1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include <kunit/visibility.h>
30 
31 #include "internal.h"
32 #include "swap.h"
33 
34 /**
35  * kfree_const - conditionally free memory
36  * @x: pointer to the memory
37  *
38  * Function calls kfree only if @x is not in .rodata section.
39  */
kfree_const(const void * x)40 void kfree_const(const void *x)
41 {
42 	if (!is_kernel_rodata((unsigned long)x))
43 		kfree(x);
44 }
45 EXPORT_SYMBOL(kfree_const);
46 
47 /**
48  * kstrdup - allocate space for and copy an existing string
49  * @s: the string to duplicate
50  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
51  *
52  * Return: newly allocated copy of @s or %NULL in case of error
53  */
54 noinline
kstrdup(const char * s,gfp_t gfp)55 char *kstrdup(const char *s, gfp_t gfp)
56 {
57 	size_t len;
58 	char *buf;
59 
60 	if (!s)
61 		return NULL;
62 
63 	len = strlen(s) + 1;
64 	buf = kmalloc_track_caller(len, gfp);
65 	if (buf)
66 		memcpy(buf, s, len);
67 	return buf;
68 }
69 EXPORT_SYMBOL(kstrdup);
70 
71 /**
72  * kstrdup_const - conditionally duplicate an existing const string
73  * @s: the string to duplicate
74  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75  *
76  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
77  * must not be passed to krealloc().
78  *
79  * Return: source string if it is in .rodata section otherwise
80  * fallback to kstrdup.
81  */
kstrdup_const(const char * s,gfp_t gfp)82 const char *kstrdup_const(const char *s, gfp_t gfp)
83 {
84 	if (is_kernel_rodata((unsigned long)s))
85 		return s;
86 
87 	return kstrdup(s, gfp);
88 }
89 EXPORT_SYMBOL(kstrdup_const);
90 
91 /**
92  * kstrndup - allocate space for and copy an existing string
93  * @s: the string to duplicate
94  * @max: read at most @max chars from @s
95  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
96  *
97  * Note: Use kmemdup_nul() instead if the size is known exactly.
98  *
99  * Return: newly allocated copy of @s or %NULL in case of error
100  */
kstrndup(const char * s,size_t max,gfp_t gfp)101 char *kstrndup(const char *s, size_t max, gfp_t gfp)
102 {
103 	size_t len;
104 	char *buf;
105 
106 	if (!s)
107 		return NULL;
108 
109 	len = strnlen(s, max);
110 	buf = kmalloc_track_caller(len+1, gfp);
111 	if (buf) {
112 		memcpy(buf, s, len);
113 		buf[len] = '\0';
114 	}
115 	return buf;
116 }
117 EXPORT_SYMBOL(kstrndup);
118 
119 /**
120  * kmemdup - duplicate region of memory
121  *
122  * @src: memory region to duplicate
123  * @len: memory region length
124  * @gfp: GFP mask to use
125  *
126  * Return: newly allocated copy of @src or %NULL in case of error,
127  * result is physically contiguous. Use kfree() to free.
128  */
kmemdup_noprof(const void * src,size_t len,gfp_t gfp)129 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
130 {
131 	void *p;
132 
133 	p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
134 	if (p)
135 		memcpy(p, src, len);
136 	return p;
137 }
138 EXPORT_SYMBOL(kmemdup_noprof);
139 
140 /**
141  * kmemdup_array - duplicate a given array.
142  *
143  * @src: array to duplicate.
144  * @count: number of elements to duplicate from array.
145  * @element_size: size of each element of array.
146  * @gfp: GFP mask to use.
147  *
148  * Return: duplicated array of @src or %NULL in case of error,
149  * result is physically contiguous. Use kfree() to free.
150  */
kmemdup_array(const void * src,size_t count,size_t element_size,gfp_t gfp)151 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
152 {
153 	return kmemdup(src, size_mul(element_size, count), gfp);
154 }
155 EXPORT_SYMBOL(kmemdup_array);
156 
157 /**
158  * kvmemdup - duplicate region of memory
159  *
160  * @src: memory region to duplicate
161  * @len: memory region length
162  * @gfp: GFP mask to use
163  *
164  * Return: newly allocated copy of @src or %NULL in case of error,
165  * result may be not physically contiguous. Use kvfree() to free.
166  */
kvmemdup(const void * src,size_t len,gfp_t gfp)167 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
168 {
169 	void *p;
170 
171 	p = kvmalloc(len, gfp);
172 	if (p)
173 		memcpy(p, src, len);
174 	return p;
175 }
176 EXPORT_SYMBOL(kvmemdup);
177 
178 /**
179  * kmemdup_nul - Create a NUL-terminated string from unterminated data
180  * @s: The data to stringify
181  * @len: The size of the data
182  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
183  *
184  * Return: newly allocated copy of @s with NUL-termination or %NULL in
185  * case of error
186  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)187 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
188 {
189 	char *buf;
190 
191 	if (!s)
192 		return NULL;
193 
194 	buf = kmalloc_track_caller(len + 1, gfp);
195 	if (buf) {
196 		memcpy(buf, s, len);
197 		buf[len] = '\0';
198 	}
199 	return buf;
200 }
201 EXPORT_SYMBOL(kmemdup_nul);
202 
203 static kmem_buckets *user_buckets __ro_after_init;
204 
init_user_buckets(void)205 static int __init init_user_buckets(void)
206 {
207 	user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
208 
209 	return 0;
210 }
211 subsys_initcall(init_user_buckets);
212 
213 /**
214  * memdup_user - duplicate memory region from user space
215  *
216  * @src: source address in user space
217  * @len: number of bytes to copy
218  *
219  * Return: an ERR_PTR() on failure.  Result is physically
220  * contiguous, to be freed by kfree().
221  */
memdup_user(const void __user * src,size_t len)222 void *memdup_user(const void __user *src, size_t len)
223 {
224 	void *p;
225 
226 	p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
227 	if (!p)
228 		return ERR_PTR(-ENOMEM);
229 
230 	if (copy_from_user(p, src, len)) {
231 		kfree(p);
232 		return ERR_PTR(-EFAULT);
233 	}
234 
235 	return p;
236 }
237 EXPORT_SYMBOL(memdup_user);
238 
239 /**
240  * vmemdup_user - duplicate memory region from user space
241  *
242  * @src: source address in user space
243  * @len: number of bytes to copy
244  *
245  * Return: an ERR_PTR() on failure.  Result may be not
246  * physically contiguous.  Use kvfree() to free.
247  */
vmemdup_user(const void __user * src,size_t len)248 void *vmemdup_user(const void __user *src, size_t len)
249 {
250 	void *p;
251 
252 	p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
253 	if (!p)
254 		return ERR_PTR(-ENOMEM);
255 
256 	if (copy_from_user(p, src, len)) {
257 		kvfree(p);
258 		return ERR_PTR(-EFAULT);
259 	}
260 
261 	return p;
262 }
263 EXPORT_SYMBOL(vmemdup_user);
264 
265 /**
266  * strndup_user - duplicate an existing string from user space
267  * @s: The string to duplicate
268  * @n: Maximum number of bytes to copy, including the trailing NUL.
269  *
270  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
271  */
strndup_user(const char __user * s,long n)272 char *strndup_user(const char __user *s, long n)
273 {
274 	char *p;
275 	long length;
276 
277 	length = strnlen_user(s, n);
278 
279 	if (!length)
280 		return ERR_PTR(-EFAULT);
281 
282 	if (length > n)
283 		return ERR_PTR(-EINVAL);
284 
285 	p = memdup_user(s, length);
286 
287 	if (IS_ERR(p))
288 		return p;
289 
290 	p[length - 1] = '\0';
291 
292 	return p;
293 }
294 EXPORT_SYMBOL(strndup_user);
295 
296 /**
297  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
298  *
299  * @src: source address in user space
300  * @len: number of bytes to copy
301  *
302  * Return: an ERR_PTR() on failure.
303  */
memdup_user_nul(const void __user * src,size_t len)304 void *memdup_user_nul(const void __user *src, size_t len)
305 {
306 	char *p;
307 
308 	/*
309 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
310 	 * cause pagefault, which makes it pointless to use GFP_NOFS
311 	 * or GFP_ATOMIC.
312 	 */
313 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
314 	if (!p)
315 		return ERR_PTR(-ENOMEM);
316 
317 	if (copy_from_user(p, src, len)) {
318 		kfree(p);
319 		return ERR_PTR(-EFAULT);
320 	}
321 	p[len] = '\0';
322 
323 	return p;
324 }
325 EXPORT_SYMBOL(memdup_user_nul);
326 
327 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)328 int vma_is_stack_for_current(struct vm_area_struct *vma)
329 {
330 	struct task_struct * __maybe_unused t = current;
331 
332 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
333 }
334 
335 /*
336  * Change backing file, only valid to use during initial VMA setup.
337  */
vma_set_file(struct vm_area_struct * vma,struct file * file)338 void vma_set_file(struct vm_area_struct *vma, struct file *file)
339 {
340 	/* Changing an anonymous vma with this is illegal */
341 	get_file(file);
342 	swap(vma->vm_file, file);
343 	fput(file);
344 }
345 EXPORT_SYMBOL(vma_set_file);
346 
347 #ifndef STACK_RND_MASK
348 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
349 #endif
350 
randomize_stack_top(unsigned long stack_top)351 unsigned long randomize_stack_top(unsigned long stack_top)
352 {
353 	unsigned long random_variable = 0;
354 
355 	if (current->flags & PF_RANDOMIZE) {
356 		random_variable = get_random_long();
357 		random_variable &= STACK_RND_MASK;
358 		random_variable <<= PAGE_SHIFT;
359 	}
360 #ifdef CONFIG_STACK_GROWSUP
361 	return PAGE_ALIGN(stack_top) + random_variable;
362 #else
363 	return PAGE_ALIGN(stack_top) - random_variable;
364 #endif
365 }
366 
367 /**
368  * randomize_page - Generate a random, page aligned address
369  * @start:	The smallest acceptable address the caller will take.
370  * @range:	The size of the area, starting at @start, within which the
371  *		random address must fall.
372  *
373  * If @start + @range would overflow, @range is capped.
374  *
375  * NOTE: Historical use of randomize_range, which this replaces, presumed that
376  * @start was already page aligned.  We now align it regardless.
377  *
378  * Return: A page aligned address within [start, start + range).  On error,
379  * @start is returned.
380  */
randomize_page(unsigned long start,unsigned long range)381 unsigned long randomize_page(unsigned long start, unsigned long range)
382 {
383 	if (!PAGE_ALIGNED(start)) {
384 		range -= PAGE_ALIGN(start) - start;
385 		start = PAGE_ALIGN(start);
386 	}
387 
388 	if (start > ULONG_MAX - range)
389 		range = ULONG_MAX - start;
390 
391 	range >>= PAGE_SHIFT;
392 
393 	if (range == 0)
394 		return start;
395 
396 	return start + (get_random_long() % range << PAGE_SHIFT);
397 }
398 
399 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)400 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
401 {
402 	/* Is the current task 32bit ? */
403 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
404 		return randomize_page(mm->brk, SZ_32M);
405 
406 	return randomize_page(mm->brk, SZ_1G);
407 }
408 
arch_mmap_rnd(void)409 unsigned long arch_mmap_rnd(void)
410 {
411 	unsigned long rnd;
412 
413 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
414 	if (is_compat_task())
415 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
416 	else
417 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
418 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
419 
420 	return rnd << PAGE_SHIFT;
421 }
422 
mmap_is_legacy(struct rlimit * rlim_stack)423 static int mmap_is_legacy(struct rlimit *rlim_stack)
424 {
425 	if (current->personality & ADDR_COMPAT_LAYOUT)
426 		return 1;
427 
428 	/* On parisc the stack always grows up - so a unlimited stack should
429 	 * not be an indicator to use the legacy memory layout. */
430 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
431 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
432 		return 1;
433 
434 	return sysctl_legacy_va_layout;
435 }
436 
437 /*
438  * Leave enough space between the mmap area and the stack to honour ulimit in
439  * the face of randomisation.
440  */
441 #define MIN_GAP		(SZ_128M)
442 #define MAX_GAP		(STACK_TOP / 6 * 5)
443 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)444 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
445 {
446 #ifdef CONFIG_STACK_GROWSUP
447 	/*
448 	 * For an upwards growing stack the calculation is much simpler.
449 	 * Memory for the maximum stack size is reserved at the top of the
450 	 * task. mmap_base starts directly below the stack and grows
451 	 * downwards.
452 	 */
453 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
454 #else
455 	unsigned long gap = rlim_stack->rlim_cur;
456 	unsigned long pad = stack_guard_gap;
457 
458 	/* Account for stack randomization if necessary */
459 	if (current->flags & PF_RANDOMIZE)
460 		pad += (STACK_RND_MASK << PAGE_SHIFT);
461 
462 	/* Values close to RLIM_INFINITY can overflow. */
463 	if (gap + pad > gap)
464 		gap += pad;
465 
466 	if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
467 		gap = MIN_GAP;
468 	else if (gap > MAX_GAP)
469 		gap = MAX_GAP;
470 
471 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
472 #endif
473 }
474 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)475 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
476 {
477 	unsigned long random_factor = 0UL;
478 
479 	if (current->flags & PF_RANDOMIZE)
480 		random_factor = arch_mmap_rnd();
481 
482 	if (mmap_is_legacy(rlim_stack)) {
483 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
484 		clear_bit(MMF_TOPDOWN, &mm->flags);
485 	} else {
486 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
487 		set_bit(MMF_TOPDOWN, &mm->flags);
488 	}
489 }
490 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)491 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
492 {
493 	mm->mmap_base = TASK_UNMAPPED_BASE;
494 	clear_bit(MMF_TOPDOWN, &mm->flags);
495 }
496 #endif
497 #ifdef CONFIG_MMU
498 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
499 #endif
500 
501 /**
502  * __account_locked_vm - account locked pages to an mm's locked_vm
503  * @mm:          mm to account against
504  * @pages:       number of pages to account
505  * @inc:         %true if @pages should be considered positive, %false if not
506  * @task:        task used to check RLIMIT_MEMLOCK
507  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
508  *
509  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
510  * that mmap_lock is held as writer.
511  *
512  * Return:
513  * * 0       on success
514  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
515  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)516 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
517 			struct task_struct *task, bool bypass_rlim)
518 {
519 	unsigned long locked_vm, limit;
520 	int ret = 0;
521 
522 	mmap_assert_write_locked(mm);
523 
524 	locked_vm = mm->locked_vm;
525 	if (inc) {
526 		if (!bypass_rlim) {
527 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
528 			if (locked_vm + pages > limit)
529 				ret = -ENOMEM;
530 		}
531 		if (!ret)
532 			mm->locked_vm = locked_vm + pages;
533 	} else {
534 		WARN_ON_ONCE(pages > locked_vm);
535 		mm->locked_vm = locked_vm - pages;
536 	}
537 
538 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
539 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
540 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
541 		 ret ? " - exceeded" : "");
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL_GPL(__account_locked_vm);
546 
547 /**
548  * account_locked_vm - account locked pages to an mm's locked_vm
549  * @mm:          mm to account against, may be NULL
550  * @pages:       number of pages to account
551  * @inc:         %true if @pages should be considered positive, %false if not
552  *
553  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
554  *
555  * Return:
556  * * 0       on success, or if mm is NULL
557  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
558  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)559 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
560 {
561 	int ret;
562 
563 	if (pages == 0 || !mm)
564 		return 0;
565 
566 	mmap_write_lock(mm);
567 	ret = __account_locked_vm(mm, pages, inc, current,
568 				  capable(CAP_IPC_LOCK));
569 	mmap_write_unlock(mm);
570 
571 	return ret;
572 }
573 EXPORT_SYMBOL_GPL(account_locked_vm);
574 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)575 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
576 	unsigned long len, unsigned long prot,
577 	unsigned long flag, unsigned long pgoff)
578 {
579 	unsigned long ret;
580 	struct mm_struct *mm = current->mm;
581 	unsigned long populate;
582 	LIST_HEAD(uf);
583 
584 	ret = security_mmap_file(file, prot, flag);
585 	if (!ret) {
586 		if (mmap_write_lock_killable(mm))
587 			return -EINTR;
588 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
589 			      &uf);
590 		mmap_write_unlock(mm);
591 		userfaultfd_unmap_complete(mm, &uf);
592 		if (populate)
593 			mm_populate(ret, populate);
594 	}
595 	return ret;
596 }
597 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)598 unsigned long vm_mmap(struct file *file, unsigned long addr,
599 	unsigned long len, unsigned long prot,
600 	unsigned long flag, unsigned long offset)
601 {
602 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
603 		return -EINVAL;
604 	if (unlikely(offset_in_page(offset)))
605 		return -EINVAL;
606 
607 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
608 }
609 EXPORT_SYMBOL(vm_mmap);
610 
kmalloc_gfp_adjust(gfp_t flags,size_t size)611 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
612 {
613 	/*
614 	 * We want to attempt a large physically contiguous block first because
615 	 * it is less likely to fragment multiple larger blocks and therefore
616 	 * contribute to a long term fragmentation less than vmalloc fallback.
617 	 * However make sure that larger requests are not too disruptive - no
618 	 * OOM killer and no allocation failure warnings as we have a fallback.
619 	 */
620 	if (size > PAGE_SIZE) {
621 		flags |= __GFP_NOWARN;
622 
623 		if (!(flags & __GFP_RETRY_MAYFAIL))
624 			flags |= __GFP_NORETRY;
625 
626 		/* nofail semantic is implemented by the vmalloc fallback */
627 		flags &= ~__GFP_NOFAIL;
628 	}
629 
630 	return flags;
631 }
632 
633 /**
634  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
635  * failure, fall back to non-contiguous (vmalloc) allocation.
636  * @size: size of the request.
637  * @b: which set of kmalloc buckets to allocate from.
638  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
639  * @node: numa node to allocate from
640  *
641  * Uses kmalloc to get the memory but if the allocation fails then falls back
642  * to the vmalloc allocator. Use kvfree for freeing the memory.
643  *
644  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
645  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
646  * preferable to the vmalloc fallback, due to visible performance drawbacks.
647  *
648  * Return: pointer to the allocated memory of %NULL in case of failure
649  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)650 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
651 {
652 	void *ret;
653 
654 	/*
655 	 * It doesn't really make sense to fallback to vmalloc for sub page
656 	 * requests
657 	 */
658 	ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
659 				    kmalloc_gfp_adjust(flags, size),
660 				    node);
661 	if (ret || size <= PAGE_SIZE)
662 		return ret;
663 
664 	/* non-sleeping allocations are not supported by vmalloc */
665 	if (!gfpflags_allow_blocking(flags))
666 		return NULL;
667 
668 	/* Don't even allow crazy sizes */
669 	if (unlikely(size > INT_MAX)) {
670 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
671 		return NULL;
672 	}
673 
674 	/*
675 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
676 	 * since the callers already cannot assume anything
677 	 * about the resulting pointer, and cannot play
678 	 * protection games.
679 	 */
680 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
681 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
682 			node, __builtin_return_address(0));
683 }
684 EXPORT_SYMBOL(__kvmalloc_node_noprof);
685 
686 /**
687  * kvfree() - Free memory.
688  * @addr: Pointer to allocated memory.
689  *
690  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
691  * It is slightly more efficient to use kfree() or vfree() if you are certain
692  * that you know which one to use.
693  *
694  * Context: Either preemptible task context or not-NMI interrupt.
695  */
kvfree(const void * addr)696 void kvfree(const void *addr)
697 {
698 	if (is_vmalloc_addr(addr))
699 		vfree(addr);
700 	else
701 		kfree(addr);
702 }
703 EXPORT_SYMBOL(kvfree);
704 
705 /**
706  * kvfree_sensitive - Free a data object containing sensitive information.
707  * @addr: address of the data object to be freed.
708  * @len: length of the data object.
709  *
710  * Use the special memzero_explicit() function to clear the content of a
711  * kvmalloc'ed object containing sensitive data to make sure that the
712  * compiler won't optimize out the data clearing.
713  */
kvfree_sensitive(const void * addr,size_t len)714 void kvfree_sensitive(const void *addr, size_t len)
715 {
716 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
717 		memzero_explicit((void *)addr, len);
718 		kvfree(addr);
719 	}
720 }
721 EXPORT_SYMBOL(kvfree_sensitive);
722 
723 /**
724  * kvrealloc - reallocate memory; contents remain unchanged
725  * @p: object to reallocate memory for
726  * @size: the size to reallocate
727  * @flags: the flags for the page level allocator
728  *
729  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
730  * and @p is not a %NULL pointer, the object pointed to is freed.
731  *
732  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
733  * initial memory allocation, every subsequent call to this API for the same
734  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
735  * __GFP_ZERO is not fully honored by this API.
736  *
737  * In any case, the contents of the object pointed to are preserved up to the
738  * lesser of the new and old sizes.
739  *
740  * This function must not be called concurrently with itself or kvfree() for the
741  * same memory allocation.
742  *
743  * Return: pointer to the allocated memory or %NULL in case of error
744  */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)745 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
746 {
747 	void *n;
748 
749 	if (is_vmalloc_addr(p))
750 		return vrealloc_noprof(p, size, flags);
751 
752 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
753 	if (!n) {
754 		/* We failed to krealloc(), fall back to kvmalloc(). */
755 		n = kvmalloc_noprof(size, flags);
756 		if (!n)
757 			return NULL;
758 
759 		if (p) {
760 			/* We already know that `p` is not a vmalloc address. */
761 			kasan_disable_current();
762 			memcpy(n, kasan_reset_tag(p), ksize(p));
763 			kasan_enable_current();
764 
765 			kfree(p);
766 		}
767 	}
768 
769 	return n;
770 }
771 EXPORT_SYMBOL(kvrealloc_noprof);
772 
773 /**
774  * __vmalloc_array - allocate memory for a virtually contiguous array.
775  * @n: number of elements.
776  * @size: element size.
777  * @flags: the type of memory to allocate (see kmalloc).
778  */
__vmalloc_array_noprof(size_t n,size_t size,gfp_t flags)779 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
780 {
781 	size_t bytes;
782 
783 	if (unlikely(check_mul_overflow(n, size, &bytes)))
784 		return NULL;
785 	return __vmalloc_noprof(bytes, flags);
786 }
787 EXPORT_SYMBOL(__vmalloc_array_noprof);
788 
789 /**
790  * vmalloc_array - allocate memory for a virtually contiguous array.
791  * @n: number of elements.
792  * @size: element size.
793  */
vmalloc_array_noprof(size_t n,size_t size)794 void *vmalloc_array_noprof(size_t n, size_t size)
795 {
796 	return __vmalloc_array_noprof(n, size, GFP_KERNEL);
797 }
798 EXPORT_SYMBOL(vmalloc_array_noprof);
799 
800 /**
801  * __vcalloc - allocate and zero memory for a virtually contiguous array.
802  * @n: number of elements.
803  * @size: element size.
804  * @flags: the type of memory to allocate (see kmalloc).
805  */
__vcalloc_noprof(size_t n,size_t size,gfp_t flags)806 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
807 {
808 	return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
809 }
810 EXPORT_SYMBOL(__vcalloc_noprof);
811 
812 /**
813  * vcalloc - allocate and zero memory for a virtually contiguous array.
814  * @n: number of elements.
815  * @size: element size.
816  */
vcalloc_noprof(size_t n,size_t size)817 void *vcalloc_noprof(size_t n, size_t size)
818 {
819 	return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
820 }
821 EXPORT_SYMBOL(vcalloc_noprof);
822 
folio_anon_vma(struct folio * folio)823 struct anon_vma *folio_anon_vma(struct folio *folio)
824 {
825 	unsigned long mapping = (unsigned long)folio->mapping;
826 
827 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
828 		return NULL;
829 	return (void *)(mapping - PAGE_MAPPING_ANON);
830 }
831 
832 /**
833  * folio_mapping - Find the mapping where this folio is stored.
834  * @folio: The folio.
835  *
836  * For folios which are in the page cache, return the mapping that this
837  * page belongs to.  Folios in the swap cache return the swap mapping
838  * this page is stored in (which is different from the mapping for the
839  * swap file or swap device where the data is stored).
840  *
841  * You can call this for folios which aren't in the swap cache or page
842  * cache and it will return NULL.
843  */
folio_mapping(struct folio * folio)844 struct address_space *folio_mapping(struct folio *folio)
845 {
846 	struct address_space *mapping;
847 
848 	/* This happens if someone calls flush_dcache_page on slab page */
849 	if (unlikely(folio_test_slab(folio)))
850 		return NULL;
851 
852 	if (unlikely(folio_test_swapcache(folio)))
853 		return swap_address_space(folio->swap);
854 
855 	mapping = folio->mapping;
856 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
857 		return NULL;
858 
859 	return mapping;
860 }
861 EXPORT_SYMBOL(folio_mapping);
862 
863 /**
864  * folio_copy - Copy the contents of one folio to another.
865  * @dst: Folio to copy to.
866  * @src: Folio to copy from.
867  *
868  * The bytes in the folio represented by @src are copied to @dst.
869  * Assumes the caller has validated that @dst is at least as large as @src.
870  * Can be called in atomic context for order-0 folios, but if the folio is
871  * larger, it may sleep.
872  */
folio_copy(struct folio * dst,struct folio * src)873 void folio_copy(struct folio *dst, struct folio *src)
874 {
875 	long i = 0;
876 	long nr = folio_nr_pages(src);
877 
878 	for (;;) {
879 		copy_highpage(folio_page(dst, i), folio_page(src, i));
880 		if (++i == nr)
881 			break;
882 		cond_resched();
883 	}
884 }
885 EXPORT_SYMBOL(folio_copy);
886 
folio_mc_copy(struct folio * dst,struct folio * src)887 int folio_mc_copy(struct folio *dst, struct folio *src)
888 {
889 	long nr = folio_nr_pages(src);
890 	long i = 0;
891 
892 	for (;;) {
893 		if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
894 			return -EHWPOISON;
895 		if (++i == nr)
896 			break;
897 		cond_resched();
898 	}
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL(folio_mc_copy);
903 
904 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
905 int sysctl_overcommit_ratio __read_mostly = 50;
906 unsigned long sysctl_overcommit_kbytes __read_mostly;
907 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
908 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
909 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
910 
overcommit_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)911 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
912 		size_t *lenp, loff_t *ppos)
913 {
914 	int ret;
915 
916 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
917 	if (ret == 0 && write)
918 		sysctl_overcommit_kbytes = 0;
919 	return ret;
920 }
921 
sync_overcommit_as(struct work_struct * dummy)922 static void sync_overcommit_as(struct work_struct *dummy)
923 {
924 	percpu_counter_sync(&vm_committed_as);
925 }
926 
overcommit_policy_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)927 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
928 		size_t *lenp, loff_t *ppos)
929 {
930 	struct ctl_table t;
931 	int new_policy = -1;
932 	int ret;
933 
934 	/*
935 	 * The deviation of sync_overcommit_as could be big with loose policy
936 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
937 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
938 	 * with the strict "NEVER", and to avoid possible race condition (even
939 	 * though user usually won't too frequently do the switching to policy
940 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
941 	 *	1. changing the batch
942 	 *	2. sync percpu count on each CPU
943 	 *	3. switch the policy
944 	 */
945 	if (write) {
946 		t = *table;
947 		t.data = &new_policy;
948 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
949 		if (ret || new_policy == -1)
950 			return ret;
951 
952 		mm_compute_batch(new_policy);
953 		if (new_policy == OVERCOMMIT_NEVER)
954 			schedule_on_each_cpu(sync_overcommit_as);
955 		sysctl_overcommit_memory = new_policy;
956 	} else {
957 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
958 	}
959 
960 	return ret;
961 }
962 
overcommit_kbytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)963 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
964 		size_t *lenp, loff_t *ppos)
965 {
966 	int ret;
967 
968 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
969 	if (ret == 0 && write)
970 		sysctl_overcommit_ratio = 0;
971 	return ret;
972 }
973 
974 /*
975  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
976  */
vm_commit_limit(void)977 unsigned long vm_commit_limit(void)
978 {
979 	unsigned long allowed;
980 
981 	if (sysctl_overcommit_kbytes)
982 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
983 	else
984 		allowed = ((totalram_pages() - hugetlb_total_pages())
985 			   * sysctl_overcommit_ratio / 100);
986 	allowed += total_swap_pages;
987 
988 	return allowed;
989 }
990 
991 /*
992  * Make sure vm_committed_as in one cacheline and not cacheline shared with
993  * other variables. It can be updated by several CPUs frequently.
994  */
995 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
996 
997 /*
998  * The global memory commitment made in the system can be a metric
999  * that can be used to drive ballooning decisions when Linux is hosted
1000  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
1001  * balancing memory across competing virtual machines that are hosted.
1002  * Several metrics drive this policy engine including the guest reported
1003  * memory commitment.
1004  *
1005  * The time cost of this is very low for small platforms, and for big
1006  * platform like a 2S/36C/72T Skylake server, in worst case where
1007  * vm_committed_as's spinlock is under severe contention, the time cost
1008  * could be about 30~40 microseconds.
1009  */
vm_memory_committed(void)1010 unsigned long vm_memory_committed(void)
1011 {
1012 	return percpu_counter_sum_positive(&vm_committed_as);
1013 }
1014 EXPORT_SYMBOL_GPL(vm_memory_committed);
1015 
1016 /*
1017  * Check that a process has enough memory to allocate a new virtual
1018  * mapping. 0 means there is enough memory for the allocation to
1019  * succeed and -ENOMEM implies there is not.
1020  *
1021  * We currently support three overcommit policies, which are set via the
1022  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
1023  *
1024  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1025  * Additional code 2002 Jul 20 by Robert Love.
1026  *
1027  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1028  *
1029  * Note this is a helper function intended to be used by LSMs which
1030  * wish to use this logic.
1031  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1032 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1033 {
1034 	long allowed;
1035 	unsigned long bytes_failed;
1036 
1037 	vm_acct_memory(pages);
1038 
1039 	/*
1040 	 * Sometimes we want to use more memory than we have
1041 	 */
1042 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1043 		return 0;
1044 
1045 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1046 		if (pages > totalram_pages() + total_swap_pages)
1047 			goto error;
1048 		return 0;
1049 	}
1050 
1051 	allowed = vm_commit_limit();
1052 	/*
1053 	 * Reserve some for root
1054 	 */
1055 	if (!cap_sys_admin)
1056 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1057 
1058 	/*
1059 	 * Don't let a single process grow so big a user can't recover
1060 	 */
1061 	if (mm) {
1062 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1063 
1064 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1065 	}
1066 
1067 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1068 		return 0;
1069 error:
1070 	bytes_failed = pages << PAGE_SHIFT;
1071 	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1072 			    __func__, current->pid, current->comm, bytes_failed);
1073 	vm_unacct_memory(pages);
1074 
1075 	return -ENOMEM;
1076 }
1077 
1078 /**
1079  * get_cmdline() - copy the cmdline value to a buffer.
1080  * @task:     the task whose cmdline value to copy.
1081  * @buffer:   the buffer to copy to.
1082  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1083  *            to this length.
1084  *
1085  * Return: the size of the cmdline field copied. Note that the copy does
1086  * not guarantee an ending NULL byte.
1087  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1088 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1089 {
1090 	int res = 0;
1091 	unsigned int len;
1092 	struct mm_struct *mm = get_task_mm(task);
1093 	unsigned long arg_start, arg_end, env_start, env_end;
1094 	if (!mm)
1095 		goto out;
1096 	if (!mm->arg_end)
1097 		goto out_mm;	/* Shh! No looking before we're done */
1098 
1099 	spin_lock(&mm->arg_lock);
1100 	arg_start = mm->arg_start;
1101 	arg_end = mm->arg_end;
1102 	env_start = mm->env_start;
1103 	env_end = mm->env_end;
1104 	spin_unlock(&mm->arg_lock);
1105 
1106 	len = arg_end - arg_start;
1107 
1108 	if (len > buflen)
1109 		len = buflen;
1110 
1111 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1112 
1113 	/*
1114 	 * If the nul at the end of args has been overwritten, then
1115 	 * assume application is using setproctitle(3).
1116 	 */
1117 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1118 		len = strnlen(buffer, res);
1119 		if (len < res) {
1120 			res = len;
1121 		} else {
1122 			len = env_end - env_start;
1123 			if (len > buflen - res)
1124 				len = buflen - res;
1125 			res += access_process_vm(task, env_start,
1126 						 buffer+res, len,
1127 						 FOLL_FORCE);
1128 			res = strnlen(buffer, res);
1129 		}
1130 	}
1131 out_mm:
1132 	mmput(mm);
1133 out:
1134 	return res;
1135 }
1136 
memcmp_pages(struct page * page1,struct page * page2)1137 int __weak memcmp_pages(struct page *page1, struct page *page2)
1138 {
1139 	char *addr1, *addr2;
1140 	int ret;
1141 
1142 	addr1 = kmap_local_page(page1);
1143 	addr2 = kmap_local_page(page2);
1144 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1145 	kunmap_local(addr2);
1146 	kunmap_local(addr1);
1147 	return ret;
1148 }
1149 
1150 #ifdef CONFIG_PRINTK
1151 /**
1152  * mem_dump_obj - Print available provenance information
1153  * @object: object for which to find provenance information.
1154  *
1155  * This function uses pr_cont(), so that the caller is expected to have
1156  * printed out whatever preamble is appropriate.  The provenance information
1157  * depends on the type of object and on how much debugging is enabled.
1158  * For example, for a slab-cache object, the slab name is printed, and,
1159  * if available, the return address and stack trace from the allocation
1160  * and last free path of that object.
1161  */
mem_dump_obj(void * object)1162 void mem_dump_obj(void *object)
1163 {
1164 	const char *type;
1165 
1166 	if (kmem_dump_obj(object))
1167 		return;
1168 
1169 	if (vmalloc_dump_obj(object))
1170 		return;
1171 
1172 	if (is_vmalloc_addr(object))
1173 		type = "vmalloc memory";
1174 	else if (virt_addr_valid(object))
1175 		type = "non-slab/vmalloc memory";
1176 	else if (object == NULL)
1177 		type = "NULL pointer";
1178 	else if (object == ZERO_SIZE_PTR)
1179 		type = "zero-size pointer";
1180 	else
1181 		type = "non-paged memory";
1182 
1183 	pr_cont(" %s\n", type);
1184 }
1185 EXPORT_SYMBOL_GPL(mem_dump_obj);
1186 #endif
1187 
1188 /*
1189  * A driver might set a page logically offline -- PageOffline() -- and
1190  * turn the page inaccessible in the hypervisor; after that, access to page
1191  * content can be fatal.
1192  *
1193  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1194  * pages after checking PageOffline(); however, these PFN walkers can race
1195  * with drivers that set PageOffline().
1196  *
1197  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1198  * synchronize with such drivers, achieving that a page cannot be set
1199  * PageOffline() while frozen.
1200  *
1201  * page_offline_begin()/page_offline_end() is used by drivers that care about
1202  * such races when setting a page PageOffline().
1203  */
1204 static DECLARE_RWSEM(page_offline_rwsem);
1205 
page_offline_freeze(void)1206 void page_offline_freeze(void)
1207 {
1208 	down_read(&page_offline_rwsem);
1209 }
1210 
page_offline_thaw(void)1211 void page_offline_thaw(void)
1212 {
1213 	up_read(&page_offline_rwsem);
1214 }
1215 
page_offline_begin(void)1216 void page_offline_begin(void)
1217 {
1218 	down_write(&page_offline_rwsem);
1219 }
1220 EXPORT_SYMBOL(page_offline_begin);
1221 
page_offline_end(void)1222 void page_offline_end(void)
1223 {
1224 	up_write(&page_offline_rwsem);
1225 }
1226 EXPORT_SYMBOL(page_offline_end);
1227 
1228 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1229 void flush_dcache_folio(struct folio *folio)
1230 {
1231 	long i, nr = folio_nr_pages(folio);
1232 
1233 	for (i = 0; i < nr; i++)
1234 		flush_dcache_page(folio_page(folio, i));
1235 }
1236 EXPORT_SYMBOL(flush_dcache_folio);
1237 #endif
1238