1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas. Equals to the count of all anon_vmas that
45 	 * have ->parent pointing to this one, including itself.
46 	 *
47 	 * This counter is used for making decision about reusing anon_vma
48 	 * instead of forking new one. See comments in function anon_vma_clone.
49 	 */
50 	unsigned long num_children;
51 	/* Count of VMAs whose ->anon_vma pointer points to this object. */
52 	unsigned long num_active_vmas;
53 
54 	struct anon_vma *parent;	/* Parent of this anon_vma */
55 
56 	/*
57 	 * NOTE: the LSB of the rb_root.rb_node is set by
58 	 * mm_take_all_locks() _after_ taking the above lock. So the
59 	 * rb_root must only be read/written after taking the above lock
60 	 * to be sure to see a valid next pointer. The LSB bit itself
61 	 * is serialized by a system wide lock only visible to
62 	 * mm_take_all_locks() (mm_all_locks_mutex).
63 	 */
64 
65 	/* Interval tree of private "related" vmas */
66 	struct rb_root_cached rb_root;
67 };
68 
69 /*
70  * The copy-on-write semantics of fork mean that an anon_vma
71  * can become associated with multiple processes. Furthermore,
72  * each child process will have its own anon_vma, where new
73  * pages for that process are instantiated.
74  *
75  * This structure allows us to find the anon_vmas associated
76  * with a VMA, or the VMAs associated with an anon_vma.
77  * The "same_vma" list contains the anon_vma_chains linking
78  * all the anon_vmas associated with this VMA.
79  * The "rb" field indexes on an interval tree the anon_vma_chains
80  * which link all the VMAs associated with this anon_vma.
81  */
82 struct anon_vma_chain {
83 	struct vm_area_struct *vma;
84 	struct anon_vma *anon_vma;
85 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
86 	struct rb_node rb;			/* locked by anon_vma->rwsem */
87 	unsigned long rb_subtree_last;
88 #ifdef CONFIG_DEBUG_VM_RB
89 	unsigned long cached_vma_start, cached_vma_last;
90 #endif
91 };
92 
93 enum ttu_flags {
94 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
95 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
96 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
97 	TTU_HWPOISON		= 0x20,	/* do convert pte to hwpoison entry */
98 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
99 					 * and caller guarantees they will
100 					 * do a final flush if necessary */
101 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
102 					 * caller holds it */
103 };
104 
105 #ifdef CONFIG_MMU
get_anon_vma(struct anon_vma * anon_vma)106 static inline void get_anon_vma(struct anon_vma *anon_vma)
107 {
108 	atomic_inc(&anon_vma->refcount);
109 }
110 
111 void __put_anon_vma(struct anon_vma *anon_vma);
112 
put_anon_vma(struct anon_vma * anon_vma)113 static inline void put_anon_vma(struct anon_vma *anon_vma)
114 {
115 	if (atomic_dec_and_test(&anon_vma->refcount))
116 		__put_anon_vma(anon_vma);
117 }
118 
anon_vma_lock_write(struct anon_vma * anon_vma)119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
120 {
121 	down_write(&anon_vma->root->rwsem);
122 }
123 
anon_vma_trylock_write(struct anon_vma * anon_vma)124 static inline int anon_vma_trylock_write(struct anon_vma *anon_vma)
125 {
126 	return down_write_trylock(&anon_vma->root->rwsem);
127 }
128 
anon_vma_unlock_write(struct anon_vma * anon_vma)129 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
130 {
131 	up_write(&anon_vma->root->rwsem);
132 }
133 
anon_vma_lock_read(struct anon_vma * anon_vma)134 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
135 {
136 	down_read(&anon_vma->root->rwsem);
137 }
138 
anon_vma_trylock_read(struct anon_vma * anon_vma)139 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
140 {
141 	return down_read_trylock(&anon_vma->root->rwsem);
142 }
143 
anon_vma_unlock_read(struct anon_vma * anon_vma)144 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
145 {
146 	up_read(&anon_vma->root->rwsem);
147 }
148 
149 
150 /*
151  * anon_vma helper functions.
152  */
153 void anon_vma_init(void);	/* create anon_vma_cachep */
154 int  __anon_vma_prepare(struct vm_area_struct *);
155 void unlink_anon_vmas(struct vm_area_struct *);
156 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
157 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
158 
anon_vma_prepare(struct vm_area_struct * vma)159 static inline int anon_vma_prepare(struct vm_area_struct *vma)
160 {
161 	if (likely(vma->anon_vma))
162 		return 0;
163 
164 	return __anon_vma_prepare(vma);
165 }
166 
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)167 static inline void anon_vma_merge(struct vm_area_struct *vma,
168 				  struct vm_area_struct *next)
169 {
170 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
171 	unlink_anon_vmas(next);
172 }
173 
174 struct anon_vma *folio_get_anon_vma(struct folio *folio);
175 
176 /* RMAP flags, currently only relevant for some anon rmap operations. */
177 typedef int __bitwise rmap_t;
178 
179 /*
180  * No special request: A mapped anonymous (sub)page is possibly shared between
181  * processes.
182  */
183 #define RMAP_NONE		((__force rmap_t)0)
184 
185 /* The anonymous (sub)page is exclusive to a single process. */
186 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
187 
188 /*
189  * Internally, we're using an enum to specify the granularity. We make the
190  * compiler emit specialized code for each granularity.
191  */
192 enum rmap_level {
193 	RMAP_LEVEL_PTE = 0,
194 	RMAP_LEVEL_PMD,
195 };
196 
__folio_rmap_sanity_checks(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level)197 static inline void __folio_rmap_sanity_checks(struct folio *folio,
198 		struct page *page, int nr_pages, enum rmap_level level)
199 {
200 	/* hugetlb folios are handled separately. */
201 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
202 
203 	/* When (un)mapping zeropages, we should never touch ref+mapcount. */
204 	VM_WARN_ON_FOLIO(is_zero_folio(folio), folio);
205 
206 	/*
207 	 * TODO: we get driver-allocated folios that have nothing to do with
208 	 * the rmap using vm_insert_page(); therefore, we cannot assume that
209 	 * folio_test_large_rmappable() holds for large folios. We should
210 	 * handle any desired mapcount+stats accounting for these folios in
211 	 * VM_MIXEDMAP VMAs separately, and then sanity-check here that
212 	 * we really only get rmappable folios.
213 	 */
214 
215 	VM_WARN_ON_ONCE(nr_pages <= 0);
216 	VM_WARN_ON_FOLIO(page_folio(page) != folio, folio);
217 	VM_WARN_ON_FOLIO(page_folio(page + nr_pages - 1) != folio, folio);
218 
219 	switch (level) {
220 	case RMAP_LEVEL_PTE:
221 		break;
222 	case RMAP_LEVEL_PMD:
223 		/*
224 		 * We don't support folios larger than a single PMD yet. So
225 		 * when RMAP_LEVEL_PMD is set, we assume that we are creating
226 		 * a single "entire" mapping of the folio.
227 		 */
228 		VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PMD_NR, folio);
229 		VM_WARN_ON_FOLIO(nr_pages != HPAGE_PMD_NR, folio);
230 		break;
231 	default:
232 		VM_WARN_ON_ONCE(true);
233 	}
234 }
235 
236 /*
237  * rmap interfaces called when adding or removing pte of page
238  */
239 void folio_move_anon_rmap(struct folio *, struct vm_area_struct *);
240 void folio_add_anon_rmap_ptes(struct folio *, struct page *, int nr_pages,
241 		struct vm_area_struct *, unsigned long address, rmap_t flags);
242 #define folio_add_anon_rmap_pte(folio, page, vma, address, flags) \
243 	folio_add_anon_rmap_ptes(folio, page, 1, vma, address, flags)
244 void folio_add_anon_rmap_pmd(struct folio *, struct page *,
245 		struct vm_area_struct *, unsigned long address, rmap_t flags);
246 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
247 		unsigned long address, rmap_t flags);
248 void folio_add_file_rmap_ptes(struct folio *, struct page *, int nr_pages,
249 		struct vm_area_struct *);
250 #define folio_add_file_rmap_pte(folio, page, vma) \
251 	folio_add_file_rmap_ptes(folio, page, 1, vma)
252 void folio_add_file_rmap_pmd(struct folio *, struct page *,
253 		struct vm_area_struct *);
254 void folio_remove_rmap_ptes(struct folio *, struct page *, int nr_pages,
255 		struct vm_area_struct *);
256 #define folio_remove_rmap_pte(folio, page, vma) \
257 	folio_remove_rmap_ptes(folio, page, 1, vma)
258 void folio_remove_rmap_pmd(struct folio *, struct page *,
259 		struct vm_area_struct *);
260 
261 void hugetlb_add_anon_rmap(struct folio *, struct vm_area_struct *,
262 		unsigned long address, rmap_t flags);
263 void hugetlb_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
264 		unsigned long address);
265 
266 /* See folio_try_dup_anon_rmap_*() */
hugetlb_try_dup_anon_rmap(struct folio * folio,struct vm_area_struct * vma)267 static inline int hugetlb_try_dup_anon_rmap(struct folio *folio,
268 		struct vm_area_struct *vma)
269 {
270 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
271 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
272 
273 	if (PageAnonExclusive(&folio->page)) {
274 		if (unlikely(folio_needs_cow_for_dma(vma, folio)))
275 			return -EBUSY;
276 		ClearPageAnonExclusive(&folio->page);
277 	}
278 	atomic_inc(&folio->_entire_mapcount);
279 	atomic_inc(&folio->_large_mapcount);
280 	return 0;
281 }
282 
283 /* See folio_try_share_anon_rmap_*() */
hugetlb_try_share_anon_rmap(struct folio * folio)284 static inline int hugetlb_try_share_anon_rmap(struct folio *folio)
285 {
286 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
287 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
288 	VM_WARN_ON_FOLIO(!PageAnonExclusive(&folio->page), folio);
289 
290 	/* Paired with the memory barrier in try_grab_folio(). */
291 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
292 		smp_mb();
293 
294 	if (unlikely(folio_maybe_dma_pinned(folio)))
295 		return -EBUSY;
296 	ClearPageAnonExclusive(&folio->page);
297 
298 	/*
299 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
300 	 * gup_must_unshare().
301 	 */
302 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
303 		smp_mb__after_atomic();
304 	return 0;
305 }
306 
hugetlb_add_file_rmap(struct folio * folio)307 static inline void hugetlb_add_file_rmap(struct folio *folio)
308 {
309 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
310 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
311 
312 	atomic_inc(&folio->_entire_mapcount);
313 	atomic_inc(&folio->_large_mapcount);
314 }
315 
hugetlb_remove_rmap(struct folio * folio)316 static inline void hugetlb_remove_rmap(struct folio *folio)
317 {
318 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
319 
320 	atomic_dec(&folio->_entire_mapcount);
321 	atomic_dec(&folio->_large_mapcount);
322 }
323 
__folio_dup_file_rmap(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level)324 static __always_inline void __folio_dup_file_rmap(struct folio *folio,
325 		struct page *page, int nr_pages, enum rmap_level level)
326 {
327 	const int orig_nr_pages = nr_pages;
328 
329 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
330 
331 	switch (level) {
332 	case RMAP_LEVEL_PTE:
333 		if (!folio_test_large(folio)) {
334 			atomic_inc(&folio->_mapcount);
335 			break;
336 		}
337 
338 		do {
339 			atomic_inc(&page->_mapcount);
340 		} while (page++, --nr_pages > 0);
341 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
342 		break;
343 	case RMAP_LEVEL_PMD:
344 		atomic_inc(&folio->_entire_mapcount);
345 		atomic_inc(&folio->_large_mapcount);
346 		break;
347 	}
348 }
349 
350 /**
351  * folio_dup_file_rmap_ptes - duplicate PTE mappings of a page range of a folio
352  * @folio:	The folio to duplicate the mappings of
353  * @page:	The first page to duplicate the mappings of
354  * @nr_pages:	The number of pages of which the mapping will be duplicated
355  *
356  * The page range of the folio is defined by [page, page + nr_pages)
357  *
358  * The caller needs to hold the page table lock.
359  */
folio_dup_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages)360 static inline void folio_dup_file_rmap_ptes(struct folio *folio,
361 		struct page *page, int nr_pages)
362 {
363 	__folio_dup_file_rmap(folio, page, nr_pages, RMAP_LEVEL_PTE);
364 }
365 
folio_dup_file_rmap_pte(struct folio * folio,struct page * page)366 static __always_inline void folio_dup_file_rmap_pte(struct folio *folio,
367 		struct page *page)
368 {
369 	__folio_dup_file_rmap(folio, page, 1, RMAP_LEVEL_PTE);
370 }
371 
372 /**
373  * folio_dup_file_rmap_pmd - duplicate a PMD mapping of a page range of a folio
374  * @folio:	The folio to duplicate the mapping of
375  * @page:	The first page to duplicate the mapping of
376  *
377  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
378  *
379  * The caller needs to hold the page table lock.
380  */
folio_dup_file_rmap_pmd(struct folio * folio,struct page * page)381 static inline void folio_dup_file_rmap_pmd(struct folio *folio,
382 		struct page *page)
383 {
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 	__folio_dup_file_rmap(folio, page, HPAGE_PMD_NR, RMAP_LEVEL_PTE);
386 #else
387 	WARN_ON_ONCE(true);
388 #endif
389 }
390 
__folio_try_dup_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * src_vma,enum rmap_level level)391 static __always_inline int __folio_try_dup_anon_rmap(struct folio *folio,
392 		struct page *page, int nr_pages, struct vm_area_struct *src_vma,
393 		enum rmap_level level)
394 {
395 	const int orig_nr_pages = nr_pages;
396 	bool maybe_pinned;
397 	int i;
398 
399 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
400 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
401 
402 	/*
403 	 * If this folio may have been pinned by the parent process,
404 	 * don't allow to duplicate the mappings but instead require to e.g.,
405 	 * copy the subpage immediately for the child so that we'll always
406 	 * guarantee the pinned folio won't be randomly replaced in the
407 	 * future on write faults.
408 	 */
409 	maybe_pinned = likely(!folio_is_device_private(folio)) &&
410 		       unlikely(folio_needs_cow_for_dma(src_vma, folio));
411 
412 	/*
413 	 * No need to check+clear for already shared PTEs/PMDs of the
414 	 * folio. But if any page is PageAnonExclusive, we must fallback to
415 	 * copying if the folio maybe pinned.
416 	 */
417 	switch (level) {
418 	case RMAP_LEVEL_PTE:
419 		if (unlikely(maybe_pinned)) {
420 			for (i = 0; i < nr_pages; i++)
421 				if (PageAnonExclusive(page + i))
422 					return -EBUSY;
423 		}
424 
425 		if (!folio_test_large(folio)) {
426 			if (PageAnonExclusive(page))
427 				ClearPageAnonExclusive(page);
428 			atomic_inc(&folio->_mapcount);
429 			break;
430 		}
431 
432 		do {
433 			if (PageAnonExclusive(page))
434 				ClearPageAnonExclusive(page);
435 			atomic_inc(&page->_mapcount);
436 		} while (page++, --nr_pages > 0);
437 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
438 		break;
439 	case RMAP_LEVEL_PMD:
440 		if (PageAnonExclusive(page)) {
441 			if (unlikely(maybe_pinned))
442 				return -EBUSY;
443 			ClearPageAnonExclusive(page);
444 		}
445 		atomic_inc(&folio->_entire_mapcount);
446 		atomic_inc(&folio->_large_mapcount);
447 		break;
448 	}
449 	return 0;
450 }
451 
452 /**
453  * folio_try_dup_anon_rmap_ptes - try duplicating PTE mappings of a page range
454  *				  of a folio
455  * @folio:	The folio to duplicate the mappings of
456  * @page:	The first page to duplicate the mappings of
457  * @nr_pages:	The number of pages of which the mapping will be duplicated
458  * @src_vma:	The vm area from which the mappings are duplicated
459  *
460  * The page range of the folio is defined by [page, page + nr_pages)
461  *
462  * The caller needs to hold the page table lock and the
463  * vma->vma_mm->write_protect_seq.
464  *
465  * Duplicating the mappings can only fail if the folio may be pinned; device
466  * private folios cannot get pinned and consequently this function cannot fail
467  * for them.
468  *
469  * If duplicating the mappings succeeded, the duplicated PTEs have to be R/O in
470  * the parent and the child. They must *not* be writable after this call
471  * succeeded.
472  *
473  * Returns 0 if duplicating the mappings succeeded. Returns -EBUSY otherwise.
474  */
folio_try_dup_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * src_vma)475 static inline int folio_try_dup_anon_rmap_ptes(struct folio *folio,
476 		struct page *page, int nr_pages, struct vm_area_struct *src_vma)
477 {
478 	return __folio_try_dup_anon_rmap(folio, page, nr_pages, src_vma,
479 					 RMAP_LEVEL_PTE);
480 }
481 
folio_try_dup_anon_rmap_pte(struct folio * folio,struct page * page,struct vm_area_struct * src_vma)482 static __always_inline int folio_try_dup_anon_rmap_pte(struct folio *folio,
483 		struct page *page, struct vm_area_struct *src_vma)
484 {
485 	return __folio_try_dup_anon_rmap(folio, page, 1, src_vma,
486 					 RMAP_LEVEL_PTE);
487 }
488 
489 /**
490  * folio_try_dup_anon_rmap_pmd - try duplicating a PMD mapping of a page range
491  *				 of a folio
492  * @folio:	The folio to duplicate the mapping of
493  * @page:	The first page to duplicate the mapping of
494  * @src_vma:	The vm area from which the mapping is duplicated
495  *
496  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
497  *
498  * The caller needs to hold the page table lock and the
499  * vma->vma_mm->write_protect_seq.
500  *
501  * Duplicating the mapping can only fail if the folio may be pinned; device
502  * private folios cannot get pinned and consequently this function cannot fail
503  * for them.
504  *
505  * If duplicating the mapping succeeds, the duplicated PMD has to be R/O in
506  * the parent and the child. They must *not* be writable after this call
507  * succeeded.
508  *
509  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
510  */
folio_try_dup_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * src_vma)511 static inline int folio_try_dup_anon_rmap_pmd(struct folio *folio,
512 		struct page *page, struct vm_area_struct *src_vma)
513 {
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 	return __folio_try_dup_anon_rmap(folio, page, HPAGE_PMD_NR, src_vma,
516 					 RMAP_LEVEL_PMD);
517 #else
518 	WARN_ON_ONCE(true);
519 	return -EBUSY;
520 #endif
521 }
522 
__folio_try_share_anon_rmap(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level)523 static __always_inline int __folio_try_share_anon_rmap(struct folio *folio,
524 		struct page *page, int nr_pages, enum rmap_level level)
525 {
526 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
527 	VM_WARN_ON_FOLIO(!PageAnonExclusive(page), folio);
528 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
529 
530 	/* device private folios cannot get pinned via GUP. */
531 	if (unlikely(folio_is_device_private(folio))) {
532 		ClearPageAnonExclusive(page);
533 		return 0;
534 	}
535 
536 	/*
537 	 * We have to make sure that when we clear PageAnonExclusive, that
538 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
539 	 * concurrently pinning the page.
540 	 *
541 	 * Conceptually, PageAnonExclusive clearing consists of:
542 	 * (A1) Clear PTE
543 	 * (A2) Check if the page is pinned; back off if so.
544 	 * (A3) Clear PageAnonExclusive
545 	 * (A4) Restore PTE (optional, but certainly not writable)
546 	 *
547 	 * When clearing PageAnonExclusive, we cannot possibly map the page
548 	 * writable again, because anon pages that may be shared must never
549 	 * be writable. So in any case, if the PTE was writable it cannot
550 	 * be writable anymore afterwards and there would be a PTE change. Only
551 	 * if the PTE wasn't writable, there might not be a PTE change.
552 	 *
553 	 * Conceptually, GUP-fast pinning of an anon page consists of:
554 	 * (B1) Read the PTE
555 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
556 	 * (B3) Pin the mapped page
557 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
558 	 * (B5) If the original PTE is not writable, check if
559 	 *	PageAnonExclusive is not set; back off if so.
560 	 *
561 	 * If the PTE was writable, we only have to make sure that GUP-fast
562 	 * observes a PTE change and properly backs off.
563 	 *
564 	 * If the PTE was not writable, we have to make sure that GUP-fast either
565 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
566 	 * and properly backs off.
567 	 *
568 	 * Consequently, when clearing PageAnonExclusive(), we have to make
569 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
570 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
571 	 * and (B5) happen in the right memory order.
572 	 *
573 	 * We assume that there might not be a memory barrier after
574 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
575 	 * so we use explicit ones here.
576 	 */
577 
578 	/* Paired with the memory barrier in try_grab_folio(). */
579 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
580 		smp_mb();
581 
582 	if (unlikely(folio_maybe_dma_pinned(folio)))
583 		return -EBUSY;
584 	ClearPageAnonExclusive(page);
585 
586 	/*
587 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
588 	 * gup_must_unshare().
589 	 */
590 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
591 		smp_mb__after_atomic();
592 	return 0;
593 }
594 
595 /**
596  * folio_try_share_anon_rmap_pte - try marking an exclusive anonymous page
597  *				   mapped by a PTE possibly shared to prepare
598  *				   for KSM or temporary unmapping
599  * @folio:	The folio to share a mapping of
600  * @page:	The mapped exclusive page
601  *
602  * The caller needs to hold the page table lock and has to have the page table
603  * entries cleared/invalidated.
604  *
605  * This is similar to folio_try_dup_anon_rmap_pte(), however, not used during
606  * fork() to duplicate mappings, but instead to prepare for KSM or temporarily
607  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pte().
608  *
609  * Marking the mapped page shared can only fail if the folio maybe pinned;
610  * device private folios cannot get pinned and consequently this function cannot
611  * fail.
612  *
613  * Returns 0 if marking the mapped page possibly shared succeeded. Returns
614  * -EBUSY otherwise.
615  */
folio_try_share_anon_rmap_pte(struct folio * folio,struct page * page)616 static inline int folio_try_share_anon_rmap_pte(struct folio *folio,
617 		struct page *page)
618 {
619 	return __folio_try_share_anon_rmap(folio, page, 1, RMAP_LEVEL_PTE);
620 }
621 
622 /**
623  * folio_try_share_anon_rmap_pmd - try marking an exclusive anonymous page
624  *				   range mapped by a PMD possibly shared to
625  *				   prepare for temporary unmapping
626  * @folio:	The folio to share the mapping of
627  * @page:	The first page to share the mapping of
628  *
629  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
630  *
631  * The caller needs to hold the page table lock and has to have the page table
632  * entries cleared/invalidated.
633  *
634  * This is similar to folio_try_dup_anon_rmap_pmd(), however, not used during
635  * fork() to duplicate a mapping, but instead to prepare for temporarily
636  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pmd().
637  *
638  * Marking the mapped pages shared can only fail if the folio maybe pinned;
639  * device private folios cannot get pinned and consequently this function cannot
640  * fail.
641  *
642  * Returns 0 if marking the mapped pages possibly shared succeeded. Returns
643  * -EBUSY otherwise.
644  */
folio_try_share_anon_rmap_pmd(struct folio * folio,struct page * page)645 static inline int folio_try_share_anon_rmap_pmd(struct folio *folio,
646 		struct page *page)
647 {
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 	return __folio_try_share_anon_rmap(folio, page, HPAGE_PMD_NR,
650 					   RMAP_LEVEL_PMD);
651 #else
652 	WARN_ON_ONCE(true);
653 	return -EBUSY;
654 #endif
655 }
656 
657 /*
658  * Called from mm/vmscan.c to handle paging out
659  */
660 int folio_referenced(struct folio *, int is_locked,
661 			struct mem_cgroup *memcg, unsigned long *vm_flags);
662 
663 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
664 void try_to_unmap(struct folio *, enum ttu_flags flags);
665 
666 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
667 				unsigned long end, struct page **pages,
668 				void *arg);
669 
670 /* Avoid racy checks */
671 #define PVMW_SYNC		(1 << 0)
672 /* Look for migration entries rather than present PTEs */
673 #define PVMW_MIGRATION		(1 << 1)
674 
675 struct page_vma_mapped_walk {
676 	unsigned long pfn;
677 	unsigned long nr_pages;
678 	pgoff_t pgoff;
679 	struct vm_area_struct *vma;
680 	unsigned long address;
681 	pmd_t *pmd;
682 	pte_t *pte;
683 	spinlock_t *ptl;
684 	unsigned int flags;
685 };
686 
687 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
688 	struct page_vma_mapped_walk name = {				\
689 		.pfn = folio_pfn(_folio),				\
690 		.nr_pages = folio_nr_pages(_folio),			\
691 		.pgoff = folio_pgoff(_folio),				\
692 		.vma = _vma,						\
693 		.address = _address,					\
694 		.flags = _flags,					\
695 	}
696 
page_vma_mapped_walk_done(struct page_vma_mapped_walk * pvmw)697 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
698 {
699 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
700 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
701 		pte_unmap(pvmw->pte);
702 	if (pvmw->ptl)
703 		spin_unlock(pvmw->ptl);
704 }
705 
706 /**
707  * page_vma_mapped_walk_restart - Restart the page table walk.
708  * @pvmw: Pointer to struct page_vma_mapped_walk.
709  *
710  * It restarts the page table walk when changes occur in the page
711  * table, such as splitting a PMD. Ensures that the PTL held during
712  * the previous walk is released and resets the state to allow for
713  * a new walk starting at the current address stored in pvmw->address.
714  */
715 static inline void
page_vma_mapped_walk_restart(struct page_vma_mapped_walk * pvmw)716 page_vma_mapped_walk_restart(struct page_vma_mapped_walk *pvmw)
717 {
718 	WARN_ON_ONCE(!pvmw->pmd && !pvmw->pte);
719 
720 	if (likely(pvmw->ptl))
721 		spin_unlock(pvmw->ptl);
722 	else
723 		WARN_ON_ONCE(1);
724 
725 	pvmw->ptl = NULL;
726 	pvmw->pmd = NULL;
727 	pvmw->pte = NULL;
728 }
729 
730 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
731 
732 /*
733  * Used by swapoff to help locate where page is expected in vma.
734  */
735 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
736 
737 /*
738  * Cleans the PTEs of shared mappings.
739  * (and since clean PTEs should also be readonly, write protects them too)
740  *
741  * returns the number of cleaned PTEs.
742  */
743 int folio_mkclean(struct folio *);
744 
745 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
746 		      struct vm_area_struct *vma);
747 
748 enum rmp_flags {
749 	RMP_LOCKED		= 1 << 0,
750 	RMP_USE_SHARED_ZEROPAGE	= 1 << 1,
751 };
752 
753 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags);
754 
755 /*
756  * rmap_walk_control: To control rmap traversing for specific needs
757  *
758  * arg: passed to rmap_one() and invalid_vma()
759  * try_lock: bail out if the rmap lock is contended
760  * contended: indicate the rmap traversal bailed out due to lock contention
761  * rmap_one: executed on each vma where page is mapped
762  * done: for checking traversing termination condition
763  * anon_lock: for getting anon_lock by optimized way rather than default
764  * invalid_vma: for skipping uninterested vma
765  */
766 struct rmap_walk_control {
767 	void *arg;
768 	bool try_lock;
769 	bool contended;
770 	/*
771 	 * Return false if page table scanning in rmap_walk should be stopped.
772 	 * Otherwise, return true.
773 	 */
774 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
775 					unsigned long addr, void *arg);
776 	int (*done)(struct folio *folio);
777 	struct anon_vma *(*anon_lock)(struct folio *folio,
778 				      struct rmap_walk_control *rwc);
779 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
780 };
781 
782 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
783 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
784 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
785 					  struct rmap_walk_control *rwc);
786 
787 #else	/* !CONFIG_MMU */
788 
789 #define anon_vma_init()		do {} while (0)
790 #define anon_vma_prepare(vma)	(0)
791 
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)792 static inline int folio_referenced(struct folio *folio, int is_locked,
793 				  struct mem_cgroup *memcg,
794 				  unsigned long *vm_flags)
795 {
796 	*vm_flags = 0;
797 	return 0;
798 }
799 
try_to_unmap(struct folio * folio,enum ttu_flags flags)800 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
801 {
802 }
803 
folio_mkclean(struct folio * folio)804 static inline int folio_mkclean(struct folio *folio)
805 {
806 	return 0;
807 }
808 #endif	/* CONFIG_MMU */
809 
810 #endif	/* _LINUX_RMAP_H */
811