1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49
50 struct cpu_fbatches {
51 /*
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
54 */
55 local_lock_t lock;
56 struct folio_batch lru_add;
57 struct folio_batch lru_deactivate_file;
58 struct folio_batch lru_deactivate;
59 struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 struct folio_batch lru_activate;
62 #endif
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq;
65 struct folio_batch lru_move_tail;
66 };
67
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 .lock = INIT_LOCAL_LOCK(lock),
70 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72
__page_cache_release(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flagsp)73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 unsigned long *flagsp)
75 {
76 if (folio_test_lru(folio)) {
77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 lruvec_del_folio(*lruvecp, folio);
79 __folio_clear_lru_flags(folio);
80 }
81 }
82
83 /*
84 * This path almost never happens for VM activity - pages are normally freed
85 * in batches. But it gets used by networking - and for compound pages.
86 */
page_cache_release(struct folio * folio)87 static void page_cache_release(struct folio *folio)
88 {
89 struct lruvec *lruvec = NULL;
90 unsigned long flags;
91
92 __page_cache_release(folio, &lruvec, &flags);
93 if (lruvec)
94 unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96
__folio_put(struct folio * folio)97 void __folio_put(struct folio *folio)
98 {
99 if (unlikely(folio_is_zone_device(folio))) {
100 free_zone_device_folio(folio);
101 return;
102 }
103
104 if (folio_test_hugetlb(folio)) {
105 free_huge_folio(folio);
106 return;
107 }
108
109 page_cache_release(folio);
110 folio_unqueue_deferred_split(folio);
111 mem_cgroup_uncharge(folio);
112 free_unref_page(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115
116 /**
117 * put_pages_list() - release a list of pages
118 * @pages: list of pages threaded on page->lru
119 *
120 * Release a list of pages which are strung together on page.lru.
121 */
put_pages_list(struct list_head * pages)122 void put_pages_list(struct list_head *pages)
123 {
124 struct folio_batch fbatch;
125 struct folio *folio, *next;
126
127 folio_batch_init(&fbatch);
128 list_for_each_entry_safe(folio, next, pages, lru) {
129 if (!folio_put_testzero(folio))
130 continue;
131 if (folio_test_hugetlb(folio)) {
132 free_huge_folio(folio);
133 continue;
134 }
135 /* LRU flag must be clear because it's passed using the lru */
136 if (folio_batch_add(&fbatch, folio) > 0)
137 continue;
138 free_unref_folios(&fbatch);
139 }
140
141 if (fbatch.nr)
142 free_unref_folios(&fbatch);
143 INIT_LIST_HEAD(pages);
144 }
145 EXPORT_SYMBOL(put_pages_list);
146
147 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
148
lru_add(struct lruvec * lruvec,struct folio * folio)149 static void lru_add(struct lruvec *lruvec, struct folio *folio)
150 {
151 int was_unevictable = folio_test_clear_unevictable(folio);
152 long nr_pages = folio_nr_pages(folio);
153
154 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
155
156 /*
157 * Is an smp_mb__after_atomic() still required here, before
158 * folio_evictable() tests the mlocked flag, to rule out the possibility
159 * of stranding an evictable folio on an unevictable LRU? I think
160 * not, because __munlock_folio() only clears the mlocked flag
161 * while the LRU lock is held.
162 *
163 * (That is not true of __page_cache_release(), and not necessarily
164 * true of folios_put(): but those only clear the mlocked flag after
165 * folio_put_testzero() has excluded any other users of the folio.)
166 */
167 if (folio_evictable(folio)) {
168 if (was_unevictable)
169 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
170 } else {
171 folio_clear_active(folio);
172 folio_set_unevictable(folio);
173 /*
174 * folio->mlock_count = !!folio_test_mlocked(folio)?
175 * But that leaves __mlock_folio() in doubt whether another
176 * actor has already counted the mlock or not. Err on the
177 * safe side, underestimate, let page reclaim fix it, rather
178 * than leaving a page on the unevictable LRU indefinitely.
179 */
180 folio->mlock_count = 0;
181 if (!was_unevictable)
182 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
183 }
184
185 lruvec_add_folio(lruvec, folio);
186 trace_mm_lru_insertion(folio);
187 }
188
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)189 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
190 {
191 int i;
192 struct lruvec *lruvec = NULL;
193 unsigned long flags = 0;
194
195 for (i = 0; i < folio_batch_count(fbatch); i++) {
196 struct folio *folio = fbatch->folios[i];
197
198 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
199 move_fn(lruvec, folio);
200
201 folio_set_lru(folio);
202 }
203
204 if (lruvec)
205 unlock_page_lruvec_irqrestore(lruvec, flags);
206 folios_put(fbatch);
207 }
208
__folio_batch_add_and_move(struct folio_batch __percpu * fbatch,struct folio * folio,move_fn_t move_fn,bool on_lru,bool disable_irq)209 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
210 struct folio *folio, move_fn_t move_fn,
211 bool on_lru, bool disable_irq)
212 {
213 unsigned long flags;
214
215 if (on_lru && !folio_test_clear_lru(folio))
216 return;
217
218 folio_get(folio);
219
220 if (disable_irq)
221 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
222 else
223 local_lock(&cpu_fbatches.lock);
224
225 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
226 lru_cache_disabled())
227 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
228
229 if (disable_irq)
230 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
231 else
232 local_unlock(&cpu_fbatches.lock);
233 }
234
235 #define folio_batch_add_and_move(folio, op, on_lru) \
236 __folio_batch_add_and_move( \
237 &cpu_fbatches.op, \
238 folio, \
239 op, \
240 on_lru, \
241 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
242 )
243
lru_move_tail(struct lruvec * lruvec,struct folio * folio)244 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
245 {
246 if (folio_test_unevictable(folio))
247 return;
248
249 lruvec_del_folio(lruvec, folio);
250 folio_clear_active(folio);
251 lruvec_add_folio_tail(lruvec, folio);
252 __count_vm_events(PGROTATED, folio_nr_pages(folio));
253 }
254
255 /*
256 * Writeback is about to end against a folio which has been marked for
257 * immediate reclaim. If it still appears to be reclaimable, move it
258 * to the tail of the inactive list.
259 *
260 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
261 */
folio_rotate_reclaimable(struct folio * folio)262 void folio_rotate_reclaimable(struct folio *folio)
263 {
264 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
265 folio_test_unevictable(folio))
266 return;
267
268 folio_batch_add_and_move(folio, lru_move_tail, true);
269 }
270
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)271 void lru_note_cost(struct lruvec *lruvec, bool file,
272 unsigned int nr_io, unsigned int nr_rotated)
273 {
274 unsigned long cost;
275
276 /*
277 * Reflect the relative cost of incurring IO and spending CPU
278 * time on rotations. This doesn't attempt to make a precise
279 * comparison, it just says: if reloads are about comparable
280 * between the LRU lists, or rotations are overwhelmingly
281 * different between them, adjust scan balance for CPU work.
282 */
283 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
284
285 do {
286 unsigned long lrusize;
287
288 /*
289 * Hold lruvec->lru_lock is safe here, since
290 * 1) The pinned lruvec in reclaim, or
291 * 2) From a pre-LRU page during refault (which also holds the
292 * rcu lock, so would be safe even if the page was on the LRU
293 * and could move simultaneously to a new lruvec).
294 */
295 spin_lock_irq(&lruvec->lru_lock);
296 /* Record cost event */
297 if (file)
298 lruvec->file_cost += cost;
299 else
300 lruvec->anon_cost += cost;
301
302 /*
303 * Decay previous events
304 *
305 * Because workloads change over time (and to avoid
306 * overflow) we keep these statistics as a floating
307 * average, which ends up weighing recent refaults
308 * more than old ones.
309 */
310 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
311 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
312 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
313 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
314
315 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
316 lruvec->file_cost /= 2;
317 lruvec->anon_cost /= 2;
318 }
319 spin_unlock_irq(&lruvec->lru_lock);
320 } while ((lruvec = parent_lruvec(lruvec)));
321 }
322
lru_note_cost_refault(struct folio * folio)323 void lru_note_cost_refault(struct folio *folio)
324 {
325 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
326 folio_nr_pages(folio), 0);
327 }
328
lru_activate(struct lruvec * lruvec,struct folio * folio)329 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
330 {
331 long nr_pages = folio_nr_pages(folio);
332
333 if (folio_test_active(folio) || folio_test_unevictable(folio))
334 return;
335
336
337 lruvec_del_folio(lruvec, folio);
338 folio_set_active(folio);
339 lruvec_add_folio(lruvec, folio);
340 trace_mm_lru_activate(folio);
341
342 __count_vm_events(PGACTIVATE, nr_pages);
343 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
344 }
345
346 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)347 static void folio_activate_drain(int cpu)
348 {
349 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
350
351 if (folio_batch_count(fbatch))
352 folio_batch_move_lru(fbatch, lru_activate);
353 }
354
folio_activate(struct folio * folio)355 void folio_activate(struct folio *folio)
356 {
357 if (folio_test_active(folio) || folio_test_unevictable(folio))
358 return;
359
360 folio_batch_add_and_move(folio, lru_activate, true);
361 }
362
363 #else
folio_activate_drain(int cpu)364 static inline void folio_activate_drain(int cpu)
365 {
366 }
367
folio_activate(struct folio * folio)368 void folio_activate(struct folio *folio)
369 {
370 struct lruvec *lruvec;
371
372 if (!folio_test_clear_lru(folio))
373 return;
374
375 lruvec = folio_lruvec_lock_irq(folio);
376 lru_activate(lruvec, folio);
377 unlock_page_lruvec_irq(lruvec);
378 folio_set_lru(folio);
379 }
380 #endif
381
__lru_cache_activate_folio(struct folio * folio)382 static void __lru_cache_activate_folio(struct folio *folio)
383 {
384 struct folio_batch *fbatch;
385 int i;
386
387 local_lock(&cpu_fbatches.lock);
388 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
389
390 /*
391 * Search backwards on the optimistic assumption that the folio being
392 * activated has just been added to this batch. Note that only
393 * the local batch is examined as a !LRU folio could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * batch that is currently being drained. Furthermore, marking
396 * a remote batch's folio active potentially hits a race where
397 * a folio is marked active just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
399 */
400 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
401 struct folio *batch_folio = fbatch->folios[i];
402
403 if (batch_folio == folio) {
404 folio_set_active(folio);
405 break;
406 }
407 }
408
409 local_unlock(&cpu_fbatches.lock);
410 }
411
412 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio * folio)413 static void folio_inc_refs(struct folio *folio)
414 {
415 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
416
417 if (folio_test_unevictable(folio))
418 return;
419
420 if (!folio_test_referenced(folio)) {
421 folio_set_referenced(folio);
422 return;
423 }
424
425 if (!folio_test_workingset(folio)) {
426 folio_set_workingset(folio);
427 return;
428 }
429
430 /* see the comment on MAX_NR_TIERS */
431 do {
432 new_flags = old_flags & LRU_REFS_MASK;
433 if (new_flags == LRU_REFS_MASK)
434 break;
435
436 new_flags += BIT(LRU_REFS_PGOFF);
437 new_flags |= old_flags & ~LRU_REFS_MASK;
438 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
439 }
440 #else
folio_inc_refs(struct folio * folio)441 static void folio_inc_refs(struct folio *folio)
442 {
443 }
444 #endif /* CONFIG_LRU_GEN */
445
446 /**
447 * folio_mark_accessed - Mark a folio as having seen activity.
448 * @folio: The folio to mark.
449 *
450 * This function will perform one of the following transitions:
451 *
452 * * inactive,unreferenced -> inactive,referenced
453 * * inactive,referenced -> active,unreferenced
454 * * active,unreferenced -> active,referenced
455 *
456 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
457 * __folio_set_referenced() may be substituted for folio_mark_accessed().
458 */
folio_mark_accessed(struct folio * folio)459 void folio_mark_accessed(struct folio *folio)
460 {
461 if (lru_gen_enabled()) {
462 folio_inc_refs(folio);
463 return;
464 }
465
466 if (!folio_test_referenced(folio)) {
467 folio_set_referenced(folio);
468 } else if (folio_test_unevictable(folio)) {
469 /*
470 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
471 * this list is never rotated or maintained, so marking an
472 * unevictable page accessed has no effect.
473 */
474 } else if (!folio_test_active(folio)) {
475 /*
476 * If the folio is on the LRU, queue it for activation via
477 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
478 * folio_batch, mark it active and it'll be moved to the active
479 * LRU on the next drain.
480 */
481 if (folio_test_lru(folio))
482 folio_activate(folio);
483 else
484 __lru_cache_activate_folio(folio);
485 folio_clear_referenced(folio);
486 workingset_activation(folio);
487 }
488 if (folio_test_idle(folio))
489 folio_clear_idle(folio);
490 }
491 EXPORT_SYMBOL(folio_mark_accessed);
492
493 /**
494 * folio_add_lru - Add a folio to an LRU list.
495 * @folio: The folio to be added to the LRU.
496 *
497 * Queue the folio for addition to the LRU. The decision on whether
498 * to add the page to the [in]active [file|anon] list is deferred until the
499 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
500 * have the folio added to the active list using folio_mark_accessed().
501 */
folio_add_lru(struct folio * folio)502 void folio_add_lru(struct folio *folio)
503 {
504 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
505 folio_test_unevictable(folio), folio);
506 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
507
508 /* see the comment in lru_gen_add_folio() */
509 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
510 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
511 folio_set_active(folio);
512
513 folio_batch_add_and_move(folio, lru_add, false);
514 }
515 EXPORT_SYMBOL(folio_add_lru);
516
517 /**
518 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
519 * @folio: The folio to be added to the LRU.
520 * @vma: VMA in which the folio is mapped.
521 *
522 * If the VMA is mlocked, @folio is added to the unevictable list.
523 * Otherwise, it is treated the same way as folio_add_lru().
524 */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)525 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
526 {
527 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
528
529 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
530 mlock_new_folio(folio);
531 else
532 folio_add_lru(folio);
533 }
534
535 /*
536 * If the folio cannot be invalidated, it is moved to the
537 * inactive list to speed up its reclaim. It is moved to the
538 * head of the list, rather than the tail, to give the flusher
539 * threads some time to write it out, as this is much more
540 * effective than the single-page writeout from reclaim.
541 *
542 * If the folio isn't mapped and dirty/writeback, the folio
543 * could be reclaimed asap using the reclaim flag.
544 *
545 * 1. active, mapped folio -> none
546 * 2. active, dirty/writeback folio -> inactive, head, reclaim
547 * 3. inactive, mapped folio -> none
548 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
549 * 5. inactive, clean -> inactive, tail
550 * 6. Others -> none
551 *
552 * In 4, it moves to the head of the inactive list so the folio is
553 * written out by flusher threads as this is much more efficient
554 * than the single-page writeout from reclaim.
555 */
lru_deactivate_file(struct lruvec * lruvec,struct folio * folio)556 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
557 {
558 bool active = folio_test_active(folio);
559 long nr_pages = folio_nr_pages(folio);
560
561 if (folio_test_unevictable(folio))
562 return;
563
564 /* Some processes are using the folio */
565 if (folio_mapped(folio))
566 return;
567
568 lruvec_del_folio(lruvec, folio);
569 folio_clear_active(folio);
570 folio_clear_referenced(folio);
571
572 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
573 /*
574 * Setting the reclaim flag could race with
575 * folio_end_writeback() and confuse readahead. But the
576 * race window is _really_ small and it's not a critical
577 * problem.
578 */
579 lruvec_add_folio(lruvec, folio);
580 folio_set_reclaim(folio);
581 } else {
582 /*
583 * The folio's writeback ended while it was in the batch.
584 * We move that folio to the tail of the inactive list.
585 */
586 lruvec_add_folio_tail(lruvec, folio);
587 __count_vm_events(PGROTATED, nr_pages);
588 }
589
590 if (active) {
591 __count_vm_events(PGDEACTIVATE, nr_pages);
592 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
593 nr_pages);
594 }
595 }
596
lru_deactivate(struct lruvec * lruvec,struct folio * folio)597 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
598 {
599 long nr_pages = folio_nr_pages(folio);
600
601 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
602 return;
603
604 lruvec_del_folio(lruvec, folio);
605 folio_clear_active(folio);
606 folio_clear_referenced(folio);
607 lruvec_add_folio(lruvec, folio);
608
609 __count_vm_events(PGDEACTIVATE, nr_pages);
610 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
611 }
612
lru_lazyfree(struct lruvec * lruvec,struct folio * folio)613 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
614 {
615 long nr_pages = folio_nr_pages(folio);
616
617 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
618 folio_test_swapcache(folio) || folio_test_unevictable(folio))
619 return;
620
621 lruvec_del_folio(lruvec, folio);
622 folio_clear_active(folio);
623 folio_clear_referenced(folio);
624 /*
625 * Lazyfree folios are clean anonymous folios. They have
626 * the swapbacked flag cleared, to distinguish them from normal
627 * anonymous folios
628 */
629 folio_clear_swapbacked(folio);
630 lruvec_add_folio(lruvec, folio);
631
632 __count_vm_events(PGLAZYFREE, nr_pages);
633 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
634 }
635
636 /*
637 * Drain pages out of the cpu's folio_batch.
638 * Either "cpu" is the current CPU, and preemption has already been
639 * disabled; or "cpu" is being hot-unplugged, and is already dead.
640 */
lru_add_drain_cpu(int cpu)641 void lru_add_drain_cpu(int cpu)
642 {
643 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
644 struct folio_batch *fbatch = &fbatches->lru_add;
645
646 if (folio_batch_count(fbatch))
647 folio_batch_move_lru(fbatch, lru_add);
648
649 fbatch = &fbatches->lru_move_tail;
650 /* Disabling interrupts below acts as a compiler barrier. */
651 if (data_race(folio_batch_count(fbatch))) {
652 unsigned long flags;
653
654 /* No harm done if a racing interrupt already did this */
655 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
656 folio_batch_move_lru(fbatch, lru_move_tail);
657 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
658 }
659
660 fbatch = &fbatches->lru_deactivate_file;
661 if (folio_batch_count(fbatch))
662 folio_batch_move_lru(fbatch, lru_deactivate_file);
663
664 fbatch = &fbatches->lru_deactivate;
665 if (folio_batch_count(fbatch))
666 folio_batch_move_lru(fbatch, lru_deactivate);
667
668 fbatch = &fbatches->lru_lazyfree;
669 if (folio_batch_count(fbatch))
670 folio_batch_move_lru(fbatch, lru_lazyfree);
671
672 folio_activate_drain(cpu);
673 }
674
675 /**
676 * deactivate_file_folio() - Deactivate a file folio.
677 * @folio: Folio to deactivate.
678 *
679 * This function hints to the VM that @folio is a good reclaim candidate,
680 * for example if its invalidation fails due to the folio being dirty
681 * or under writeback.
682 *
683 * Context: Caller holds a reference on the folio.
684 */
deactivate_file_folio(struct folio * folio)685 void deactivate_file_folio(struct folio *folio)
686 {
687 /* Deactivating an unevictable folio will not accelerate reclaim */
688 if (folio_test_unevictable(folio))
689 return;
690
691 folio_batch_add_and_move(folio, lru_deactivate_file, true);
692 }
693
694 /*
695 * folio_deactivate - deactivate a folio
696 * @folio: folio to deactivate
697 *
698 * folio_deactivate() moves @folio to the inactive list if @folio was on the
699 * active list and was not unevictable. This is done to accelerate the
700 * reclaim of @folio.
701 */
folio_deactivate(struct folio * folio)702 void folio_deactivate(struct folio *folio)
703 {
704 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
705 return;
706
707 folio_batch_add_and_move(folio, lru_deactivate, true);
708 }
709
710 /**
711 * folio_mark_lazyfree - make an anon folio lazyfree
712 * @folio: folio to deactivate
713 *
714 * folio_mark_lazyfree() moves @folio to the inactive file list.
715 * This is done to accelerate the reclaim of @folio.
716 */
folio_mark_lazyfree(struct folio * folio)717 void folio_mark_lazyfree(struct folio *folio)
718 {
719 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
720 folio_test_swapcache(folio) || folio_test_unevictable(folio))
721 return;
722
723 folio_batch_add_and_move(folio, lru_lazyfree, true);
724 }
725
lru_add_drain(void)726 void lru_add_drain(void)
727 {
728 local_lock(&cpu_fbatches.lock);
729 lru_add_drain_cpu(smp_processor_id());
730 local_unlock(&cpu_fbatches.lock);
731 mlock_drain_local();
732 }
733
734 /*
735 * It's called from per-cpu workqueue context in SMP case so
736 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
737 * the same cpu. It shouldn't be a problem in !SMP case since
738 * the core is only one and the locks will disable preemption.
739 */
lru_add_and_bh_lrus_drain(void)740 static void lru_add_and_bh_lrus_drain(void)
741 {
742 local_lock(&cpu_fbatches.lock);
743 lru_add_drain_cpu(smp_processor_id());
744 local_unlock(&cpu_fbatches.lock);
745 invalidate_bh_lrus_cpu();
746 mlock_drain_local();
747 }
748
lru_add_drain_cpu_zone(struct zone * zone)749 void lru_add_drain_cpu_zone(struct zone *zone)
750 {
751 local_lock(&cpu_fbatches.lock);
752 lru_add_drain_cpu(smp_processor_id());
753 drain_local_pages(zone);
754 local_unlock(&cpu_fbatches.lock);
755 mlock_drain_local();
756 }
757
758 #ifdef CONFIG_SMP
759
760 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
761
lru_add_drain_per_cpu(struct work_struct * dummy)762 static void lru_add_drain_per_cpu(struct work_struct *dummy)
763 {
764 lru_add_and_bh_lrus_drain();
765 }
766
cpu_needs_drain(unsigned int cpu)767 static bool cpu_needs_drain(unsigned int cpu)
768 {
769 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
770
771 /* Check these in order of likelihood that they're not zero */
772 return folio_batch_count(&fbatches->lru_add) ||
773 folio_batch_count(&fbatches->lru_move_tail) ||
774 folio_batch_count(&fbatches->lru_deactivate_file) ||
775 folio_batch_count(&fbatches->lru_deactivate) ||
776 folio_batch_count(&fbatches->lru_lazyfree) ||
777 folio_batch_count(&fbatches->lru_activate) ||
778 need_mlock_drain(cpu) ||
779 has_bh_in_lru(cpu, NULL);
780 }
781
782 /*
783 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
784 * kworkers being shut down before our page_alloc_cpu_dead callback is
785 * executed on the offlined cpu.
786 * Calling this function with cpu hotplug locks held can actually lead
787 * to obscure indirect dependencies via WQ context.
788 */
__lru_add_drain_all(bool force_all_cpus)789 static inline void __lru_add_drain_all(bool force_all_cpus)
790 {
791 /*
792 * lru_drain_gen - Global pages generation number
793 *
794 * (A) Definition: global lru_drain_gen = x implies that all generations
795 * 0 < n <= x are already *scheduled* for draining.
796 *
797 * This is an optimization for the highly-contended use case where a
798 * user space workload keeps constantly generating a flow of pages for
799 * each CPU.
800 */
801 static unsigned int lru_drain_gen;
802 static struct cpumask has_work;
803 static DEFINE_MUTEX(lock);
804 unsigned cpu, this_gen;
805
806 /*
807 * Make sure nobody triggers this path before mm_percpu_wq is fully
808 * initialized.
809 */
810 if (WARN_ON(!mm_percpu_wq))
811 return;
812
813 /*
814 * Guarantee folio_batch counter stores visible by this CPU
815 * are visible to other CPUs before loading the current drain
816 * generation.
817 */
818 smp_mb();
819
820 /*
821 * (B) Locally cache global LRU draining generation number
822 *
823 * The read barrier ensures that the counter is loaded before the mutex
824 * is taken. It pairs with smp_mb() inside the mutex critical section
825 * at (D).
826 */
827 this_gen = smp_load_acquire(&lru_drain_gen);
828
829 mutex_lock(&lock);
830
831 /*
832 * (C) Exit the draining operation if a newer generation, from another
833 * lru_add_drain_all(), was already scheduled for draining. Check (A).
834 */
835 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
836 goto done;
837
838 /*
839 * (D) Increment global generation number
840 *
841 * Pairs with smp_load_acquire() at (B), outside of the critical
842 * section. Use a full memory barrier to guarantee that the
843 * new global drain generation number is stored before loading
844 * folio_batch counters.
845 *
846 * This pairing must be done here, before the for_each_online_cpu loop
847 * below which drains the page vectors.
848 *
849 * Let x, y, and z represent some system CPU numbers, where x < y < z.
850 * Assume CPU #z is in the middle of the for_each_online_cpu loop
851 * below and has already reached CPU #y's per-cpu data. CPU #x comes
852 * along, adds some pages to its per-cpu vectors, then calls
853 * lru_add_drain_all().
854 *
855 * If the paired barrier is done at any later step, e.g. after the
856 * loop, CPU #x will just exit at (C) and miss flushing out all of its
857 * added pages.
858 */
859 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
860 smp_mb();
861
862 cpumask_clear(&has_work);
863 for_each_online_cpu(cpu) {
864 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
865
866 if (cpu_needs_drain(cpu)) {
867 INIT_WORK(work, lru_add_drain_per_cpu);
868 queue_work_on(cpu, mm_percpu_wq, work);
869 __cpumask_set_cpu(cpu, &has_work);
870 }
871 }
872
873 for_each_cpu(cpu, &has_work)
874 flush_work(&per_cpu(lru_add_drain_work, cpu));
875
876 done:
877 mutex_unlock(&lock);
878 }
879
lru_add_drain_all(void)880 void lru_add_drain_all(void)
881 {
882 __lru_add_drain_all(false);
883 }
884 #else
lru_add_drain_all(void)885 void lru_add_drain_all(void)
886 {
887 lru_add_drain();
888 }
889 #endif /* CONFIG_SMP */
890
891 atomic_t lru_disable_count = ATOMIC_INIT(0);
892
893 /*
894 * lru_cache_disable() needs to be called before we start compiling
895 * a list of folios to be migrated using folio_isolate_lru().
896 * It drains folios on LRU cache and then disable on all cpus until
897 * lru_cache_enable is called.
898 *
899 * Must be paired with a call to lru_cache_enable().
900 */
lru_cache_disable(void)901 void lru_cache_disable(void)
902 {
903 atomic_inc(&lru_disable_count);
904 /*
905 * Readers of lru_disable_count are protected by either disabling
906 * preemption or rcu_read_lock:
907 *
908 * preempt_disable, local_irq_disable [bh_lru_lock()]
909 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
910 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
911 *
912 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
913 * preempt_disable() regions of code. So any CPU which sees
914 * lru_disable_count = 0 will have exited the critical
915 * section when synchronize_rcu() returns.
916 */
917 synchronize_rcu_expedited();
918 #ifdef CONFIG_SMP
919 __lru_add_drain_all(true);
920 #else
921 lru_add_and_bh_lrus_drain();
922 #endif
923 }
924
925 /**
926 * folios_put_refs - Reduce the reference count on a batch of folios.
927 * @folios: The folios.
928 * @refs: The number of refs to subtract from each folio.
929 *
930 * Like folio_put(), but for a batch of folios. This is more efficient
931 * than writing the loop yourself as it will optimise the locks which need
932 * to be taken if the folios are freed. The folios batch is returned
933 * empty and ready to be reused for another batch; there is no need
934 * to reinitialise it. If @refs is NULL, we subtract one from each
935 * folio refcount.
936 *
937 * Context: May be called in process or interrupt context, but not in NMI
938 * context. May be called while holding a spinlock.
939 */
folios_put_refs(struct folio_batch * folios,unsigned int * refs)940 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
941 {
942 int i, j;
943 struct lruvec *lruvec = NULL;
944 unsigned long flags = 0;
945
946 for (i = 0, j = 0; i < folios->nr; i++) {
947 struct folio *folio = folios->folios[i];
948 unsigned int nr_refs = refs ? refs[i] : 1;
949
950 if (is_huge_zero_folio(folio))
951 continue;
952
953 if (folio_is_zone_device(folio)) {
954 if (lruvec) {
955 unlock_page_lruvec_irqrestore(lruvec, flags);
956 lruvec = NULL;
957 }
958 if (put_devmap_managed_folio_refs(folio, nr_refs))
959 continue;
960 if (folio_ref_sub_and_test(folio, nr_refs))
961 free_zone_device_folio(folio);
962 continue;
963 }
964
965 if (!folio_ref_sub_and_test(folio, nr_refs))
966 continue;
967
968 /* hugetlb has its own memcg */
969 if (folio_test_hugetlb(folio)) {
970 if (lruvec) {
971 unlock_page_lruvec_irqrestore(lruvec, flags);
972 lruvec = NULL;
973 }
974 free_huge_folio(folio);
975 continue;
976 }
977 folio_unqueue_deferred_split(folio);
978 __page_cache_release(folio, &lruvec, &flags);
979
980 if (j != i)
981 folios->folios[j] = folio;
982 j++;
983 }
984 if (lruvec)
985 unlock_page_lruvec_irqrestore(lruvec, flags);
986 if (!j) {
987 folio_batch_reinit(folios);
988 return;
989 }
990
991 folios->nr = j;
992 mem_cgroup_uncharge_folios(folios);
993 free_unref_folios(folios);
994 }
995 EXPORT_SYMBOL(folios_put_refs);
996
997 /**
998 * release_pages - batched put_page()
999 * @arg: array of pages to release
1000 * @nr: number of pages
1001 *
1002 * Decrement the reference count on all the pages in @arg. If it
1003 * fell to zero, remove the page from the LRU and free it.
1004 *
1005 * Note that the argument can be an array of pages, encoded pages,
1006 * or folio pointers. We ignore any encoded bits, and turn any of
1007 * them into just a folio that gets free'd.
1008 */
release_pages(release_pages_arg arg,int nr)1009 void release_pages(release_pages_arg arg, int nr)
1010 {
1011 struct folio_batch fbatch;
1012 int refs[PAGEVEC_SIZE];
1013 struct encoded_page **encoded = arg.encoded_pages;
1014 int i;
1015
1016 folio_batch_init(&fbatch);
1017 for (i = 0; i < nr; i++) {
1018 /* Turn any of the argument types into a folio */
1019 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1020
1021 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1022 refs[fbatch.nr] = 1;
1023 if (unlikely(encoded_page_flags(encoded[i]) &
1024 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1025 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1026
1027 if (folio_batch_add(&fbatch, folio) > 0)
1028 continue;
1029 folios_put_refs(&fbatch, refs);
1030 }
1031
1032 if (fbatch.nr)
1033 folios_put_refs(&fbatch, refs);
1034 }
1035 EXPORT_SYMBOL(release_pages);
1036
1037 /*
1038 * The folios which we're about to release may be in the deferred lru-addition
1039 * queues. That would prevent them from really being freed right now. That's
1040 * OK from a correctness point of view but is inefficient - those folios may be
1041 * cache-warm and we want to give them back to the page allocator ASAP.
1042 *
1043 * So __folio_batch_release() will drain those queues here.
1044 * folio_batch_move_lru() calls folios_put() directly to avoid
1045 * mutual recursion.
1046 */
__folio_batch_release(struct folio_batch * fbatch)1047 void __folio_batch_release(struct folio_batch *fbatch)
1048 {
1049 if (!fbatch->percpu_pvec_drained) {
1050 lru_add_drain();
1051 fbatch->percpu_pvec_drained = true;
1052 }
1053 folios_put(fbatch);
1054 }
1055 EXPORT_SYMBOL(__folio_batch_release);
1056
1057 /**
1058 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1059 * @fbatch: The batch to prune
1060 *
1061 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1062 * entries. This function prunes all the non-folio entries from @fbatch
1063 * without leaving holes, so that it can be passed on to folio-only batch
1064 * operations.
1065 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1066 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1067 {
1068 unsigned int i, j;
1069
1070 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1071 struct folio *folio = fbatch->folios[i];
1072 if (!xa_is_value(folio))
1073 fbatch->folios[j++] = folio;
1074 }
1075 fbatch->nr = j;
1076 }
1077
1078 /*
1079 * Perform any setup for the swap system
1080 */
swap_setup(void)1081 void __init swap_setup(void)
1082 {
1083 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1084
1085 /* Use a smaller cluster for small-memory machines */
1086 if (megs < 16)
1087 page_cluster = 2;
1088 else
1089 page_cluster = 3;
1090 /*
1091 * Right now other parts of the system means that we
1092 * _really_ don't want to cluster much more
1093 */
1094 }
1095