpu, esr);
1828 goto out_unlock;
1829 }
1830
1831 ipa = kvm_s2_trans_output(&nested_trans);
1832 nested = &nested_trans;
1833 }
1834
1835 gfn = ipa >> PAGE_SHIFT;
1836 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1837 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1838 write_fault = kvm_is_write_fault(vcpu);
1839 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1840 /*
1841 * The guest has put either its instructions or its page-tables
1842 * somewhere it shouldn't have. Userspace won't be able to do
1843 * anything about this (there's no syndrome for a start), so
1844 * re-inject the abort back into the guest.
1845 */
1846 if (is_iabt) {
1847 ret = -ENOEXEC;
1848 goto out;
1849 }
1850
1851 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1852 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1853 ret = 1;
1854 goto out_unlock;
1855 }
1856
1857 /*
1858 * Check for a cache maintenance operation. Since we
1859 * ended-up here, we know it is outside of any memory
1860 * slot. But we can't find out if that is for a device,
1861 * or if the guest is just being stupid. The only thing
1862 * we know for sure is that this range cannot be cached.
1863 *
1864 * So let's assume that the guest is just being
1865 * cautious, and skip the instruction.
1866 */
1867 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1868 kvm_incr_pc(vcpu);
1869 ret = 1;
1870 goto out_unlock;
1871 }
1872
1873 /*
1874 * The IPA is reported as [MAX:12], so we need to
1875 * complement it with the bottom 12 bits from the
1876 * faulting VA. This is always 12 bits, irrespective
1877 * of the page size.
1878 */
1879 ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1880 ret = io_mem_abort(vcpu, ipa);
1881 goto out_unlock;
1882 }
1883
1884 /* Userspace should not be able to register out-of-bounds IPAs */
1885 VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1886
1887 if (esr_fsc_is_access_flag_fault(esr)) {
1888 handle_access_fault(vcpu, fault_ipa);
1889 ret = 1;
1890 goto out_unlock;
1891 }
1892
1893 ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1894 esr_fsc_is_permission_fault(esr));
1895 if (ret == 0)
1896 ret = 1;
1897 out:
1898 if (ret == -ENOEXEC) {
1899 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1900 ret = 1;
1901 }
1902 out_unlock:
1903 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1904 return ret;
1905 }
1906
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1907 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1908 {
1909 if (!kvm->arch.mmu.pgt)
1910 return false;
1911
1912 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1913 (range->end - range->start) << PAGE_SHIFT,
1914 range->may_block);
1915
1916 kvm_nested_s2_unmap(kvm, range->may_block);
1917 return false;
1918 }
1919
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1920 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1921 {
1922 u64 size = (range->end - range->start) << PAGE_SHIFT;
1923
1924 if (!kvm->arch.mmu.pgt)
1925 return false;
1926
1927 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1928 range->start << PAGE_SHIFT,
1929 size, true);
1930 /*
1931 * TODO: Handle nested_mmu structures here using the reverse mapping in
1932 * a later version of patch series.
1933 */
1934 }
1935
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1936 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1937 {
1938 u64 size = (range->end - range->start) << PAGE_SHIFT;
1939
1940 if (!kvm->arch.mmu.pgt)
1941 return false;
1942
1943 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1944 range->start << PAGE_SHIFT,
1945 size, false);
1946 }
1947
kvm_mmu_get_httbr(void)1948 phys_addr_t kvm_mmu_get_httbr(void)
1949 {
1950 return __pa(hyp_pgtable->pgd);
1951 }
1952
kvm_get_idmap_vector(void)1953 phys_addr_t kvm_get_idmap_vector(void)
1954 {
1955 return hyp_idmap_vector;
1956 }
1957
kvm_map_idmap_text(void)1958 static int kvm_map_idmap_text(void)
1959 {
1960 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1961 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1962 PAGE_HYP_EXEC);
1963 if (err)
1964 kvm_err("Failed to idmap %lx-%lx\n",
1965 hyp_idmap_start, hyp_idmap_end);
1966
1967 return err;
1968 }
1969
kvm_hyp_zalloc_page(void * arg)1970 static void *kvm_hyp_zalloc_page(void *arg)
1971 {
1972 return (void *)get_zeroed_page(GFP_KERNEL);
1973 }
1974
1975 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1976 .zalloc_page = kvm_hyp_zalloc_page,
1977 .get_page = kvm_host_get_page,
1978 .put_page = kvm_host_put_page,
1979 .phys_to_virt = kvm_host_va,
1980 .virt_to_phys = kvm_host_pa,
1981 };
1982
kvm_mmu_init(u32 * hyp_va_bits)1983 int __init kvm_mmu_init(u32 *hyp_va_bits)
1984 {
1985 int err;
1986 u32 idmap_bits;
1987 u32 kernel_bits;
1988
1989 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1990 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1991 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1992 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1993 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1994
1995 /*
1996 * We rely on the linker script to ensure at build time that the HYP
1997 * init code does not cross a page boundary.
1998 */
1999 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2000
2001 /*
2002 * The ID map is always configured for 48 bits of translation, which
2003 * may be fewer than the number of VA bits used by the regular kernel
2004 * stage 1, when VA_BITS=52.
2005 *
2006 * At EL2, there is only one TTBR register, and we can't switch between
2007 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2008 * line: we need to use the extended range with *both* our translation
2009 * tables.
2010 *
2011 * So use the maximum of the idmap VA bits and the regular kernel stage
2012 * 1 VA bits to assure that the hypervisor can both ID map its code page
2013 * and map any kernel memory.
2014 */
2015 idmap_bits = IDMAP_VA_BITS;
2016 kernel_bits = vabits_actual;
2017 *hyp_va_bits = max(idmap_bits, kernel_bits);
2018
2019 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2020 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2021 kvm_debug("HYP VA range: %lx:%lx\n",
2022 kern_hyp_va(PAGE_OFFSET),
2023 kern_hyp_va((unsigned long)high_memory - 1));
2024
2025 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2026 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2027 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2028 /*
2029 * The idmap page is intersecting with the VA space,
2030 * it is not safe to continue further.
2031 */
2032 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2033 err = -EINVAL;
2034 goto out;
2035 }
2036
2037 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2038 if (!hyp_pgtable) {
2039 kvm_err("Hyp mode page-table not allocated\n");
2040 err = -ENOMEM;
2041 goto out;
2042 }
2043
2044 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2045 if (err)
2046 goto out_free_pgtable;
2047
2048 err = kvm_map_idmap_text();
2049 if (err)
2050 goto out_destroy_pgtable;
2051
2052 io_map_base = hyp_idmap_start;
2053 return 0;
2054
2055 out_destroy_pgtable:
2056 kvm_pgtable_hyp_destroy(hyp_pgtable);
2057 out_free_pgtable:
2058 kfree(hyp_pgtable);
2059 hyp_pgtable = NULL;
2060 out:
2061 return err;
2062 }
2063
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2064 void kvm_arch_commit_memory_region(struct kvm *kvm,
2065 struct kvm_memory_slot *old,
2066 const struct kvm_memory_slot *new,
2067 enum kvm_mr_change change)
2068 {
2069 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2070
2071 /*
2072 * At this point memslot has been committed and there is an
2073 * allocated dirty_bitmap[], dirty pages will be tracked while the
2074 * memory slot is write protected.
2075 */
2076 if (log_dirty_pages) {
2077
2078 if (change == KVM_MR_DELETE)
2079 return;
2080
2081 /*
2082 * Huge and normal pages are write-protected and split
2083 * on either of these two cases:
2084 *
2085 * 1. with initial-all-set: gradually with CLEAR ioctls,
2086 */
2087 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2088 return;
2089 /*
2090 * or
2091 * 2. without initial-all-set: all in one shot when
2092 * enabling dirty logging.
2093 */
2094 kvm_mmu_wp_memory_region(kvm, new->id);
2095 kvm_mmu_split_memory_region(kvm, new->id);
2096 } else {
2097 /*
2098 * Free any leftovers from the eager page splitting cache. Do
2099 * this when deleting, moving, disabling dirty logging, or
2100 * creating the memslot (a nop). Doing it for deletes makes
2101 * sure we don't leak memory, and there's no need to keep the
2102 * cache around for any of the other cases.
2103 */
2104 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2105 }
2106 }
2107
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2108 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2109 const struct kvm_memory_slot *old,
2110 struct kvm_memory_slot *new,
2111 enum kvm_mr_change change)
2112 {
2113 hva_t hva, reg_end;
2114 int ret = 0;
2115
2116 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2117 change != KVM_MR_FLAGS_ONLY)
2118 return 0;
2119
2120 /*
2121 * Prevent userspace from creating a memory region outside of the IPA
2122 * space addressable by the KVM guest IPA space.
2123 */
2124 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2125 return -EFAULT;
2126
2127 hva = new->userspace_addr;
2128 reg_end = hva + (new->npages << PAGE_SHIFT);
2129
2130 mmap_read_lock(current->mm);
2131 /*
2132 * A memory region could potentially cover multiple VMAs, and any holes
2133 * between them, so iterate over all of them.
2134 *
2135 * +--------------------------------------------+
2136 * +---------------+----------------+ +----------------+
2137 * | : VMA 1 | VMA 2 | | VMA 3 : |
2138 * +---------------+----------------+ +----------------+
2139 * | memory region |
2140 * +--------------------------------------------+
2141 */
2142 do {
2143 struct vm_area_struct *vma;
2144
2145 vma = find_vma_intersection(current->mm, hva, reg_end);
2146 if (!vma)
2147 break;
2148
2149 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2150 ret = -EINVAL;
2151 break;
2152 }
2153
2154 if (vma->vm_flags & VM_PFNMAP) {
2155 /* IO region dirty page logging not allowed */
2156 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2157 ret = -EINVAL;
2158 break;
2159 }
2160 }
2161 hva = min(reg_end, vma->vm_end);
2162 } while (hva < reg_end);
2163
2164 mmap_read_unlock(current->mm);
2165 return ret;
2166 }
2167
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2168 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2169 {
2170 }
2171
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2172 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2173 {
2174 }
2175
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2176 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2177 struct kvm_memory_slot *slot)
2178 {
2179 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2180 phys_addr_t size = slot->npages << PAGE_SHIFT;
2181
2182 write_lock(&kvm->mmu_lock);
2183 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2184 kvm_nested_s2_unmap(kvm, true);
2185 write_unlock(&kvm->mmu_lock);
2186 }
2187
2188 /*
2189 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2190 *
2191 * Main problems:
2192 * - S/W ops are local to a CPU (not broadcast)
2193 * - We have line migration behind our back (speculation)
2194 * - System caches don't support S/W at all (damn!)
2195 *
2196 * In the face of the above, the best we can do is to try and convert
2197 * S/W ops to VA ops. Because the guest is not allowed to infer the
2198 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2199 * which is a rather good thing for us.
2200 *
2201 * Also, it is only used when turning caches on/off ("The expected
2202 * usage of the cache maintenance instructions that operate by set/way
2203 * is associated with the cache maintenance instructions associated
2204 * with the powerdown and powerup of caches, if this is required by
2205 * the implementation.").
2206 *
2207 * We use the following policy:
2208 *
2209 * - If we trap a S/W operation, we enable VM trapping to detect
2210 * caches being turned on/off, and do a full clean.
2211 *
2212 * - We flush the caches on both caches being turned on and off.
2213 *
2214 * - Once the caches are enabled, we stop trapping VM ops.
2215 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2216 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2217 {
2218 unsigned long hcr = *vcpu_hcr(vcpu);
2219
2220 /*
2221 * If this is the first time we do a S/W operation
2222 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2223 * VM trapping.
2224 *
2225 * Otherwise, rely on the VM trapping to wait for the MMU +
2226 * Caches to be turned off. At that point, we'll be able to
2227 * clean the caches again.
2228 */
2229 if (!(hcr & HCR_TVM)) {
2230 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2231 vcpu_has_cache_enabled(vcpu));
2232 stage2_flush_vm(vcpu->kvm);
2233 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2234 }
2235 }
2236
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2237 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2238 {
2239 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2240
2241 /*
2242 * If switching the MMU+caches on, need to invalidate the caches.
2243 * If switching it off, need to clean the caches.
2244 * Clean + invalidate does the trick always.
2245 */
2246 if (now_enabled != was_enabled)
2247 stage2_flush_vm(vcpu->kvm);
2248
2249 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2250 if (now_enabled)
2251 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2252
2253 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2254 }
2255