1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4 #include <linux/module.h>
5 #include <linux/interrupt.h>
6
7 #include "fm10k.h"
8
9 static const struct fm10k_info *fm10k_info_tbl[] = {
10 [fm10k_device_pf] = &fm10k_pf_info,
11 [fm10k_device_vf] = &fm10k_vf_info,
12 };
13
14 /*
15 * fm10k_pci_tbl - PCI Device ID Table
16 *
17 * Wildcard entries (PCI_ANY_ID) should come last
18 * Last entry must be all 0s
19 *
20 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
21 * Class, Class Mask, private data (not used) }
22 */
23 static const struct pci_device_id fm10k_pci_tbl[] = {
24 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
28 /* required last entry */
29 { 0, }
30 };
31 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
32
fm10k_read_pci_cfg_word(struct fm10k_hw * hw,u32 reg)33 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
34 {
35 struct fm10k_intfc *interface = hw->back;
36 u16 value = 0;
37
38 if (FM10K_REMOVED(hw->hw_addr))
39 return ~value;
40
41 pci_read_config_word(interface->pdev, reg, &value);
42 if (value == 0xFFFF)
43 fm10k_write_flush(hw);
44
45 return value;
46 }
47
fm10k_read_reg(struct fm10k_hw * hw,int reg)48 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
49 {
50 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
51 u32 value = 0;
52
53 if (FM10K_REMOVED(hw_addr))
54 return ~value;
55
56 value = readl(&hw_addr[reg]);
57 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
58 struct fm10k_intfc *interface = hw->back;
59 struct net_device *netdev = interface->netdev;
60
61 hw->hw_addr = NULL;
62 netif_device_detach(netdev);
63 netdev_err(netdev, "PCIe link lost, device now detached\n");
64 }
65
66 return value;
67 }
68
fm10k_hw_ready(struct fm10k_intfc * interface)69 static int fm10k_hw_ready(struct fm10k_intfc *interface)
70 {
71 struct fm10k_hw *hw = &interface->hw;
72
73 fm10k_write_flush(hw);
74
75 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
76 }
77
78 /**
79 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
80 * @interface: fm10k private interface structure
81 *
82 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
83 * started immediately, request that it be restarted when possible.
84 */
fm10k_macvlan_schedule(struct fm10k_intfc * interface)85 void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
86 {
87 /* Avoid processing the MAC/VLAN queue when the service task is
88 * disabled, or when we're resetting the device.
89 */
90 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
91 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
92 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
93 /* We delay the actual start of execution in order to allow
94 * multiple MAC/VLAN updates to accumulate before handling
95 * them, and to allow some time to let the mailbox drain
96 * between runs.
97 */
98 queue_delayed_work(fm10k_workqueue,
99 &interface->macvlan_task, 10);
100 } else {
101 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
102 }
103 }
104
105 /**
106 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
107 * @interface: fm10k private interface structure
108 *
109 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
110 * requests.
111 */
fm10k_stop_macvlan_task(struct fm10k_intfc * interface)112 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
113 {
114 /* Disable the MAC/VLAN work item */
115 set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
116
117 /* Make sure we waited until any current invocations have stopped */
118 cancel_delayed_work_sync(&interface->macvlan_task);
119
120 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
121 * However, it may not be unset of the MAC/VLAN task never actually
122 * got a chance to run. Since we've canceled the task here, and it
123 * cannot be rescheuled right now, we need to ensure the scheduled bit
124 * gets unset.
125 */
126 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
127 }
128
129 /**
130 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
131 * @interface: fm10k private interface structure
132 *
133 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
134 * the MAC/VLAN work monitor.
135 */
fm10k_resume_macvlan_task(struct fm10k_intfc * interface)136 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
137 {
138 /* Re-enable the MAC/VLAN work item */
139 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
140
141 /* We might have received a MAC/VLAN request while disabled. If so,
142 * kick off the queue now.
143 */
144 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
145 fm10k_macvlan_schedule(interface);
146 }
147
fm10k_service_event_schedule(struct fm10k_intfc * interface)148 void fm10k_service_event_schedule(struct fm10k_intfc *interface)
149 {
150 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
151 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
152 clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
153 queue_work(fm10k_workqueue, &interface->service_task);
154 } else {
155 set_bit(__FM10K_SERVICE_REQUEST, interface->state);
156 }
157 }
158
fm10k_service_event_complete(struct fm10k_intfc * interface)159 static void fm10k_service_event_complete(struct fm10k_intfc *interface)
160 {
161 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
162
163 /* flush memory to make sure state is correct before next watchog */
164 smp_mb__before_atomic();
165 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
166
167 /* If a service event was requested since we started, immediately
168 * re-schedule now. This ensures we don't drop a request until the
169 * next timer event.
170 */
171 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
172 fm10k_service_event_schedule(interface);
173 }
174
fm10k_stop_service_event(struct fm10k_intfc * interface)175 static void fm10k_stop_service_event(struct fm10k_intfc *interface)
176 {
177 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
178 cancel_work_sync(&interface->service_task);
179
180 /* It's possible that cancel_work_sync stopped the service task from
181 * running before it could actually start. In this case the
182 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
183 * the service task cannot be running at this point, we need to clear
184 * the scheduled bit, as otherwise the service task may never be
185 * restarted.
186 */
187 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
188 }
189
fm10k_start_service_event(struct fm10k_intfc * interface)190 static void fm10k_start_service_event(struct fm10k_intfc *interface)
191 {
192 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
193 fm10k_service_event_schedule(interface);
194 }
195
196 /**
197 * fm10k_service_timer - Timer Call-back
198 * @t: pointer to timer data
199 **/
fm10k_service_timer(struct timer_list * t)200 static void fm10k_service_timer(struct timer_list *t)
201 {
202 struct fm10k_intfc *interface = from_timer(interface, t,
203 service_timer);
204
205 /* Reset the timer */
206 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
207
208 fm10k_service_event_schedule(interface);
209 }
210
211 /**
212 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
213 * @interface: fm10k private data structure
214 *
215 * This function prepares for a device reset by shutting as much down as we
216 * can. It does nothing and returns false if __FM10K_RESETTING was already set
217 * prior to calling this function. It returns true if it actually did work.
218 */
fm10k_prepare_for_reset(struct fm10k_intfc * interface)219 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
220 {
221 struct net_device *netdev = interface->netdev;
222
223 /* put off any impending NetWatchDogTimeout */
224 netif_trans_update(netdev);
225
226 /* Nothing to do if a reset is already in progress */
227 if (test_and_set_bit(__FM10K_RESETTING, interface->state))
228 return false;
229
230 /* As the MAC/VLAN task will be accessing registers it must not be
231 * running while we reset. Although the task will not be scheduled
232 * once we start resetting it may already be running
233 */
234 fm10k_stop_macvlan_task(interface);
235
236 rtnl_lock();
237
238 fm10k_iov_suspend(interface->pdev);
239
240 if (netif_running(netdev))
241 fm10k_close(netdev);
242
243 fm10k_mbx_free_irq(interface);
244
245 /* free interrupts */
246 fm10k_clear_queueing_scheme(interface);
247
248 /* delay any future reset requests */
249 interface->last_reset = jiffies + (10 * HZ);
250
251 rtnl_unlock();
252
253 return true;
254 }
255
fm10k_handle_reset(struct fm10k_intfc * interface)256 static int fm10k_handle_reset(struct fm10k_intfc *interface)
257 {
258 struct net_device *netdev = interface->netdev;
259 struct fm10k_hw *hw = &interface->hw;
260 int err;
261
262 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
263
264 rtnl_lock();
265
266 pci_set_master(interface->pdev);
267
268 /* reset and initialize the hardware so it is in a known state */
269 err = hw->mac.ops.reset_hw(hw);
270 if (err) {
271 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
272 goto reinit_err;
273 }
274
275 err = hw->mac.ops.init_hw(hw);
276 if (err) {
277 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
278 goto reinit_err;
279 }
280
281 err = fm10k_init_queueing_scheme(interface);
282 if (err) {
283 dev_err(&interface->pdev->dev,
284 "init_queueing_scheme failed: %d\n", err);
285 goto reinit_err;
286 }
287
288 /* re-associate interrupts */
289 err = fm10k_mbx_request_irq(interface);
290 if (err)
291 goto err_mbx_irq;
292
293 err = fm10k_hw_ready(interface);
294 if (err)
295 goto err_open;
296
297 /* update hardware address for VFs if perm_addr has changed */
298 if (hw->mac.type == fm10k_mac_vf) {
299 if (is_valid_ether_addr(hw->mac.perm_addr)) {
300 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
301 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
302 eth_hw_addr_set(netdev, hw->mac.perm_addr);
303 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
304 }
305
306 if (hw->mac.vlan_override)
307 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
308 else
309 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
310 }
311
312 err = netif_running(netdev) ? fm10k_open(netdev) : 0;
313 if (err)
314 goto err_open;
315
316 fm10k_iov_resume(interface->pdev);
317
318 rtnl_unlock();
319
320 fm10k_resume_macvlan_task(interface);
321
322 clear_bit(__FM10K_RESETTING, interface->state);
323
324 return err;
325 err_open:
326 fm10k_mbx_free_irq(interface);
327 err_mbx_irq:
328 fm10k_clear_queueing_scheme(interface);
329 reinit_err:
330 netif_device_detach(netdev);
331
332 rtnl_unlock();
333
334 clear_bit(__FM10K_RESETTING, interface->state);
335
336 return err;
337 }
338
fm10k_detach_subtask(struct fm10k_intfc * interface)339 static void fm10k_detach_subtask(struct fm10k_intfc *interface)
340 {
341 struct net_device *netdev = interface->netdev;
342 u32 __iomem *hw_addr;
343 u32 value;
344
345 /* do nothing if netdev is still present or hw_addr is set */
346 if (netif_device_present(netdev) || interface->hw.hw_addr)
347 return;
348
349 /* We've lost the PCIe register space, and can no longer access the
350 * device. Shut everything except the detach subtask down and prepare
351 * to reset the device in case we recover. If we actually prepare for
352 * reset, indicate that we're detached.
353 */
354 if (fm10k_prepare_for_reset(interface))
355 set_bit(__FM10K_RESET_DETACHED, interface->state);
356
357 /* check the real address space to see if we've recovered */
358 hw_addr = READ_ONCE(interface->uc_addr);
359 value = readl(hw_addr);
360 if (~value) {
361 int err;
362
363 /* Make sure the reset was initiated because we detached,
364 * otherwise we might race with a different reset flow.
365 */
366 if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
367 interface->state))
368 return;
369
370 /* Restore the hardware address */
371 interface->hw.hw_addr = interface->uc_addr;
372
373 /* PCIe link has been restored, and the device is active
374 * again. Restore everything and reset the device.
375 */
376 err = fm10k_handle_reset(interface);
377 if (err) {
378 netdev_err(netdev, "Unable to reset device: %d\n", err);
379 interface->hw.hw_addr = NULL;
380 return;
381 }
382
383 /* Re-attach the netdev */
384 netif_device_attach(netdev);
385 netdev_warn(netdev, "PCIe link restored, device now attached\n");
386 return;
387 }
388 }
389
fm10k_reset_subtask(struct fm10k_intfc * interface)390 static void fm10k_reset_subtask(struct fm10k_intfc *interface)
391 {
392 int err;
393
394 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
395 interface->flags))
396 return;
397
398 /* If another thread has already prepared to reset the device, we
399 * should not attempt to handle a reset here, since we'd race with
400 * that thread. This may happen if we suspend the device or if the
401 * PCIe link is lost. In this case, we'll just ignore the RESET
402 * request, as it will (eventually) be taken care of when the thread
403 * which actually started the reset is finished.
404 */
405 if (!fm10k_prepare_for_reset(interface))
406 return;
407
408 netdev_err(interface->netdev, "Reset interface\n");
409
410 err = fm10k_handle_reset(interface);
411 if (err)
412 dev_err(&interface->pdev->dev,
413 "fm10k_handle_reset failed: %d\n", err);
414 }
415
416 /**
417 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
418 * @interface: board private structure
419 *
420 * Configure the SWPRI to PC mapping for the port.
421 **/
fm10k_configure_swpri_map(struct fm10k_intfc * interface)422 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
423 {
424 struct net_device *netdev = interface->netdev;
425 struct fm10k_hw *hw = &interface->hw;
426 int i;
427
428 /* clear flag indicating update is needed */
429 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
430
431 /* these registers are only available on the PF */
432 if (hw->mac.type != fm10k_mac_pf)
433 return;
434
435 /* configure SWPRI to PC map */
436 for (i = 0; i < FM10K_SWPRI_MAX; i++)
437 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
438 netdev_get_prio_tc_map(netdev, i));
439 }
440
441 /**
442 * fm10k_watchdog_update_host_state - Update the link status based on host.
443 * @interface: board private structure
444 **/
fm10k_watchdog_update_host_state(struct fm10k_intfc * interface)445 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
446 {
447 struct fm10k_hw *hw = &interface->hw;
448 s32 err;
449
450 if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
451 interface->host_ready = false;
452 if (time_is_after_jiffies(interface->link_down_event))
453 return;
454 clear_bit(__FM10K_LINK_DOWN, interface->state);
455 }
456
457 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
458 if (rtnl_trylock()) {
459 fm10k_configure_swpri_map(interface);
460 rtnl_unlock();
461 }
462 }
463
464 /* lock the mailbox for transmit and receive */
465 fm10k_mbx_lock(interface);
466
467 err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
468 if (err && time_is_before_jiffies(interface->last_reset))
469 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
470
471 /* free the lock */
472 fm10k_mbx_unlock(interface);
473 }
474
475 /**
476 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
477 * @interface: board private structure
478 *
479 * This function will process both the upstream and downstream mailboxes.
480 **/
fm10k_mbx_subtask(struct fm10k_intfc * interface)481 static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
482 {
483 /* If we're resetting, bail out */
484 if (test_bit(__FM10K_RESETTING, interface->state))
485 return;
486
487 /* process upstream mailbox and update device state */
488 fm10k_watchdog_update_host_state(interface);
489
490 /* process downstream mailboxes */
491 fm10k_iov_mbx(interface);
492 }
493
494 /**
495 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
496 * @interface: board private structure
497 **/
fm10k_watchdog_host_is_ready(struct fm10k_intfc * interface)498 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
499 {
500 struct net_device *netdev = interface->netdev;
501
502 /* only continue if link state is currently down */
503 if (netif_carrier_ok(netdev))
504 return;
505
506 netif_info(interface, drv, netdev, "NIC Link is up\n");
507
508 netif_carrier_on(netdev);
509 netif_tx_wake_all_queues(netdev);
510 }
511
512 /**
513 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
514 * @interface: board private structure
515 **/
fm10k_watchdog_host_not_ready(struct fm10k_intfc * interface)516 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
517 {
518 struct net_device *netdev = interface->netdev;
519
520 /* only continue if link state is currently up */
521 if (!netif_carrier_ok(netdev))
522 return;
523
524 netif_info(interface, drv, netdev, "NIC Link is down\n");
525
526 netif_carrier_off(netdev);
527 netif_tx_stop_all_queues(netdev);
528 }
529
530 /**
531 * fm10k_update_stats - Update the board statistics counters.
532 * @interface: board private structure
533 **/
fm10k_update_stats(struct fm10k_intfc * interface)534 void fm10k_update_stats(struct fm10k_intfc *interface)
535 {
536 struct net_device_stats *net_stats = &interface->netdev->stats;
537 struct fm10k_hw *hw = &interface->hw;
538 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
539 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
540 u64 rx_link_errors = 0;
541 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
542 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
543 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
544 u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
545 u64 bytes, pkts;
546 int i;
547
548 /* ensure only one thread updates stats at a time */
549 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
550 return;
551
552 /* do not allow stats update via service task for next second */
553 interface->next_stats_update = jiffies + HZ;
554
555 /* gather some stats to the interface struct that are per queue */
556 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
557 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
558
559 if (!tx_ring)
560 continue;
561
562 restart_queue += tx_ring->tx_stats.restart_queue;
563 tx_busy += tx_ring->tx_stats.tx_busy;
564 tx_csum_errors += tx_ring->tx_stats.csum_err;
565 bytes += tx_ring->stats.bytes;
566 pkts += tx_ring->stats.packets;
567 hw_csum_tx_good += tx_ring->tx_stats.csum_good;
568 }
569
570 interface->restart_queue = restart_queue;
571 interface->tx_busy = tx_busy;
572 net_stats->tx_bytes = bytes;
573 net_stats->tx_packets = pkts;
574 interface->tx_csum_errors = tx_csum_errors;
575 interface->hw_csum_tx_good = hw_csum_tx_good;
576
577 /* gather some stats to the interface struct that are per queue */
578 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
579 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
580
581 if (!rx_ring)
582 continue;
583
584 bytes += rx_ring->stats.bytes;
585 pkts += rx_ring->stats.packets;
586 alloc_failed += rx_ring->rx_stats.alloc_failed;
587 rx_csum_errors += rx_ring->rx_stats.csum_err;
588 rx_errors += rx_ring->rx_stats.errors;
589 hw_csum_rx_good += rx_ring->rx_stats.csum_good;
590 rx_switch_errors += rx_ring->rx_stats.switch_errors;
591 rx_drops += rx_ring->rx_stats.drops;
592 rx_pp_errors += rx_ring->rx_stats.pp_errors;
593 rx_link_errors += rx_ring->rx_stats.link_errors;
594 rx_length_errors += rx_ring->rx_stats.length_errors;
595 }
596
597 net_stats->rx_bytes = bytes;
598 net_stats->rx_packets = pkts;
599 interface->alloc_failed = alloc_failed;
600 interface->rx_csum_errors = rx_csum_errors;
601 interface->hw_csum_rx_good = hw_csum_rx_good;
602 interface->rx_switch_errors = rx_switch_errors;
603 interface->rx_drops = rx_drops;
604 interface->rx_pp_errors = rx_pp_errors;
605 interface->rx_link_errors = rx_link_errors;
606 interface->rx_length_errors = rx_length_errors;
607
608 hw->mac.ops.update_hw_stats(hw, &interface->stats);
609
610 for (i = 0; i < hw->mac.max_queues; i++) {
611 struct fm10k_hw_stats_q *q = &interface->stats.q[i];
612
613 tx_bytes_nic += q->tx_bytes.count;
614 tx_pkts_nic += q->tx_packets.count;
615 rx_bytes_nic += q->rx_bytes.count;
616 rx_pkts_nic += q->rx_packets.count;
617 rx_drops_nic += q->rx_drops.count;
618 }
619
620 interface->tx_bytes_nic = tx_bytes_nic;
621 interface->tx_packets_nic = tx_pkts_nic;
622 interface->rx_bytes_nic = rx_bytes_nic;
623 interface->rx_packets_nic = rx_pkts_nic;
624 interface->rx_drops_nic = rx_drops_nic;
625
626 /* Fill out the OS statistics structure */
627 net_stats->rx_errors = rx_errors;
628 net_stats->rx_dropped = interface->stats.nodesc_drop.count;
629
630 /* Update VF statistics */
631 fm10k_iov_update_stats(interface);
632
633 clear_bit(__FM10K_UPDATING_STATS, interface->state);
634 }
635
636 /**
637 * fm10k_watchdog_flush_tx - flush queues on host not ready
638 * @interface: pointer to the device interface structure
639 **/
fm10k_watchdog_flush_tx(struct fm10k_intfc * interface)640 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
641 {
642 int some_tx_pending = 0;
643 int i;
644
645 /* nothing to do if carrier is up */
646 if (netif_carrier_ok(interface->netdev))
647 return;
648
649 for (i = 0; i < interface->num_tx_queues; i++) {
650 struct fm10k_ring *tx_ring = interface->tx_ring[i];
651
652 if (tx_ring->next_to_use != tx_ring->next_to_clean) {
653 some_tx_pending = 1;
654 break;
655 }
656 }
657
658 /* We've lost link, so the controller stops DMA, but we've got
659 * queued Tx work that's never going to get done, so reset
660 * controller to flush Tx.
661 */
662 if (some_tx_pending)
663 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
664 }
665
666 /**
667 * fm10k_watchdog_subtask - check and bring link up
668 * @interface: pointer to the device interface structure
669 **/
fm10k_watchdog_subtask(struct fm10k_intfc * interface)670 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
671 {
672 /* if interface is down do nothing */
673 if (test_bit(__FM10K_DOWN, interface->state) ||
674 test_bit(__FM10K_RESETTING, interface->state))
675 return;
676
677 if (interface->host_ready)
678 fm10k_watchdog_host_is_ready(interface);
679 else
680 fm10k_watchdog_host_not_ready(interface);
681
682 /* update stats only once every second */
683 if (time_is_before_jiffies(interface->next_stats_update))
684 fm10k_update_stats(interface);
685
686 /* flush any uncompleted work */
687 fm10k_watchdog_flush_tx(interface);
688 }
689
690 /**
691 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
692 * @interface: pointer to the device interface structure
693 *
694 * This function serves two purposes. First it strobes the interrupt lines
695 * in order to make certain interrupts are occurring. Secondly it sets the
696 * bits needed to check for TX hangs. As a result we should immediately
697 * determine if a hang has occurred.
698 */
fm10k_check_hang_subtask(struct fm10k_intfc * interface)699 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
700 {
701 /* If we're down or resetting, just bail */
702 if (test_bit(__FM10K_DOWN, interface->state) ||
703 test_bit(__FM10K_RESETTING, interface->state))
704 return;
705
706 /* rate limit tx hang checks to only once every 2 seconds */
707 if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
708 return;
709 interface->next_tx_hang_check = jiffies + (2 * HZ);
710
711 if (netif_carrier_ok(interface->netdev)) {
712 int i;
713
714 /* Force detection of hung controller */
715 for (i = 0; i < interface->num_tx_queues; i++)
716 set_check_for_tx_hang(interface->tx_ring[i]);
717
718 /* Rearm all in-use q_vectors for immediate firing */
719 for (i = 0; i < interface->num_q_vectors; i++) {
720 struct fm10k_q_vector *qv = interface->q_vector[i];
721
722 if (!qv->tx.count && !qv->rx.count)
723 continue;
724 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
725 }
726 }
727 }
728
729 /**
730 * fm10k_service_task - manages and runs subtasks
731 * @work: pointer to work_struct containing our data
732 **/
fm10k_service_task(struct work_struct * work)733 static void fm10k_service_task(struct work_struct *work)
734 {
735 struct fm10k_intfc *interface;
736
737 interface = container_of(work, struct fm10k_intfc, service_task);
738
739 /* Check whether we're detached first */
740 fm10k_detach_subtask(interface);
741
742 /* tasks run even when interface is down */
743 fm10k_mbx_subtask(interface);
744 fm10k_reset_subtask(interface);
745
746 /* tasks only run when interface is up */
747 fm10k_watchdog_subtask(interface);
748 fm10k_check_hang_subtask(interface);
749
750 /* release lock on service events to allow scheduling next event */
751 fm10k_service_event_complete(interface);
752 }
753
754 /**
755 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
756 * @work: pointer to work_struct containing our data
757 *
758 * This work item handles sending MAC/VLAN updates to the switch manager. When
759 * the interface is up, it will attempt to queue mailbox messages to the
760 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
761 * mailbox is full, it will reschedule itself to try again in a short while.
762 * This ensures that the driver does not overload the switch mailbox with too
763 * many simultaneous requests, causing an unnecessary reset.
764 **/
fm10k_macvlan_task(struct work_struct * work)765 static void fm10k_macvlan_task(struct work_struct *work)
766 {
767 struct fm10k_macvlan_request *item;
768 struct fm10k_intfc *interface;
769 struct delayed_work *dwork;
770 struct list_head *requests;
771 struct fm10k_hw *hw;
772 unsigned long flags;
773
774 dwork = to_delayed_work(work);
775 interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
776 hw = &interface->hw;
777 requests = &interface->macvlan_requests;
778
779 do {
780 /* Pop the first item off the list */
781 spin_lock_irqsave(&interface->macvlan_lock, flags);
782 item = list_first_entry_or_null(requests,
783 struct fm10k_macvlan_request,
784 list);
785 if (item)
786 list_del_init(&item->list);
787
788 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
789
790 /* We have no more items to process */
791 if (!item)
792 goto done;
793
794 fm10k_mbx_lock(interface);
795
796 /* Check that we have plenty of space to send the message. We
797 * want to ensure that the mailbox stays low enough to avoid a
798 * change in the host state, otherwise we may see spurious
799 * link up / link down notifications.
800 */
801 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
802 hw->mbx.ops.process(hw, &hw->mbx);
803 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
804 fm10k_mbx_unlock(interface);
805
806 /* Put the request back on the list */
807 spin_lock_irqsave(&interface->macvlan_lock, flags);
808 list_add(&item->list, requests);
809 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
810 break;
811 }
812
813 switch (item->type) {
814 case FM10K_MC_MAC_REQUEST:
815 hw->mac.ops.update_mc_addr(hw,
816 item->mac.glort,
817 item->mac.addr,
818 item->mac.vid,
819 item->set);
820 break;
821 case FM10K_UC_MAC_REQUEST:
822 hw->mac.ops.update_uc_addr(hw,
823 item->mac.glort,
824 item->mac.addr,
825 item->mac.vid,
826 item->set,
827 0);
828 break;
829 case FM10K_VLAN_REQUEST:
830 hw->mac.ops.update_vlan(hw,
831 item->vlan.vid,
832 item->vlan.vsi,
833 item->set);
834 break;
835 default:
836 break;
837 }
838
839 fm10k_mbx_unlock(interface);
840
841 /* Free the item now that we've sent the update */
842 kfree(item);
843 } while (true);
844
845 done:
846 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
847
848 /* flush memory to make sure state is correct */
849 smp_mb__before_atomic();
850 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
851
852 /* If a MAC/VLAN request was scheduled since we started, we should
853 * re-schedule. However, there is no reason to re-schedule if there is
854 * no work to do.
855 */
856 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
857 fm10k_macvlan_schedule(interface);
858 }
859
860 /**
861 * fm10k_configure_tx_ring - Configure Tx ring after Reset
862 * @interface: board private structure
863 * @ring: structure containing ring specific data
864 *
865 * Configure the Tx descriptor ring after a reset.
866 **/
fm10k_configure_tx_ring(struct fm10k_intfc * interface,struct fm10k_ring * ring)867 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
868 struct fm10k_ring *ring)
869 {
870 struct fm10k_hw *hw = &interface->hw;
871 u64 tdba = ring->dma;
872 u32 size = ring->count * sizeof(struct fm10k_tx_desc);
873 u32 txint = FM10K_INT_MAP_DISABLE;
874 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
875 u8 reg_idx = ring->reg_idx;
876
877 /* disable queue to avoid issues while updating state */
878 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
879 fm10k_write_flush(hw);
880
881 /* possible poll here to verify ring resources have been cleaned */
882
883 /* set location and size for descriptor ring */
884 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
885 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
886 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
887
888 /* reset head and tail pointers */
889 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
890 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
891
892 /* store tail pointer */
893 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
894
895 /* reset ntu and ntc to place SW in sync with hardware */
896 ring->next_to_clean = 0;
897 ring->next_to_use = 0;
898
899 /* Map interrupt */
900 if (ring->q_vector) {
901 txint = ring->q_vector->v_idx + NON_Q_VECTORS;
902 txint |= FM10K_INT_MAP_TIMER0;
903 }
904
905 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
906
907 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */
908 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
909 FM10K_PFVTCTL_FTAG_DESC_ENABLE);
910
911 /* Initialize XPS */
912 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
913 ring->q_vector)
914 netif_set_xps_queue(ring->netdev,
915 &ring->q_vector->affinity_mask,
916 ring->queue_index);
917
918 /* enable queue */
919 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
920 }
921
922 /**
923 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
924 * @interface: board private structure
925 * @ring: structure containing ring specific data
926 *
927 * Verify the Tx descriptor ring is ready for transmit.
928 **/
fm10k_enable_tx_ring(struct fm10k_intfc * interface,struct fm10k_ring * ring)929 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
930 struct fm10k_ring *ring)
931 {
932 struct fm10k_hw *hw = &interface->hw;
933 int wait_loop = 10;
934 u32 txdctl;
935 u8 reg_idx = ring->reg_idx;
936
937 /* if we are already enabled just exit */
938 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
939 return;
940
941 /* poll to verify queue is enabled */
942 do {
943 usleep_range(1000, 2000);
944 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
945 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
946 if (!wait_loop)
947 netif_err(interface, drv, interface->netdev,
948 "Could not enable Tx Queue %d\n", reg_idx);
949 }
950
951 /**
952 * fm10k_configure_tx - Configure Transmit Unit after Reset
953 * @interface: board private structure
954 *
955 * Configure the Tx unit of the MAC after a reset.
956 **/
fm10k_configure_tx(struct fm10k_intfc * interface)957 static void fm10k_configure_tx(struct fm10k_intfc *interface)
958 {
959 int i;
960
961 /* Setup the HW Tx Head and Tail descriptor pointers */
962 for (i = 0; i < interface->num_tx_queues; i++)
963 fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
964
965 /* poll here to verify that Tx rings are now enabled */
966 for (i = 0; i < interface->num_tx_queues; i++)
967 fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
968 }
969
970 /**
971 * fm10k_configure_rx_ring - Configure Rx ring after Reset
972 * @interface: board private structure
973 * @ring: structure containing ring specific data
974 *
975 * Configure the Rx descriptor ring after a reset.
976 **/
fm10k_configure_rx_ring(struct fm10k_intfc * interface,struct fm10k_ring * ring)977 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
978 struct fm10k_ring *ring)
979 {
980 u64 rdba = ring->dma;
981 struct fm10k_hw *hw = &interface->hw;
982 u32 size = ring->count * sizeof(union fm10k_rx_desc);
983 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
984 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
985 u32 rxint = FM10K_INT_MAP_DISABLE;
986 u8 rx_pause = interface->rx_pause;
987 u8 reg_idx = ring->reg_idx;
988
989 /* disable queue to avoid issues while updating state */
990 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
991 rxqctl &= ~FM10K_RXQCTL_ENABLE;
992 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
993 fm10k_write_flush(hw);
994
995 /* possible poll here to verify ring resources have been cleaned */
996
997 /* set location and size for descriptor ring */
998 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
999 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1000 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1001
1002 /* reset head and tail pointers */
1003 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1004 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1005
1006 /* store tail pointer */
1007 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1008
1009 /* reset ntu and ntc to place SW in sync with hardware */
1010 ring->next_to_clean = 0;
1011 ring->next_to_use = 0;
1012 ring->next_to_alloc = 0;
1013
1014 /* Configure the Rx buffer size for one buff without split */
1015 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1016
1017 /* Configure the Rx ring to suppress loopback packets */
1018 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1019 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1020
1021 /* Enable drop on empty */
1022 #ifdef CONFIG_DCB
1023 if (interface->pfc_en)
1024 rx_pause = interface->pfc_en;
1025 #endif
1026 if (!(rx_pause & BIT(ring->qos_pc)))
1027 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1028
1029 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1030
1031 /* assign default VLAN to queue */
1032 ring->vid = hw->mac.default_vid;
1033
1034 /* if we have an active VLAN, disable default VLAN ID */
1035 if (test_bit(hw->mac.default_vid, interface->active_vlans))
1036 ring->vid |= FM10K_VLAN_CLEAR;
1037
1038 /* Map interrupt */
1039 if (ring->q_vector) {
1040 rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1041 rxint |= FM10K_INT_MAP_TIMER1;
1042 }
1043
1044 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1045
1046 /* enable queue */
1047 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1048 rxqctl |= FM10K_RXQCTL_ENABLE;
1049 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1050
1051 /* place buffers on ring for receive data */
1052 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1053 }
1054
1055 /**
1056 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1057 * @interface: board private structure
1058 *
1059 * Configure the drop enable bits for the Rx rings.
1060 **/
fm10k_update_rx_drop_en(struct fm10k_intfc * interface)1061 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1062 {
1063 struct fm10k_hw *hw = &interface->hw;
1064 u8 rx_pause = interface->rx_pause;
1065 int i;
1066
1067 #ifdef CONFIG_DCB
1068 if (interface->pfc_en)
1069 rx_pause = interface->pfc_en;
1070
1071 #endif
1072 for (i = 0; i < interface->num_rx_queues; i++) {
1073 struct fm10k_ring *ring = interface->rx_ring[i];
1074 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1075 u8 reg_idx = ring->reg_idx;
1076
1077 if (!(rx_pause & BIT(ring->qos_pc)))
1078 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1079
1080 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1081 }
1082 }
1083
1084 /**
1085 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1086 * @interface: board private structure
1087 *
1088 * Configure the DGLORT description and RSS tables.
1089 **/
fm10k_configure_dglort(struct fm10k_intfc * interface)1090 static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1091 {
1092 struct fm10k_dglort_cfg dglort = { 0 };
1093 struct fm10k_hw *hw = &interface->hw;
1094 int i;
1095 u32 mrqc;
1096
1097 /* Fill out hash function seeds */
1098 for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1099 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1100
1101 /* Write RETA table to hardware */
1102 for (i = 0; i < FM10K_RETA_SIZE; i++)
1103 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1104
1105 /* Generate RSS hash based on packet types, TCP/UDP
1106 * port numbers and/or IPv4/v6 src and dst addresses
1107 */
1108 mrqc = FM10K_MRQC_IPV4 |
1109 FM10K_MRQC_TCP_IPV4 |
1110 FM10K_MRQC_IPV6 |
1111 FM10K_MRQC_TCP_IPV6;
1112
1113 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1114 mrqc |= FM10K_MRQC_UDP_IPV4;
1115 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1116 mrqc |= FM10K_MRQC_UDP_IPV6;
1117
1118 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1119
1120 /* configure default DGLORT mapping for RSS/DCB */
1121 dglort.inner_rss = 1;
1122 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1123 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1124 hw->mac.ops.configure_dglort_map(hw, &dglort);
1125
1126 /* assign GLORT per queue for queue mapped testing */
1127 if (interface->glort_count > 64) {
1128 memset(&dglort, 0, sizeof(dglort));
1129 dglort.inner_rss = 1;
1130 dglort.glort = interface->glort + 64;
1131 dglort.idx = fm10k_dglort_pf_queue;
1132 dglort.queue_l = fls(interface->num_rx_queues - 1);
1133 hw->mac.ops.configure_dglort_map(hw, &dglort);
1134 }
1135
1136 /* assign glort value for RSS/DCB specific to this interface */
1137 memset(&dglort, 0, sizeof(dglort));
1138 dglort.inner_rss = 1;
1139 dglort.glort = interface->glort;
1140 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1141 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1142 /* configure DGLORT mapping for RSS/DCB */
1143 dglort.idx = fm10k_dglort_pf_rss;
1144 if (interface->l2_accel)
1145 dglort.shared_l = fls(interface->l2_accel->size);
1146 hw->mac.ops.configure_dglort_map(hw, &dglort);
1147 }
1148
1149 /**
1150 * fm10k_configure_rx - Configure Receive Unit after Reset
1151 * @interface: board private structure
1152 *
1153 * Configure the Rx unit of the MAC after a reset.
1154 **/
fm10k_configure_rx(struct fm10k_intfc * interface)1155 static void fm10k_configure_rx(struct fm10k_intfc *interface)
1156 {
1157 int i;
1158
1159 /* Configure SWPRI to PC map */
1160 fm10k_configure_swpri_map(interface);
1161
1162 /* Configure RSS and DGLORT map */
1163 fm10k_configure_dglort(interface);
1164
1165 /* Setup the HW Rx Head and Tail descriptor pointers */
1166 for (i = 0; i < interface->num_rx_queues; i++)
1167 fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1168
1169 /* possible poll here to verify that Rx rings are now enabled */
1170 }
1171
fm10k_napi_enable_all(struct fm10k_intfc * interface)1172 static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1173 {
1174 struct fm10k_q_vector *q_vector;
1175 int q_idx;
1176
1177 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1178 q_vector = interface->q_vector[q_idx];
1179 napi_enable(&q_vector->napi);
1180 }
1181 }
1182
fm10k_msix_clean_rings(int __always_unused irq,void * data)1183 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1184 {
1185 struct fm10k_q_vector *q_vector = data;
1186
1187 if (q_vector->rx.count || q_vector->tx.count)
1188 napi_schedule_irqoff(&q_vector->napi);
1189
1190 return IRQ_HANDLED;
1191 }
1192
fm10k_msix_mbx_vf(int __always_unused irq,void * data)1193 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1194 {
1195 struct fm10k_intfc *interface = data;
1196 struct fm10k_hw *hw = &interface->hw;
1197 struct fm10k_mbx_info *mbx = &hw->mbx;
1198
1199 /* re-enable mailbox interrupt and indicate 20us delay */
1200 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1201 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1202 FM10K_ITR_ENABLE);
1203
1204 /* service upstream mailbox */
1205 if (fm10k_mbx_trylock(interface)) {
1206 mbx->ops.process(hw, mbx);
1207 fm10k_mbx_unlock(interface);
1208 }
1209
1210 hw->mac.get_host_state = true;
1211 fm10k_service_event_schedule(interface);
1212
1213 return IRQ_HANDLED;
1214 }
1215
1216 #define FM10K_ERR_MSG(type) case (type): error = #type; break
fm10k_handle_fault(struct fm10k_intfc * interface,int type,struct fm10k_fault * fault)1217 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1218 struct fm10k_fault *fault)
1219 {
1220 struct pci_dev *pdev = interface->pdev;
1221 struct fm10k_hw *hw = &interface->hw;
1222 struct fm10k_iov_data *iov_data = interface->iov_data;
1223 char *error;
1224
1225 switch (type) {
1226 case FM10K_PCA_FAULT:
1227 switch (fault->type) {
1228 default:
1229 error = "Unknown PCA error";
1230 break;
1231 FM10K_ERR_MSG(PCA_NO_FAULT);
1232 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1233 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1234 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1235 FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1236 FM10K_ERR_MSG(PCA_POISONED_TLP);
1237 FM10K_ERR_MSG(PCA_TLP_ABORT);
1238 }
1239 break;
1240 case FM10K_THI_FAULT:
1241 switch (fault->type) {
1242 default:
1243 error = "Unknown THI error";
1244 break;
1245 FM10K_ERR_MSG(THI_NO_FAULT);
1246 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1247 }
1248 break;
1249 case FM10K_FUM_FAULT:
1250 switch (fault->type) {
1251 default:
1252 error = "Unknown FUM error";
1253 break;
1254 FM10K_ERR_MSG(FUM_NO_FAULT);
1255 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1256 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1257 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1258 FM10K_ERR_MSG(FUM_RO_ERROR);
1259 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1260 FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1261 FM10K_ERR_MSG(FUM_INVALID_TYPE);
1262 FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1263 FM10K_ERR_MSG(FUM_INVALID_BE);
1264 FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1265 }
1266 break;
1267 default:
1268 error = "Undocumented fault";
1269 break;
1270 }
1271
1272 dev_warn(&pdev->dev,
1273 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1274 error, fault->address, fault->specinfo,
1275 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1276
1277 /* For VF faults, clear out the respective LPORT, reset the queue
1278 * resources, and then reconnect to the mailbox. This allows the
1279 * VF in question to resume behavior. For transient faults that are
1280 * the result of non-malicious behavior this will log the fault and
1281 * allow the VF to resume functionality. Obviously for malicious VFs
1282 * they will be able to attempt malicious behavior again. In this
1283 * case, the system administrator will need to step in and manually
1284 * remove or disable the VF in question.
1285 */
1286 if (fault->func && iov_data) {
1287 int vf = fault->func - 1;
1288 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1289
1290 hw->iov.ops.reset_lport(hw, vf_info);
1291 hw->iov.ops.reset_resources(hw, vf_info);
1292
1293 /* reset_lport disables the VF, so re-enable it */
1294 hw->iov.ops.set_lport(hw, vf_info, vf,
1295 FM10K_VF_FLAG_MULTI_CAPABLE);
1296
1297 /* reset_resources will disconnect from the mbx */
1298 vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1299 }
1300 }
1301
fm10k_report_fault(struct fm10k_intfc * interface,u32 eicr)1302 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1303 {
1304 struct fm10k_hw *hw = &interface->hw;
1305 struct fm10k_fault fault = { 0 };
1306 int type, err;
1307
1308 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1309 eicr;
1310 eicr >>= 1, type += FM10K_FAULT_SIZE) {
1311 /* only check if there is an error reported */
1312 if (!(eicr & 0x1))
1313 continue;
1314
1315 /* retrieve fault info */
1316 err = hw->mac.ops.get_fault(hw, type, &fault);
1317 if (err) {
1318 dev_err(&interface->pdev->dev,
1319 "error reading fault\n");
1320 continue;
1321 }
1322
1323 fm10k_handle_fault(interface, type, &fault);
1324 }
1325 }
1326
fm10k_reset_drop_on_empty(struct fm10k_intfc * interface,u32 eicr)1327 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1328 {
1329 struct fm10k_hw *hw = &interface->hw;
1330 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1331 u32 maxholdq;
1332 int q;
1333
1334 if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1335 return;
1336
1337 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1338 if (maxholdq)
1339 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1340 for (q = 255;;) {
1341 if (maxholdq & BIT(31)) {
1342 if (q < FM10K_MAX_QUEUES_PF) {
1343 interface->rx_overrun_pf++;
1344 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1345 } else {
1346 interface->rx_overrun_vf++;
1347 }
1348 }
1349
1350 maxholdq *= 2;
1351 if (!maxholdq)
1352 q &= ~(32 - 1);
1353
1354 if (!q)
1355 break;
1356
1357 if (q-- % 32)
1358 continue;
1359
1360 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1361 if (maxholdq)
1362 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1363 }
1364 }
1365
fm10k_msix_mbx_pf(int __always_unused irq,void * data)1366 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1367 {
1368 struct fm10k_intfc *interface = data;
1369 struct fm10k_hw *hw = &interface->hw;
1370 struct fm10k_mbx_info *mbx = &hw->mbx;
1371 u32 eicr;
1372
1373 /* unmask any set bits related to this interrupt */
1374 eicr = fm10k_read_reg(hw, FM10K_EICR);
1375 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1376 FM10K_EICR_SWITCHREADY |
1377 FM10K_EICR_SWITCHNOTREADY));
1378
1379 /* report any faults found to the message log */
1380 fm10k_report_fault(interface, eicr);
1381
1382 /* reset any queues disabled due to receiver overrun */
1383 fm10k_reset_drop_on_empty(interface, eicr);
1384
1385 /* service mailboxes */
1386 if (fm10k_mbx_trylock(interface)) {
1387 s32 err = mbx->ops.process(hw, mbx);
1388
1389 if (err == FM10K_ERR_RESET_REQUESTED)
1390 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1391
1392 /* handle VFLRE events */
1393 fm10k_iov_event(interface);
1394 fm10k_mbx_unlock(interface);
1395 }
1396
1397 /* if switch toggled state we should reset GLORTs */
1398 if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1399 /* force link down for at least 4 seconds */
1400 interface->link_down_event = jiffies + (4 * HZ);
1401 set_bit(__FM10K_LINK_DOWN, interface->state);
1402
1403 /* reset dglort_map back to no config */
1404 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1405 }
1406
1407 /* we should validate host state after interrupt event */
1408 hw->mac.get_host_state = true;
1409
1410 /* validate host state, and handle VF mailboxes in the service task */
1411 fm10k_service_event_schedule(interface);
1412
1413 /* re-enable mailbox interrupt and indicate 20us delay */
1414 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1415 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1416 FM10K_ITR_ENABLE);
1417
1418 return IRQ_HANDLED;
1419 }
1420
fm10k_mbx_free_irq(struct fm10k_intfc * interface)1421 void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1422 {
1423 struct fm10k_hw *hw = &interface->hw;
1424 struct msix_entry *entry;
1425 int itr_reg;
1426
1427 /* no mailbox IRQ to free if MSI-X is not enabled */
1428 if (!interface->msix_entries)
1429 return;
1430
1431 entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1432
1433 /* disconnect the mailbox */
1434 hw->mbx.ops.disconnect(hw, &hw->mbx);
1435
1436 /* disable Mailbox cause */
1437 if (hw->mac.type == fm10k_mac_pf) {
1438 fm10k_write_reg(hw, FM10K_EIMR,
1439 FM10K_EIMR_DISABLE(PCA_FAULT) |
1440 FM10K_EIMR_DISABLE(FUM_FAULT) |
1441 FM10K_EIMR_DISABLE(MAILBOX) |
1442 FM10K_EIMR_DISABLE(SWITCHREADY) |
1443 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1444 FM10K_EIMR_DISABLE(SRAMERROR) |
1445 FM10K_EIMR_DISABLE(VFLR) |
1446 FM10K_EIMR_DISABLE(MAXHOLDTIME));
1447 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1448 } else {
1449 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1450 }
1451
1452 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1453
1454 free_irq(entry->vector, interface);
1455 }
1456
fm10k_mbx_mac_addr(struct fm10k_hw * hw,u32 ** results,struct fm10k_mbx_info * mbx)1457 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1458 struct fm10k_mbx_info *mbx)
1459 {
1460 bool vlan_override = hw->mac.vlan_override;
1461 u16 default_vid = hw->mac.default_vid;
1462 struct fm10k_intfc *interface;
1463 s32 err;
1464
1465 err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1466 if (err)
1467 return err;
1468
1469 interface = container_of(hw, struct fm10k_intfc, hw);
1470
1471 /* MAC was changed so we need reset */
1472 if (is_valid_ether_addr(hw->mac.perm_addr) &&
1473 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1474 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1475
1476 /* VLAN override was changed, or default VLAN changed */
1477 if ((vlan_override != hw->mac.vlan_override) ||
1478 (default_vid != hw->mac.default_vid))
1479 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1480
1481 return 0;
1482 }
1483
1484 /* generic error handler for mailbox issues */
fm10k_mbx_error(struct fm10k_hw * hw,u32 ** results,struct fm10k_mbx_info __always_unused * mbx)1485 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1486 struct fm10k_mbx_info __always_unused *mbx)
1487 {
1488 struct fm10k_intfc *interface;
1489 struct pci_dev *pdev;
1490
1491 interface = container_of(hw, struct fm10k_intfc, hw);
1492 pdev = interface->pdev;
1493
1494 dev_err(&pdev->dev, "Unknown message ID %u\n",
1495 **results & FM10K_TLV_ID_MASK);
1496
1497 return 0;
1498 }
1499
1500 static const struct fm10k_msg_data vf_mbx_data[] = {
1501 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1502 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1503 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1504 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1505 };
1506
fm10k_mbx_request_irq_vf(struct fm10k_intfc * interface)1507 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1508 {
1509 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1510 struct net_device *dev = interface->netdev;
1511 struct fm10k_hw *hw = &interface->hw;
1512 int err;
1513
1514 /* Use timer0 for interrupt moderation on the mailbox */
1515 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1516
1517 /* register mailbox handlers */
1518 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1519 if (err)
1520 return err;
1521
1522 /* request the IRQ */
1523 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1524 dev->name, interface);
1525 if (err) {
1526 netif_err(interface, probe, dev,
1527 "request_irq for msix_mbx failed: %d\n", err);
1528 return err;
1529 }
1530
1531 /* map all of the interrupt sources */
1532 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1533
1534 /* enable interrupt */
1535 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1536
1537 return 0;
1538 }
1539
fm10k_lport_map(struct fm10k_hw * hw,u32 ** results,struct fm10k_mbx_info * mbx)1540 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1541 struct fm10k_mbx_info *mbx)
1542 {
1543 struct fm10k_intfc *interface;
1544 u32 dglort_map = hw->mac.dglort_map;
1545 s32 err;
1546
1547 interface = container_of(hw, struct fm10k_intfc, hw);
1548
1549 err = fm10k_msg_err_pf(hw, results, mbx);
1550 if (!err && hw->swapi.status) {
1551 /* force link down for a reasonable delay */
1552 interface->link_down_event = jiffies + (2 * HZ);
1553 set_bit(__FM10K_LINK_DOWN, interface->state);
1554
1555 /* reset dglort_map back to no config */
1556 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1557
1558 fm10k_service_event_schedule(interface);
1559
1560 /* prevent overloading kernel message buffer */
1561 if (interface->lport_map_failed)
1562 return 0;
1563
1564 interface->lport_map_failed = true;
1565
1566 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1567 dev_warn(&interface->pdev->dev,
1568 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1569 dev_warn(&interface->pdev->dev,
1570 "request logical port map failed: %d\n",
1571 hw->swapi.status);
1572
1573 return 0;
1574 }
1575
1576 err = fm10k_msg_lport_map_pf(hw, results, mbx);
1577 if (err)
1578 return err;
1579
1580 interface->lport_map_failed = false;
1581
1582 /* we need to reset if port count was just updated */
1583 if (dglort_map != hw->mac.dglort_map)
1584 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1585
1586 return 0;
1587 }
1588
fm10k_update_pvid(struct fm10k_hw * hw,u32 ** results,struct fm10k_mbx_info __always_unused * mbx)1589 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1590 struct fm10k_mbx_info __always_unused *mbx)
1591 {
1592 struct fm10k_intfc *interface;
1593 u16 glort, pvid;
1594 u32 pvid_update;
1595 s32 err;
1596
1597 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1598 &pvid_update);
1599 if (err)
1600 return err;
1601
1602 /* extract values from the pvid update */
1603 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1604 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1605
1606 /* if glort is not valid return error */
1607 if (!fm10k_glort_valid_pf(hw, glort))
1608 return FM10K_ERR_PARAM;
1609
1610 /* verify VLAN ID is valid */
1611 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1612 return FM10K_ERR_PARAM;
1613
1614 interface = container_of(hw, struct fm10k_intfc, hw);
1615
1616 /* check to see if this belongs to one of the VFs */
1617 err = fm10k_iov_update_pvid(interface, glort, pvid);
1618 if (!err)
1619 return 0;
1620
1621 /* we need to reset if default VLAN was just updated */
1622 if (pvid != hw->mac.default_vid)
1623 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1624
1625 hw->mac.default_vid = pvid;
1626
1627 return 0;
1628 }
1629
1630 static const struct fm10k_msg_data pf_mbx_data[] = {
1631 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1632 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1633 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1634 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1635 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1636 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1637 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1638 };
1639
fm10k_mbx_request_irq_pf(struct fm10k_intfc * interface)1640 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1641 {
1642 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1643 struct net_device *dev = interface->netdev;
1644 struct fm10k_hw *hw = &interface->hw;
1645 int err;
1646
1647 /* Use timer0 for interrupt moderation on the mailbox */
1648 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1649 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1650
1651 /* register mailbox handlers */
1652 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1653 if (err)
1654 return err;
1655
1656 /* request the IRQ */
1657 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1658 dev->name, interface);
1659 if (err) {
1660 netif_err(interface, probe, dev,
1661 "request_irq for msix_mbx failed: %d\n", err);
1662 return err;
1663 }
1664
1665 /* Enable interrupts w/ no moderation for "other" interrupts */
1666 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1668 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1671
1672 /* Enable interrupts w/ moderation for mailbox */
1673 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1674
1675 /* Enable individual interrupt causes */
1676 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1677 FM10K_EIMR_ENABLE(FUM_FAULT) |
1678 FM10K_EIMR_ENABLE(MAILBOX) |
1679 FM10K_EIMR_ENABLE(SWITCHREADY) |
1680 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1681 FM10K_EIMR_ENABLE(SRAMERROR) |
1682 FM10K_EIMR_ENABLE(VFLR) |
1683 FM10K_EIMR_ENABLE(MAXHOLDTIME));
1684
1685 /* enable interrupt */
1686 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1687
1688 return 0;
1689 }
1690
fm10k_mbx_request_irq(struct fm10k_intfc * interface)1691 int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1692 {
1693 struct fm10k_hw *hw = &interface->hw;
1694 int err;
1695
1696 /* enable Mailbox cause */
1697 if (hw->mac.type == fm10k_mac_pf)
1698 err = fm10k_mbx_request_irq_pf(interface);
1699 else
1700 err = fm10k_mbx_request_irq_vf(interface);
1701 if (err)
1702 return err;
1703
1704 /* connect mailbox */
1705 err = hw->mbx.ops.connect(hw, &hw->mbx);
1706
1707 /* if the mailbox failed to connect, then free IRQ */
1708 if (err)
1709 fm10k_mbx_free_irq(interface);
1710
1711 return err;
1712 }
1713
1714 /**
1715 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1716 * @interface: board private structure
1717 *
1718 * Release all interrupts associated with this interface
1719 **/
fm10k_qv_free_irq(struct fm10k_intfc * interface)1720 void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1721 {
1722 int vector = interface->num_q_vectors;
1723 struct msix_entry *entry;
1724
1725 entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1726
1727 while (vector) {
1728 struct fm10k_q_vector *q_vector;
1729
1730 vector--;
1731 entry--;
1732 q_vector = interface->q_vector[vector];
1733
1734 if (!q_vector->tx.count && !q_vector->rx.count)
1735 continue;
1736
1737 /* clear the affinity_mask in the IRQ descriptor */
1738 irq_set_affinity_hint(entry->vector, NULL);
1739
1740 /* disable interrupts */
1741 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1742
1743 free_irq(entry->vector, q_vector);
1744 }
1745 }
1746
1747 /**
1748 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1749 * @interface: board private structure
1750 *
1751 * Attempts to configure interrupts using the best available
1752 * capabilities of the hardware and kernel.
1753 **/
fm10k_qv_request_irq(struct fm10k_intfc * interface)1754 int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1755 {
1756 struct net_device *dev = interface->netdev;
1757 struct fm10k_hw *hw = &interface->hw;
1758 struct msix_entry *entry;
1759 unsigned int ri = 0, ti = 0;
1760 int vector, err;
1761
1762 entry = &interface->msix_entries[NON_Q_VECTORS];
1763
1764 for (vector = 0; vector < interface->num_q_vectors; vector++) {
1765 struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1766
1767 /* name the vector */
1768 if (q_vector->tx.count && q_vector->rx.count) {
1769 snprintf(q_vector->name, sizeof(q_vector->name),
1770 "%s-TxRx-%u", dev->name, ri++);
1771 ti++;
1772 } else if (q_vector->rx.count) {
1773 snprintf(q_vector->name, sizeof(q_vector->name),
1774 "%s-rx-%u", dev->name, ri++);
1775 } else if (q_vector->tx.count) {
1776 snprintf(q_vector->name, sizeof(q_vector->name),
1777 "%s-tx-%u", dev->name, ti++);
1778 } else {
1779 /* skip this unused q_vector */
1780 continue;
1781 }
1782
1783 /* Assign ITR register to q_vector */
1784 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1785 &interface->uc_addr[FM10K_ITR(entry->entry)] :
1786 &interface->uc_addr[FM10K_VFITR(entry->entry)];
1787
1788 /* request the IRQ */
1789 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1790 q_vector->name, q_vector);
1791 if (err) {
1792 netif_err(interface, probe, dev,
1793 "request_irq failed for MSIX interrupt Error: %d\n",
1794 err);
1795 goto err_out;
1796 }
1797
1798 /* assign the mask for this irq */
1799 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1800
1801 /* Enable q_vector */
1802 writel(FM10K_ITR_ENABLE, q_vector->itr);
1803
1804 entry++;
1805 }
1806
1807 return 0;
1808
1809 err_out:
1810 /* wind through the ring freeing all entries and vectors */
1811 while (vector) {
1812 struct fm10k_q_vector *q_vector;
1813
1814 entry--;
1815 vector--;
1816 q_vector = interface->q_vector[vector];
1817
1818 if (!q_vector->tx.count && !q_vector->rx.count)
1819 continue;
1820
1821 /* clear the affinity_mask in the IRQ descriptor */
1822 irq_set_affinity_hint(entry->vector, NULL);
1823
1824 /* disable interrupts */
1825 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1826
1827 free_irq(entry->vector, q_vector);
1828 }
1829
1830 return err;
1831 }
1832
fm10k_up(struct fm10k_intfc * interface)1833 void fm10k_up(struct fm10k_intfc *interface)
1834 {
1835 struct fm10k_hw *hw = &interface->hw;
1836
1837 /* Enable Tx/Rx DMA */
1838 hw->mac.ops.start_hw(hw);
1839
1840 /* configure Tx descriptor rings */
1841 fm10k_configure_tx(interface);
1842
1843 /* configure Rx descriptor rings */
1844 fm10k_configure_rx(interface);
1845
1846 /* configure interrupts */
1847 hw->mac.ops.update_int_moderator(hw);
1848
1849 /* enable statistics capture again */
1850 clear_bit(__FM10K_UPDATING_STATS, interface->state);
1851
1852 /* clear down bit to indicate we are ready to go */
1853 clear_bit(__FM10K_DOWN, interface->state);
1854
1855 /* enable polling cleanups */
1856 fm10k_napi_enable_all(interface);
1857
1858 /* re-establish Rx filters */
1859 fm10k_restore_rx_state(interface);
1860
1861 /* enable transmits */
1862 netif_tx_start_all_queues(interface->netdev);
1863
1864 /* kick off the service timer now */
1865 hw->mac.get_host_state = true;
1866 mod_timer(&interface->service_timer, jiffies);
1867 }
1868
fm10k_napi_disable_all(struct fm10k_intfc * interface)1869 static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1870 {
1871 struct fm10k_q_vector *q_vector;
1872 int q_idx;
1873
1874 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1875 q_vector = interface->q_vector[q_idx];
1876 napi_disable(&q_vector->napi);
1877 }
1878 }
1879
fm10k_down(struct fm10k_intfc * interface)1880 void fm10k_down(struct fm10k_intfc *interface)
1881 {
1882 struct net_device *netdev = interface->netdev;
1883 struct fm10k_hw *hw = &interface->hw;
1884 int err, i = 0, count = 0;
1885
1886 /* signal that we are down to the interrupt handler and service task */
1887 if (test_and_set_bit(__FM10K_DOWN, interface->state))
1888 return;
1889
1890 /* call carrier off first to avoid false dev_watchdog timeouts */
1891 netif_carrier_off(netdev);
1892
1893 /* disable transmits */
1894 netif_tx_stop_all_queues(netdev);
1895 netif_tx_disable(netdev);
1896
1897 /* reset Rx filters */
1898 fm10k_reset_rx_state(interface);
1899
1900 /* disable polling routines */
1901 fm10k_napi_disable_all(interface);
1902
1903 /* capture stats one last time before stopping interface */
1904 fm10k_update_stats(interface);
1905
1906 /* prevent updating statistics while we're down */
1907 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1908 usleep_range(1000, 2000);
1909
1910 /* skip waiting for TX DMA if we lost PCIe link */
1911 if (FM10K_REMOVED(hw->hw_addr))
1912 goto skip_tx_dma_drain;
1913
1914 /* In some rare circumstances it can take a while for Tx queues to
1915 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1916 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1917 * until the Tx queues have emptied, or until a number of retries. If
1918 * we fail to clear within the retry loop, we will issue a warning
1919 * indicating that Tx DMA is probably hung. Note this means we call
1920 * .stop_hw() twice but this shouldn't cause any problems.
1921 */
1922 err = hw->mac.ops.stop_hw(hw);
1923 if (err != FM10K_ERR_REQUESTS_PENDING)
1924 goto skip_tx_dma_drain;
1925
1926 #define TX_DMA_DRAIN_RETRIES 25
1927 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1928 usleep_range(10000, 20000);
1929
1930 /* start checking at the last ring to have pending Tx */
1931 for (; i < interface->num_tx_queues; i++)
1932 if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1933 break;
1934
1935 /* if all the queues are drained, we can break now */
1936 if (i == interface->num_tx_queues)
1937 break;
1938 }
1939
1940 if (count >= TX_DMA_DRAIN_RETRIES)
1941 dev_err(&interface->pdev->dev,
1942 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1943 count);
1944 skip_tx_dma_drain:
1945 /* Disable DMA engine for Tx/Rx */
1946 err = hw->mac.ops.stop_hw(hw);
1947 if (err == FM10K_ERR_REQUESTS_PENDING)
1948 dev_err(&interface->pdev->dev,
1949 "due to pending requests hw was not shut down gracefully\n");
1950 else if (err)
1951 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1952
1953 /* free any buffers still on the rings */
1954 fm10k_clean_all_tx_rings(interface);
1955 fm10k_clean_all_rx_rings(interface);
1956 }
1957
1958 /**
1959 * fm10k_sw_init - Initialize general software structures
1960 * @interface: host interface private structure to initialize
1961 * @ent: PCI device ID entry
1962 *
1963 * fm10k_sw_init initializes the interface private data structure.
1964 * Fields are initialized based on PCI device information and
1965 * OS network device settings (MTU size).
1966 **/
fm10k_sw_init(struct fm10k_intfc * interface,const struct pci_device_id * ent)1967 static int fm10k_sw_init(struct fm10k_intfc *interface,
1968 const struct pci_device_id *ent)
1969 {
1970 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1971 struct fm10k_hw *hw = &interface->hw;
1972 struct pci_dev *pdev = interface->pdev;
1973 struct net_device *netdev = interface->netdev;
1974 u32 rss_key[FM10K_RSSRK_SIZE];
1975 unsigned int rss;
1976 int err;
1977
1978 /* initialize back pointer */
1979 hw->back = interface;
1980 hw->hw_addr = interface->uc_addr;
1981
1982 /* PCI config space info */
1983 hw->vendor_id = pdev->vendor;
1984 hw->device_id = pdev->device;
1985 hw->revision_id = pdev->revision;
1986 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1987 hw->subsystem_device_id = pdev->subsystem_device;
1988
1989 /* Setup hw api */
1990 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1991 hw->mac.type = fi->mac;
1992
1993 /* Setup IOV handlers */
1994 if (fi->iov_ops)
1995 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1996
1997 /* Set common capability flags and settings */
1998 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
1999 interface->ring_feature[RING_F_RSS].limit = rss;
2000 fi->get_invariants(hw);
2001
2002 /* pick up the PCIe bus settings for reporting later */
2003 if (hw->mac.ops.get_bus_info)
2004 hw->mac.ops.get_bus_info(hw);
2005
2006 /* limit the usable DMA range */
2007 if (hw->mac.ops.set_dma_mask)
2008 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2009
2010 /* update netdev with DMA restrictions */
2011 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2012 netdev->features |= NETIF_F_HIGHDMA;
2013 netdev->vlan_features |= NETIF_F_HIGHDMA;
2014 }
2015
2016 /* reset and initialize the hardware so it is in a known state */
2017 err = hw->mac.ops.reset_hw(hw);
2018 if (err) {
2019 dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2020 return err;
2021 }
2022
2023 err = hw->mac.ops.init_hw(hw);
2024 if (err) {
2025 dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2026 return err;
2027 }
2028
2029 /* initialize hardware statistics */
2030 hw->mac.ops.update_hw_stats(hw, &interface->stats);
2031
2032 /* Set upper limit on IOV VFs that can be allocated */
2033 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2034
2035 /* Start with random Ethernet address */
2036 eth_random_addr(hw->mac.addr);
2037
2038 /* Initialize MAC address from hardware */
2039 err = hw->mac.ops.read_mac_addr(hw);
2040 if (err) {
2041 dev_warn(&pdev->dev,
2042 "Failed to obtain MAC address defaulting to random\n");
2043 /* tag address assignment as random */
2044 netdev->addr_assign_type |= NET_ADDR_RANDOM;
2045 }
2046
2047 eth_hw_addr_set(netdev, hw->mac.addr);
2048 ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2049
2050 if (!is_valid_ether_addr(netdev->perm_addr)) {
2051 dev_err(&pdev->dev, "Invalid MAC Address\n");
2052 return -EIO;
2053 }
2054
2055 /* initialize DCBNL interface */
2056 fm10k_dcbnl_set_ops(netdev);
2057
2058 /* set default ring sizes */
2059 interface->tx_ring_count = FM10K_DEFAULT_TXD;
2060 interface->rx_ring_count = FM10K_DEFAULT_RXD;
2061
2062 /* set default interrupt moderation */
2063 interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2064 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2065
2066 /* Initialize the MAC/VLAN queue */
2067 INIT_LIST_HEAD(&interface->macvlan_requests);
2068
2069 netdev_rss_key_fill(rss_key, sizeof(rss_key));
2070 memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2071
2072 /* Initialize the mailbox lock */
2073 spin_lock_init(&interface->mbx_lock);
2074 spin_lock_init(&interface->macvlan_lock);
2075
2076 /* Start off interface as being down */
2077 set_bit(__FM10K_DOWN, interface->state);
2078 set_bit(__FM10K_UPDATING_STATS, interface->state);
2079
2080 return 0;
2081 }
2082
2083 /**
2084 * fm10k_probe - Device Initialization Routine
2085 * @pdev: PCI device information struct
2086 * @ent: entry in fm10k_pci_tbl
2087 *
2088 * Returns 0 on success, negative on failure
2089 *
2090 * fm10k_probe initializes an interface identified by a pci_dev structure.
2091 * The OS initialization, configuring of the interface private structure,
2092 * and a hardware reset occur.
2093 **/
fm10k_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2094 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2095 {
2096 struct net_device *netdev;
2097 struct fm10k_intfc *interface;
2098 int err;
2099
2100 if (pdev->error_state != pci_channel_io_normal) {
2101 dev_err(&pdev->dev,
2102 "PCI device still in an error state. Unable to load...\n");
2103 return -EIO;
2104 }
2105
2106 err = pci_enable_device_mem(pdev);
2107 if (err) {
2108 dev_err(&pdev->dev,
2109 "PCI enable device failed: %d\n", err);
2110 return err;
2111 }
2112
2113 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2114 if (err)
2115 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2116 if (err) {
2117 dev_err(&pdev->dev,
2118 "DMA configuration failed: %d\n", err);
2119 goto err_dma;
2120 }
2121
2122 err = pci_request_mem_regions(pdev, fm10k_driver_name);
2123 if (err) {
2124 dev_err(&pdev->dev,
2125 "pci_request_selected_regions failed: %d\n", err);
2126 goto err_pci_reg;
2127 }
2128
2129 pci_set_master(pdev);
2130 pci_save_state(pdev);
2131
2132 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2133 if (!netdev) {
2134 err = -ENOMEM;
2135 goto err_alloc_netdev;
2136 }
2137
2138 SET_NETDEV_DEV(netdev, &pdev->dev);
2139
2140 interface = netdev_priv(netdev);
2141 pci_set_drvdata(pdev, interface);
2142
2143 interface->netdev = netdev;
2144 interface->pdev = pdev;
2145
2146 interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2147 FM10K_UC_ADDR_SIZE);
2148 if (!interface->uc_addr) {
2149 err = -EIO;
2150 goto err_ioremap;
2151 }
2152
2153 err = fm10k_sw_init(interface, ent);
2154 if (err)
2155 goto err_sw_init;
2156
2157 /* enable debugfs support */
2158 fm10k_dbg_intfc_init(interface);
2159
2160 err = fm10k_init_queueing_scheme(interface);
2161 if (err)
2162 goto err_sw_init;
2163
2164 /* the mbx interrupt might attempt to schedule the service task, so we
2165 * must ensure it is disabled since we haven't yet requested the timer
2166 * or work item.
2167 */
2168 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2169
2170 err = fm10k_mbx_request_irq(interface);
2171 if (err)
2172 goto err_mbx_interrupt;
2173
2174 /* final check of hardware state before registering the interface */
2175 err = fm10k_hw_ready(interface);
2176 if (err)
2177 goto err_register;
2178
2179 err = register_netdev(netdev);
2180 if (err)
2181 goto err_register;
2182
2183 /* carrier off reporting is important to ethtool even BEFORE open */
2184 netif_carrier_off(netdev);
2185
2186 /* stop all the transmit queues from transmitting until link is up */
2187 netif_tx_stop_all_queues(netdev);
2188
2189 /* Initialize service timer and service task late in order to avoid
2190 * cleanup issues.
2191 */
2192 timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2193 INIT_WORK(&interface->service_task, fm10k_service_task);
2194
2195 /* Setup the MAC/VLAN queue */
2196 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2197
2198 /* kick off service timer now, even when interface is down */
2199 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2200
2201 /* print warning for non-optimal configurations */
2202 pcie_print_link_status(interface->pdev);
2203
2204 /* report MAC address for logging */
2205 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2206
2207 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2208 fm10k_iov_configure(pdev, 0);
2209
2210 /* clear the service task disable bit and kick off service task */
2211 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2212 fm10k_service_event_schedule(interface);
2213
2214 return 0;
2215
2216 err_register:
2217 fm10k_mbx_free_irq(interface);
2218 err_mbx_interrupt:
2219 fm10k_clear_queueing_scheme(interface);
2220 err_sw_init:
2221 if (interface->sw_addr)
2222 iounmap(interface->sw_addr);
2223 iounmap(interface->uc_addr);
2224 err_ioremap:
2225 free_netdev(netdev);
2226 err_alloc_netdev:
2227 pci_release_mem_regions(pdev);
2228 err_pci_reg:
2229 err_dma:
2230 pci_disable_device(pdev);
2231 return err;
2232 }
2233
2234 /**
2235 * fm10k_remove - Device Removal Routine
2236 * @pdev: PCI device information struct
2237 *
2238 * fm10k_remove is called by the PCI subsystem to alert the driver
2239 * that it should release a PCI device. The could be caused by a
2240 * Hot-Plug event, or because the driver is going to be removed from
2241 * memory.
2242 **/
fm10k_remove(struct pci_dev * pdev)2243 static void fm10k_remove(struct pci_dev *pdev)
2244 {
2245 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2246 struct net_device *netdev = interface->netdev;
2247
2248 del_timer_sync(&interface->service_timer);
2249
2250 fm10k_stop_service_event(interface);
2251 fm10k_stop_macvlan_task(interface);
2252
2253 /* Remove all pending MAC/VLAN requests */
2254 fm10k_clear_macvlan_queue(interface, interface->glort, true);
2255
2256 /* free netdev, this may bounce the interrupts due to setup_tc */
2257 if (netdev->reg_state == NETREG_REGISTERED)
2258 unregister_netdev(netdev);
2259
2260 /* release VFs */
2261 fm10k_iov_disable(pdev);
2262
2263 /* disable mailbox interrupt */
2264 fm10k_mbx_free_irq(interface);
2265
2266 /* free interrupts */
2267 fm10k_clear_queueing_scheme(interface);
2268
2269 /* remove any debugfs interfaces */
2270 fm10k_dbg_intfc_exit(interface);
2271
2272 if (interface->sw_addr)
2273 iounmap(interface->sw_addr);
2274 iounmap(interface->uc_addr);
2275
2276 free_netdev(netdev);
2277
2278 pci_release_mem_regions(pdev);
2279
2280 pci_disable_device(pdev);
2281 }
2282
fm10k_prepare_suspend(struct fm10k_intfc * interface)2283 static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2284 {
2285 /* the watchdog task reads from registers, which might appear like
2286 * a surprise remove if the PCIe device is disabled while we're
2287 * stopped. We stop the watchdog task until after we resume software
2288 * activity.
2289 *
2290 * Note that the MAC/VLAN task will be stopped as part of preparing
2291 * for reset so we don't need to handle it here.
2292 */
2293 fm10k_stop_service_event(interface);
2294
2295 if (fm10k_prepare_for_reset(interface))
2296 set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2297 }
2298
fm10k_handle_resume(struct fm10k_intfc * interface)2299 static int fm10k_handle_resume(struct fm10k_intfc *interface)
2300 {
2301 struct fm10k_hw *hw = &interface->hw;
2302 int err;
2303
2304 /* Even if we didn't properly prepare for reset in
2305 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2306 */
2307 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2308 dev_warn(&interface->pdev->dev,
2309 "Device was shut down as part of suspend... Attempting to recover\n");
2310
2311 /* reset statistics starting values */
2312 hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2313
2314 err = fm10k_handle_reset(interface);
2315 if (err)
2316 return err;
2317
2318 /* assume host is not ready, to prevent race with watchdog in case we
2319 * actually don't have connection to the switch
2320 */
2321 interface->host_ready = false;
2322 fm10k_watchdog_host_not_ready(interface);
2323
2324 /* force link to stay down for a second to prevent link flutter */
2325 interface->link_down_event = jiffies + (HZ);
2326 set_bit(__FM10K_LINK_DOWN, interface->state);
2327
2328 /* restart the service task */
2329 fm10k_start_service_event(interface);
2330
2331 /* Restart the MAC/VLAN request queue in-case of outstanding events */
2332 fm10k_macvlan_schedule(interface);
2333
2334 return 0;
2335 }
2336
2337 /**
2338 * fm10k_resume - Generic PM resume hook
2339 * @dev: generic device structure
2340 *
2341 * Generic PM hook used when waking the device from a low power state after
2342 * suspend or hibernation. This function does not need to handle lower PCIe
2343 * device state as the stack takes care of that for us.
2344 **/
fm10k_resume(struct device * dev)2345 static int fm10k_resume(struct device *dev)
2346 {
2347 struct fm10k_intfc *interface = dev_get_drvdata(dev);
2348 struct net_device *netdev = interface->netdev;
2349 struct fm10k_hw *hw = &interface->hw;
2350 int err;
2351
2352 /* refresh hw_addr in case it was dropped */
2353 hw->hw_addr = interface->uc_addr;
2354
2355 err = fm10k_handle_resume(interface);
2356 if (err)
2357 return err;
2358
2359 netif_device_attach(netdev);
2360
2361 return 0;
2362 }
2363
2364 /**
2365 * fm10k_suspend - Generic PM suspend hook
2366 * @dev: generic device structure
2367 *
2368 * Generic PM hook used when setting the device into a low power state for
2369 * system suspend or hibernation. This function does not need to handle lower
2370 * PCIe device state as the stack takes care of that for us.
2371 **/
fm10k_suspend(struct device * dev)2372 static int fm10k_suspend(struct device *dev)
2373 {
2374 struct fm10k_intfc *interface = dev_get_drvdata(dev);
2375 struct net_device *netdev = interface->netdev;
2376
2377 netif_device_detach(netdev);
2378
2379 fm10k_prepare_suspend(interface);
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * fm10k_io_error_detected - called when PCI error is detected
2386 * @pdev: Pointer to PCI device
2387 * @state: The current pci connection state
2388 *
2389 * This function is called after a PCI bus error affecting
2390 * this device has been detected.
2391 */
fm10k_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2392 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2393 pci_channel_state_t state)
2394 {
2395 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2396 struct net_device *netdev = interface->netdev;
2397
2398 netif_device_detach(netdev);
2399
2400 if (state == pci_channel_io_perm_failure)
2401 return PCI_ERS_RESULT_DISCONNECT;
2402
2403 fm10k_prepare_suspend(interface);
2404
2405 /* Request a slot reset. */
2406 return PCI_ERS_RESULT_NEED_RESET;
2407 }
2408
2409 /**
2410 * fm10k_io_slot_reset - called after the pci bus has been reset.
2411 * @pdev: Pointer to PCI device
2412 *
2413 * Restart the card from scratch, as if from a cold-boot.
2414 */
fm10k_io_slot_reset(struct pci_dev * pdev)2415 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2416 {
2417 pci_ers_result_t result;
2418
2419 if (pci_reenable_device(pdev)) {
2420 dev_err(&pdev->dev,
2421 "Cannot re-enable PCI device after reset.\n");
2422 result = PCI_ERS_RESULT_DISCONNECT;
2423 } else {
2424 pci_set_master(pdev);
2425 pci_restore_state(pdev);
2426
2427 /* After second error pci->state_saved is false, this
2428 * resets it so EEH doesn't break.
2429 */
2430 pci_save_state(pdev);
2431
2432 pci_wake_from_d3(pdev, false);
2433
2434 result = PCI_ERS_RESULT_RECOVERED;
2435 }
2436
2437 return result;
2438 }
2439
2440 /**
2441 * fm10k_io_resume - called when traffic can start flowing again.
2442 * @pdev: Pointer to PCI device
2443 *
2444 * This callback is called when the error recovery driver tells us that
2445 * its OK to resume normal operation.
2446 */
fm10k_io_resume(struct pci_dev * pdev)2447 static void fm10k_io_resume(struct pci_dev *pdev)
2448 {
2449 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2450 struct net_device *netdev = interface->netdev;
2451 int err;
2452
2453 err = fm10k_handle_resume(interface);
2454
2455 if (err)
2456 dev_warn(&pdev->dev,
2457 "%s failed: %d\n", __func__, err);
2458 else
2459 netif_device_attach(netdev);
2460 }
2461
2462 /**
2463 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2464 * @pdev: Pointer to PCI device
2465 *
2466 * This callback is called when the PCI function is about to be reset,
2467 * allowing the device driver to prepare for it.
2468 */
fm10k_io_reset_prepare(struct pci_dev * pdev)2469 static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2470 {
2471 /* warn incase we have any active VF devices */
2472 if (pci_num_vf(pdev))
2473 dev_warn(&pdev->dev,
2474 "PCIe FLR may cause issues for any active VF devices\n");
2475 fm10k_prepare_suspend(pci_get_drvdata(pdev));
2476 }
2477
2478 /**
2479 * fm10k_io_reset_done - called when PCI function has finished resetting
2480 * @pdev: Pointer to PCI device
2481 *
2482 * This callback is called just after the PCI function is reset, such as via
2483 * /sys/class/net/<enpX>/device/reset or similar.
2484 */
fm10k_io_reset_done(struct pci_dev * pdev)2485 static void fm10k_io_reset_done(struct pci_dev *pdev)
2486 {
2487 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2488 int err = fm10k_handle_resume(interface);
2489
2490 if (err) {
2491 dev_warn(&pdev->dev,
2492 "%s failed: %d\n", __func__, err);
2493 netif_device_detach(interface->netdev);
2494 }
2495 }
2496
2497 static const struct pci_error_handlers fm10k_err_handler = {
2498 .error_detected = fm10k_io_error_detected,
2499 .slot_reset = fm10k_io_slot_reset,
2500 .resume = fm10k_io_resume,
2501 .reset_prepare = fm10k_io_reset_prepare,
2502 .reset_done = fm10k_io_reset_done,
2503 };
2504
2505 static DEFINE_SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2506
2507 static struct pci_driver fm10k_driver = {
2508 .name = fm10k_driver_name,
2509 .id_table = fm10k_pci_tbl,
2510 .probe = fm10k_probe,
2511 .remove = fm10k_remove,
2512 .driver.pm = pm_sleep_ptr(&fm10k_pm_ops),
2513 .sriov_configure = fm10k_iov_configure,
2514 .err_handler = &fm10k_err_handler
2515 };
2516
2517 /**
2518 * fm10k_register_pci_driver - register driver interface
2519 *
2520 * This function is called on module load in order to register the driver.
2521 **/
fm10k_register_pci_driver(void)2522 int fm10k_register_pci_driver(void)
2523 {
2524 return pci_register_driver(&fm10k_driver);
2525 }
2526
2527 /**
2528 * fm10k_unregister_pci_driver - unregister driver interface
2529 *
2530 * This function is called on module unload in order to remove the driver.
2531 **/
fm10k_unregister_pci_driver(void)2532 void fm10k_unregister_pci_driver(void)
2533 {
2534 pci_unregister_driver(&fm10k_driver);
2535 }
2536