1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/fs.h>
46 #include <linux/mm.h>
47 #include <linux/mm_inline.h>
48 #include <linux/memblock.h>
49 #include <linux/nsproxy.h>
50 #include <linux/capability.h>
51 #include <linux/cpu.h>
52 #include <linux/cgroup.h>
53 #include <linux/security.h>
54 #include <linux/hugetlb.h>
55 #include <linux/seccomp.h>
56 #include <linux/swap.h>
57 #include <linux/syscalls.h>
58 #include <linux/syscall_user_dispatch.h>
59 #include <linux/jiffies.h>
60 #include <linux/futex.h>
61 #include <linux/compat.h>
62 #include <linux/kthread.h>
63 #include <linux/task_io_accounting_ops.h>
64 #include <linux/rcupdate.h>
65 #include <linux/ptrace.h>
66 #include <linux/mount.h>
67 #include <linux/audit.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/proc_fs.h>
71 #include <linux/profile.h>
72 #include <linux/rmap.h>
73 #include <linux/ksm.h>
74 #include <linux/acct.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/tsacct_kern.h>
77 #include <linux/cn_proc.h>
78 #include <linux/freezer.h>
79 #include <linux/delayacct.h>
80 #include <linux/taskstats_kern.h>
81 #include <linux/tty.h>
82 #include <linux/fs_struct.h>
83 #include <linux/magic.h>
84 #include <linux/perf_event.h>
85 #include <linux/posix-timers.h>
86 #include <linux/user-return-notifier.h>
87 #include <linux/oom.h>
88 #include <linux/khugepaged.h>
89 #include <linux/signalfd.h>
90 #include <linux/uprobes.h>
91 #include <linux/aio.h>
92 #include <linux/compiler.h>
93 #include <linux/sysctl.h>
94 #include <linux/kcov.h>
95 #include <linux/livepatch.h>
96 #include <linux/thread_info.h>
97 #include <linux/stackleak.h>
98 #include <linux/kasan.h>
99 #include <linux/scs.h>
100 #include <linux/io_uring.h>
101 #include <linux/bpf.h>
102 #include <linux/stackprotector.h>
103 #include <linux/user_events.h>
104 #include <linux/iommu.h>
105 #include <linux/rseq.h>
106 #include <uapi/linux/pidfd.h>
107 #include <linux/pidfs.h>
108 #include <linux/tick.h>
109 
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 #include <trace/events/sched.h>
117 
118 #define CREATE_TRACE_POINTS
119 #include <trace/events/task.h>
120 
121 #include <kunit/visibility.h>
122 
123 /*
124  * Minimum number of threads to boot the kernel
125  */
126 #define MIN_THREADS 20
127 
128 /*
129  * Maximum number of threads
130  */
131 #define MAX_THREADS FUTEX_TID_MASK
132 
133 /*
134  * Protected counters by write_lock_irq(&tasklist_lock)
135  */
136 unsigned long total_forks;	/* Handle normal Linux uptimes. */
137 int nr_threads;			/* The idle threads do not count.. */
138 
139 static int max_threads;		/* tunable limit on nr_threads */
140 
141 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
142 
143 static const char * const resident_page_types[] = {
144 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
145 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
146 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
147 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
148 };
149 
150 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
151 
152 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
153 
154 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)155 int lockdep_tasklist_lock_is_held(void)
156 {
157 	return lockdep_is_held(&tasklist_lock);
158 }
159 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
160 #endif /* #ifdef CONFIG_PROVE_RCU */
161 
nr_processes(void)162 int nr_processes(void)
163 {
164 	int cpu;
165 	int total = 0;
166 
167 	for_each_possible_cpu(cpu)
168 		total += per_cpu(process_counts, cpu);
169 
170 	return total;
171 }
172 
arch_release_task_struct(struct task_struct * tsk)173 void __weak arch_release_task_struct(struct task_struct *tsk)
174 {
175 }
176 
177 static struct kmem_cache *task_struct_cachep;
178 
alloc_task_struct_node(int node)179 static inline struct task_struct *alloc_task_struct_node(int node)
180 {
181 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
182 }
183 
free_task_struct(struct task_struct * tsk)184 static inline void free_task_struct(struct task_struct *tsk)
185 {
186 	kmem_cache_free(task_struct_cachep, tsk);
187 }
188 
189 /*
190  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
191  * kmemcache based allocator.
192  */
193 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194 
195 #  ifdef CONFIG_VMAP_STACK
196 /*
197  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
198  * flush.  Try to minimize the number of calls by caching stacks.
199  */
200 #define NR_CACHED_STACKS 2
201 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
202 
203 struct vm_stack {
204 	struct rcu_head rcu;
205 	struct vm_struct *stack_vm_area;
206 };
207 
try_release_thread_stack_to_cache(struct vm_struct * vm)208 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
209 {
210 	unsigned int i;
211 
212 	for (i = 0; i < NR_CACHED_STACKS; i++) {
213 		struct vm_struct *tmp = NULL;
214 
215 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
216 			return true;
217 	}
218 	return false;
219 }
220 
thread_stack_free_rcu(struct rcu_head * rh)221 static void thread_stack_free_rcu(struct rcu_head *rh)
222 {
223 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
224 
225 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
226 		return;
227 
228 	vfree(vm_stack);
229 }
230 
thread_stack_delayed_free(struct task_struct * tsk)231 static void thread_stack_delayed_free(struct task_struct *tsk)
232 {
233 	struct vm_stack *vm_stack = tsk->stack;
234 
235 	vm_stack->stack_vm_area = tsk->stack_vm_area;
236 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
237 }
238 
free_vm_stack_cache(unsigned int cpu)239 static int free_vm_stack_cache(unsigned int cpu)
240 {
241 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
242 	int i;
243 
244 	for (i = 0; i < NR_CACHED_STACKS; i++) {
245 		struct vm_struct *vm_stack = cached_vm_stacks[i];
246 
247 		if (!vm_stack)
248 			continue;
249 
250 		vfree(vm_stack->addr);
251 		cached_vm_stacks[i] = NULL;
252 	}
253 
254 	return 0;
255 }
256 
memcg_charge_kernel_stack(struct vm_struct * vm)257 static int memcg_charge_kernel_stack(struct vm_struct *vm)
258 {
259 	int i;
260 	int ret;
261 	int nr_charged = 0;
262 
263 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
264 
265 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
266 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
267 		if (ret)
268 			goto err;
269 		nr_charged++;
270 	}
271 	return 0;
272 err:
273 	for (i = 0; i < nr_charged; i++)
274 		memcg_kmem_uncharge_page(vm->pages[i], 0);
275 	return ret;
276 }
277 
alloc_thread_stack_node(struct task_struct * tsk,int node)278 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
279 {
280 	struct vm_struct *vm;
281 	void *stack;
282 	int i;
283 
284 	for (i = 0; i < NR_CACHED_STACKS; i++) {
285 		struct vm_struct *s;
286 
287 		s = this_cpu_xchg(cached_stacks[i], NULL);
288 
289 		if (!s)
290 			continue;
291 
292 		/* Reset stack metadata. */
293 		kasan_unpoison_range(s->addr, THREAD_SIZE);
294 
295 		stack = kasan_reset_tag(s->addr);
296 
297 		/* Clear stale pointers from reused stack. */
298 		memset(stack, 0, THREAD_SIZE);
299 
300 		if (memcg_charge_kernel_stack(s)) {
301 			vfree(s->addr);
302 			return -ENOMEM;
303 		}
304 
305 		tsk->stack_vm_area = s;
306 		tsk->stack = stack;
307 		return 0;
308 	}
309 
310 	/*
311 	 * Allocated stacks are cached and later reused by new threads,
312 	 * so memcg accounting is performed manually on assigning/releasing
313 	 * stacks to tasks. Drop __GFP_ACCOUNT.
314 	 */
315 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
316 				     VMALLOC_START, VMALLOC_END,
317 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
318 				     PAGE_KERNEL,
319 				     0, node, __builtin_return_address(0));
320 	if (!stack)
321 		return -ENOMEM;
322 
323 	vm = find_vm_area(stack);
324 	if (memcg_charge_kernel_stack(vm)) {
325 		vfree(stack);
326 		return -ENOMEM;
327 	}
328 	/*
329 	 * We can't call find_vm_area() in interrupt context, and
330 	 * free_thread_stack() can be called in interrupt context,
331 	 * so cache the vm_struct.
332 	 */
333 	tsk->stack_vm_area = vm;
334 	stack = kasan_reset_tag(stack);
335 	tsk->stack = stack;
336 	return 0;
337 }
338 
free_thread_stack(struct task_struct * tsk)339 static void free_thread_stack(struct task_struct *tsk)
340 {
341 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
342 		thread_stack_delayed_free(tsk);
343 
344 	tsk->stack = NULL;
345 	tsk->stack_vm_area = NULL;
346 }
347 
348 #  else /* !CONFIG_VMAP_STACK */
349 
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354 
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 	struct rcu_head *rh = tsk->stack;
358 
359 	call_rcu(rh, thread_stack_free_rcu);
360 }
361 
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 					     THREAD_SIZE_ORDER);
366 
367 	if (likely(page)) {
368 		tsk->stack = kasan_reset_tag(page_address(page));
369 		return 0;
370 	}
371 	return -ENOMEM;
372 }
373 
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 	thread_stack_delayed_free(tsk);
377 	tsk->stack = NULL;
378 }
379 
380 #  endif /* CONFIG_VMAP_STACK */
381 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
382 
383 static struct kmem_cache *thread_stack_cache;
384 
thread_stack_free_rcu(struct rcu_head * rh)385 static void thread_stack_free_rcu(struct rcu_head *rh)
386 {
387 	kmem_cache_free(thread_stack_cache, rh);
388 }
389 
thread_stack_delayed_free(struct task_struct * tsk)390 static void thread_stack_delayed_free(struct task_struct *tsk)
391 {
392 	struct rcu_head *rh = tsk->stack;
393 
394 	call_rcu(rh, thread_stack_free_rcu);
395 }
396 
alloc_thread_stack_node(struct task_struct * tsk,int node)397 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
398 {
399 	unsigned long *stack;
400 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
401 	stack = kasan_reset_tag(stack);
402 	tsk->stack = stack;
403 	return stack ? 0 : -ENOMEM;
404 }
405 
free_thread_stack(struct task_struct * tsk)406 static void free_thread_stack(struct task_struct *tsk)
407 {
408 	thread_stack_delayed_free(tsk);
409 	tsk->stack = NULL;
410 }
411 
thread_stack_cache_init(void)412 void thread_stack_cache_init(void)
413 {
414 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
415 					THREAD_SIZE, THREAD_SIZE, 0, 0,
416 					THREAD_SIZE, NULL);
417 	BUG_ON(thread_stack_cache == NULL);
418 }
419 
420 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
421 
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424 
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427 
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430 
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433 
434 /* SLAB cache for vm_area_struct structures */
435 static struct kmem_cache *vm_area_cachep;
436 
437 /* SLAB cache for mm_struct structures (tsk->mm) */
438 static struct kmem_cache *mm_cachep;
439 
440 #ifdef CONFIG_PER_VMA_LOCK
441 
442 /* SLAB cache for vm_area_struct.lock */
443 static struct kmem_cache *vma_lock_cachep;
444 
vma_lock_alloc(struct vm_area_struct * vma)445 static bool vma_lock_alloc(struct vm_area_struct *vma)
446 {
447 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
448 	if (!vma->vm_lock)
449 		return false;
450 
451 	init_rwsem(&vma->vm_lock->lock);
452 	vma->vm_lock_seq = -1;
453 
454 	return true;
455 }
456 
vma_lock_free(struct vm_area_struct * vma)457 static inline void vma_lock_free(struct vm_area_struct *vma)
458 {
459 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
460 }
461 
462 #else /* CONFIG_PER_VMA_LOCK */
463 
vma_lock_alloc(struct vm_area_struct * vma)464 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)465 static inline void vma_lock_free(struct vm_area_struct *vma) {}
466 
467 #endif /* CONFIG_PER_VMA_LOCK */
468 
vm_area_alloc(struct mm_struct * mm)469 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
470 {
471 	struct vm_area_struct *vma;
472 
473 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
474 	if (!vma)
475 		return NULL;
476 
477 	vma_init(vma, mm);
478 	if (!vma_lock_alloc(vma)) {
479 		kmem_cache_free(vm_area_cachep, vma);
480 		return NULL;
481 	}
482 
483 	return vma;
484 }
485 
vm_area_dup(struct vm_area_struct * orig)486 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487 {
488 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
489 
490 	if (!new)
491 		return NULL;
492 
493 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
494 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495 	/*
496 	 * orig->shared.rb may be modified concurrently, but the clone
497 	 * will be reinitialized.
498 	 */
499 	data_race(memcpy(new, orig, sizeof(*new)));
500 	if (!vma_lock_alloc(new)) {
501 		kmem_cache_free(vm_area_cachep, new);
502 		return NULL;
503 	}
504 	INIT_LIST_HEAD(&new->anon_vma_chain);
505 	vma_numab_state_init(new);
506 	dup_anon_vma_name(orig, new);
507 
508 	return new;
509 }
510 
__vm_area_free(struct vm_area_struct * vma)511 void __vm_area_free(struct vm_area_struct *vma)
512 {
513 	vma_numab_state_free(vma);
514 	free_anon_vma_name(vma);
515 	vma_lock_free(vma);
516 	kmem_cache_free(vm_area_cachep, vma);
517 }
518 
519 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)520 static void vm_area_free_rcu_cb(struct rcu_head *head)
521 {
522 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
523 						  vm_rcu);
524 
525 	/* The vma should not be locked while being destroyed. */
526 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
527 	__vm_area_free(vma);
528 }
529 #endif
530 
vm_area_free(struct vm_area_struct * vma)531 void vm_area_free(struct vm_area_struct *vma)
532 {
533 #ifdef CONFIG_PER_VMA_LOCK
534 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
535 #else
536 	__vm_area_free(vma);
537 #endif
538 }
539 
account_kernel_stack(struct task_struct * tsk,int account)540 static void account_kernel_stack(struct task_struct *tsk, int account)
541 {
542 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
543 		struct vm_struct *vm = task_stack_vm_area(tsk);
544 		int i;
545 
546 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
547 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
548 					      account * (PAGE_SIZE / 1024));
549 	} else {
550 		void *stack = task_stack_page(tsk);
551 
552 		/* All stack pages are in the same node. */
553 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
554 				      account * (THREAD_SIZE / 1024));
555 	}
556 }
557 
exit_task_stack_account(struct task_struct * tsk)558 void exit_task_stack_account(struct task_struct *tsk)
559 {
560 	account_kernel_stack(tsk, -1);
561 
562 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
563 		struct vm_struct *vm;
564 		int i;
565 
566 		vm = task_stack_vm_area(tsk);
567 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
568 			memcg_kmem_uncharge_page(vm->pages[i], 0);
569 	}
570 }
571 
release_task_stack(struct task_struct * tsk)572 static void release_task_stack(struct task_struct *tsk)
573 {
574 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
575 		return;  /* Better to leak the stack than to free prematurely */
576 
577 	free_thread_stack(tsk);
578 }
579 
580 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)581 void put_task_stack(struct task_struct *tsk)
582 {
583 	if (refcount_dec_and_test(&tsk->stack_refcount))
584 		release_task_stack(tsk);
585 }
586 #endif
587 
free_task(struct task_struct * tsk)588 void free_task(struct task_struct *tsk)
589 {
590 #ifdef CONFIG_SECCOMP
591 	WARN_ON_ONCE(tsk->seccomp.filter);
592 #endif
593 	release_user_cpus_ptr(tsk);
594 	scs_release(tsk);
595 
596 #ifndef CONFIG_THREAD_INFO_IN_TASK
597 	/*
598 	 * The task is finally done with both the stack and thread_info,
599 	 * so free both.
600 	 */
601 	release_task_stack(tsk);
602 #else
603 	/*
604 	 * If the task had a separate stack allocation, it should be gone
605 	 * by now.
606 	 */
607 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
608 #endif
609 	rt_mutex_debug_task_free(tsk);
610 	ftrace_graph_exit_task(tsk);
611 	arch_release_task_struct(tsk);
612 	if (tsk->flags & PF_KTHREAD)
613 		free_kthread_struct(tsk);
614 	bpf_task_storage_free(tsk);
615 	free_task_struct(tsk);
616 }
617 EXPORT_SYMBOL(free_task);
618 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)619 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
620 {
621 	struct file *exe_file;
622 
623 	exe_file = get_mm_exe_file(oldmm);
624 	RCU_INIT_POINTER(mm->exe_file, exe_file);
625 }
626 
627 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)628 static __latent_entropy int dup_mmap(struct mm_struct *mm,
629 					struct mm_struct *oldmm)
630 {
631 	struct vm_area_struct *mpnt, *tmp;
632 	int retval;
633 	unsigned long charge = 0;
634 	LIST_HEAD(uf);
635 	VMA_ITERATOR(vmi, mm, 0);
636 
637 	uprobe_start_dup_mmap();
638 	if (mmap_write_lock_killable(oldmm)) {
639 		retval = -EINTR;
640 		goto fail_uprobe_end;
641 	}
642 	flush_cache_dup_mm(oldmm);
643 	uprobe_dup_mmap(oldmm, mm);
644 	/*
645 	 * Not linked in yet - no deadlock potential:
646 	 */
647 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648 
649 	/* No ordering required: file already has been exposed. */
650 	dup_mm_exe_file(mm, oldmm);
651 
652 	mm->total_vm = oldmm->total_vm;
653 	mm->data_vm = oldmm->data_vm;
654 	mm->exec_vm = oldmm->exec_vm;
655 	mm->stack_vm = oldmm->stack_vm;
656 
657 	/* Use __mt_dup() to efficiently build an identical maple tree. */
658 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
659 	if (unlikely(retval))
660 		goto out;
661 
662 	mt_clear_in_rcu(vmi.mas.tree);
663 	for_each_vma(vmi, mpnt) {
664 		struct file *file;
665 
666 		vma_start_write(mpnt);
667 		if (mpnt->vm_flags & VM_DONTCOPY) {
668 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
669 						    mpnt->vm_end, GFP_KERNEL);
670 			if (retval)
671 				goto loop_out;
672 
673 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
674 			continue;
675 		}
676 		charge = 0;
677 		/*
678 		 * Don't duplicate many vmas if we've been oom-killed (for
679 		 * example)
680 		 */
681 		if (fatal_signal_pending(current)) {
682 			retval = -EINTR;
683 			goto loop_out;
684 		}
685 		if (mpnt->vm_flags & VM_ACCOUNT) {
686 			unsigned long len = vma_pages(mpnt);
687 
688 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
689 				goto fail_nomem;
690 			charge = len;
691 		}
692 		tmp = vm_area_dup(mpnt);
693 		if (!tmp)
694 			goto fail_nomem;
695 		retval = vma_dup_policy(mpnt, tmp);
696 		if (retval)
697 			goto fail_nomem_policy;
698 		tmp->vm_mm = mm;
699 		retval = dup_userfaultfd(tmp, &uf);
700 		if (retval)
701 			goto fail_nomem_anon_vma_fork;
702 		if (tmp->vm_flags & VM_WIPEONFORK) {
703 			/*
704 			 * VM_WIPEONFORK gets a clean slate in the child.
705 			 * Don't prepare anon_vma until fault since we don't
706 			 * copy page for current vma.
707 			 */
708 			tmp->anon_vma = NULL;
709 		} else if (anon_vma_fork(tmp, mpnt))
710 			goto fail_nomem_anon_vma_fork;
711 		vm_flags_clear(tmp, VM_LOCKED_MASK);
712 		/*
713 		 * Copy/update hugetlb private vma information.
714 		 */
715 		if (is_vm_hugetlb_page(tmp))
716 			hugetlb_dup_vma_private(tmp);
717 
718 		/*
719 		 * Link the vma into the MT. After using __mt_dup(), memory
720 		 * allocation is not necessary here, so it cannot fail.
721 		 */
722 		vma_iter_bulk_store(&vmi, tmp);
723 
724 		mm->map_count++;
725 
726 		if (tmp->vm_ops && tmp->vm_ops->open)
727 			tmp->vm_ops->open(tmp);
728 
729 		file = tmp->vm_file;
730 		if (file) {
731 			struct address_space *mapping = file->f_mapping;
732 
733 			get_file(file);
734 			i_mmap_lock_write(mapping);
735 			if (vma_is_shared_maywrite(tmp))
736 				mapping_allow_writable(mapping);
737 			flush_dcache_mmap_lock(mapping);
738 			/* insert tmp into the share list, just after mpnt */
739 			vma_interval_tree_insert_after(tmp, mpnt,
740 					&mapping->i_mmap);
741 			flush_dcache_mmap_unlock(mapping);
742 			i_mmap_unlock_write(mapping);
743 		}
744 
745 		if (!(tmp->vm_flags & VM_WIPEONFORK))
746 			retval = copy_page_range(tmp, mpnt);
747 
748 		if (retval) {
749 			mpnt = vma_next(&vmi);
750 			goto loop_out;
751 		}
752 	}
753 	/* a new mm has just been created */
754 	retval = arch_dup_mmap(oldmm, mm);
755 loop_out:
756 	vma_iter_free(&vmi);
757 	if (!retval) {
758 		mt_set_in_rcu(vmi.mas.tree);
759 		ksm_fork(mm, oldmm);
760 		khugepaged_fork(mm, oldmm);
761 	} else if (mpnt) {
762 		/*
763 		 * The entire maple tree has already been duplicated. If the
764 		 * mmap duplication fails, mark the failure point with
765 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
766 		 * stop releasing VMAs that have not been duplicated after this
767 		 * point.
768 		 */
769 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
770 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
771 	}
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	if (!retval)
777 		dup_userfaultfd_complete(&uf);
778 	else
779 		dup_userfaultfd_fail(&uf);
780 fail_uprobe_end:
781 	uprobe_end_dup_mmap();
782 	return retval;
783 
784 fail_nomem_anon_vma_fork:
785 	mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 	vm_area_free(tmp);
788 fail_nomem:
789 	retval = -ENOMEM;
790 	vm_unacct_memory(charge);
791 	goto loop_out;
792 }
793 
mm_alloc_pgd(struct mm_struct * mm)794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 	mm->pgd = pgd_alloc(mm);
797 	if (unlikely(!mm->pgd))
798 		return -ENOMEM;
799 	return 0;
800 }
801 
mm_free_pgd(struct mm_struct * mm)802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 	pgd_free(mm, mm->pgd);
805 }
806 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 	mmap_write_lock(oldmm);
810 	dup_mm_exe_file(mm, oldmm);
811 	mmap_write_unlock(oldmm);
812 	return 0;
813 }
814 #define mm_alloc_pgd(mm)	(0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817 
check_mm(struct mm_struct * mm)818 static void check_mm(struct mm_struct *mm)
819 {
820 	int i;
821 
822 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 			 "Please make sure 'struct resident_page_types[]' is updated as well");
824 
825 	for (i = 0; i < NR_MM_COUNTERS; i++) {
826 		long x = percpu_counter_sum(&mm->rss_stat[i]);
827 
828 		if (unlikely(x))
829 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 				 mm, resident_page_types[i], x);
831 	}
832 
833 	if (mm_pgtables_bytes(mm))
834 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 				mm_pgtables_bytes(mm));
836 
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
838 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841 
842 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844 
do_check_lazy_tlb(void * arg)845 static void do_check_lazy_tlb(void *arg)
846 {
847 	struct mm_struct *mm = arg;
848 
849 	WARN_ON_ONCE(current->active_mm == mm);
850 }
851 
do_shoot_lazy_tlb(void * arg)852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 	struct mm_struct *mm = arg;
855 
856 	if (current->active_mm == mm) {
857 		WARN_ON_ONCE(current->mm);
858 		current->active_mm = &init_mm;
859 		switch_mm(mm, &init_mm, current);
860 	}
861 }
862 
cleanup_lazy_tlbs(struct mm_struct * mm)863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 		/*
867 		 * In this case, lazy tlb mms are refounted and would not reach
868 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 		 */
870 		return;
871 	}
872 
873 	/*
874 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 	 * requires lazy mm users to switch to another mm when the refcount
876 	 * drops to zero, before the mm is freed. This requires IPIs here to
877 	 * switch kernel threads to init_mm.
878 	 *
879 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 	 * switch with the final userspace teardown TLB flush which leaves the
881 	 * mm lazy on this CPU but no others, reducing the need for additional
882 	 * IPIs here. There are cases where a final IPI is still required here,
883 	 * such as the final mmdrop being performed on a different CPU than the
884 	 * one exiting, or kernel threads using the mm when userspace exits.
885 	 *
886 	 * IPI overheads have not found to be expensive, but they could be
887 	 * reduced in a number of possible ways, for example (roughly
888 	 * increasing order of complexity):
889 	 * - The last lazy reference created by exit_mm() could instead switch
890 	 *   to init_mm, however it's probable this will run on the same CPU
891 	 *   immediately afterwards, so this may not reduce IPIs much.
892 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 	 * - CPUs store active_mm where it can be remotely checked without a
894 	 *   lock, to filter out false-positives in the cpumask.
895 	 * - After mm_users or mm_count reaches zero, switching away from the
896 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 	 *   with some batching or delaying of the final IPIs.
898 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 	 *   switching to avoid IPIs completely.
900 	 */
901 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905 
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
__mmdrop(struct mm_struct * mm)911 void __mmdrop(struct mm_struct *mm)
912 {
913 	BUG_ON(mm == &init_mm);
914 	WARN_ON_ONCE(mm == current->mm);
915 
916 	/* Ensure no CPUs are using this as their lazy tlb mm */
917 	cleanup_lazy_tlbs(mm);
918 
919 	WARN_ON_ONCE(mm == current->active_mm);
920 	mm_free_pgd(mm);
921 	destroy_context(mm);
922 	mmu_notifier_subscriptions_destroy(mm);
923 	check_mm(mm);
924 	put_user_ns(mm->user_ns);
925 	mm_pasid_drop(mm);
926 	mm_destroy_cid(mm);
927 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928 
929 	free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932 
mmdrop_async_fn(struct work_struct * work)933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 	struct mm_struct *mm;
936 
937 	mm = container_of(work, struct mm_struct, async_put_work);
938 	__mmdrop(mm);
939 }
940 
mmdrop_async(struct mm_struct * mm)941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 		schedule_work(&mm->async_put_work);
946 	}
947 }
948 
free_signal_struct(struct signal_struct * sig)949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 	taskstats_tgid_free(sig);
952 	sched_autogroup_exit(sig);
953 	/*
954 	 * __mmdrop is not safe to call from softirq context on x86 due to
955 	 * pgd_dtor so postpone it to the async context
956 	 */
957 	if (sig->oom_mm)
958 		mmdrop_async(sig->oom_mm);
959 	kmem_cache_free(signal_cachep, sig);
960 }
961 
put_signal_struct(struct signal_struct * sig)962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 	if (refcount_dec_and_test(&sig->sigcnt))
965 		free_signal_struct(sig);
966 }
967 
__put_task_struct(struct task_struct * tsk)968 void __put_task_struct(struct task_struct *tsk)
969 {
970 	WARN_ON(!tsk->exit_state);
971 	WARN_ON(refcount_read(&tsk->usage));
972 	WARN_ON(tsk == current);
973 
974 	sched_ext_free(tsk);
975 	io_uring_free(tsk);
976 	cgroup_free(tsk);
977 	task_numa_free(tsk, true);
978 	security_task_free(tsk);
979 	exit_creds(tsk);
980 	delayacct_tsk_free(tsk);
981 	put_signal_struct(tsk->signal);
982 	sched_core_free(tsk);
983 	free_task(tsk);
984 }
985 EXPORT_SYMBOL_GPL(__put_task_struct);
986 
__put_task_struct_rcu_cb(struct rcu_head * rhp)987 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988 {
989 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990 
991 	__put_task_struct(task);
992 }
993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994 
arch_task_cache_init(void)995 void __init __weak arch_task_cache_init(void) { }
996 
997 /*
998  * set_max_threads
999  */
set_max_threads(unsigned int max_threads_suggested)1000 static void __init set_max_threads(unsigned int max_threads_suggested)
1001 {
1002 	u64 threads;
1003 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1004 
1005 	/*
1006 	 * The number of threads shall be limited such that the thread
1007 	 * structures may only consume a small part of the available memory.
1008 	 */
1009 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1010 		threads = MAX_THREADS;
1011 	else
1012 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1013 				    (u64) THREAD_SIZE * 8UL);
1014 
1015 	if (threads > max_threads_suggested)
1016 		threads = max_threads_suggested;
1017 
1018 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1019 }
1020 
1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1022 /* Initialized by the architecture: */
1023 int arch_task_struct_size __read_mostly;
1024 #endif
1025 
task_struct_whitelist(unsigned long * offset,unsigned long * size)1026 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028 	/* Fetch thread_struct whitelist for the architecture. */
1029 	arch_thread_struct_whitelist(offset, size);
1030 
1031 	/*
1032 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033 	 * adjust offset to position of thread_struct in task_struct.
1034 	 */
1035 	if (unlikely(*size == 0))
1036 		*offset = 0;
1037 	else
1038 		*offset += offsetof(struct task_struct, thread);
1039 }
1040 
fork_init(void)1041 void __init fork_init(void)
1042 {
1043 	int i;
1044 #ifndef ARCH_MIN_TASKALIGN
1045 #define ARCH_MIN_TASKALIGN	0
1046 #endif
1047 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1048 	unsigned long useroffset, usersize;
1049 
1050 	/* create a slab on which task_structs can be allocated */
1051 	task_struct_whitelist(&useroffset, &usersize);
1052 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1053 			arch_task_struct_size, align,
1054 			SLAB_PANIC|SLAB_ACCOUNT,
1055 			useroffset, usersize, NULL);
1056 
1057 	/* do the arch specific task caches init */
1058 	arch_task_cache_init();
1059 
1060 	set_max_threads(MAX_THREADS);
1061 
1062 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065 		init_task.signal->rlim[RLIMIT_NPROC];
1066 
1067 	for (i = 0; i < UCOUNT_COUNTS; i++)
1068 		init_user_ns.ucount_max[i] = max_threads/2;
1069 
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1074 
1075 #ifdef CONFIG_VMAP_STACK
1076 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077 			  NULL, free_vm_stack_cache);
1078 #endif
1079 
1080 	scs_init();
1081 
1082 	lockdep_init_task(&init_task);
1083 	uprobes_init();
1084 }
1085 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1086 int __weak arch_dup_task_struct(struct task_struct *dst,
1087 					       struct task_struct *src)
1088 {
1089 	*dst = *src;
1090 	return 0;
1091 }
1092 
set_task_stack_end_magic(struct task_struct * tsk)1093 void set_task_stack_end_magic(struct task_struct *tsk)
1094 {
1095 	unsigned long *stackend;
1096 
1097 	stackend = end_of_stack(tsk);
1098 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1099 }
1100 
dup_task_struct(struct task_struct * orig,int node)1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102 {
1103 	struct task_struct *tsk;
1104 	int err;
1105 
1106 	if (node == NUMA_NO_NODE)
1107 		node = tsk_fork_get_node(orig);
1108 	tsk = alloc_task_struct_node(node);
1109 	if (!tsk)
1110 		return NULL;
1111 
1112 	err = arch_dup_task_struct(tsk, orig);
1113 	if (err)
1114 		goto free_tsk;
1115 
1116 	err = alloc_thread_stack_node(tsk, node);
1117 	if (err)
1118 		goto free_tsk;
1119 
1120 #ifdef CONFIG_THREAD_INFO_IN_TASK
1121 	refcount_set(&tsk->stack_refcount, 1);
1122 #endif
1123 	account_kernel_stack(tsk, 1);
1124 
1125 	err = scs_prepare(tsk, node);
1126 	if (err)
1127 		goto free_stack;
1128 
1129 #ifdef CONFIG_SECCOMP
1130 	/*
1131 	 * We must handle setting up seccomp filters once we're under
1132 	 * the sighand lock in case orig has changed between now and
1133 	 * then. Until then, filter must be NULL to avoid messing up
1134 	 * the usage counts on the error path calling free_task.
1135 	 */
1136 	tsk->seccomp.filter = NULL;
1137 #endif
1138 
1139 	setup_thread_stack(tsk, orig);
1140 	clear_user_return_notifier(tsk);
1141 	clear_tsk_need_resched(tsk);
1142 	set_task_stack_end_magic(tsk);
1143 	clear_syscall_work_syscall_user_dispatch(tsk);
1144 
1145 #ifdef CONFIG_STACKPROTECTOR
1146 	tsk->stack_canary = get_random_canary();
1147 #endif
1148 	if (orig->cpus_ptr == &orig->cpus_mask)
1149 		tsk->cpus_ptr = &tsk->cpus_mask;
1150 	dup_user_cpus_ptr(tsk, orig, node);
1151 
1152 	/*
1153 	 * One for the user space visible state that goes away when reaped.
1154 	 * One for the scheduler.
1155 	 */
1156 	refcount_set(&tsk->rcu_users, 2);
1157 	/* One for the rcu users */
1158 	refcount_set(&tsk->usage, 1);
1159 #ifdef CONFIG_BLK_DEV_IO_TRACE
1160 	tsk->btrace_seq = 0;
1161 #endif
1162 	tsk->splice_pipe = NULL;
1163 	tsk->task_frag.page = NULL;
1164 	tsk->wake_q.next = NULL;
1165 	tsk->worker_private = NULL;
1166 
1167 	kcov_task_init(tsk);
1168 	kmsan_task_create(tsk);
1169 	kmap_local_fork(tsk);
1170 
1171 #ifdef CONFIG_FAULT_INJECTION
1172 	tsk->fail_nth = 0;
1173 #endif
1174 
1175 #ifdef CONFIG_BLK_CGROUP
1176 	tsk->throttle_disk = NULL;
1177 	tsk->use_memdelay = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1181 	tsk->pasid_activated = 0;
1182 #endif
1183 
1184 #ifdef CONFIG_MEMCG
1185 	tsk->active_memcg = NULL;
1186 #endif
1187 
1188 #ifdef CONFIG_CPU_SUP_INTEL
1189 	tsk->reported_split_lock = 0;
1190 #endif
1191 
1192 #ifdef CONFIG_SCHED_MM_CID
1193 	tsk->mm_cid = -1;
1194 	tsk->last_mm_cid = -1;
1195 	tsk->mm_cid_active = 0;
1196 	tsk->migrate_from_cpu = -1;
1197 #endif
1198 	return tsk;
1199 
1200 free_stack:
1201 	exit_task_stack_account(tsk);
1202 	free_thread_stack(tsk);
1203 free_tsk:
1204 	free_task_struct(tsk);
1205 	return NULL;
1206 }
1207 
1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209 
1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211 
coredump_filter_setup(char * s)1212 static int __init coredump_filter_setup(char *s)
1213 {
1214 	default_dump_filter =
1215 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216 		MMF_DUMP_FILTER_MASK;
1217 	return 1;
1218 }
1219 
1220 __setup("coredump_filter=", coredump_filter_setup);
1221 
1222 #include <linux/init_task.h>
1223 
mm_init_aio(struct mm_struct * mm)1224 static void mm_init_aio(struct mm_struct *mm)
1225 {
1226 #ifdef CONFIG_AIO
1227 	spin_lock_init(&mm->ioctx_lock);
1228 	mm->ioctx_table = NULL;
1229 #endif
1230 }
1231 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1232 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233 					   struct task_struct *p)
1234 {
1235 #ifdef CONFIG_MEMCG
1236 	if (mm->owner == p)
1237 		WRITE_ONCE(mm->owner, NULL);
1238 #endif
1239 }
1240 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244 	mm->owner = p;
1245 #endif
1246 }
1247 
mm_init_uprobes_state(struct mm_struct * mm)1248 static void mm_init_uprobes_state(struct mm_struct *mm)
1249 {
1250 #ifdef CONFIG_UPROBES
1251 	mm->uprobes_state.xol_area = NULL;
1252 #endif
1253 }
1254 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256 	struct user_namespace *user_ns)
1257 {
1258 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1259 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1260 	atomic_set(&mm->mm_users, 1);
1261 	atomic_set(&mm->mm_count, 1);
1262 	seqcount_init(&mm->write_protect_seq);
1263 	mmap_init_lock(mm);
1264 	INIT_LIST_HEAD(&mm->mmlist);
1265 #ifdef CONFIG_PER_VMA_LOCK
1266 	mm->mm_lock_seq = 0;
1267 #endif
1268 	mm_pgtables_bytes_init(mm);
1269 	mm->map_count = 0;
1270 	mm->locked_vm = 0;
1271 	atomic64_set(&mm->pinned_vm, 0);
1272 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1273 	spin_lock_init(&mm->page_table_lock);
1274 	spin_lock_init(&mm->arg_lock);
1275 	mm_init_cpumask(mm);
1276 	mm_init_aio(mm);
1277 	mm_init_owner(mm, p);
1278 	mm_pasid_init(mm);
1279 	RCU_INIT_POINTER(mm->exe_file, NULL);
1280 	mmu_notifier_subscriptions_init(mm);
1281 	init_tlb_flush_pending(mm);
1282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1283 	mm->pmd_huge_pte = NULL;
1284 #endif
1285 	mm_init_uprobes_state(mm);
1286 	hugetlb_count_init(mm);
1287 
1288 	if (current->mm) {
1289 		mm->flags = mmf_init_flags(current->mm->flags);
1290 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291 	} else {
1292 		mm->flags = default_dump_filter;
1293 		mm->def_flags = 0;
1294 	}
1295 
1296 	if (mm_alloc_pgd(mm))
1297 		goto fail_nopgd;
1298 
1299 	if (init_new_context(p, mm))
1300 		goto fail_nocontext;
1301 
1302 	if (mm_alloc_cid(mm))
1303 		goto fail_cid;
1304 
1305 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306 				     NR_MM_COUNTERS))
1307 		goto fail_pcpu;
1308 
1309 	mm->user_ns = get_user_ns(user_ns);
1310 	lru_gen_init_mm(mm);
1311 	return mm;
1312 
1313 fail_pcpu:
1314 	mm_destroy_cid(mm);
1315 fail_cid:
1316 	destroy_context(mm);
1317 fail_nocontext:
1318 	mm_free_pgd(mm);
1319 fail_nopgd:
1320 	free_mm(mm);
1321 	return NULL;
1322 }
1323 
1324 /*
1325  * Allocate and initialize an mm_struct.
1326  */
mm_alloc(void)1327 struct mm_struct *mm_alloc(void)
1328 {
1329 	struct mm_struct *mm;
1330 
1331 	mm = allocate_mm();
1332 	if (!mm)
1333 		return NULL;
1334 
1335 	memset(mm, 0, sizeof(*mm));
1336 	return mm_init(mm, current, current_user_ns());
1337 }
1338 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339 
__mmput(struct mm_struct * mm)1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342 	VM_BUG_ON(atomic_read(&mm->mm_users));
1343 
1344 	uprobe_clear_state(mm);
1345 	exit_aio(mm);
1346 	ksm_exit(mm);
1347 	khugepaged_exit(mm); /* must run before exit_mmap */
1348 	exit_mmap(mm);
1349 	mm_put_huge_zero_folio(mm);
1350 	set_mm_exe_file(mm, NULL);
1351 	if (!list_empty(&mm->mmlist)) {
1352 		spin_lock(&mmlist_lock);
1353 		list_del(&mm->mmlist);
1354 		spin_unlock(&mmlist_lock);
1355 	}
1356 	if (mm->binfmt)
1357 		module_put(mm->binfmt->module);
1358 	lru_gen_del_mm(mm);
1359 	mmdrop(mm);
1360 }
1361 
1362 /*
1363  * Decrement the use count and release all resources for an mm.
1364  */
mmput(struct mm_struct * mm)1365 void mmput(struct mm_struct *mm)
1366 {
1367 	might_sleep();
1368 
1369 	if (atomic_dec_and_test(&mm->mm_users))
1370 		__mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373 
1374 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377 	struct mm_struct *mm = container_of(work, struct mm_struct,
1378 					    async_put_work);
1379 
1380 	__mmput(mm);
1381 }
1382 
mmput_async(struct mm_struct * mm)1383 void mmput_async(struct mm_struct *mm)
1384 {
1385 	if (atomic_dec_and_test(&mm->mm_users)) {
1386 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 		schedule_work(&mm->async_put_work);
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392 
1393 /**
1394  * set_mm_exe_file - change a reference to the mm's executable file
1395  * @mm: The mm to change.
1396  * @new_exe_file: The new file to use.
1397  *
1398  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399  *
1400  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401  * invocations: in mmput() nobody alive left, in execve it happens before
1402  * the new mm is made visible to anyone.
1403  *
1404  * Can only fail if new_exe_file != NULL.
1405  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 	struct file *old_exe_file;
1409 
1410 	/*
1411 	 * It is safe to dereference the exe_file without RCU as
1412 	 * this function is only called if nobody else can access
1413 	 * this mm -- see comment above for justification.
1414 	 */
1415 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1416 
1417 	if (new_exe_file)
1418 		get_file(new_exe_file);
1419 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1420 	if (old_exe_file)
1421 		fput(old_exe_file);
1422 	return 0;
1423 }
1424 
1425 /**
1426  * replace_mm_exe_file - replace a reference to the mm's executable file
1427  * @mm: The mm to change.
1428  * @new_exe_file: The new file to use.
1429  *
1430  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1431  *
1432  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1433  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1434 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1435 {
1436 	struct vm_area_struct *vma;
1437 	struct file *old_exe_file;
1438 	int ret = 0;
1439 
1440 	/* Forbid mm->exe_file change if old file still mapped. */
1441 	old_exe_file = get_mm_exe_file(mm);
1442 	if (old_exe_file) {
1443 		VMA_ITERATOR(vmi, mm, 0);
1444 		mmap_read_lock(mm);
1445 		for_each_vma(vmi, vma) {
1446 			if (!vma->vm_file)
1447 				continue;
1448 			if (path_equal(&vma->vm_file->f_path,
1449 				       &old_exe_file->f_path)) {
1450 				ret = -EBUSY;
1451 				break;
1452 			}
1453 		}
1454 		mmap_read_unlock(mm);
1455 		fput(old_exe_file);
1456 		if (ret)
1457 			return ret;
1458 	}
1459 
1460 	get_file(new_exe_file);
1461 
1462 	/* set the new file */
1463 	mmap_write_lock(mm);
1464 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1465 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1466 	mmap_write_unlock(mm);
1467 
1468 	if (old_exe_file)
1469 		fput(old_exe_file);
1470 	return 0;
1471 }
1472 
1473 /**
1474  * get_mm_exe_file - acquire a reference to the mm's executable file
1475  * @mm: The mm of interest.
1476  *
1477  * Returns %NULL if mm has no associated executable file.
1478  * User must release file via fput().
1479  */
get_mm_exe_file(struct mm_struct * mm)1480 struct file *get_mm_exe_file(struct mm_struct *mm)
1481 {
1482 	struct file *exe_file;
1483 
1484 	rcu_read_lock();
1485 	exe_file = get_file_rcu(&mm->exe_file);
1486 	rcu_read_unlock();
1487 	return exe_file;
1488 }
1489 
1490 /**
1491  * get_task_exe_file - acquire a reference to the task's executable file
1492  * @task: The task.
1493  *
1494  * Returns %NULL if task's mm (if any) has no associated executable file or
1495  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1496  * User must release file via fput().
1497  */
get_task_exe_file(struct task_struct * task)1498 struct file *get_task_exe_file(struct task_struct *task)
1499 {
1500 	struct file *exe_file = NULL;
1501 	struct mm_struct *mm;
1502 
1503 	task_lock(task);
1504 	mm = task->mm;
1505 	if (mm) {
1506 		if (!(task->flags & PF_KTHREAD))
1507 			exe_file = get_mm_exe_file(mm);
1508 	}
1509 	task_unlock(task);
1510 	return exe_file;
1511 }
1512 
1513 /**
1514  * get_task_mm - acquire a reference to the task's mm
1515  * @task: The task.
1516  *
1517  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1518  * this kernel workthread has transiently adopted a user mm with use_mm,
1519  * to do its AIO) is not set and if so returns a reference to it, after
1520  * bumping up the use count.  User must release the mm via mmput()
1521  * after use.  Typically used by /proc and ptrace.
1522  */
get_task_mm(struct task_struct * task)1523 struct mm_struct *get_task_mm(struct task_struct *task)
1524 {
1525 	struct mm_struct *mm;
1526 
1527 	if (task->flags & PF_KTHREAD)
1528 		return NULL;
1529 
1530 	task_lock(task);
1531 	mm = task->mm;
1532 	if (mm)
1533 		mmget(mm);
1534 	task_unlock(task);
1535 	return mm;
1536 }
1537 EXPORT_SYMBOL_GPL(get_task_mm);
1538 
mm_access(struct task_struct * task,unsigned int mode)1539 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1540 {
1541 	struct mm_struct *mm;
1542 	int err;
1543 
1544 	err =  down_read_killable(&task->signal->exec_update_lock);
1545 	if (err)
1546 		return ERR_PTR(err);
1547 
1548 	mm = get_task_mm(task);
1549 	if (mm && mm != current->mm &&
1550 			!ptrace_may_access(task, mode)) {
1551 		mmput(mm);
1552 		mm = ERR_PTR(-EACCES);
1553 	}
1554 	up_read(&task->signal->exec_update_lock);
1555 
1556 	return mm;
1557 }
1558 
complete_vfork_done(struct task_struct * tsk)1559 static void complete_vfork_done(struct task_struct *tsk)
1560 {
1561 	struct completion *vfork;
1562 
1563 	task_lock(tsk);
1564 	vfork = tsk->vfork_done;
1565 	if (likely(vfork)) {
1566 		tsk->vfork_done = NULL;
1567 		complete(vfork);
1568 	}
1569 	task_unlock(tsk);
1570 }
1571 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1572 static int wait_for_vfork_done(struct task_struct *child,
1573 				struct completion *vfork)
1574 {
1575 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1576 	int killed;
1577 
1578 	cgroup_enter_frozen();
1579 	killed = wait_for_completion_state(vfork, state);
1580 	cgroup_leave_frozen(false);
1581 
1582 	if (killed) {
1583 		task_lock(child);
1584 		child->vfork_done = NULL;
1585 		task_unlock(child);
1586 	}
1587 
1588 	put_task_struct(child);
1589 	return killed;
1590 }
1591 
1592 /* Please note the differences between mmput and mm_release.
1593  * mmput is called whenever we stop holding onto a mm_struct,
1594  * error success whatever.
1595  *
1596  * mm_release is called after a mm_struct has been removed
1597  * from the current process.
1598  *
1599  * This difference is important for error handling, when we
1600  * only half set up a mm_struct for a new process and need to restore
1601  * the old one.  Because we mmput the new mm_struct before
1602  * restoring the old one. . .
1603  * Eric Biederman 10 January 1998
1604  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1605 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1606 {
1607 	uprobe_free_utask(tsk);
1608 
1609 	/* Get rid of any cached register state */
1610 	deactivate_mm(tsk, mm);
1611 
1612 	/*
1613 	 * Signal userspace if we're not exiting with a core dump
1614 	 * because we want to leave the value intact for debugging
1615 	 * purposes.
1616 	 */
1617 	if (tsk->clear_child_tid) {
1618 		if (atomic_read(&mm->mm_users) > 1) {
1619 			/*
1620 			 * We don't check the error code - if userspace has
1621 			 * not set up a proper pointer then tough luck.
1622 			 */
1623 			put_user(0, tsk->clear_child_tid);
1624 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1625 					1, NULL, NULL, 0, 0);
1626 		}
1627 		tsk->clear_child_tid = NULL;
1628 	}
1629 
1630 	/*
1631 	 * All done, finally we can wake up parent and return this mm to him.
1632 	 * Also kthread_stop() uses this completion for synchronization.
1633 	 */
1634 	if (tsk->vfork_done)
1635 		complete_vfork_done(tsk);
1636 }
1637 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1638 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1639 {
1640 	futex_exit_release(tsk);
1641 	mm_release(tsk, mm);
1642 }
1643 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1644 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1645 {
1646 	futex_exec_release(tsk);
1647 	mm_release(tsk, mm);
1648 }
1649 
1650 /**
1651  * dup_mm() - duplicates an existing mm structure
1652  * @tsk: the task_struct with which the new mm will be associated.
1653  * @oldmm: the mm to duplicate.
1654  *
1655  * Allocates a new mm structure and duplicates the provided @oldmm structure
1656  * content into it.
1657  *
1658  * Return: the duplicated mm or NULL on failure.
1659  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1660 static struct mm_struct *dup_mm(struct task_struct *tsk,
1661 				struct mm_struct *oldmm)
1662 {
1663 	struct mm_struct *mm;
1664 	int err;
1665 
1666 	mm = allocate_mm();
1667 	if (!mm)
1668 		goto fail_nomem;
1669 
1670 	memcpy(mm, oldmm, sizeof(*mm));
1671 
1672 	if (!mm_init(mm, tsk, mm->user_ns))
1673 		goto fail_nomem;
1674 
1675 	err = dup_mmap(mm, oldmm);
1676 	if (err)
1677 		goto free_pt;
1678 
1679 	mm->hiwater_rss = get_mm_rss(mm);
1680 	mm->hiwater_vm = mm->total_vm;
1681 
1682 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1683 		goto free_pt;
1684 
1685 	return mm;
1686 
1687 free_pt:
1688 	/* don't put binfmt in mmput, we haven't got module yet */
1689 	mm->binfmt = NULL;
1690 	mm_init_owner(mm, NULL);
1691 	mmput(mm);
1692 
1693 fail_nomem:
1694 	return NULL;
1695 }
1696 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1697 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1698 {
1699 	struct mm_struct *mm, *oldmm;
1700 
1701 	tsk->min_flt = tsk->maj_flt = 0;
1702 	tsk->nvcsw = tsk->nivcsw = 0;
1703 #ifdef CONFIG_DETECT_HUNG_TASK
1704 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1705 	tsk->last_switch_time = 0;
1706 #endif
1707 
1708 	tsk->mm = NULL;
1709 	tsk->active_mm = NULL;
1710 
1711 	/*
1712 	 * Are we cloning a kernel thread?
1713 	 *
1714 	 * We need to steal a active VM for that..
1715 	 */
1716 	oldmm = current->mm;
1717 	if (!oldmm)
1718 		return 0;
1719 
1720 	if (clone_flags & CLONE_VM) {
1721 		mmget(oldmm);
1722 		mm = oldmm;
1723 	} else {
1724 		mm = dup_mm(tsk, current->mm);
1725 		if (!mm)
1726 			return -ENOMEM;
1727 	}
1728 
1729 	tsk->mm = mm;
1730 	tsk->active_mm = mm;
1731 	sched_mm_cid_fork(tsk);
1732 	return 0;
1733 }
1734 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1735 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1736 {
1737 	struct fs_struct *fs = current->fs;
1738 	if (clone_flags & CLONE_FS) {
1739 		/* tsk->fs is already what we want */
1740 		spin_lock(&fs->lock);
1741 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1742 		if (fs->in_exec) {
1743 			spin_unlock(&fs->lock);
1744 			return -EAGAIN;
1745 		}
1746 		fs->users++;
1747 		spin_unlock(&fs->lock);
1748 		return 0;
1749 	}
1750 	tsk->fs = copy_fs_struct(fs);
1751 	if (!tsk->fs)
1752 		return -ENOMEM;
1753 	return 0;
1754 }
1755 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1756 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1757 		      int no_files)
1758 {
1759 	struct files_struct *oldf, *newf;
1760 
1761 	/*
1762 	 * A background process may not have any files ...
1763 	 */
1764 	oldf = current->files;
1765 	if (!oldf)
1766 		return 0;
1767 
1768 	if (no_files) {
1769 		tsk->files = NULL;
1770 		return 0;
1771 	}
1772 
1773 	if (clone_flags & CLONE_FILES) {
1774 		atomic_inc(&oldf->count);
1775 		return 0;
1776 	}
1777 
1778 	newf = dup_fd(oldf, NULL);
1779 	if (IS_ERR(newf))
1780 		return PTR_ERR(newf);
1781 
1782 	tsk->files = newf;
1783 	return 0;
1784 }
1785 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1787 {
1788 	struct sighand_struct *sig;
1789 
1790 	if (clone_flags & CLONE_SIGHAND) {
1791 		refcount_inc(&current->sighand->count);
1792 		return 0;
1793 	}
1794 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1795 	RCU_INIT_POINTER(tsk->sighand, sig);
1796 	if (!sig)
1797 		return -ENOMEM;
1798 
1799 	refcount_set(&sig->count, 1);
1800 	spin_lock_irq(&current->sighand->siglock);
1801 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1802 	spin_unlock_irq(&current->sighand->siglock);
1803 
1804 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1805 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1806 		flush_signal_handlers(tsk, 0);
1807 
1808 	return 0;
1809 }
1810 
__cleanup_sighand(struct sighand_struct * sighand)1811 void __cleanup_sighand(struct sighand_struct *sighand)
1812 {
1813 	if (refcount_dec_and_test(&sighand->count)) {
1814 		signalfd_cleanup(sighand);
1815 		/*
1816 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1817 		 * without an RCU grace period, see __lock_task_sighand().
1818 		 */
1819 		kmem_cache_free(sighand_cachep, sighand);
1820 	}
1821 }
1822 
1823 /*
1824  * Initialize POSIX timer handling for a thread group.
1825  */
posix_cpu_timers_init_group(struct signal_struct * sig)1826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1827 {
1828 	struct posix_cputimers *pct = &sig->posix_cputimers;
1829 	unsigned long cpu_limit;
1830 
1831 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1832 	posix_cputimers_group_init(pct, cpu_limit);
1833 }
1834 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1836 {
1837 	struct signal_struct *sig;
1838 
1839 	if (clone_flags & CLONE_THREAD)
1840 		return 0;
1841 
1842 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1843 	tsk->signal = sig;
1844 	if (!sig)
1845 		return -ENOMEM;
1846 
1847 	sig->nr_threads = 1;
1848 	sig->quick_threads = 1;
1849 	atomic_set(&sig->live, 1);
1850 	refcount_set(&sig->sigcnt, 1);
1851 
1852 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1853 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1854 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1855 
1856 	init_waitqueue_head(&sig->wait_chldexit);
1857 	sig->curr_target = tsk;
1858 	init_sigpending(&sig->shared_pending);
1859 	INIT_HLIST_HEAD(&sig->multiprocess);
1860 	seqlock_init(&sig->stats_lock);
1861 	prev_cputime_init(&sig->prev_cputime);
1862 
1863 #ifdef CONFIG_POSIX_TIMERS
1864 	INIT_HLIST_HEAD(&sig->posix_timers);
1865 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866 	sig->real_timer.function = it_real_fn;
1867 #endif
1868 
1869 	task_lock(current->group_leader);
1870 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1871 	task_unlock(current->group_leader);
1872 
1873 	posix_cpu_timers_init_group(sig);
1874 
1875 	tty_audit_fork(sig);
1876 	sched_autogroup_fork(sig);
1877 
1878 	sig->oom_score_adj = current->signal->oom_score_adj;
1879 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1880 
1881 	mutex_init(&sig->cred_guard_mutex);
1882 	init_rwsem(&sig->exec_update_lock);
1883 
1884 	return 0;
1885 }
1886 
copy_seccomp(struct task_struct * p)1887 static void copy_seccomp(struct task_struct *p)
1888 {
1889 #ifdef CONFIG_SECCOMP
1890 	/*
1891 	 * Must be called with sighand->lock held, which is common to
1892 	 * all threads in the group. Holding cred_guard_mutex is not
1893 	 * needed because this new task is not yet running and cannot
1894 	 * be racing exec.
1895 	 */
1896 	assert_spin_locked(&current->sighand->siglock);
1897 
1898 	/* Ref-count the new filter user, and assign it. */
1899 	get_seccomp_filter(current);
1900 	p->seccomp = current->seccomp;
1901 
1902 	/*
1903 	 * Explicitly enable no_new_privs here in case it got set
1904 	 * between the task_struct being duplicated and holding the
1905 	 * sighand lock. The seccomp state and nnp must be in sync.
1906 	 */
1907 	if (task_no_new_privs(current))
1908 		task_set_no_new_privs(p);
1909 
1910 	/*
1911 	 * If the parent gained a seccomp mode after copying thread
1912 	 * flags and between before we held the sighand lock, we have
1913 	 * to manually enable the seccomp thread flag here.
1914 	 */
1915 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1916 		set_task_syscall_work(p, SECCOMP);
1917 #endif
1918 }
1919 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1921 {
1922 	current->clear_child_tid = tidptr;
1923 
1924 	return task_pid_vnr(current);
1925 }
1926 
rt_mutex_init_task(struct task_struct * p)1927 static void rt_mutex_init_task(struct task_struct *p)
1928 {
1929 	raw_spin_lock_init(&p->pi_lock);
1930 #ifdef CONFIG_RT_MUTEXES
1931 	p->pi_waiters = RB_ROOT_CACHED;
1932 	p->pi_top_task = NULL;
1933 	p->pi_blocked_on = NULL;
1934 #endif
1935 }
1936 
init_task_pid_links(struct task_struct * task)1937 static inline void init_task_pid_links(struct task_struct *task)
1938 {
1939 	enum pid_type type;
1940 
1941 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1942 		INIT_HLIST_NODE(&task->pid_links[type]);
1943 }
1944 
1945 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1947 {
1948 	if (type == PIDTYPE_PID)
1949 		task->thread_pid = pid;
1950 	else
1951 		task->signal->pids[type] = pid;
1952 }
1953 
rcu_copy_process(struct task_struct * p)1954 static inline void rcu_copy_process(struct task_struct *p)
1955 {
1956 #ifdef CONFIG_PREEMPT_RCU
1957 	p->rcu_read_lock_nesting = 0;
1958 	p->rcu_read_unlock_special.s = 0;
1959 	p->rcu_blocked_node = NULL;
1960 	INIT_LIST_HEAD(&p->rcu_node_entry);
1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1962 #ifdef CONFIG_TASKS_RCU
1963 	p->rcu_tasks_holdout = false;
1964 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1965 	p->rcu_tasks_idle_cpu = -1;
1966 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1967 #endif /* #ifdef CONFIG_TASKS_RCU */
1968 #ifdef CONFIG_TASKS_TRACE_RCU
1969 	p->trc_reader_nesting = 0;
1970 	p->trc_reader_special.s = 0;
1971 	INIT_LIST_HEAD(&p->trc_holdout_list);
1972 	INIT_LIST_HEAD(&p->trc_blkd_node);
1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1974 }
1975 
1976 /**
1977  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1978  * @pid:   the struct pid for which to create a pidfd
1979  * @flags: flags of the new @pidfd
1980  * @ret: Where to return the file for the pidfd.
1981  *
1982  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1983  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1984  *
1985  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1986  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1987  * pidfd file are prepared.
1988  *
1989  * If this function returns successfully the caller is responsible to either
1990  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1991  * order to install the pidfd into its file descriptor table or they must use
1992  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1993  * respectively.
1994  *
1995  * This function is useful when a pidfd must already be reserved but there
1996  * might still be points of failure afterwards and the caller wants to ensure
1997  * that no pidfd is leaked into its file descriptor table.
1998  *
1999  * Return: On success, a reserved pidfd is returned from the function and a new
2000  *         pidfd file is returned in the last argument to the function. On
2001  *         error, a negative error code is returned from the function and the
2002  *         last argument remains unchanged.
2003  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2005 {
2006 	int pidfd;
2007 	struct file *pidfd_file;
2008 
2009 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2010 	if (pidfd < 0)
2011 		return pidfd;
2012 
2013 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2014 	if (IS_ERR(pidfd_file)) {
2015 		put_unused_fd(pidfd);
2016 		return PTR_ERR(pidfd_file);
2017 	}
2018 	/*
2019 	 * anon_inode_getfile() ignores everything outside of the
2020 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2021 	 */
2022 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2023 	*ret = pidfd_file;
2024 	return pidfd;
2025 }
2026 
2027 /**
2028  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2029  * @pid:   the struct pid for which to create a pidfd
2030  * @flags: flags of the new @pidfd
2031  * @ret: Where to return the pidfd.
2032  *
2033  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2034  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2035  *
2036  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2037  * task identified by @pid must be a thread-group leader.
2038  *
2039  * If this function returns successfully the caller is responsible to either
2040  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2041  * order to install the pidfd into its file descriptor table or they must use
2042  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2043  * respectively.
2044  *
2045  * This function is useful when a pidfd must already be reserved but there
2046  * might still be points of failure afterwards and the caller wants to ensure
2047  * that no pidfd is leaked into its file descriptor table.
2048  *
2049  * Return: On success, a reserved pidfd is returned from the function and a new
2050  *         pidfd file is returned in the last argument to the function. On
2051  *         error, a negative error code is returned from the function and the
2052  *         last argument remains unchanged.
2053  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2055 {
2056 	bool thread = flags & PIDFD_THREAD;
2057 
2058 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2059 		return -EINVAL;
2060 
2061 	return __pidfd_prepare(pid, flags, ret);
2062 }
2063 
__delayed_free_task(struct rcu_head * rhp)2064 static void __delayed_free_task(struct rcu_head *rhp)
2065 {
2066 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2067 
2068 	free_task(tsk);
2069 }
2070 
delayed_free_task(struct task_struct * tsk)2071 static __always_inline void delayed_free_task(struct task_struct *tsk)
2072 {
2073 	if (IS_ENABLED(CONFIG_MEMCG))
2074 		call_rcu(&tsk->rcu, __delayed_free_task);
2075 	else
2076 		free_task(tsk);
2077 }
2078 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2080 {
2081 	/* Skip if kernel thread */
2082 	if (!tsk->mm)
2083 		return;
2084 
2085 	/* Skip if spawning a thread or using vfork */
2086 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2087 		return;
2088 
2089 	/* We need to synchronize with __set_oom_adj */
2090 	mutex_lock(&oom_adj_mutex);
2091 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2092 	/* Update the values in case they were changed after copy_signal */
2093 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2094 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2095 	mutex_unlock(&oom_adj_mutex);
2096 }
2097 
2098 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2099 static void rv_task_fork(struct task_struct *p)
2100 {
2101 	int i;
2102 
2103 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2104 		p->rv[i].da_mon.monitoring = false;
2105 }
2106 #else
2107 #define rv_task_fork(p) do {} while (0)
2108 #endif
2109 
2110 /*
2111  * This creates a new process as a copy of the old one,
2112  * but does not actually start it yet.
2113  *
2114  * It copies the registers, and all the appropriate
2115  * parts of the process environment (as per the clone
2116  * flags). The actual kick-off is left to the caller.
2117  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2118 __latent_entropy struct task_struct *copy_process(
2119 					struct pid *pid,
2120 					int trace,
2121 					int node,
2122 					struct kernel_clone_args *args)
2123 {
2124 	int pidfd = -1, retval;
2125 	struct task_struct *p;
2126 	struct multiprocess_signals delayed;
2127 	struct file *pidfile = NULL;
2128 	const u64 clone_flags = args->flags;
2129 	struct nsproxy *nsp = current->nsproxy;
2130 
2131 	/*
2132 	 * Don't allow sharing the root directory with processes in a different
2133 	 * namespace
2134 	 */
2135 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2136 		return ERR_PTR(-EINVAL);
2137 
2138 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2139 		return ERR_PTR(-EINVAL);
2140 
2141 	/*
2142 	 * Thread groups must share signals as well, and detached threads
2143 	 * can only be started up within the thread group.
2144 	 */
2145 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2146 		return ERR_PTR(-EINVAL);
2147 
2148 	/*
2149 	 * Shared signal handlers imply shared VM. By way of the above,
2150 	 * thread groups also imply shared VM. Blocking this case allows
2151 	 * for various simplifications in other code.
2152 	 */
2153 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	/*
2157 	 * Siblings of global init remain as zombies on exit since they are
2158 	 * not reaped by their parent (swapper). To solve this and to avoid
2159 	 * multi-rooted process trees, prevent global and container-inits
2160 	 * from creating siblings.
2161 	 */
2162 	if ((clone_flags & CLONE_PARENT) &&
2163 				current->signal->flags & SIGNAL_UNKILLABLE)
2164 		return ERR_PTR(-EINVAL);
2165 
2166 	/*
2167 	 * If the new process will be in a different pid or user namespace
2168 	 * do not allow it to share a thread group with the forking task.
2169 	 */
2170 	if (clone_flags & CLONE_THREAD) {
2171 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2172 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2173 			return ERR_PTR(-EINVAL);
2174 	}
2175 
2176 	if (clone_flags & CLONE_PIDFD) {
2177 		/*
2178 		 * - CLONE_DETACHED is blocked so that we can potentially
2179 		 *   reuse it later for CLONE_PIDFD.
2180 		 */
2181 		if (clone_flags & CLONE_DETACHED)
2182 			return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	/*
2186 	 * Force any signals received before this point to be delivered
2187 	 * before the fork happens.  Collect up signals sent to multiple
2188 	 * processes that happen during the fork and delay them so that
2189 	 * they appear to happen after the fork.
2190 	 */
2191 	sigemptyset(&delayed.signal);
2192 	INIT_HLIST_NODE(&delayed.node);
2193 
2194 	spin_lock_irq(&current->sighand->siglock);
2195 	if (!(clone_flags & CLONE_THREAD))
2196 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2197 	recalc_sigpending();
2198 	spin_unlock_irq(&current->sighand->siglock);
2199 	retval = -ERESTARTNOINTR;
2200 	if (task_sigpending(current))
2201 		goto fork_out;
2202 
2203 	retval = -ENOMEM;
2204 	p = dup_task_struct(current, node);
2205 	if (!p)
2206 		goto fork_out;
2207 	p->flags &= ~PF_KTHREAD;
2208 	if (args->kthread)
2209 		p->flags |= PF_KTHREAD;
2210 	if (args->user_worker) {
2211 		/*
2212 		 * Mark us a user worker, and block any signal that isn't
2213 		 * fatal or STOP
2214 		 */
2215 		p->flags |= PF_USER_WORKER;
2216 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2217 	}
2218 	if (args->io_thread)
2219 		p->flags |= PF_IO_WORKER;
2220 
2221 	if (args->name)
2222 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2223 
2224 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2225 	/*
2226 	 * Clear TID on mm_release()?
2227 	 */
2228 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2229 
2230 	ftrace_graph_init_task(p);
2231 
2232 	rt_mutex_init_task(p);
2233 
2234 	lockdep_assert_irqs_enabled();
2235 #ifdef CONFIG_PROVE_LOCKING
2236 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2237 #endif
2238 	retval = copy_creds(p, clone_flags);
2239 	if (retval < 0)
2240 		goto bad_fork_free;
2241 
2242 	retval = -EAGAIN;
2243 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2244 		if (p->real_cred->user != INIT_USER &&
2245 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2246 			goto bad_fork_cleanup_count;
2247 	}
2248 	current->flags &= ~PF_NPROC_EXCEEDED;
2249 
2250 	/*
2251 	 * If multiple threads are within copy_process(), then this check
2252 	 * triggers too late. This doesn't hurt, the check is only there
2253 	 * to stop root fork bombs.
2254 	 */
2255 	retval = -EAGAIN;
2256 	if (data_race(nr_threads >= max_threads))
2257 		goto bad_fork_cleanup_count;
2258 
2259 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2260 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2261 	p->flags |= PF_FORKNOEXEC;
2262 	INIT_LIST_HEAD(&p->children);
2263 	INIT_LIST_HEAD(&p->sibling);
2264 	rcu_copy_process(p);
2265 	p->vfork_done = NULL;
2266 	spin_lock_init(&p->alloc_lock);
2267 
2268 	init_sigpending(&p->pending);
2269 
2270 	p->utime = p->stime = p->gtime = 0;
2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272 	p->utimescaled = p->stimescaled = 0;
2273 #endif
2274 	prev_cputime_init(&p->prev_cputime);
2275 
2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2277 	seqcount_init(&p->vtime.seqcount);
2278 	p->vtime.starttime = 0;
2279 	p->vtime.state = VTIME_INACTIVE;
2280 #endif
2281 
2282 #ifdef CONFIG_IO_URING
2283 	p->io_uring = NULL;
2284 #endif
2285 
2286 	p->default_timer_slack_ns = current->timer_slack_ns;
2287 
2288 #ifdef CONFIG_PSI
2289 	p->psi_flags = 0;
2290 #endif
2291 
2292 	task_io_accounting_init(&p->ioac);
2293 	acct_clear_integrals(p);
2294 
2295 	posix_cputimers_init(&p->posix_cputimers);
2296 	tick_dep_init_task(p);
2297 
2298 	p->io_context = NULL;
2299 	audit_set_context(p, NULL);
2300 	cgroup_fork(p);
2301 	if (args->kthread) {
2302 		if (!set_kthread_struct(p))
2303 			goto bad_fork_cleanup_delayacct;
2304 	}
2305 #ifdef CONFIG_NUMA
2306 	p->mempolicy = mpol_dup(p->mempolicy);
2307 	if (IS_ERR(p->mempolicy)) {
2308 		retval = PTR_ERR(p->mempolicy);
2309 		p->mempolicy = NULL;
2310 		goto bad_fork_cleanup_delayacct;
2311 	}
2312 #endif
2313 #ifdef CONFIG_CPUSETS
2314 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2315 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2316 #endif
2317 #ifdef CONFIG_TRACE_IRQFLAGS
2318 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2319 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2320 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2321 	p->softirqs_enabled		= 1;
2322 	p->softirq_context		= 0;
2323 #endif
2324 
2325 	p->pagefault_disabled = 0;
2326 
2327 #ifdef CONFIG_LOCKDEP
2328 	lockdep_init_task(p);
2329 #endif
2330 
2331 #ifdef CONFIG_DEBUG_MUTEXES
2332 	p->blocked_on = NULL; /* not blocked yet */
2333 #endif
2334 #ifdef CONFIG_BCACHE
2335 	p->sequential_io	= 0;
2336 	p->sequential_io_avg	= 0;
2337 #endif
2338 #ifdef CONFIG_BPF_SYSCALL
2339 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2340 	p->bpf_ctx = NULL;
2341 #endif
2342 
2343 	/* Perform scheduler related setup. Assign this task to a CPU. */
2344 	retval = sched_fork(clone_flags, p);
2345 	if (retval)
2346 		goto bad_fork_cleanup_policy;
2347 
2348 	retval = perf_event_init_task(p, clone_flags);
2349 	if (retval)
2350 		goto bad_fork_sched_cancel_fork;
2351 	retval = audit_alloc(p);
2352 	if (retval)
2353 		goto bad_fork_cleanup_perf;
2354 	/* copy all the process information */
2355 	shm_init_task(p);
2356 	retval = security_task_alloc(p, clone_flags);
2357 	if (retval)
2358 		goto bad_fork_cleanup_audit;
2359 	retval = copy_semundo(clone_flags, p);
2360 	if (retval)
2361 		goto bad_fork_cleanup_security;
2362 	retval = copy_files(clone_flags, p, args->no_files);
2363 	if (retval)
2364 		goto bad_fork_cleanup_semundo;
2365 	retval = copy_fs(clone_flags, p);
2366 	if (retval)
2367 		goto bad_fork_cleanup_files;
2368 	retval = copy_sighand(clone_flags, p);
2369 	if (retval)
2370 		goto bad_fork_cleanup_fs;
2371 	retval = copy_signal(clone_flags, p);
2372 	if (retval)
2373 		goto bad_fork_cleanup_sighand;
2374 	retval = copy_mm(clone_flags, p);
2375 	if (retval)
2376 		goto bad_fork_cleanup_signal;
2377 	retval = copy_namespaces(clone_flags, p);
2378 	if (retval)
2379 		goto bad_fork_cleanup_mm;
2380 	retval = copy_io(clone_flags, p);
2381 	if (retval)
2382 		goto bad_fork_cleanup_namespaces;
2383 	retval = copy_thread(p, args);
2384 	if (retval)
2385 		goto bad_fork_cleanup_io;
2386 
2387 	stackleak_task_init(p);
2388 
2389 	if (pid != &init_struct_pid) {
2390 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2391 				args->set_tid_size);
2392 		if (IS_ERR(pid)) {
2393 			retval = PTR_ERR(pid);
2394 			goto bad_fork_cleanup_thread;
2395 		}
2396 	}
2397 
2398 	/*
2399 	 * This has to happen after we've potentially unshared the file
2400 	 * descriptor table (so that the pidfd doesn't leak into the child
2401 	 * if the fd table isn't shared).
2402 	 */
2403 	if (clone_flags & CLONE_PIDFD) {
2404 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2405 
2406 		/* Note that no task has been attached to @pid yet. */
2407 		retval = __pidfd_prepare(pid, flags, &pidfile);
2408 		if (retval < 0)
2409 			goto bad_fork_free_pid;
2410 		pidfd = retval;
2411 
2412 		retval = put_user(pidfd, args->pidfd);
2413 		if (retval)
2414 			goto bad_fork_put_pidfd;
2415 	}
2416 
2417 #ifdef CONFIG_BLOCK
2418 	p->plug = NULL;
2419 #endif
2420 	futex_init_task(p);
2421 
2422 	/*
2423 	 * sigaltstack should be cleared when sharing the same VM
2424 	 */
2425 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2426 		sas_ss_reset(p);
2427 
2428 	/*
2429 	 * Syscall tracing and stepping should be turned off in the
2430 	 * child regardless of CLONE_PTRACE.
2431 	 */
2432 	user_disable_single_step(p);
2433 	clear_task_syscall_work(p, SYSCALL_TRACE);
2434 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2435 	clear_task_syscall_work(p, SYSCALL_EMU);
2436 #endif
2437 	clear_tsk_latency_tracing(p);
2438 
2439 	/* ok, now we should be set up.. */
2440 	p->pid = pid_nr(pid);
2441 	if (clone_flags & CLONE_THREAD) {
2442 		p->group_leader = current->group_leader;
2443 		p->tgid = current->tgid;
2444 	} else {
2445 		p->group_leader = p;
2446 		p->tgid = p->pid;
2447 	}
2448 
2449 	p->nr_dirtied = 0;
2450 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2451 	p->dirty_paused_when = 0;
2452 
2453 	p->pdeath_signal = 0;
2454 	p->task_works = NULL;
2455 	clear_posix_cputimers_work(p);
2456 
2457 #ifdef CONFIG_KRETPROBES
2458 	p->kretprobe_instances.first = NULL;
2459 #endif
2460 #ifdef CONFIG_RETHOOK
2461 	p->rethooks.first = NULL;
2462 #endif
2463 
2464 	/*
2465 	 * Ensure that the cgroup subsystem policies allow the new process to be
2466 	 * forked. It should be noted that the new process's css_set can be changed
2467 	 * between here and cgroup_post_fork() if an organisation operation is in
2468 	 * progress.
2469 	 */
2470 	retval = cgroup_can_fork(p, args);
2471 	if (retval)
2472 		goto bad_fork_put_pidfd;
2473 
2474 	/*
2475 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2476 	 * the new task on the correct runqueue. All this *before* the task
2477 	 * becomes visible.
2478 	 *
2479 	 * This isn't part of ->can_fork() because while the re-cloning is
2480 	 * cgroup specific, it unconditionally needs to place the task on a
2481 	 * runqueue.
2482 	 */
2483 	retval = sched_cgroup_fork(p, args);
2484 	if (retval)
2485 		goto bad_fork_cancel_cgroup;
2486 
2487 	/*
2488 	 * From this point on we must avoid any synchronous user-space
2489 	 * communication until we take the tasklist-lock. In particular, we do
2490 	 * not want user-space to be able to predict the process start-time by
2491 	 * stalling fork(2) after we recorded the start_time but before it is
2492 	 * visible to the system.
2493 	 */
2494 
2495 	p->start_time = ktime_get_ns();
2496 	p->start_boottime = ktime_get_boottime_ns();
2497 
2498 	/*
2499 	 * Make it visible to the rest of the system, but dont wake it up yet.
2500 	 * Need tasklist lock for parent etc handling!
2501 	 */
2502 	write_lock_irq(&tasklist_lock);
2503 
2504 	/* CLONE_PARENT re-uses the old parent */
2505 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2506 		p->real_parent = current->real_parent;
2507 		p->parent_exec_id = current->parent_exec_id;
2508 		if (clone_flags & CLONE_THREAD)
2509 			p->exit_signal = -1;
2510 		else
2511 			p->exit_signal = current->group_leader->exit_signal;
2512 	} else {
2513 		p->real_parent = current;
2514 		p->parent_exec_id = current->self_exec_id;
2515 		p->exit_signal = args->exit_signal;
2516 	}
2517 
2518 	klp_copy_process(p);
2519 
2520 	sched_core_fork(p);
2521 
2522 	spin_lock(&current->sighand->siglock);
2523 
2524 	rv_task_fork(p);
2525 
2526 	rseq_fork(p, clone_flags);
2527 
2528 	/* Don't start children in a dying pid namespace */
2529 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2530 		retval = -ENOMEM;
2531 		goto bad_fork_core_free;
2532 	}
2533 
2534 	/* Let kill terminate clone/fork in the middle */
2535 	if (fatal_signal_pending(current)) {
2536 		retval = -EINTR;
2537 		goto bad_fork_core_free;
2538 	}
2539 
2540 	/* No more failure paths after this point. */
2541 
2542 	/*
2543 	 * Copy seccomp details explicitly here, in case they were changed
2544 	 * before holding sighand lock.
2545 	 */
2546 	copy_seccomp(p);
2547 
2548 	init_task_pid_links(p);
2549 	if (likely(p->pid)) {
2550 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2551 
2552 		init_task_pid(p, PIDTYPE_PID, pid);
2553 		if (thread_group_leader(p)) {
2554 			init_task_pid(p, PIDTYPE_TGID, pid);
2555 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2556 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2557 
2558 			if (is_child_reaper(pid)) {
2559 				ns_of_pid(pid)->child_reaper = p;
2560 				p->signal->flags |= SIGNAL_UNKILLABLE;
2561 			}
2562 			p->signal->shared_pending.signal = delayed.signal;
2563 			p->signal->tty = tty_kref_get(current->signal->tty);
2564 			/*
2565 			 * Inherit has_child_subreaper flag under the same
2566 			 * tasklist_lock with adding child to the process tree
2567 			 * for propagate_has_child_subreaper optimization.
2568 			 */
2569 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2570 							 p->real_parent->signal->is_child_subreaper;
2571 			list_add_tail(&p->sibling, &p->real_parent->children);
2572 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2573 			attach_pid(p, PIDTYPE_TGID);
2574 			attach_pid(p, PIDTYPE_PGID);
2575 			attach_pid(p, PIDTYPE_SID);
2576 			__this_cpu_inc(process_counts);
2577 		} else {
2578 			current->signal->nr_threads++;
2579 			current->signal->quick_threads++;
2580 			atomic_inc(&current->signal->live);
2581 			refcount_inc(&current->signal->sigcnt);
2582 			task_join_group_stop(p);
2583 			list_add_tail_rcu(&p->thread_node,
2584 					  &p->signal->thread_head);
2585 		}
2586 		attach_pid(p, PIDTYPE_PID);
2587 		nr_threads++;
2588 	}
2589 	total_forks++;
2590 	hlist_del_init(&delayed.node);
2591 	spin_unlock(&current->sighand->siglock);
2592 	syscall_tracepoint_update(p);
2593 	write_unlock_irq(&tasklist_lock);
2594 
2595 	if (pidfile)
2596 		fd_install(pidfd, pidfile);
2597 
2598 	proc_fork_connector(p);
2599 	sched_post_fork(p);
2600 	cgroup_post_fork(p, args);
2601 	perf_event_fork(p);
2602 
2603 	trace_task_newtask(p, clone_flags);
2604 	uprobe_copy_process(p, clone_flags);
2605 	user_events_fork(p, clone_flags);
2606 
2607 	copy_oom_score_adj(clone_flags, p);
2608 
2609 	return p;
2610 
2611 bad_fork_core_free:
2612 	sched_core_free(p);
2613 	spin_unlock(&current->sighand->siglock);
2614 	write_unlock_irq(&tasklist_lock);
2615 bad_fork_cancel_cgroup:
2616 	cgroup_cancel_fork(p, args);
2617 bad_fork_put_pidfd:
2618 	if (clone_flags & CLONE_PIDFD) {
2619 		fput(pidfile);
2620 		put_unused_fd(pidfd);
2621 	}
2622 bad_fork_free_pid:
2623 	if (pid != &init_struct_pid)
2624 		free_pid(pid);
2625 bad_fork_cleanup_thread:
2626 	exit_thread(p);
2627 bad_fork_cleanup_io:
2628 	if (p->io_context)
2629 		exit_io_context(p);
2630 bad_fork_cleanup_namespaces:
2631 	exit_task_namespaces(p);
2632 bad_fork_cleanup_mm:
2633 	if (p->mm) {
2634 		mm_clear_owner(p->mm, p);
2635 		mmput(p->mm);
2636 	}
2637 bad_fork_cleanup_signal:
2638 	if (!(clone_flags & CLONE_THREAD))
2639 		free_signal_struct(p->signal);
2640 bad_fork_cleanup_sighand:
2641 	__cleanup_sighand(p->sighand);
2642 bad_fork_cleanup_fs:
2643 	exit_fs(p); /* blocking */
2644 bad_fork_cleanup_files:
2645 	exit_files(p); /* blocking */
2646 bad_fork_cleanup_semundo:
2647 	exit_sem(p);
2648 bad_fork_cleanup_security:
2649 	security_task_free(p);
2650 bad_fork_cleanup_audit:
2651 	audit_free(p);
2652 bad_fork_cleanup_perf:
2653 	perf_event_free_task(p);
2654 bad_fork_sched_cancel_fork:
2655 	sched_cancel_fork(p);
2656 bad_fork_cleanup_policy:
2657 	lockdep_free_task(p);
2658 #ifdef CONFIG_NUMA
2659 	mpol_put(p->mempolicy);
2660 #endif
2661 bad_fork_cleanup_delayacct:
2662 	delayacct_tsk_free(p);
2663 bad_fork_cleanup_count:
2664 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2665 	exit_creds(p);
2666 bad_fork_free:
2667 	WRITE_ONCE(p->__state, TASK_DEAD);
2668 	exit_task_stack_account(p);
2669 	put_task_stack(p);
2670 	delayed_free_task(p);
2671 fork_out:
2672 	spin_lock_irq(&current->sighand->siglock);
2673 	hlist_del_init(&delayed.node);
2674 	spin_unlock_irq(&current->sighand->siglock);
2675 	return ERR_PTR(retval);
2676 }
2677 
init_idle_pids(struct task_struct * idle)2678 static inline void init_idle_pids(struct task_struct *idle)
2679 {
2680 	enum pid_type type;
2681 
2682 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2683 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2684 		init_task_pid(idle, type, &init_struct_pid);
2685 	}
2686 }
2687 
idle_dummy(void * dummy)2688 static int idle_dummy(void *dummy)
2689 {
2690 	/* This function is never called */
2691 	return 0;
2692 }
2693 
fork_idle(int cpu)2694 struct task_struct * __init fork_idle(int cpu)
2695 {
2696 	struct task_struct *task;
2697 	struct kernel_clone_args args = {
2698 		.flags		= CLONE_VM,
2699 		.fn		= &idle_dummy,
2700 		.fn_arg		= NULL,
2701 		.kthread	= 1,
2702 		.idle		= 1,
2703 	};
2704 
2705 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2706 	if (!IS_ERR(task)) {
2707 		init_idle_pids(task);
2708 		init_idle(task, cpu);
2709 	}
2710 
2711 	return task;
2712 }
2713 
2714 /*
2715  * This is like kernel_clone(), but shaved down and tailored to just
2716  * creating io_uring workers. It returns a created task, or an error pointer.
2717  * The returned task is inactive, and the caller must fire it up through
2718  * wake_up_new_task(p). All signals are blocked in the created task.
2719  */
create_io_thread(int (* fn)(void *),void * arg,int node)2720 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2721 {
2722 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2723 				CLONE_IO;
2724 	struct kernel_clone_args args = {
2725 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2726 				    CLONE_UNTRACED) & ~CSIGNAL),
2727 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2728 		.fn		= fn,
2729 		.fn_arg		= arg,
2730 		.io_thread	= 1,
2731 		.user_worker	= 1,
2732 	};
2733 
2734 	return copy_process(NULL, 0, node, &args);
2735 }
2736 
2737 /*
2738  *  Ok, this is the main fork-routine.
2739  *
2740  * It copies the process, and if successful kick-starts
2741  * it and waits for it to finish using the VM if required.
2742  *
2743  * args->exit_signal is expected to be checked for sanity by the caller.
2744  */
kernel_clone(struct kernel_clone_args * args)2745 pid_t kernel_clone(struct kernel_clone_args *args)
2746 {
2747 	u64 clone_flags = args->flags;
2748 	struct completion vfork;
2749 	struct pid *pid;
2750 	struct task_struct *p;
2751 	int trace = 0;
2752 	pid_t nr;
2753 
2754 	/*
2755 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2756 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2757 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2758 	 * field in struct clone_args and it still doesn't make sense to have
2759 	 * them both point at the same memory location. Performing this check
2760 	 * here has the advantage that we don't need to have a separate helper
2761 	 * to check for legacy clone().
2762 	 */
2763 	if ((clone_flags & CLONE_PIDFD) &&
2764 	    (clone_flags & CLONE_PARENT_SETTID) &&
2765 	    (args->pidfd == args->parent_tid))
2766 		return -EINVAL;
2767 
2768 	/*
2769 	 * Determine whether and which event to report to ptracer.  When
2770 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2771 	 * requested, no event is reported; otherwise, report if the event
2772 	 * for the type of forking is enabled.
2773 	 */
2774 	if (!(clone_flags & CLONE_UNTRACED)) {
2775 		if (clone_flags & CLONE_VFORK)
2776 			trace = PTRACE_EVENT_VFORK;
2777 		else if (args->exit_signal != SIGCHLD)
2778 			trace = PTRACE_EVENT_CLONE;
2779 		else
2780 			trace = PTRACE_EVENT_FORK;
2781 
2782 		if (likely(!ptrace_event_enabled(current, trace)))
2783 			trace = 0;
2784 	}
2785 
2786 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2787 	add_latent_entropy();
2788 
2789 	if (IS_ERR(p))
2790 		return PTR_ERR(p);
2791 
2792 	/*
2793 	 * Do this prior waking up the new thread - the thread pointer
2794 	 * might get invalid after that point, if the thread exits quickly.
2795 	 */
2796 	trace_sched_process_fork(current, p);
2797 
2798 	pid = get_task_pid(p, PIDTYPE_PID);
2799 	nr = pid_vnr(pid);
2800 
2801 	if (clone_flags & CLONE_PARENT_SETTID)
2802 		put_user(nr, args->parent_tid);
2803 
2804 	if (clone_flags & CLONE_VFORK) {
2805 		p->vfork_done = &vfork;
2806 		init_completion(&vfork);
2807 		get_task_struct(p);
2808 	}
2809 
2810 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2811 		/* lock the task to synchronize with memcg migration */
2812 		task_lock(p);
2813 		lru_gen_add_mm(p->mm);
2814 		task_unlock(p);
2815 	}
2816 
2817 	wake_up_new_task(p);
2818 
2819 	/* forking complete and child started to run, tell ptracer */
2820 	if (unlikely(trace))
2821 		ptrace_event_pid(trace, pid);
2822 
2823 	if (clone_flags & CLONE_VFORK) {
2824 		if (!wait_for_vfork_done(p, &vfork))
2825 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2826 	}
2827 
2828 	put_pid(pid);
2829 	return nr;
2830 }
2831 
2832 /*
2833  * Create a kernel thread.
2834  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2835 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2836 		    unsigned long flags)
2837 {
2838 	struct kernel_clone_args args = {
2839 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2840 				    CLONE_UNTRACED) & ~CSIGNAL),
2841 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2842 		.fn		= fn,
2843 		.fn_arg		= arg,
2844 		.name		= name,
2845 		.kthread	= 1,
2846 	};
2847 
2848 	return kernel_clone(&args);
2849 }
2850 
2851 /*
2852  * Create a user mode thread.
2853  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2854 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2855 {
2856 	struct kernel_clone_args args = {
2857 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2858 				    CLONE_UNTRACED) & ~CSIGNAL),
2859 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2860 		.fn		= fn,
2861 		.fn_arg		= arg,
2862 	};
2863 
2864 	return kernel_clone(&args);
2865 }
2866 
2867 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2868 SYSCALL_DEFINE0(fork)
2869 {
2870 #ifdef CONFIG_MMU
2871 	struct kernel_clone_args args = {
2872 		.exit_signal = SIGCHLD,
2873 	};
2874 
2875 	return kernel_clone(&args);
2876 #else
2877 	/* can not support in nommu mode */
2878 	return -EINVAL;
2879 #endif
2880 }
2881 #endif
2882 
2883 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2884 SYSCALL_DEFINE0(vfork)
2885 {
2886 	struct kernel_clone_args args = {
2887 		.flags		= CLONE_VFORK | CLONE_VM,
2888 		.exit_signal	= SIGCHLD,
2889 	};
2890 
2891 	return kernel_clone(&args);
2892 }
2893 #endif
2894 
2895 #ifdef __ARCH_WANT_SYS_CLONE
2896 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2897 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2898 		 int __user *, parent_tidptr,
2899 		 unsigned long, tls,
2900 		 int __user *, child_tidptr)
2901 #elif defined(CONFIG_CLONE_BACKWARDS2)
2902 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2903 		 int __user *, parent_tidptr,
2904 		 int __user *, child_tidptr,
2905 		 unsigned long, tls)
2906 #elif defined(CONFIG_CLONE_BACKWARDS3)
2907 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2908 		int, stack_size,
2909 		int __user *, parent_tidptr,
2910 		int __user *, child_tidptr,
2911 		unsigned long, tls)
2912 #else
2913 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2914 		 int __user *, parent_tidptr,
2915 		 int __user *, child_tidptr,
2916 		 unsigned long, tls)
2917 #endif
2918 {
2919 	struct kernel_clone_args args = {
2920 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2921 		.pidfd		= parent_tidptr,
2922 		.child_tid	= child_tidptr,
2923 		.parent_tid	= parent_tidptr,
2924 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2925 		.stack		= newsp,
2926 		.tls		= tls,
2927 	};
2928 
2929 	return kernel_clone(&args);
2930 }
2931 #endif
2932 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2933 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2934 					      struct clone_args __user *uargs,
2935 					      size_t usize)
2936 {
2937 	int err;
2938 	struct clone_args args;
2939 	pid_t *kset_tid = kargs->set_tid;
2940 
2941 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2942 		     CLONE_ARGS_SIZE_VER0);
2943 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2944 		     CLONE_ARGS_SIZE_VER1);
2945 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2946 		     CLONE_ARGS_SIZE_VER2);
2947 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2948 
2949 	if (unlikely(usize > PAGE_SIZE))
2950 		return -E2BIG;
2951 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2952 		return -EINVAL;
2953 
2954 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2955 	if (err)
2956 		return err;
2957 
2958 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2959 		return -EINVAL;
2960 
2961 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2962 		return -EINVAL;
2963 
2964 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2965 		return -EINVAL;
2966 
2967 	/*
2968 	 * Verify that higher 32bits of exit_signal are unset and that
2969 	 * it is a valid signal
2970 	 */
2971 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2972 		     !valid_signal(args.exit_signal)))
2973 		return -EINVAL;
2974 
2975 	if ((args.flags & CLONE_INTO_CGROUP) &&
2976 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2977 		return -EINVAL;
2978 
2979 	*kargs = (struct kernel_clone_args){
2980 		.flags		= args.flags,
2981 		.pidfd		= u64_to_user_ptr(args.pidfd),
2982 		.child_tid	= u64_to_user_ptr(args.child_tid),
2983 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2984 		.exit_signal	= args.exit_signal,
2985 		.stack		= args.stack,
2986 		.stack_size	= args.stack_size,
2987 		.tls		= args.tls,
2988 		.set_tid_size	= args.set_tid_size,
2989 		.cgroup		= args.cgroup,
2990 	};
2991 
2992 	if (args.set_tid &&
2993 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2994 			(kargs->set_tid_size * sizeof(pid_t))))
2995 		return -EFAULT;
2996 
2997 	kargs->set_tid = kset_tid;
2998 
2999 	return 0;
3000 }
3001 
3002 /**
3003  * clone3_stack_valid - check and prepare stack
3004  * @kargs: kernel clone args
3005  *
3006  * Verify that the stack arguments userspace gave us are sane.
3007  * In addition, set the stack direction for userspace since it's easy for us to
3008  * determine.
3009  */
clone3_stack_valid(struct kernel_clone_args * kargs)3010 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3011 {
3012 	if (kargs->stack == 0) {
3013 		if (kargs->stack_size > 0)
3014 			return false;
3015 	} else {
3016 		if (kargs->stack_size == 0)
3017 			return false;
3018 
3019 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3020 			return false;
3021 
3022 #if !defined(CONFIG_STACK_GROWSUP)
3023 		kargs->stack += kargs->stack_size;
3024 #endif
3025 	}
3026 
3027 	return true;
3028 }
3029 
clone3_args_valid(struct kernel_clone_args * kargs)3030 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3031 {
3032 	/* Verify that no unknown flags are passed along. */
3033 	if (kargs->flags &
3034 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3035 		return false;
3036 
3037 	/*
3038 	 * - make the CLONE_DETACHED bit reusable for clone3
3039 	 * - make the CSIGNAL bits reusable for clone3
3040 	 */
3041 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3042 		return false;
3043 
3044 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3045 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3046 		return false;
3047 
3048 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3049 	    kargs->exit_signal)
3050 		return false;
3051 
3052 	if (!clone3_stack_valid(kargs))
3053 		return false;
3054 
3055 	return true;
3056 }
3057 
3058 /**
3059  * sys_clone3 - create a new process with specific properties
3060  * @uargs: argument structure
3061  * @size:  size of @uargs
3062  *
3063  * clone3() is the extensible successor to clone()/clone2().
3064  * It takes a struct as argument that is versioned by its size.
3065  *
3066  * Return: On success, a positive PID for the child process.
3067  *         On error, a negative errno number.
3068  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3069 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3070 {
3071 	int err;
3072 
3073 	struct kernel_clone_args kargs;
3074 	pid_t set_tid[MAX_PID_NS_LEVEL];
3075 
3076 #ifdef __ARCH_BROKEN_SYS_CLONE3
3077 #warning clone3() entry point is missing, please fix
3078 	return -ENOSYS;
3079 #endif
3080 
3081 	kargs.set_tid = set_tid;
3082 
3083 	err = copy_clone_args_from_user(&kargs, uargs, size);
3084 	if (err)
3085 		return err;
3086 
3087 	if (!clone3_args_valid(&kargs))
3088 		return -EINVAL;
3089 
3090 	return kernel_clone(&kargs);
3091 }
3092 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3093 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3094 {
3095 	struct task_struct *leader, *parent, *child;
3096 	int res;
3097 
3098 	read_lock(&tasklist_lock);
3099 	leader = top = top->group_leader;
3100 down:
3101 	for_each_thread(leader, parent) {
3102 		list_for_each_entry(child, &parent->children, sibling) {
3103 			res = visitor(child, data);
3104 			if (res) {
3105 				if (res < 0)
3106 					goto out;
3107 				leader = child;
3108 				goto down;
3109 			}
3110 up:
3111 			;
3112 		}
3113 	}
3114 
3115 	if (leader != top) {
3116 		child = leader;
3117 		parent = child->real_parent;
3118 		leader = parent->group_leader;
3119 		goto up;
3120 	}
3121 out:
3122 	read_unlock(&tasklist_lock);
3123 }
3124 
3125 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3126 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3127 #endif
3128 
sighand_ctor(void * data)3129 static void sighand_ctor(void *data)
3130 {
3131 	struct sighand_struct *sighand = data;
3132 
3133 	spin_lock_init(&sighand->siglock);
3134 	init_waitqueue_head(&sighand->signalfd_wqh);
3135 }
3136 
mm_cache_init(void)3137 void __init mm_cache_init(void)
3138 {
3139 	unsigned int mm_size;
3140 
3141 	/*
3142 	 * The mm_cpumask is located at the end of mm_struct, and is
3143 	 * dynamically sized based on the maximum CPU number this system
3144 	 * can have, taking hotplug into account (nr_cpu_ids).
3145 	 */
3146 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3147 
3148 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3149 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3150 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3151 			offsetof(struct mm_struct, saved_auxv),
3152 			sizeof_field(struct mm_struct, saved_auxv),
3153 			NULL);
3154 }
3155 
proc_caches_init(void)3156 void __init proc_caches_init(void)
3157 {
3158 	sighand_cachep = kmem_cache_create("sighand_cache",
3159 			sizeof(struct sighand_struct), 0,
3160 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3161 			SLAB_ACCOUNT, sighand_ctor);
3162 	signal_cachep = kmem_cache_create("signal_cache",
3163 			sizeof(struct signal_struct), 0,
3164 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3165 			NULL);
3166 	files_cachep = kmem_cache_create("files_cache",
3167 			sizeof(struct files_struct), 0,
3168 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3169 			NULL);
3170 	fs_cachep = kmem_cache_create("fs_cache",
3171 			sizeof(struct fs_struct), 0,
3172 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3173 			NULL);
3174 
3175 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3176 #ifdef CONFIG_PER_VMA_LOCK
3177 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3178 #endif
3179 	mmap_init();
3180 	nsproxy_cache_init();
3181 }
3182 
3183 /*
3184  * Check constraints on flags passed to the unshare system call.
3185  */
check_unshare_flags(unsigned long unshare_flags)3186 static int check_unshare_flags(unsigned long unshare_flags)
3187 {
3188 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3189 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3190 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3191 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3192 				CLONE_NEWTIME))
3193 		return -EINVAL;
3194 	/*
3195 	 * Not implemented, but pretend it works if there is nothing
3196 	 * to unshare.  Note that unsharing the address space or the
3197 	 * signal handlers also need to unshare the signal queues (aka
3198 	 * CLONE_THREAD).
3199 	 */
3200 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3201 		if (!thread_group_empty(current))
3202 			return -EINVAL;
3203 	}
3204 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3205 		if (refcount_read(&current->sighand->count) > 1)
3206 			return -EINVAL;
3207 	}
3208 	if (unshare_flags & CLONE_VM) {
3209 		if (!current_is_single_threaded())
3210 			return -EINVAL;
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 /*
3217  * Unshare the filesystem structure if it is being shared
3218  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3219 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3220 {
3221 	struct fs_struct *fs = current->fs;
3222 
3223 	if (!(unshare_flags & CLONE_FS) || !fs)
3224 		return 0;
3225 
3226 	/* don't need lock here; in the worst case we'll do useless copy */
3227 	if (fs->users == 1)
3228 		return 0;
3229 
3230 	*new_fsp = copy_fs_struct(fs);
3231 	if (!*new_fsp)
3232 		return -ENOMEM;
3233 
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Unshare file descriptor table if it is being shared
3239  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3240 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3241 {
3242 	struct files_struct *fd = current->files;
3243 
3244 	if ((unshare_flags & CLONE_FILES) &&
3245 	    (fd && atomic_read(&fd->count) > 1)) {
3246 		fd = dup_fd(fd, NULL);
3247 		if (IS_ERR(fd))
3248 			return PTR_ERR(fd);
3249 		*new_fdp = fd;
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * unshare allows a process to 'unshare' part of the process
3257  * context which was originally shared using clone.  copy_*
3258  * functions used by kernel_clone() cannot be used here directly
3259  * because they modify an inactive task_struct that is being
3260  * constructed. Here we are modifying the current, active,
3261  * task_struct.
3262  */
ksys_unshare(unsigned long unshare_flags)3263 int ksys_unshare(unsigned long unshare_flags)
3264 {
3265 	struct fs_struct *fs, *new_fs = NULL;
3266 	struct files_struct *new_fd = NULL;
3267 	struct cred *new_cred = NULL;
3268 	struct nsproxy *new_nsproxy = NULL;
3269 	int do_sysvsem = 0;
3270 	int err;
3271 
3272 	/*
3273 	 * If unsharing a user namespace must also unshare the thread group
3274 	 * and unshare the filesystem root and working directories.
3275 	 */
3276 	if (unshare_flags & CLONE_NEWUSER)
3277 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3278 	/*
3279 	 * If unsharing vm, must also unshare signal handlers.
3280 	 */
3281 	if (unshare_flags & CLONE_VM)
3282 		unshare_flags |= CLONE_SIGHAND;
3283 	/*
3284 	 * If unsharing a signal handlers, must also unshare the signal queues.
3285 	 */
3286 	if (unshare_flags & CLONE_SIGHAND)
3287 		unshare_flags |= CLONE_THREAD;
3288 	/*
3289 	 * If unsharing namespace, must also unshare filesystem information.
3290 	 */
3291 	if (unshare_flags & CLONE_NEWNS)
3292 		unshare_flags |= CLONE_FS;
3293 
3294 	err = check_unshare_flags(unshare_flags);
3295 	if (err)
3296 		goto bad_unshare_out;
3297 	/*
3298 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3299 	 * to a new ipc namespace, the semaphore arrays from the old
3300 	 * namespace are unreachable.
3301 	 */
3302 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3303 		do_sysvsem = 1;
3304 	err = unshare_fs(unshare_flags, &new_fs);
3305 	if (err)
3306 		goto bad_unshare_out;
3307 	err = unshare_fd(unshare_flags, &new_fd);
3308 	if (err)
3309 		goto bad_unshare_cleanup_fs;
3310 	err = unshare_userns(unshare_flags, &new_cred);
3311 	if (err)
3312 		goto bad_unshare_cleanup_fd;
3313 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3314 					 new_cred, new_fs);
3315 	if (err)
3316 		goto bad_unshare_cleanup_cred;
3317 
3318 	if (new_cred) {
3319 		err = set_cred_ucounts(new_cred);
3320 		if (err)
3321 			goto bad_unshare_cleanup_cred;
3322 	}
3323 
3324 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3325 		if (do_sysvsem) {
3326 			/*
3327 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3328 			 */
3329 			exit_sem(current);
3330 		}
3331 		if (unshare_flags & CLONE_NEWIPC) {
3332 			/* Orphan segments in old ns (see sem above). */
3333 			exit_shm(current);
3334 			shm_init_task(current);
3335 		}
3336 
3337 		if (new_nsproxy)
3338 			switch_task_namespaces(current, new_nsproxy);
3339 
3340 		task_lock(current);
3341 
3342 		if (new_fs) {
3343 			fs = current->fs;
3344 			spin_lock(&fs->lock);
3345 			current->fs = new_fs;
3346 			if (--fs->users)
3347 				new_fs = NULL;
3348 			else
3349 				new_fs = fs;
3350 			spin_unlock(&fs->lock);
3351 		}
3352 
3353 		if (new_fd)
3354 			swap(current->files, new_fd);
3355 
3356 		task_unlock(current);
3357 
3358 		if (new_cred) {
3359 			/* Install the new user namespace */
3360 			commit_creds(new_cred);
3361 			new_cred = NULL;
3362 		}
3363 	}
3364 
3365 	perf_event_namespaces(current);
3366 
3367 bad_unshare_cleanup_cred:
3368 	if (new_cred)
3369 		put_cred(new_cred);
3370 bad_unshare_cleanup_fd:
3371 	if (new_fd)
3372 		put_files_struct(new_fd);
3373 
3374 bad_unshare_cleanup_fs:
3375 	if (new_fs)
3376 		free_fs_struct(new_fs);
3377 
3378 bad_unshare_out:
3379 	return err;
3380 }
3381 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3382 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3383 {
3384 	return ksys_unshare(unshare_flags);
3385 }
3386 
3387 /*
3388  *	Helper to unshare the files of the current task.
3389  *	We don't want to expose copy_files internals to
3390  *	the exec layer of the kernel.
3391  */
3392 
unshare_files(void)3393 int unshare_files(void)
3394 {
3395 	struct task_struct *task = current;
3396 	struct files_struct *old, *copy = NULL;
3397 	int error;
3398 
3399 	error = unshare_fd(CLONE_FILES, &copy);
3400 	if (error || !copy)
3401 		return error;
3402 
3403 	old = task->files;
3404 	task_lock(task);
3405 	task->files = copy;
3406 	task_unlock(task);
3407 	put_files_struct(old);
3408 	return 0;
3409 }
3410 
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3411 int sysctl_max_threads(const struct ctl_table *table, int write,
3412 		       void *buffer, size_t *lenp, loff_t *ppos)
3413 {
3414 	struct ctl_table t;
3415 	int ret;
3416 	int threads = max_threads;
3417 	int min = 1;
3418 	int max = MAX_THREADS;
3419 
3420 	t = *table;
3421 	t.data = &threads;
3422 	t.extra1 = &min;
3423 	t.extra2 = &max;
3424 
3425 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3426 	if (ret || !write)
3427 		return ret;
3428 
3429 	max_threads = threads;
3430 
3431 	return 0;
3432 }
3433